Annex A: Sustainability Report

Contextual Information

Company Details			
Name of Organization	Benguet Corporation		
Location of Headquarters	7F Universal RE Building, 106 Paseo de Roxas, 1226 Makati City Philippines		
Location of Operations	Itogon, Benguet Province for mining of gold and silver Irisan, Baguio City for operation / processing of lime products		
Report Boundary: Legal entities (e.g. subsidiaries) included in this report*	Benguet Gold Operations (BGO) Corporate Headquarters (CHQ) Irisan Lime Project (ILP)		
Business Model, including Primary Activities, Brands, Products, and Services	Natural resources company engaged in, but not limited to the following: 1. Mineral exploration; 2. Mine development; 3. Mineral resources extraction; 4. Gold & silver processing; 5. Management of mine waste and mill tailings; 6. Production of quicklime and hydrated lime; and 7. Restoration / rehabilitation of mined-out areas.		
Markets Served	Processed gold is sold to Bangko Sentral ng Pilipinas (BSP); Lime products are sold to mining and allied companies and farmers within Benguet and neighboring Provinces.		
Scale of the Organization	 Total average number of employees for 2024 is 301 employees which includes Central Headquarters (CHQ), Benguet Gold Operation (BGO) and Irisan Lime Project (ILP). Total number of operations: One (1) – Mining and milling operations for gold and silver One (1) – 3 Kilns alternately operating for lime production. Net Sales (private sector) Total Capitalization Debt – Php_1.69B Equity – Php7.934B Quantity of products – Gold – 5,750.74 ounces Silver –999.10 ounces Lime – 6,362.14 Metric Tons 		
Reporting Period	CY 2024		
Highest Ranking Person responsible for this report	Atty. Lina G. Fernandez – President		

Materiality Process

Explain how you applied the materiality principle (or the materiality process) in identifying your material topics.1

The 2024 Sustainability Report provides the fundamentals of informing our stakeholders in understanding the most critical and material topics that contributed to and affected the 2024 ESG performance that impacted people's health, environment, and economy. Beyond the unprecedented challenges, the Company has embodied a solution-driven mindset to impart lasting value to its investors and stakeholders. The report provides a detailed overview of the way best sustainability practices are deeply rooted in Benguet Corporation's business.

It is of these facts that Benguet Corporation unceasingly strives to manage its operation under the following principles and commitments to attain its long-term objectives:

- a. Profit and growth-oriented;
- b. Responsible operation and care for the environment;
- c. Commitment to improving the quality of life of our employees, the communities, and all stakeholders; and
- d. Compliance with existing laws, rules, and other obligations

The Board has a clearly defined and updated vision, mission, and core values. Please refer to the BC website under the tab "About Us" http://ibenguetcorp.com/about-us/

Please refer also to the Board Charter p.8 which states that one of the general responsibilities of the Board is to determine the Company's purpose, vision, mission, and strategies to carry out its objectives. http://:benguetcorp.com/corporate-governance/board-committee/

Economic Material Factors

Our economic performance is based on the value our operations contribute to the local and national governments, host and neighboring mining communities, and the environment, at large. Our operations have created derived demand resulting in the establishment of micro, small, and medium enterprises in our mining community as well as in other areas where we source our value chain. Through our operations, the quality of life of our shareholders, employees, and other stakeholders has improved, local economies vigorously grew, and protection of the environment- intensified

Environmental Material Factors

Benguet Corporation is committed to the protection and enhancement of the environment by ensuring that its mining operations are in full compliance with mining and environmental laws, rules, and regulations. It ensures close collaboration and coordination with the Department of Environment and Natural Resources (DENR), the Mines and Geosciences Bureau (MGB), the Environmental Management Bureau (EMB), and all the government agencies that monitor compliance. Sustainability is core to BC's corporate strategy and sits at the heart of everything it does. Our operation aims to be environmentally responsible, respecting human rights and supporting the communities in which BC operates. It is the leading value that enables our people to understand our common purpose, our values, how we measure success, and the basis for our decision-making. It is about managing our risks, reducing adverse environmental, social, economic, and cultural impacts, and supporting and sustaining the communities and environments in which we operate.

The Environmental Material Factors have been considered essential in keeping our operations successful. As a mining company, we are committed partners of the government in the conscientious development of the country's natural resources. This agreement comes with a huge responsibility not just to harness, but most specifically to protect, nurture, restore, and enhance the environment. Nature and the resources within are the main enablers of our business, and as such, considerable care is our priority. Mitigating any possible adverse effects of our operations on the environment is part of our day-to-day function. The Company's mining activity is guided by the provisions of the Philippine Laws, such as but is not limited to the following:

- Department Administrative Order No. 2010-21 (Implementing Rules and Regulations of R.A. 7942 The Philippine Mining Act of 1995)
- 2. R.A. 9275 Philippine Clean Water Act 0f 2004
- 3. Department Administrative Order No. 2005-10 (IRR of R.A. 9275 Philippine Clean Water Act);
- 4. Department Administrative Order No. 2000-98 (Mine Safety and Health Standard);

2

¹ See <u>GRI 102-46</u> (2016) for more guidance.

- 5. Department Administrative Order No. 2000-81 (IRR of R.A. 8749 Philippine Clean Air Act);
- 6. R.A. 8371 Indigenous Peoples Rights Act;
- DENR Administrative Order No. 2001-34 (IRR of R.A. No. 9003 Ecological Solid Waste Management Act).
- 8. R.A. No. 6969 An Act to Control Toxic Substances and Hazardous and Nuclear Wastes
- 9. Department Administrative Order No. 28 (IRR of R.A. 6969 Toxic Substances and Hazardous and Nuclear Wastes Control Act); and
- 10. DENR Administrative Order No. 2003-30 (Revised Procedural Manual of P.D. 1586 Environmental Impact Statement System).

We constantly monitor the land, air, and water quality, the siltation levels in bodies of water, as well as the forest cover / density in the affected areas within our operations and its surrounding environs. We adhere to the strict parameters laid out by the government in ensuring that we protect the ecosystem, promote biodiversity, and enhance the environment.

Social Material Factors

Benguet Corporation puts health and safety as top priority and believes that sustainability includes playing an appropriate role in addressing global issues such as climate change, supporting and respecting human rights, and advocating for social change such as by supporting the rights of Indigenous Peoples. As a century-old corporation, BC has witnessed and navigated through countless crises together with our employees, suppliers, and local communities but BC managed to put top priority concerns to people first.

As a responsible business entity, our Vision, Mission, Goals, Safety and Environmental Policies are centered on achieving productivity and advocating for the safety and health of our employees, assisting the people within our host and neighboring communities, and the continuous enhancement of our environment. We share the stewardship of our country's natural resources. As we operate within the indigenous communities, we support local cultures and respect human rights as we help drive economic development in the area.

As a responsible corporate partner of society, the Company has a social obligation not only to preserve, protect, and enhance the physical and ecological environment but also to improve the quality of life of the people in the communities surrounding the operation.

Aside from the Company's commitment to be socially responsible and environmentally conscious, it also aims to achieve competitiveness and excellence as a natural resource development Company through enhanced productivity and improvement of quality of life of its employees, their families and the host communities. At the heart of Benguet Corporation's philosophy are the people (employees and other stakeholders) promoting not only their interests and maintaining good community relationships but also to enable them to be empowered for the stewardship of the environment and natural resources surrounding them. To support this, we empowered and developed an inclusive and diverse workforce that is representative of the communities where we operate.

As a continuing commitment and manifestation of the Company's compliance with the implementation of its Social Development and Management Programs, Benguet Corporation has extended assistance on the various needs of its host and neighboring communities in all its areas of operations based on the following development framework as provided under the SDMP guidelines:

- 1. On Human Resource Development and Institutional Building,
- 2. On Enterprise Development and Networking.
- 3. On Assistance to Infrastructure Development and Support Services,
- 4. On Access to Education and Educational Support Programs,
- 5. On Access to Health Services, Health Facilities and Health Professionals
- 6. On Protection and Respect to Socio-Cultural Values
- 7. On the Development of Mining Technology, and
- 8. On United Nations Sustainable Development Goals.

This is our fundamental way to maintain our social license.

ECONOMIC PERFORMANCE

Direct Economic Value Generated and Distributed

	Disclosure	Amount (2024) - BGO	Amount (2024) - ILP	Total Amount (2024)	Total Amount (2023)	Unit
Direc	t economic value generated (revenue)	791.96	100.02	891.77	727.81M	PhP
Direc	t economic value distributed:					
a.	Operating costs	388.31	64.50	452.81	350.35M	PhP
b.	Employee wages and benefits	98.42	4.34	102.76	123.59M	PhP
C.	Payments to suppliers, other operating costs	134.00	11.07	145.07	182.92M	Php
d.	Dividends given to stockholders	143.56		143.56	0.00	PhP
e.	Interest payments to loan providers	7.934M		7.934M	2.521M	PhP
e.	Taxes given to government (excise)	31.64	Consolidated BC		25.46M	PhP
f.	Investments to community (e.g. donations, CSR)	4.91	0.67	5.58	6.77M	PhP

Identification of Impact

Benguet Corporation's mining operations encompass two key sites: the Benguet Gold Operation (BC-BGO) in Benguet, which utilizes underground mining or tunneling methods, and the Irisan Lime Project (ILP) in Baguio City. ILP sources its raw limestone from land development and quarrying suppliers in the surrounding areas of Baguio City and Benguet Province as feed material for its kiln plant.

Total Revenue for 2024 increased to Php891.77 million, up Php163.96 million or approximately 22.5% from Php727.81 million in 2023.

The increase was primarily driven by:

- BGO contributing Php791.96 million, approximately 88.8% of total revenue.
- ILP contributing Php100.02 million, about 11.2% of the total.

Gold production in 2024 reached 5,508.05 ounces, lower compared to 5,931.97 ounces in 2023. Decline in production is due to lower ore milled this year. Increase in revenue is attributed to higher price of gold partly offset by lower volume of gold sold. Gold sold in 2024 decreased to 5,750.74 ounces from 5,803.21 ounces in 2023.

ILP generated P100.02M revenue this year, slightly lower than 2023. Lime sold decline to 6,362.14 DMT from 6,464 DMT in 2023, but this was partly

Stakeholders Affected

The Company's operations generate significant economic impacts, benefiting a diverse range of stakeholders:

- Employees
- Mining Contractors
- Host and Neighboring Communities
- Local and National Government: Service Providers and Suppliers
- Local Business Establishments
- National Government:
- Micro, Small, and Medium Enterprises (MSMEs
- Shareholders

Management Approach

The Company manages its economic impacts through strict regulatory compliance, ethical business practices, and fulfillment of stakeholder commitments; it drives operational excellence and invests in long-term resilience via diversification into agribusiness, land development, and renewable energy; management, finance, health and safety, and diversification teams each have defined responsibilities, supported by proactive measures to mitigate potential negative economic impacts.

The Company remains steadfast in its commitment to employees and host communities by providing the following key benefits:

- Fosters economic growth in host and neighboring communities.
- Maintains the family income of employees and community residents.
- Delivers medical services through the Social Development and Management Program (SDMP).
- Offers educational scholarships to deserving students from host and neighboring communities.
- Ensures the continued collection of tax revenue by local government units.
- Assists in local government infrastructure projects and sustains the delivery of essential community services via the SDMP.
- Guarantees budgetary allocations for the protection and enhancement of the environment and for social development programs.
- Subsidizes electricity and provides free

offset by the increase of price in 2024.

A notable shift in 2024 was the payment of Php143.56 million in dividends to stockholders, whereas no dividends were distributed in 2023. This was due to the settlement of its old debt subject to the 1993 Restructuring Agreement. It underscores the company's commitment to shareholder

returns.

water to employees and other stakeholders within the communities.

What are the Risk/s Identified?	Stakeholders Affected	Management Approach
Risk identified that have affected the 2024 operation are the following: Financial volatility, Resource constraints, Evolving regulatory uncertainties, Illegal mining intrusions (both external and internal), Internal theft, Safety and security breaches, Environmental risks (particularly water quality), Unstable power supply, Depletion of non-renewable resources, Scarcity of timber for mine support, and Increased competition for water resources.	The Company Employees of the Company and Mining Contractors People in the Host and Neighboring Communities Local and National Government Service Providers and Suppliers	The Company employs a comprehensive approach encompassing environmental protection (ISO 14001:2015 EMS compliance and rehabilitation investments), proactive stakeholder engagement (with Indigenous Peoples, LGUs, and communities through SDMP), strong regulatory communication and compliance (with DENR, MGB, EMB), and robust asset protection measures (enhanced monitoring, increased security surveillance, and technology deployment to abate gold pilferage).

What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
The Company actively pursues strategic opportunities to enhance operational efficiency and financial resilience in the context of rising energy costs and evolving market conditions: By implementing shared mill charges, the Company reduces exposure to fluctuating fuel and power prices. With continued increases in gold prices, BGO is investing in deeperlevel mining studies to optimize ore extraction, leveraging external consultants for technical evaluations, for its Expansion in below Level 2000. The Company is exploring advanced technologies to improve gold recovery from tailings, supporting both economic value creation and resource sustainability.	 The Company Mining Contractors: Investors 	BGO addresses rising energy costs and leverages high gold prices by implementing shared mill charges to promote cost efficiency and sustainability. The Company engages consultants to assess other areas for increased production potential and is actively exploring new technologies to enhance gold recovery from tailings. These initiatives support long-term financial resilience and operational efficiency, aligned with the Company's sustainability goals.

Climate-related risks and opportunities²

Governance

Disclose the organization's governance around climate-related risks and opportunities.

The Company acknowledges the significant impacts of its energy-intensive activities, including GHG emissions. Climate-related risks and opportunities are integrated into the Company's governance structure and overseen by the Board Risk Oversight Committee (BROC). The BROC develops and implements the enterprise risk management plan, evaluating key risks, including climate and EESG factors. The Chief Risk Officer supervises risk management processes, while the executive team implements the climate strategy. The Company's ISO 14001:2015 certified EMS and the EPEP provide frameworks for managing climate risks, ensuring sustainable operations through Board oversight.

Please refer to Manual on Corporate Governance. http://benguetcorp.com/corporate- governance/board-committees/.

Strategy

Disclose the actual and potential impacts³ of climate-related risks and opportunities on the organization's businesses, strategy, and financial planning where such information is material.

Global warming is distinct. Climate change covers a wide range of different circumstances, such as the increasing number of natural calamities caused by abnormal weather conditions, depletion of water resources, food scarcity, flooding, typhoons, earthquakes, etc. Under each condition, the impacts to the mining operation of BC-BGO and to the surrounding environment are pronounced.

Every year, BGO and ILP allocate a portion of its operating cost to further strengthen its environmental programs that, to some extent, go beyond mere regulatory compliance.

BGO and ILP operations are in collaboration with the host and neighboring communities to actively participate in CO² sequestration by planting more trees in their surroundings.

All plantations that were previously established are being maintained yearly.

The total expenditures for the implementation of the environmental protection program of BC-BGO in 2024 amounted to P10,706,065.42.

Risk Management

Disclose how the organization identifies, assesses, and manages climate-related risks.

- Identification and Assessment: In accordance with ISO 14001:2015, BC-Benguet Gold Operation systematically
 identifies and assesses environmental aspects and their associated impacts, including climate-related risks. This
 process considers both direct and indirect impacts of our operations.
- Environmental Risk Management System Manual: All identified and assessed climate-related risks, along with their corresponding mitigation measures, are documented and addressed within our Environmental Management System (ERMS) Manual. This manual outlines procedures for managing these risks, including operational controls, monitoring, and emergency preparedness, Specifically: Benguet Corporation identifies, assesses, and manages climate-related risks through its enterprise risk management framework overseen by the Board Risk Oversight Committee (BROC). The committee develops and monitors risk management strategies that integrate climate-related risks with other environmental, economic, and social factors. Climate-related risks are assessed within the broader risk framework, with mitigation plans developed to manage them. Reports on risk exposures and the effectiveness of mitigation strategies are provided to the Board to ensure comprehensive management.
- Environmental Protection and Enhancement Program (EPEP): The Environmental Protection and Enhancement Program (EPEP), which is continuously monitored by regulatory agencies, includes specific measures to mitigate climate-related risks. This may include initiatives to reduce GHG emissions, improve energy efficiency, manage water resources sustainably, and protect biodiversity. The EPEP ensures that our operations comply with environmental regulations and strive for continuous improvement in our environmental performance.

² Adopted from the Recommendations of the Task Force on Climate-Related Financial Disclosures. The TCFD Recommendations apply to non-financial companies and financial-sector organizations, including banks, insurance companies, asset managers and asset owners.

³ For this disclosure, impact refers to the impact of climate-related issues on the company.

Monitoring and Review: The effectiveness of our climate-related risk management measures is continuously monitored
and reviewed as part of our EMS and EPEP. This includes regular audits, performance evaluations, and management
reviews to ensure that our strategies remain effective and aligned with best practices.

Please see Risk Management Charter https://benguetcorp.com/wp-content/uploads/2024/06/Risk-Management-Charter.pdf
And ERM Framework https://benguetcorp.com/wp-content/uploads/2024/06/Enterprise-Risk-Mgnt-Framework.pdf

Metrics and Targets

Disclose the metrics and targets used to assess and manage relevant climate-related risks and opportunities where such information is material.

The Company continuously looks at ways in contributing to community and ecosystem resiliency.

With the approved Annual Environmental Protection and Enhancement Program (AEPEP), the Company laid out its annual targets and milestones to continuously address and mitigate the identified climate related risks which are stated in its Corporate Governance Manual.

Recommended Disclosures

a) Describe the board's oversight of climate-related risks and opportunities.

The Board of Directors of BC-Benguet Gold Operation oversees climate-related risks and opportunities through the Board Risk Oversight Committee (BROC). The BROC ensures these risks are identified, assessed, and managed within the enterprise risk management framework. It monitors implementation, advises on risk appetite, and integrates climate considerations into the EMS and EPEP, aligning with ISO 14001:2015. The Chief Risk Officer and executive team support the BROC with regular updates, ensuring that climate risks are addressed strategically and sustainably at the highest level of governance.

 a) Describe the climate-related risks and opportunities the organization has identified over the short, medium and long term.

Among the identified risks and opportunities related to climate change are the following:

- 1. Risks
 - a. Deforestation
 - b. Landslide
 - c. Forest fire / bush fire
 - d. Underground water depletion
 - e. Air pollution
- Opportunities
 - a. Employment through reforestation activities
 - b. Watershed enhancement
 - Water spring and water impounding development
 - d. Cleaner air
- Describe the organization's processes for identifying and assessing climate-related risks.

BC-Benguet Gold Operation employs a structured process for identifying and assessing climate-related risks, integrated into its broader risk management framework and aligned with ISO 14001:2015. Key elements include:

- Systematic Risk Identification: Climate-related risks (physical and transition) are systematically identified as part of environmental aspect assessments, which aligns with the principles of ISO 14001:2015.
- 2. Site Manager Involvement: Site Managers assess operational risks. This ensures that operational realities and site-specific vulnerabilities to climate change are thoroughly considered.
- 3. Risk Response Development: Management develops mitigation plans with budget estimates.
- Executive Management Approval: Plans are reported to Executive Management for approval, and to BROC, if

 a) Disclose the metrics used by the organization to assess climate-related risks and opportunities in line with its strategy and risk management process.

We recognize that there is increasing pressure to better understand and mitigate GHG emissions. Our Company strategically integrates the assessment of climate-related risks and opportunities in our business functions and risk management processes through transparent communication and a commitment to environmental stewardship, measured through the following:

1. Integrated Governance and Communication: Open lines of communication exist between the Board, Committees, Company Executives, and Site Management. We track the content of Board and Committee discussions pertaining to climate-related risks and opportunities.

- necessary.
- 5. Implementation and Reporting: Site Management implements plans and reports on progress.
- Monitoring: The Chief Risk Officer monitors mitigation effectiveness.
- 7. Regulatory Reporting: Risks and actions are reported to regulatory agencies.

Please refer to Board Risk Oversight Committee
Charter link <u>http://benguetcorp.com/wp-content/uploads/2020/06/C-Board</u>-Risk-Oversight-Comm-Charter.pdf

- 2. Prioritized Climate-Related Programs: Programs on climate-related risks, particularly water management, pollution control, tailings management and reforestation, are top management priorities. The effectiveness of our water management programs is assessed through metrics measured against regulatory standards. Pollution control efforts are evaluated based on reductions in air and water pollutant emissions (measured in relevant units like ppm or mg/L) and adherence to permitted levels. The success of reforestation activities is tracked by the number of hectares reforested and the survival rate of planted species.
- 3. Compliance with Environmental Laws and Regulations: BC-BGO and ILP adhere to the provisions of the following various Philippine Environmental Laws and Regulations:
 - a. R.A. 9275 Philippine Clean Water Act 0f 2004
 - b. DAO No. 2005-10 (IRR of R.A. 9275 Philippine Clean Water Act);
 - c. DAO No. 2000-81 (IRR of R.A. 8749 Philippine Clean Air Act):
 - d. DENR Administrative Order No. 2001-34 (IRR of R.A. No. 9003 – Ecological Solid Waste Management Act);
 - e. R.A. No. 6969 An Act to Control Toxic Substances and Hazardous and Nuclear Wastes;
 - f. Department Administrative Order No. 28 (IRR of R.A. 6969 –Toxic Substances and Hazardous and Nuclear Wastes Control Act); and
 - g. DENR DAO No. 2003-30 (Revised Procedural Manual of P.D. 1586 – Environmental Impact Statement System).

Our compliance with environmental regulations (R.A. 9275, DAO 2005-10, DAO 2000-81, DENR AO 2001-34, R.A. 6969, DAO 28, and DENR AO 2003-30) is rigorously monitored through regular audits and inspections, recording any instances of non-compliance and the corrective actions taken. We also track the number of environmental permits and licenses held and their renewal status to ensure continuous operational legality.

- b) Describe management's role in assessing and managing climate-related risks and opportunities.
- Executive management, led by the Chief Risk Officer (CRO), manages the day-to-day assessment and management of these risks.
- At BC-Benguet Gold Operation, climate change management is a shared responsibility among key managers and front-line personnel.
- Executive management's duties include:
 - a. Identifying and assessing physical and transition risks through departmental collaboration.
 - Developing and implementing mitigation and opportunity strategies.
 - c. Monitoring effectiveness against set targets.
 - d. Regularly reporting to Executive Management and BROC

b) Describe the impact of climate-related risks and opportunities on the organization's businesses, strategy and financial planning.

The mining operation is an extractive process that is always associated with environmental risk. Benguet Corporation's operation in Itogon is the subject of rigorous evaluation and monitoring by regulatory agencies on its compliance with environmental laws and regulations to reduce or eliminate pollution.

The Company stands in solidarity with the government to arrest the deteriorating climate pattern through wise utilization of natural resources and lowering CO2 emission that affects the ozone layer.

(when necessary).

- Integrating climate considerations into the Environmental Management System (EMS) and Environmental Protection and Enhancement Program (EPEP), aligned with ISO 14001 standards.
- f. Collaborating with external stakeholders on climate issues.
- The CRO oversees the Enterprise Risk Management (ERM) process and communicates top risks, including climaterelated ones, to the BROC.

The Company's reforestation programs (Mining Forest Program and the National Greening Program) are its positive contribution to the worsening climate change.

As presented in the approved Annual Environmental Protection and Enhancement Program of 2024, Plans/Programs/Activities (P/P/A's) are all provided with corresponding budget and monitoring strategies.

b) Describe the organization's processes for managing climate-related risks

BC recognizes the role in collaborating with others to achieve progress in managing the challenges of climate change. Experts from the private sector, government agencies, the academe, and non-government organization are were consulted on various aspects to prevent and minimize the effects of climate change. The company implements programs that are consistent with its goals and targets.

The budget for the full implementation of the reforestation program on denuded slopes of the mountain and rehabilitation of eroded areas are funded.

Water pollution control measures are strictly monitored to prevent the escape of processed water from leaks that may contaminate the water bodies.

The company seeks opportunities to work with partners to utilize technologies that will include carbon capture and the natural climate solutions of reforestation and afforestation. We will continue to seek opportunities to collaborate with value chain partners, investors, researchers, and government agencies to work towards reducing the negative effects of climate change.

c) Describe the targets used by the organization to manage climate-related risks and opportunities and performance against targets.

The implementation of the approved 2024 Environmental Protection and Enhancement Program (EPEP) of BGO and ILP includes the annual targets and corresponding budget per activity.

The total expenditures for the implementation of the 2024 EPEP amount to PHP 10,706,065.42, reflecting approximately 59.09% of the approved PhP 18,117,248.00 AEPEP budget.

d) Describe the resilience of the organization's strategy, taking into consideration different climate-related scenarios including a 2°C or lower scenario.

BC's environmental enhancement program, particularly on reforestation and forest protection, is aimed at reducing CO² in the atmosphere.

In addition to the establishment of forest plantations, additional projects implemented to attain the different climate-related scenarios are as follows:

- Increased preventive maintenance schedule of anti-pollution devices such as scrubbers to arrest air pollutants from gold smelting processes.
- Dust emissions were reduced with a dust suppressor system using air and water to act as suppressors for spraying along roads inside industrial area.
- Regular preventive maintenance program is being conducted on vehicles and equipment to ensure smoke emissions are within the DENR-prescribed standards.

c) Describe how processes for identifying, assessing, and managing climate-related risks are integrated into the organization's overall risk management.

The Board Risk Oversight Committee and CRO are tasked to make sure that the Company's environmental programs and compliances are integrated into the overall mine development program and implemented in accordance with the approved program by the Department of Environment and Natural Resources through the Mines and Geosciences Bureau and Environmental Management Bureau.

All environmental safeguards are put in place to mitigate and reduce the emission of CO².

<u>Procurement Practices</u> <u>Proportion of spending on local suppliers</u>

	Quantity				
Disclosure	ВС	GO	ILI)	Units
	2024	2023	2024	2023	
Percentage of procurement budget used for significant locations of operations that is spent on local suppliers.	92% 123,830,567.00	91% 114,454,825.00	100% 62,131,972.29	100% 61,696,298	% Php

Identification of Impact	Stakeholders Affected	Management Approach
Both BGO and ILP demonstrate a very high proportion of their procurement budget being spent on local suppliers in both 2024 and 2023. BGO shows a slight increase in its percentage of spending on local suppliers from 91% in 2023 to 93% in 2024. On the other hand, ILP maintained a consistent 100% of its procurement budget spent on local suppliers in both years. The high proportion of spending on local suppliers by both BGO (91-92%) and ILP (100%) in 2023-2024 aligns strongly with the company's emphasis on sustainable procurement and working closely with key partners along the value chain. This preference for local sourcing contributes to several sustainability	Employees in-charge of procurement Suppliers/manufacturers of product and services providers Materials Management Departments	BC believes that the success of the operation can be achieved through respect and transparent dealings between the management and the various agencies/entities and suppliers that provide the goods and services to the Company. It manages supplier relationships through its values and compliance with applicable regulatory frameworks. To ensure sustainability in our supply chain, a risk-based approach in assessing suppliers is in place. Suppliers must comply with the standard requirements, such as ISO certified or government standard compliances. We acknowledge the invaluable contributions of our suppliers and service providers who play an integral role in our holistic value chain.
objectives: • Local Economic Development: By prioritizing local suppliers, both BGO and ILP are directly supporting the economies within the Philippines. This fosters local job creation, strengthens local businesses, and contributes to the overall economic well-being of the communities. • Reduced Transportation Emissions: Sourcing locally for essential commodities, supplies, and materials can significantly reduce the environmental impact associated with long- distance transportation, including lower GHG emissions		

from freight and reduced reliance on extensive logistics networks. • Stronger Partnerships: The practice of working closely with our key partners/suppliers fosters long-term relationships, promotes knowledge sharing on sustainability practices, and builds a more resilient and responsible supply chain within the Philippines.		
What are the Risk/s Identified?	Stakeholders Affected	Management Approach
Delays in the delivery of imported supplies and materials/equipment parts have affected the mechanical availability of the equipment. Sub-standard quality of supplies and materials or products that may affect or slow down the operation and reduce gold production. Sourcing imported materials is expensive and may delay the delivery of needed supplies which will affect production.	Shareholders – lesser revenue due to lower production; Employees of contractors and suppliers – productivity is affected; Operations – they must work around the limitations of local suppliers sometimes sacrificing the timeliness of the process which may result in higher production costs. Suppliers – loss of trust and confidence	To ensure sustainability in the supply chain, a risk-based approach is being taken in assessing suppliers. We engage them through a commercial framework that is aligned with BC's Purchasing Policy. Long-term planning on mining development and programs to advance the forecasting of needed materials and supplies to ensure availability when needed by the operation. The company has prioritized suppliers with ISO 14001-2015 Certification.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
Partnering with local suppliers gives BC better credit lines, more responsive lead times, and customization options (smaller minimum order requirement). Through its mining operation, the Company is opening doors and providing business opportunities to suppliers and service providers, (local and foreign suppliers, and community residents).	Suppliers – local suppliers can sustain and grow their operations because of the mining operation of BGO and ILP. MSMEs – as mining operations expand, intermediate industries are given the opportunity to address the needs in each part of the value chain. Employees – direct collaboration	Continue to develop good relationships with suppliers and service providers. Continue to work with local suppliers that provide quality services and products at lower costs.
	l Employees – alrect collaporation i	l l

Training on Anti-corruption Policies and Procedures

Disclosure	Quantity	Units / %
The percentage of employees to whom the organization's anti-corruption policies and procedures have been communicated to	100	%
Percentage of business partners to whom the organization's anti-corruption policies and procedures have been communicated to	100	%
Percentage of directors and management that have received anti-corruption training	100	%
Percentage of employees that have received anti-corruption training	100	%

Identification of Impact	Stakeholders affected	Management Approach
BC practices zero tolerance to corruption in the conduct of its business. Some potential sources of corruption are as follows: Employees may be involved in bribery and corruption on permit and license acquisition and during land acquisitions/negotiation. As there are numerous purchasing transactions, employees may be offered bribes/ incentives on these engagements. Giving or asking special favors to/from mining contractors, Service Contractors, or other stakeholders in exchange for personal gain such as but not limited to relaxing company policies and procedures.	Suppliers – all suppliers must go through the same screening. This ensures the company gets what it pays for, and the supplier delivers what it promises. Employees – must be the vanguards of integrity especially when representing the company to external parties. Community – those who support corruption by supporting peers engaged in unlawful conduct deprive honest businesses of the chance of flourishing their trade and contributing back to the community. Management – should always advocate a culture of excellence and integrity. They set the values of the company and must promote the example of anticorruption. Government regulatory agencies – officials must practice global policies on anticorruption in the conduct of government and private business transactions.	The board sets the tone and makes a stand against corrupt practices by adopting an Anti-fraud, Corruption, and Whistleblowing Policy and its Code of Employee and Business Conduct. Pls refer to the following links: Anti-Fraud, Corruption and Whistleblowing Policy: https://benguetcorp.com/wp-content/uploads/2024/06/anti-fraud-corruption-whistleblowing-policy.pdf Policy on Whistle Blowing: https://benguetcorp.com/wp-content/uploads/2024/06/Policy-on-Whistle-Blowing.pdf Code of Employee Conduct and Discipline http://benguetcorp.com/wp-content/uploads/2018/05/ECD%20with%20ee%20acknowledgement.pdf Code of Business Conduct and Ethics http://benguetcorp.com/wp-content/uploads/2020/06/ECode-of-Conduct-of-Business-and-Ethics.pdf
What are the Risk/s Identified?	Stakeholders Affected	Management Approach
Delay in the acquisition of permits and licenses. Engagement in corrupt practices may result in: Cancellation or suspension of permit/licenses/contract agreements or other kinds of penalty Court case Business losses Exposure to higher or additional operational costs	Mining contractors – reduced amount of share in volume and value LGU – less tax collection Employees – suspension and withholding of salaries and benefits, dismissal from employment. Host community –stoppage of the implementation of social development programs.	Prompt submission of documents and compliance with government requirements to avoid delay in the processing of permits and licenses. Maintain good relationships and close communication with concerned regulatory agencies. The company has clear and stringent Anti-Fraud and Corruption policies and procedures in curbing and penalizing employee involvement in offering, paying and receiving of bribes/unlawful benefits. The Company disseminated the anti-corruption policies and programs to employees throughout the organization via emails and employees signed acknowledgement.

What are the Opportunity/ies Identified?	Stakeholders Affected	Pls refer to link Code of Employee Conduct and Discipline, link #41 & 47 Page 8 ECD with ee acknowledgement.pdf (benguetcorp.com) Management Approach
With the existence of written policies and communication to all concerned and their vigorous implementation, possible involvement in corruption and bribery will be minimized if not eliminated. Harmonious relationship with the regulatory agencies, community, and other stakeholders. The continuous mining operation is assured, and the integrity and reputation of the Company are maintained with the absence of corruption and bribery in the organization.	Host community – increase in public investment and support to the organization. National government agencies and local government units – strengthen the position of the regulatory system and guarantee a degree of fairness. Suppliers/contractors / service providers – leads to a secure and long-term business relationship. Employees – job satisfaction and security and increase in employee morale and shared values.	Closer relationship with all the stakeholders in the mining circle and government agencies. Strict observance of the schedule for the submission of regulatory reports and compliances.

Incidents of Corruption

Disclosure	Quantity	Units
Number of incidents in which directors were removed or disciplined for corruption	0	#
Number of incidents in which employees were dismissed or disciplined for corruption	0	#
Number of incidents when contracts with business partners were terminated due to incidents of corruption	0	#

What is the impact and where does it occur? What is the organization's involvement in the impact?	Stakeholders Affected	Management Approach
The Company has not experienced and has no recorded incidents of corruption by any of its Board of Directors and Officers nor from its employees. The company's Code of Business Conduct and anti-corruption standards clearly prohibit bribery and corruption in all business dealings. Benguet Corporation has been recognized as a top Philippine publicly listed company for corporate governance based on the 2021 and 2022 ASEAN Corporate Governance Scorecard (ACGS) and Corporate Governance Scorecard (CGS)	The Company, Board of Directors, officers, Senior Managers, and all employees were all responsible for the strict implementation and compliance with the Employee Code of Conduct and compliant to all government and other pertinent governing bodies.	All employees are covered by the Anti-Fraud, Corruption, and Whistleblowing Policy and Employee Code of Business Conduct. Members of the Management Team continued to comply with governing bodies' requirements including Corporate Governance reports and compliances. Pls refer to the following links: Anti-fraud, Corruption and Whistle-blowing Policy http://benguetcorp.com/wp-content/uploads/2020/06/anti-fraud-

assessments by the Institute of Corporate Directors. This commitment is further evidenced by the Company receiving Golden Arrow Awards on January 20, 2023, September 28, 2023, and September 19, 2024. This consistent recognition underscores Management's strong and sustained dedication to good corporate governance.		corruption-whistleblowing-policy.pdf ACGS Awarded Benguet Corporation as top performing publicly listed Company http://benguetcorp.com/corporate-governance/
What are the Risk/s Identified?	Stakeholders Affected	Management Approach
Keeping the workplace free from corruption vis a' vis building a culture of integrity is always a continuous challenge as employees and stakeholders are exposed to high-valued minerals and assets. If the risk of income/profit loss due to corruption or pilferages will not be addressed, it will eventually lead to business closure.	Business closure may affect the following: Mining contractors – reduced amount of share in volume and value. LGU – lesser tax collection Employees – Suspension or termination of employment Host community - community development projects might be suspended/stopped.	Management, including its officers and managers, should set a personal example of integrity. Strong leadership and commitment in the implementation of the Anti-fraud, Corruption and Whistleblowing Policy and the Employee Code of Conduct should be uniformly implemented across all organizations and levels.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
A workplace free of corruption with employees with high regard of integrity could lead to more productive and greater business opportunities for the Company.	The opportunities/outcome will surely be reaped by the communities, LGUs, employees, and other stakeholders.	Management endeavors to further strengthen its core values, systems, and procedures to reduce, if not totally eliminate corruption and fraud in the workplace.

ENVIRONMENTAL PERFORMANCE

Resource Management
Energy consumption within the organization:

Disclosure		Quantity					
	ВС	GO	IL	P	Tota		
	2023	2024	2023	2024	2023	2024	
Energy consumption (kerosene)	2,117.62	1,472.37	0.0	0.00	2,117.62	1,472.37	GJ
Energy consumption (diesel)	4,685.02	3,601.155	311.34	231.12	4,996.36	3,832.275	GJ
Energy consumption (bunker fuel)	0.00	0.00	4,481.7789	4,903.1768	4,481.7789	4,903.1768	GJ
Energy consumption (electricity)	5,022,416.01	4,505,184.79	222,066	209,850	5,244,482.01	4,715,034.79	kWh
Energy consumption (gasoline)	29.32	45.57	8.73	0.00	38.05	45.57	GJ
Energy consumption (LPG)	0.00	0.00	0.00	0.00	0.00	0.00	

Reduction of energy consumption

Disclosure	Quantity						Units						
	BO	BGO ILP		IL IL		ILP Total		P Tota		ILP Total		Total	
	2023	2024	2023	2024	2023	2024							
Energy reduction (kerosene)	1,122.75	645.21	0.00	0.00	1,122.75	645.21	GJ						
Energy reduction (diesel)	1,448	1,083.865	0.00	80.22	1,448	1,164.085	GJ						
Energy reduction (bunker fuel)	0.00	0.00	10,822.10	(421.3979)	2,738.8	(421.3979)	GJ						
Energy reduction (electricity)	1,546,240	517,231.22	19,494	12,216	1,565,734	529,447.22	kWh						
Energy reduction (gasoline)	29.32	(16.25)	8.73	8.73	38.05	(7.52)	GJ						
Energy reduction (LPG)	0.00	0.00	0.00	0.00	0.00	0.00							

Identification of Impact	Stakeholders Affected	Management Approach
The 2024 energy data is shaped by two key operational events: the stoppage of contractor milling at BGO due to high power rates in the 1st Quarter and 2nd Qtr, stoppage of operation of BC Team and reduced mechanical availability of mining and milling equipment at both BGO due to delays in imported parts. The decrease in electricity consumption at BGO is likely a combination of these factors. There was a delay in the development of the underground workings due to the low mechanical availability of equipment that resulted in the slowdown of milling operation due to the lower extraction and delivery of ore. Considering the slowdown of the operation, the Company continuously observes the energy conservation guidelines. Please refer to the following: Appendix "A"—EMS Guidelines on Power Conservation	Operations – power cost is a significant cost driver in gold operations. Small-scale miners (SSM) – The Company monitored the disconnected illegal connections by SSM to eliminate pilferage of electricity. An increase in milling charges due to the increased cost of electricity and fuel/oil affected the operation of mining contractors. Employees – home activities of employee dependents are affected by the energy conservation measures being implemented.	Safeguards in the following measures to be sustainable: Conduct regular energy level monitoring/ reports. Schedule regular follow-up of the delivery of mechanical parts and supplies. Submission of regulatory reports on energy consumption to Mines and Geosciences Bureau and Environmental Management Bureau. Maintain BC Program on energy conservation. Disconnection of illegally connected power lines by small-scale miners. Regular monitoring is implemented to prevent reconnection. BC-BGO has been re-certified ISO 14001:2015 (by NQA) as proof of commitment to make operations aligned with international environmental and safety standards that include energy conservation.

What are the Risk/s Identified?	Stakeholders Affected	Management Approach
 Price of fuel and oil - The fluctuating world market price of diesel and bunker fuel has affected the overall operating cost and the profitability of the operation. Ore grade - The low grade of ore from the mining operation has affected the milling cost. Pilferage of processed and unprocessed ore - stealing of processed/loaded carbon has contributed to income loss. Misappropriation - inappropriate target/goal setting affected the revenue projection. 	BC Operation Suppliers of fuel & oil Employees/miners Community	BGO follows a strict set of environmental standards in the conduct of its operation to monitor power consumption and utilization. To be sustainable, there is a need to strictly implement the following: Energy level monitoring; Strengthen security measures and surveillance of mine and mill workers/employees; Close monitoring of production vs budget and revise projections when necessary; Submission of regulatory reports on energy consumption; Conduct regular Preventive Maintenance Schedule on equipment and vehicles; and Conduct regular monitoring of small-scale miners' operations in the area and implement immediate disconnection of illegally connected power lines.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
Cost savings initiatives are being implemented across the value chain to become the least-cost producer as well as achieve greener, cleaner operations. Develop a better understanding of the mine and mill operations process flow and coordination with security, mill, and mine managers that will improve relationships among department heads to prevent pilferage of commodities	Community LGU	Continuously monitor its power consumption and check areas that can be subjected to power adjustments. The company maintained reducing power consumption in its industrial areas by shifting to energy-efficient motors and lighting fixtures for a cost-reduction program. Shared electricity rates through graduated increased milling charges to contractors.

Water consumption within the organization

Disclosure	Quantity						Units
	BGO		ILP		To	otal	
	2023	2024	2023	2024	2023	2024	
Water withdrawal							
Industrial	61,860.54	50,352.42	481	631*	62,341.54	50,983.42	Cubic meters
Domestic	7,131.60	7,191.40	200		7,331.60	7,191.40	1
Water consumption							
Industrial	61,860.54	50.352.42	481	631*	62,341.54	50,983.42	Cubic meters
	7,131.60	7,191.40	200		7,331.60	7,191.40	
Domestic							
Water recycled and reused	0.00	0.00	0.00	0.00	0.00	0.00	Cubic meters
*Combined industrial	and domestic figure	S					

Identification of Impact	Stakeholders Affected	Management Approach
Water is a critical input for the mining operations at the BC-BGO site. Recognizing its importance, the Company actively monitors the operational impact on adjacent river systems and downstream communities in Benguet to ensure water resources are maintained at levels that allow for equitable access by all stakeholders. Water Sourcing: BC-BGO (Benguet): Industrial water for mining activities is sourced from the Company's old underground mine tunnel located in L-1200, Acupan, Itogon, Benguet. This withdrawal is governed by Water Rights Permit No. 16154 issued by the National Water Resources Board (NWRB). Potable water for employee's consumption at the BGO site is supplied by a private individual who owns and maintains a natural spring for his water delivery business, with the Company procuring this water at a fixed rate per drum. ILP (Baguio City): Domestic water needs for the ILP operations in Baguio City is supplied by the Baguio Water District (BWD). Industrial water for ILP is supplied by private individual, sourced from a natural spring permitted by the government for his water delivery business, with costs negotiated per cubic meter.	The affected stakeholders are as follows: Company — has 24/7 access to water supply from its underground mine tunnels for industrial use. BC-BGO employees, contractors/service providers, have access to safe potable water within the mine site. Host, and neighboring communities — have free access to water sources present in the area since the Company source and utilize its water internally.	Access to water is a basic human right as it is a shared resource of high economic, environmental, and social value. Considering that its operation is dependent on the free-flowing water from the Company's underground mine tunnel and for the continuous water recharging of the aquifer, it developed a strategy through an intensified watershed development and management by implementing a reforestation program on denuded and sparsely vegetated areas within and outside the Company's mining claims. This activity is included in the Annual Environmental Protection and Enhancement Program. Streamflow measurement and water quality monitoring is done quarterly. Please refer to Appendix "B" — Certificate of Approval of Annual Environmental Protection and Enhancement Program (AEPEP for BGO) Please refer to Appendix "B-1" — Certificate of Approval of Annual Environmental Protection and Enhancement Program (AEPEP) for ILP
What are the Risk/s Identified?	Stakeholders Affected	Management Approach
The identified water-related risks are as follows: 1. Poor housekeeping practices by underground miners pose a risk to the quality of water intended for domestic use. 2. The growing population and business activity in the surrounding area are expected to double overall water demand, potentially impacting availability and cost. 3. Anticipated drying of some springs during the summer months will likely intensify competition for domestic water resources, potentially leading to price increases and volume limitations. 4. High water competition is expected during the dry season due to the water-intensive ball milling operations of illegal small-scale miners.	BC-BGO employees, contractors/service providers, community residents.	The company will continue to support a range of projects that offer sustainability cobenefits, including support for local communities' biodiversity conservation, and watershed rehabilitation. The Company's Mining Forest Program is a shared responsibility with the community while the government monitors the implementation of the program. The Company continues to engage with its host and neighboring communities for an uninterrupted partnership in the protection of the reforested areas to increase the water yield of the aquifer.

What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
In 2024, total water withdrawal across our operations decreased by 16.44%, from 69,673.14 cubic meters in 2023 to 58,174.82 cubic meters. Industrial water withdrawal dropped by 18.13% due to operational efficiencies and improved process controls, while domestic water withdrawal decreased slightly by 1.91%, reflecting stable consumption patterns. Water consumption mirrored withdrawal trends, ensuring reductions were achieved without compromising operational requirements. No water recycling or reuse activities were recorded during the reporting period. Recognizing this opportunity, we are prioritizing the development of water reuse initiatives to enhance sustainability in future operations. In addition, intensified watershed development in the area has provided livelihood opportunities for Indigenous Peoples (IPs) through contract reforestation, seedling propagation, plantation maintenance, and forest protection activities — further strengthening the community's role in environmental stewardship. Moreover, the Company's abundant underground water source presents significant potential for business development, particularly to supply bulk water needs of the surrounding communities, contributing to local water security and economic development. Our progress demonstrates our commitment to responsible resource management, community development, and environmental sustainability.	Employees, contractors/service providers, community residents	The Company actively engages stakeholders by providing livelihood opportunities such as seedling propagation, contract-based tree planting, and maintenance of reforestation areas. These initiatives strengthen community relationships, empower Indigenous Peoples and local residents, and support long-term forest rehabilitation efforts. Through intensified tree-planting activities within the mining claim, forest cover is being significantly enhanced, leading to increased spring water yield and contributing to lower atmospheric temperatures in the surrounding areas — critical factors in sustaining local ecosystems and improving climate resilience. Additionally, the Company is evaluating the development of its Acupan underground water source as a potential business opportunity to supply bulk water to nearby communities, including Itogon and Baguio City. This initiative aims to contribute to regional water security while creating new avenues for sustainable economic development.

Materials used by the organization

Disclosure		Qu	antity		Units	
		BGO	I	LP		
	2023	2024	2023	2024		
Materials used by weight or volume						
Renewable (identify) – lumber, paper, sawdust, flour	333,767.25	92,535	73	592 (paper/carton)	kg/liters	
Non-renewable - lubricants, motor oils, bunker fuel oil, diesel oil, kerosene, dynamite explosive, sodium cyanide, nitric acid, ammonium nitrate, sodium hypochlorite, hydrochloric acid, activated carbon, lime and sulfuric acid, caustic soda, hydrochloric acid, nitric acid, etc.	635,258.66	534,513.37	1,112,185.26	1,213,446.03	kg/liters	
Percentage of recycled input materials used to manufacture the organization's primary products and services. Note: Only sawdust was used for firing carbon ash while papers are recycled for printing internal reports and memo.	0.09% (Saw Dust)	0.13% (sawdust) 0.11% (paper)	100 73 (paper)	100 592 (paper, carton)	% Kgms.	

Disclosure		Quantity	
	Total (BG0	Units	
	2023	2024	
Materials used by weight or volume			
Renewable (identify) – lumber, paper, sawdust, flour	333,840.25	93,127	kg/liters
Non-renewable - lubricants, motor oils, bunker fuel oil, diesel oil, kerosene, dynamite explosive, sodium cyanide, nitric acid, ammonium nitrate, sodium hypochlorite, hydrochloric acid, activated carbon, lime and sulfuric acid, caustic soda, hydrochloric acid, nitric acid, etc.	1,747,443.92	1,747,959.4	kg/liters
Percentage of recycled input materials used to manufacture the organization's primary products and services.	100 73 (paper)	100	% Kgms.
Note: Only sawdust was used for firing carbon ash while papers are recycled for printing internal reports and memo.			

What is the impact and where does it occur? What is the organization's involvement in the impact?	Stakeholders Affected	Management Approach
BGO's underground mining operations utilize mine timbers for tunnel support to ensure the safety of mine workers. All timbers are procured legally, supported by Certificates of Lumber Origin issued by the DENR.	BGO mine and mill employees, community, suppliers and Irisan Lime Project employees and its surrounding residential areas.	The underground workings/tunnels are supported by square-set mine timbers to provide safe working conditions for the mine workers. Pre-cast concrete columns are the alternative mine support, but the cost is expensive and may not last
To enhance sustainability, the Company	Employees of the mining contractors.	especially on heavy grounds and acidic underground. BC-BGO is committed to

recycles wood wastes, such as sawdust for firing carbon ash, and reuses papers internally for printing. Explosives necessary for underground development are handled responsibly, with permits issued by the Firearms and Explosives Unit of the Philippine National Police.

The Company actively explores alternative materials for underground support structures. While pre-cast concrete columns are considered, they are often cost-prohibitive and vulnerable to acidic and heavy ground conditions. BC-BGO remains committed to minimizing timber usage without compromising worker safety.

Forest plantation initiatives are promoted within the operational area, and suppliers are encouraged to support reforestation activities. The Company complies fully with ISO 14001:2015 standards and R.A. 9003 (Ecological Solid Waste Management Act), ensuring responsible material use and waste management practices.

For the period 2024:

- Renewable material consumption dropped dramatically by 72.1%, possibly due to operational scaling or efficiency improvements;
- Non-renewable material usage remained almost flat, ensuring a stable environmental footprint despite operational needs;
- c. Recycling practices notably improved, reflecting strengthened environmental commitment.

continuing to explore other alternative materials as substitutes for mine timber for underground support without sacrificing the safety of mine workers. This is part of the Company's sustainability commitment to minimize the use of timber resources.

Forest plantations will be part of the Company's sustainable commitment to environmental enhancement in its area of operation. It encourages suppliers of mine timber to participate in the reforestation program of the company and the government.

In compliance with BC-BGO's commitment and its concurrence to the standards set in its ISO 14001:2015 certification, the company strictly adheres to the standards set by the regulatory agencies (DENR-EMB) on proper recording and labeling of renewable and non-renewable materials in accordance with R.A. 9003 (Ecological Solid Waste Management Act) provisions.

What are the Risk/s Identified?

- Depletion of Resources: Threatening the availability of renewable materials such as lumber and paper.
- Environmental Degradation: Improper handling of non-renewables could lead to air, water, and soil pollution.
- Health and Safety Risks: Worker exposure to hazardous materials increases occupational health risks.
- Cost Management Risks: Heavy reliance on non-renewable materials can inflate production costs.
- Operational Risks: Blasting activities pose safety hazards including fly rocks, noise pollution, and dust emissions if improperly managed.

Stakeholders Affected

Underground employees/miners/blasters

Employees at the motor pool area, mine and mill mechanical shops;

Communities adjacent to the operation.

Management Approach

- Regular monitoring of implementation of ISO 14001:2015 objectives, targets and performance vs. audit reports
- Ensure secure storage, waste management, and disposal practices aligned with regulatory standards.
- Continue regular quality monitoring tests and submission of reports to regulatory agencies for validation of results following DENR Standards.
- Monitor the strict implementation of the Annual Environmental Protection and Enhancement Program.
- Provision of complete PPE, regular training on chemical handling, and safety protocols enforcement

	underground. Conduct regular safety lectures, meetings, and pep talks before deployment in assigned working areas to remind workers of safety protocols in the underground mining activities and proper handling of chemicals at the mill.
Stakeholders Affected	Management Approach
Residents in the surrounding communities stand to benefit from cleaner air and water. Employees Operations – cost efficiencies will deliver better profit margins without incremental damage to the environment.	Safety lectures and work briefings before deployment to assigned working areas. Continue to monitor the usage of non-renewable materials to attain reduction year over year without sacrificing production. Implement materials storage, handling, management, monitoring, and disposal of waste/tailings. Continue regular submission of reports to the regulatory body on the use of regulated chemicals. Regular water quality monitoring to ensure water is free from contaminants that are hazardous to human and animal health.
	communities stand to benefit from cleaner air and water. Employees Operations – cost efficiencies will deliver better profit margins without incremental damage to

Ecosystems and biodiversity (whether in upland/watershed or coastal/marine)

	Quantity			
Disclosure	BGO	ILP	Units	
Operational sites owned, leased, managed in, or adjacent to, protected areas and areas of high biodiversity value outside protected areas	Crosby Park – 11.0 Has. Virac Timberyard – 6.0 Hectares Keystone – 3.0 Hectares Kelly Plantation - 3.0 Hectares	Plantation = within Irisan tenement 0.3711 Ha.	На.	
Habitats protected or restored	0.00		На.	
IUCN ⁴ Red List species and National Conservation List species with habitats in areas affected by operations	0.00	-	На.	

21

⁴ International Union for Conservation of Nature

Identification of Impact	Stakeholders Affected	Management Approach
The Company recognizes the importance of preserving ecosystems and biodiversity in the areas where it operates. BC continued its commitment to environmental stewardship through dedicated biodiversity and habitat management initiatives The established Crosby Forest Park, a 11.0-hectare man-made forest within the mining property, was continuously maintained and protected. This park serves as crucial support for the company's watershed development efforts. Enrichment planting activities were ongoing in areas with sparse tree cover to enhance the local greenery. The park also serves as a recreational area for employees' families and visitors, offering opportunities for enjoying the scenery and camping. In compliance with its environmental enhancement program, the company implemented a reforestation initiative within and around its mining claims. The Irisan Lime Project has continuously maintained a total plantation area of 3,711 square meters (0.3711 hectares). These areas contribute significantly to biodiversity conservation, watershed management, and ecological rehabilitation efforts. Although no formal designation as protected or restored habitats has been made, the Company's initiatives support ecosystem services that benefit both its operations and surrounding communities. Notably, no IUCN Red List species or nationally protected species have been recorded as impacted by the Company's activities within these sites.	Employees and families – benefit from using the Crosby Park Contractors and laborers of the reforestation project. Community residents – inhaling pollution-free and fresh air.	 Forest Park Maintenance: Continued care and maintenance activities under the Environmental Work Program (EWP), supported by a hired local caretaker. Community Engagement: Engaged local communities for stewardship and protection of reforested areas. Intensified Reforestation: Expanded reforestation and forest protection initiatives under the Annual Environmental Protection and Enhancement Program (AEPEP).

What are the Risk/s Identified?	Stakeholders Affected	Management Approach
Illegal cutting of trees and squatting. Illegal cattle grazing. Forest / bushfire	Employees and nearby residents	 Strengthened and frequent foot patrols by the Claims Protection Team to prevent illegal activities such as squatting and small-scale mining. Ongoing surveillance, installation of warning signage, and coordination with local authorities to enhance protection efforts.

What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
Opportunities identified from these efforts include the development of ecological tourism (such as at Crosby Park), watershed restoration that enhances water security and climate resilience, and community employment through reforestation activities. The reforestation and forest maintenance programs continue to provide income opportunities for local families and associations through seedling production, plantation establishment, and forest protection roles.	Employees and the host and neighboring communities.	BGO will sustain the maintenance and enrichment of Crosby Park to strengthen its role in ecological tourism and biodiversity conservation, while expanding reforestation efforts to enhance watershed functions and support landscape restoration. The Company actively works with nearby communities in maintaining these forest areas, conducting regular patrols to prevent illegal activities such as tree cutting and small-scale mining. Forest enrichment planting and further protection activities are continuously implemented to strengthen ecological integrity.

Environmental Impact Management Air Emissions GHG

Disclosure	Quantity						
	BGO		ILP		Total		Units
	2023	2024	2023	2024	2023	2024	
Direct (Scope 1) GHG Emissions (Diesel fuel, Gasoline, Kerosene, Bunker fuel)	537	391.78	2,992	3,767.38	3,529	4,159.16	Tonnes CO2e
Energy indirect (Scope 2) GHG Emissions (electricity)	1,422	1,275.28276	63	59.40224	1,485	1,334.685	Tonnes CO2e
Emissions of ozone-depleting substances (ODS)	0.00	0.00		0.00		0.00	Tonnes

Identification of Impact	Stakeholders Affected	Management Approach
In 2024, the Company recorded a total of 4,159.16 tonnes of direct (Scope 1) GHG emissions, reflecting an increase of approximately 17.84% compared to 3,529 tonnes CO ₂ e in 2023. The increase was mainly due to higher diesel, gasoline, kerosene, and bunker fuel consumption across operational sites. Meanwhile, energy indirect (Scope 2) GHG emissions related to electricity consumption totaled 1,334.69 tonnes CO ₂ e in 2024, representing a decrease of approximately 10.11% compared to 1,485 tonnes CO ₂ e in 2023. The reduction reflects the Company's continuous efforts in improving energy efficiency and reducing electricity use.	Employees and their families Community / IP's Suppliers	 Conduct a comprehensive assessment to identify additional sources of GHG emissions and implement targeted mitigation measures. Optimize energy efficiency by evaluating and right-sizing the horsepower of air conditioning units relative to office floor area, ensuring appropriate cooling capacity while minimizing energy use. Implement a regular preventive maintenance program for all diesel-powered motors and equipment to maintain optimal operating efficiency and reduce unnecessary fuel consumption and emissions. Promote operational best practices and energy-saving behaviors across sites to further minimize the Company's carbon footprint.

What are the Risk/s Identified?	Stakeholders Affected	Management Approach
A. Lime Kiln Operations Prolonged operator exposure to high temperatures poses significant health risks, including heat stress and related illnesses. Inhalation of dust from raw materials and fumes, particularly during start-up operations, may result in respiratory health issues. B. Underground Mining Operations Failure or breakdown of air compressors could cause operational disruptions, leading to the suspension or slowdown of underground activities. Inadequate ventilation can impair miner performance, decrease productivity, and elevate health risks. Poor ventilation may result in the accumulation of carbon monoxide emissions from diesel-operated locomotives, posing serious health hazards and potential fatality risks to underground personnel.	Employees - The health of employees is affected which will result in a reduced workforce. Company - reduced ore tonnage	For Lime Kiln Operations, the Company will provide heat-resistant PPE, improve ventilation, and conduct regular health monitoring and safety training to protect workers from heat and dust exposure. For Underground Mining Operations, preventive maintenance of air compressors, enhancement of ventilation systems, installation of gas detectors, and regular emergency drills will be enforced to safeguard miner health and ensure continuous operations.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
Reduced Scope 1 GHG emissions through lower fuel consumption in BGO and ILP operations, supporting climate goals. Lower operational costs and improved environmental performance from optimized equipment efficiency. Increased kiln product output and sales, driving revenue growth.	Employees of the company and mining contractors. Residents residing in the camp.	The Company will strengthen coordination among operations and executives to address challenges efficiently. Regular preventive maintenance and monitoring of equipment running hours will minimize downtime, optimize fuel use, reduce GHG emissions, and support increased kiln production and revenue growth.

Air pollutants

Disclosure		Qua	Quantity			
	BGO			ILP		
	2023	2024	2023	2024		
NO _X						
Stack emission	143	83.00mg/Ncm	132.9,82.20	<21.4 and 13.5	Mg/Nm3	
Ambient	8.20	13.18 ug/Nm3	9.0,9.0,5.33	4/1.97/1.18		
Sox					Mg/Nm3	
Stack emission	10.81	50.25 mg/Ncm	9.6,38.3	18.3 and 1.9	•	
Ambient	11	10.85 ug/Nm3	0.86,0.85,0.71	0.29/0.57/0.94 (3		
				sampling stations)		
Carbon Monoxide (CO)	0.00	36.75 mg/Ncm		121 and 25.2	mg/Nm³	
. ,			0.00	(stack emission)	=	

Persistent organic pollutants (POPs) e.g. PCB's, PFOs; Biphenols; Phthalates: Atrazine (herbicide)	0.00		0.0	00		kg
Volatile organic compounds (VOCs) Propane, butane	0.00		0.0	00		kg
Hazardous air pollutants (HAPs) (Lead)	0.002745		0.0	00		kg
Particulate matter (PM10)	4.67	25.8 mg/Ncm	9.3	,49.7	8.06/7.27/6.27 (ambient)	mg/Nm³
CO Stack emission	0.00	36.57 mg/Ncm	133	3.2,105.4		
What is the impact and who occur? What is the organization's involvement		Stakeholders Affected		Management	: Approach	
Cognizant of the impact of mon the environment particular the company is very consequences but equal managing it properly. The sources of air pollution are as 1. Generation of dust development caused be 2. Generated fumes at the during gold smelting we are added to separate impurities; and 3. ILP operation – Kiln plate generation of dust along the managing numbers of dust along the managing numbers of declined across all monitoring declined across all monitoring the measurements, indicating further emission control of monoxide (CO) emissions monitored, were detected at a underscoring the importance maintenance and equipment improvements. Please refer also to: Appendix "F" - Report Greentek Environmental In Source Emission Test Result Appendix "F-1" and "For Certification of BSI Management Service Province Pro	rly on-air quality, aware of its lly aware of its lly aware of identified major is follows: during mining y blasting; he mill operation where chemicals gold from other or operation and graccess road. corded notable air emissions. ack emissions approximately or 75% at ILP, tional controls. In a ILP also grations. SO _x) emissions cularly in stack the need for efforts. Carbon is, now being moderate levels, he of preventivement efficiency. Certification of Phils. Co., on the for BGO; in the report is the second of the properties	BC-BGO - Employees/workers, community. ILP -Employees, community/neighbour Puroks of the Plant	ing	emissions, and preve monitoring stricter com will be e operations to proactive	pany strengthens the of equipment enhance operation ent breakdowns. of air quality para upliance with emission and leadership will the ely address air pollutent timely corrective	to reduce al efficiency, Continuous ameters and on standards tion among be intensified utant sources

Emission Test Result for ILP and	
Appendix "G", and "G-1" Ambient Air Quality and Noise Monitoring Report of Greentek Environmental Engineering Services for BGO and Appendix "G-2" Ambient Air Quality and Noise Monitoring Report of BSI Environmental Management Service Provider on Source Emission Test Result for ILP	

What are the Risk/s Identified?	Stakeholders Affected	Management Approach
 Poor air quality may pose health risks to employees and nearby communities, potentially resulting in complaints filed with regulatory agencies against the Company (BGO and ILP). Exceedance of DENR standards for dust and acid fumes may lead to regulatory penalties, suspension, or even stoppage of operations. 	Employees/workers, adjacent communities ILP- community/ residents of direct impact areas (Purok 10 and 11; employees	 Strengthen air quality monitoring systems to ensure compliance with DENR standards. Implement dust suppression measures and install fume extraction systems at critical emission points. Conduct regular maintenance of equipment to minimize pollutant emissions. Provide PPE and health monitoring programs for employees exposed to air pollutants. Engage with nearby communities through information drives and grievance mechanisms to address concerns promptly.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
Enhanced employee environmental awareness and commitment to air quality protection. Training on advanced anti-pollution equipment operation, aligned with R.A. 8749. Improved chemical handling practices to reduce workplace exposure risks. Sustained compliance with DENR standards and ECC conditions through effective pollution control.	Employees/ workers, community	 Continue environmental awareness and pollution control training for employees. Regularly update and maintain antipollution devices and technologies. Strictly enforce safe handling protocols for chemicals and reagents. Conduct periodic air emissions testing to ensure continuous compliance with DENR standards and ECC conditions. Strengthen internal audits and corrective actions to immediately address any emission issues.

Solid and Hazardous Wastes

Solid Waste					
Disclosure					
	BGO	ILP	Units		
	2023	2024	2023	2024	
Total solid waste generated	391,226.20	159,323.9	1,152.50	1,653	kg

Reusable (Sawdust, Paper)	411.96	223.90	176	592	kg
Recyclable (used sacks, cartons, pet bottles, cans)	6,606.20	19,500.00	131	254	kg
Composted	-	0.00	0.00	0.00	kg
Incinerated	N/A	0.00	0.00	0.00	kg
Residuals/Landfilled	384,660.00	139,600.00	845.50	807	kg

Disclosure	Quantity		
	Total	Total (BGO and ILP)	
	2023	2024	
Total solid waste generated	392,378.7	160,976.9	kg
Reusable (Sawdust, Paper)	587.96	815.9	kg
Recyclable (used sacks, cartons, pet bottles, cans)	6,737.20	19,754	kg
Composted	0.00	0.00	kg
Incinerated	0.00	0.00	kg
Residuals/Landfilled	385,505.50	140,407	kg

What is the impact and where does it occur? What is the organization's involvement in the impact?	Stakeholders Affected	Management Approach
Residents in camps and concession stores are the major source of residual waste. In 2024, the total solid waste generated by both BGO and ILP operations decreased by 59.0% compared to 2023 (from 392,378.7 kg down to 160,976.9 kg). This notable reduction reflects the Company's continuous efforts to improve solid waste management practices. Reusable materials increased by 38.76%, and recyclables rose significantly, from 6,737.2 kg to 19,754 kg, demonstrating better segregation and resource recovery initiatives. Meanwhile, residual waste sent to landfills dropped by 63.56%, supporting the goal of minimizing landfill dependency. This positive trend is the result of a persistent information campaign on the provisions of R.A. 9003 (Ecological Solid Waste Management Act) and the regular collection of garbage in the camps. Increased awareness and practice of proper waste management have now become a sustained culture among the residents and employees, reinforcing the Company's commitment to environmental stewardship.	Employees of Benguet Corporation and workers of solid waste/residual waste hauling contractor. Owners of concession stores.	 Integrated proper waste management into daily housekeeping practices. Enforced strict waste segregation at source in offices and residential areas. Collected and hauled scrap materials regularly to designated depository areas. Sold recyclable materials to DENR-accredited contractors to minimize waste generation. Disposed of residual waste through licensed landfill contractors outside the region. Operated and maintained a Material Recovery Facility (MRF) for recyclables and biodegradables. Ensured continuous compliance with R.A. 9003 (Ecological Solid Waste Management Act) and DAO No. 2001-34. Conducted regular monitoring by the Mine Environment Protection and Enhancement Officer (MEPEO). Reminded contractors to provide PPE and maintain worker health and permit compliance. Institutionalized a culture of waste management through persistent information campaigns.

		·
What are the Risk/s Identified?	Stakeholders Affected	Management Approach
 Health and Environmental Risks: Accumulation of uncollected waste may cause unsanitary conditions, foul odors, and health issues for workers and nearby communities. Regulatory Compliance Risks: Failure to comply with R.A. 9003 could lead to complaints, penalties, or sanctions from regulatory agencies. Contractor Worker Safety: Hauling contractor workers face health and safety risks without proper PPE and management oversight. Water Pollution Risk: Improper waste management could contaminate nearby water bodies, impacting environmental and community health. 	Workers of solid waste/residual waste hauling contractor Employees of the Company Community	 Strict Monitoring and Compliance: Regular inspection of waste segregation, collection schedules, and compliance with R.A. 9003 requirements. Contractor Oversight: Require hauling contractors to maintain valid permits, provide full PPE to their workers, and conduct regular health and safety checks. Immediate Waste Disposal: Ensure timely hauling and disposal of waste to avoid accumulation and unsanitary conditions. Emergency Response Plans: Establish rapid response protocols for waste overflow, missed collections, or accidental spills. Environmental Safeguards: Maintain the Material Recovery Facility (MRF) and enforce strict waste handling procedures to prevent water pollution. Community Engagement: Continue awareness campaigns for employees and residents on proper waste segregation, recycling, and sanitation practices.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
 Sustained cleanliness ensures full compliance with the Ecological Solid Waste Management Act (R.A. 9003) and its IRR (DAO No. 2001-34). A clean, well-maintained environment enhances the quality of life for employees and surrounding communities. Compliance strengthens the Company's environmental reputation and reduces risks of regulatory sanctions. A litter-free, organized community promotes employee pride and fosters stronger community relations. 	Company Hauling contractor Employees	 Sustain compliance with R.A. 9003 through regular waste collection and segregation. Conduct continuous environmental education for employees and residents. Maintain close coordination with accredited waste haulers. Promote active involvement of employees and communities in maintaining clean surroundings.

Hazardous Waste

Disclosure	Quantity				Units	
	BGO ILP					
	2023	2024	2023	2024		
Total weight of hazardous waste generated: Type of waste generated – Mill tailings Other hazardous waste (lead compounds, busted fluorescent lamps, non-halogenated organic chemicals, clinical waste, oil contaminated materials, Waste electrical and electronic equipment, Mercury and mercury compounds)	28,520.32 28.848	22,638.52 6.540	61.65	0.0855015	MT. MT.	
Total weight of hazardous waste transported	0.00	14.450	0.00		Kg.	

Disclosure	Qua	Units	
	Total (BG	Total (BGO and ILP)	
	2023	2024	
Total weight of hazardous waste generated: Type of waste generated – Mill tailings Other hazardous waste (lead compounds, busted fluorescent lamps, non-halogenated organic chemicals, clinical waste, oil contaminated materials, Waste electrical and electronic equipment, Mercury and mercury compounds)	28,521.97 28.848	22,638.52 6.6255	MT. MT.
Total weight of hazardous waste transported	0.00	14.450	Kg.

What is the impact and where does it occur? What is the organization's involvement in the impact?	Stakeholders Affected	Management Approach
Mill tailings is the product from milling the gold-bearing mineral ore to produce said precious metal. The tailings are impounded in the ECC-approved Tailings Storage Facility (TSF) that serves as a treatment facility. In 2024, there was a notable decrease in the total hazardous waste generated, from 28,521.97 metric tons in 2023 to 22,638.52 metric tons. This reduction reflects improved waste management practices, particularly in the handling and disposal of mill tailings and other hazardous substances. Proper maintenance of the tailings treatment facility helped prevent potential soil and water contamination, mitigating environmental risks associated with cyanide and other chemicals present in the waste. For other hazardous wastes, strict protocols on proper labeling, storage, and regular hauling by an EMB-accredited contractor were effectively maintained. Importantly, in 2024, 14.45 kilograms of hazardous waste were successfully transported for proper	Employees of BC-BGO, and ILP Employees of mining contractors and hauler	The Company demonstrates corporate responsibility by strictly adhering to waste management and environmental quality protocols, including compliance with R.A. 9003, R.A. 9275, EMS Guidelines on Hazardous Waste Management, and its Environmental Compliance Certificate (ECC) conditions. Hazardous wastes are properly labeled, stored, and disposed of through a DENR-EMB accredited third-party service provider, ensuring full regulatory compliance. Aligned with the Company's Environmental Policy and Environmental Management System (EMS), continuous monitoring, repair, and maintenance of anti-pollution structures, penstocks, spillways, and tailings dam embankments are regularly carried out. Security personnel are deployed at the Tailings Storage Facility (TSF) to safeguard the structure and prevent unauthorized access. Please refer to Appendix "H" – EMSG-07-A (EMS Guidelines on Hazardous Waste

disposal, compared to zero recorded transport in 2023. This reflects the Company's commitment to regulatory compliance and proactive environmental stewardship. Overall, the Company's adherence to best practices in hazardous waste management, including persistent monitoring and maintenance, resulted in a cleaner operation and reduced environmental risk, ensuring ongoing compliance with Philippine environmental regulations.	Chalada and Affracta d	Management – Used Oil, Oil and Grease Contaminated Items)
What are the Risk/s Identified?	Stakeholders Affected	Management Approach
 Water contamination of the Ambalanga River if hazardous waste, especially cyanide-laced tailings, is not properly contained and managed. Siltation along the river system due to deposition of non-toxic tailings or sediments from accidental leaks, leading to ecosystem disruption and potential health hazards. Chemical exposure and accidents from improper handling, storage, and transport of hazardous wastes like acids, alkalis, used oils, and organic solvents. Non-compliance with environmental regulations such as R.A. 9275 (Philippine Clean Water Act of 2004) and R.A. 6969 (Toxic Substances and Hazardous and Nuclear Waste Control Act), risking suspension of operations or cancellation of the Environmental Compliance Certificate (ECC). Fines, sanctions, or reputational damage arising from regulatory violations and community complaints. 	Employees of BC-BGO, BC-CHQ and ILP Employees of mining contractors	 Strict enforcement of waste management protocols, especially inside the industrial area, to prevent accidental discharges into the environment. Regular inspection and maintenance of the tailings treatment facility and pipelines to ensure the integrity of impoundment systems and prevent leaks. Proper labeling, safe storage, and secure handling of all hazardous waste materials, with dedicated storage areas designed to avoid spills and leaks. Utilization of EMB-accredited haulers for timely transport and final disposal of hazardous wastes, ensuring compliance with R.A. 6969 and DAO 2004-36. Water quality monitoring programs along the Ambalanga River and other receiving bodies to detect any signs of contamination early and take corrective actions. Implementation of emergency response protocols and spill containment procedures to immediately address accidental releases. Regular employee training on hazardous waste management, chemical handling, emergency response, and environmental protection policies. Strict compliance with the Environmental Compliance Certificate (ECC) conditions and continuous engagement with DENR-EMB to ensure environmental laws and regulations are met. Community awareness programs to maintain transparency and strengthen trust with surrounding communities.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
 Strengthened environmental stewardship by proactively managing hazardous and non-toxic tailings, enhancing the Company's reputation for responsible mining. Continued regulatory compliance (R.A. 	BC-BGO/ACMP, BC-CHQ and ILP employees Employees of mining contractors Suppliers	The Company strengthens its environmental stewardship through strict hazardous waste management, ensuring compliance with R.A. 9275 and R.A. 6969. This protects water bodies like the Ambalanga River, enhances employee safety, fosters community trust, and

0075 D A 0000)	1 0 ''	
9275, R.A. 6969) ensures uninterrupted	Community.	sustains operational continuity, positioning the
operations, avoiding penalties,		Company as a model for sustainable
suspension, or cancellation of permits.		practices.
·		practices.
 Improved environmental quality through 		
effective waste management,		
maintaining a healthy river system and		Please refer to Code of Business Conducts and
, ,		
protecting biodiversity.		Ethics link
 Enhanced employee skills through 		http://benguetcorp.com/wp-
regular training on hazardous waste		content/uploads/2020/06/ECode-
· ·		
handling, boosting workplace safety and		of- Conduct-of-Business-and-
operational efficiency.		Ethics.pdf
 Increased community trust through 		·
transparent environmental practices and		
the Company's commitment to protecting		
local water bodies and ecosystems.		
•		
 Support for a circular economy through 		
proper recycling, recovery, and		
responsible waste disposal practices.		
 Positioning the Company as a model for 		
sustainable operations in the mining and		
industrial sector		
ווועט נוומו שבטנטו		

Effluents

Disclosure	Quantity	Units
Total volume of water discharges Effluent discharge from the mill	61,860.54	Cubic meters
Percent of wastewater recycled.	0.00	%

What is the impact and where does it occur? What is the organization's involvement in the impact?	Stakeholders Affected	Management Approach
In 2024, the mill discharged 50,352.42 cubic meters of effluent — an 18.6% decrease from 61,860.54 cubic meters in 2023 — reflecting improved water management practices. The reduction is primarily attributed to lower ore milling volumes and enhanced containment, recycling, and treatment efforts. Proper TSF operation and maintenance remain critical in minimizing environmental risks and ensuring continued regulatory compliance.	The Company; Employees; Community	 The following are measures that were implemented to mitigate the impacts: Treat wastewater through detoxification using sodium hypochlorite to neutralize harmful substances. Maintain and monitor the Tailings Storage Facility (TSF) to prevent hazardous discharges. Implement water recycling and optimize treatment processes to reduce effluent volume. Regularly monitor water quality to ensure compliance with regulatory standards. Engage with regulatory agencies and local communities to promote transparency and environmental stewardship. The company adheres to the provisions of R.A. 9275 (Philippine Clean Water Act) and conditions set forth in the Environmental Compliance Certificate (ECC).

	Please	refer	to	Appendix	"]"	_
	Environi	mental C	Compl	liance Certific	cate	

What are the Risk/s Identified?	Stakeholders Affected	Management Approach
 Complaints from farmers/residents downstream of the Tailings Storage Facility (TSF). Health and livelihood impacts of downstream communities of livelihood due to water contamination. Fish kills along river systems. Water contamination leading to suspension of operations. Suspension of Environmental Compliance Certificate (ECC) and/or imposition of monetary penalties due to violation of R.A. 9275 (Philippine Clean Water Act of 2004) leading to regulatory sanctions. 	The Company; Employees; Community	Observe proper maintenance of the Tailings Storage Facilities and other appurtenant structures and implement mitigating measures to prevent accidental wastewater discharge/leaks. Assessment of improvement downstream - keep a database of all improvements for future reference. Strict enforcement and compliance with the provisions of environmental laws & policies and the ECC.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
 Increased employee awareness of responsibility and accountability in environmental management. Adoption and application of new technologies to treat wastewater and eliminate or reduce toxicity prior to discharge. Improved environmental performance strengthens corporate image and stakeholder trust. Reduction in water discharge volume demonstrates enhanced operational efficiency and environmental stewardship. Strengthens the Company's reputation for environmental compliance. Opportunity to further improve water recycling rates and sustainable water use. 	Employees, community residents; Mines Environmental Protection and Enhancement Officer; Pollution Control Officer.	 Maintain and monitor pollution control facilities to ensure safe and compliant operations. Conduct regular education and awareness programs for stakeholders. Implement the Environmental Protection and Enhancement Program (EPEP) to promote responsible mining. Ensure full compliance with all environmental laws and regulations. Foster continuous improvement and a strong culture of environmental stewardship within the organization.

Environmental Compliance Non-compliance with Environmental Laws and Regulations

Disclosure	Quantity	Units
Total amount of monetary fines for non-compliance with environmental laws and/or regulations. No fines or penalty for violations committed against any provisions of environmental laws, permits and licenses that have been assessed or determined with finality during the period under report (2024).	0.00	PhP
No. of non-monetary sanctions for non-compliance with environmental laws and/or regulations	0.00	#
No. of cases resolved through dispute resolution mechanism	0.00	#

What is the impact and where does it occur?	Stakeholders Affected	Management Approach
What is the organization's involvement in the impact?		
Benguet Corporation remains firmly committed to environmental stewardship and regulatory compliance. As a responsible partner of the government, BC fully adheres to all applicable mining, environmental, and social laws and regulations. All required reports and submissions are completed, reviewed, and approved by the relevant government agencies. The Company implements comprehensive environmental and social programs, maintains regular compliance monitoring, and has consistently received certificates of compliance from regulatory authorities, demonstrating its dedication to sustainable and responsible operations.	The Company employees, service contractors, suppliers, investors, community, local and national government, other stakeholders.	Benguet Corporation is committed to full compliance with all environmental laws, permits, and regulations, maintaining its role as a responsible mining company. Environmental safeguards are in place to manage risks, and Benguet Gold Operation upholds an Environmental Policy focused on excellence in sustainable mineral resource development. Continuous monitoring and engagement with regulators ensure ongoing environmental stewardship.
What are the Risk/s Identified?	Stakeholders Affected	Management Approach
Failure to submit compliance reports on time, or delays and non-implementation of the approved Annual Environmental Protection and Enhancement Program (AEPEP), Annual Social Development and Management Program (ASDMP), and Annual Safety and Health Program (ASHP) may result in penalties and sanctions from regulatory agencies. Non-compliance with environmental laws and regulations could also lead to legal liabilities and reputational damage.	Benguet Corporation, employees, service contractors, suppliers, investors, community, local and national government, other stakeholders	Benguet Corporation ensures strict adherence to reporting schedules and program implementation. Dedicated teams are tasked with monitoring compliance, promptly preparing and submitting reports, and coordinating closely with regulatory bodies. The Company also continuously strengthens its internal processes and training to maintain high standards of environmental, social, and safety performance. Please refer to link - http://benguetcorp.com/wp-content/uploads/2020/06/OBC- Internal-Audit-Charter.pdf BenguetCorp's Internal Audit Charter - Defining the Scope of Work of the Internal Audit Office (IAO) - Item II, #7-9, p.1 and Detailing Responsibility of IAO - Item V, # 4-6 p. 2 of the Charter.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
 Uninterrupted operations through full regulatory compliance. Improved production via continuous mining activities. Stronger environmental management through proactive risk mitigation. 	Management, employees, mining contractors, stakeholders	 Re-assess and monitor pollution control structures regularly. Conduct ongoing IEC activities for stakeholders. Implement and strengthen the Environmental Protection and Enhancement Program

Enhanced reputation from consistent environmental and social compliance.	 (EPEP). Promote full compliance with environmental laws and regulations. Foster environmental awareness and continuous operational improvement.
	Please refer to Appendix "J" – Registry of Compliance Obligations for C.Y. 2024

SOCIAL PERFORMANCE

Employee Management Employee Hiring and Benefits
Employee Data

Disclosure	BGO/CHQ	ILP	TOTAL	Units
Total number of employees ⁵	294	7	301	Headcount
a. Number of female employees	63	3	66	Headcount
b. Number of male employees	231	4	234	Headcount
Attrition rate ⁶	.32	0		Percent Rate
Ratio of lowest paid employee against minimum wage		1:1 - about 4% higher rate than the prescribed		Ratio
(P470 lowest rate / regional min. wage of P470 (CAR) and P645 (NCR)		minimum wage in the region		Natio

Employee Benefits

List of Benefits	Y/N	% of female employees who availed for the year		% of male employees who availed for the year	
		BGO/CHQ	ILP	BGO/CHQ	ILP
SSS (premium)	Υ	100%	100%	100%	100%
PhilHealth (premium)	Υ	100%	100%	100%	100%
Pag-ibig (premium)	Υ	100%	100%	100%	100%
Parental leaves					
Maternity	Υ	8%	0	0	0
Paternity	Υ	0	0	3%	0
Solo Parent	Υ	1.3%	0	0	0
Vacation leaves	Υ	100%	100%	100%	100%
Service Incentive Leave	Υ	100%	100%	100%	100%
Sick leaves	Υ	100%	100%	100%	100%
Medical benefits (aside from PhilHealth))	Υ	100%	100%	100%	100%
Free Housing in camp	Υ	100%	100%	100%	100%
Retirement fund (aside from SSS)	Υ	1.49%	0	5.5%	0
Tuition Fee Refund	Υ	14.2%	0	4.6%	0
Company stock options	Υ	0	0	0	0
(Others)					
Insurance (Group life; Accident)	Υ	100%	100%	100%	100%
Birthday Leave	Y	100%	100%	100%	100%
Mine workers onsite:					
Subsidized water	Υ	14.2%	0	8.6%	0

⁵ Employees are individuals who are in an employment relationship with the organization, according to national law or its application (<u>GRI Standards 2016 Glossary</u>)
⁶ Attrition are = (no. of new hires – no. of turnover)/(average of total no. of employees of previous year and total no. of employees of current year)

Subsidized electricity	Y	4.7%	0	45.02%	0
Free meal during the shift	Υ	30.1%	0	22.07%	0

What is the impact and where does it occur? What is the organization's involvement in the impact?

Management Approach

Rising inflation and labor costs pressured operations, leading to manpower rationalization despite high sales. Intense competition for skilled workers post-pandemic increased employee turnover risks. However, BC maintained an 81% local employment rate and upheld competitive benefits to support workforce stability.

- Maintained a lean but skilled workforce through strategic hiring and rationalization.
- Strengthened employee retention through competitive compensation and benefits.
- Focused on local hiring and continuous skills development.
- Prioritized workforce stability as part of broader debt-free growth and diversification plans.

What are the Risk/s Identified?

Management Approach

- Rising Operational and Labor Costs: Inflation pressures could strain profitability, requiring strict cost control and efficient workforce management.
- Talent Retention Challenges: Increased competition for skilled employees, with risks of poaching and attrition to higher-paying opportunities locally and abroad.
- Lean Workforce Pressure: Maintaining productivity with fewer employees could cause operational gaps if skills and competencies are not properly managed.
- Potential Talent Pipeline Gaps: Without strong succession planning, key leadership and technical roles may face future shortages.

- Control Costs: Maintain a lean, efficient workforce and optimize operations to manage rising expenses.
- Strengthen Talent Retention: Enhance employee engagement through competitive pay, career growth opportunities, and a positive work environment.
- Develop Internal Talent: Invest in succession planning, training, and upskilling to secure critical roles and ensure workforce adaptability.
- Reinforce Employer Brand: Promote BC as a stable, growing company to attract and retain skilled employees.
- Proactive Monitoring: Regularly track employee engagement and turnover to address risks early.

What are the Opportunity/ies Identified?

Management Approach

- Agile and High-Performing Workforce: Streamlining operations creates the opportunity to build a more skilled, efficient, and adaptable team.
- Employer Branding: Strengthening employee value proposition can position BC as an employer of choice, attracting and retaining top talent.
- Upskilling and Career Development: Investing in training, leadership development, and internal career growth strengthens workforce loyalty and capability.
- Expansion of Career Opportunities: Diversification strategies can offer employees new roles and growth paths, enhancing retention and engagement.

- Invest in Workforce Development: Expand training programs and career pathways to build a highly skilled and loyal workforce.
- Enhance Employee Value Proposition: Strengthen compensation, benefits, and work-life balance initiatives to position BC as an employer of choice.
- Promote a Culture of Excellence: Foster innovation, collaboration, and continuous improvement through strong leadership and employee recognition.
- Build Talent Pipelines: Partner with educational institutions and implement succession plans to ensure a steady flow of future talent.
- Strengthen Safety and Operational Excellence: Integrate competencybased training and promote a strong safety culture to boost productivity and minimize risks.

Employee Training and Development

Disclosure	Quantity (2023)	Quantity (2024)	Units
Total training hours provided to employees	2,385	1,679	hours
a. Female employees	780	775	hours
b. Male employees	1,605	904	hours
Average training hours provided to employees	5.32	12.34	hours

a. Female employees	10.26	11	hours
b. Male employees	4.30	14	hours

What is the impact and where does it occur? What is the organization's involvement in the impact?

Management Approach

Manpower rationalization in 2024 led to a 30% reduction in total training hours compared to 2023. However, with a leaner workforce, there was a strategic shift towards more targeted and intensive employee development. This is aimed to maintain a skilled, versatile workforce capable of adapting to operational challenges and supporting strategic objectives. Safety and environmental risks remain critical focus areas, necessitating continuous training to ensure a safe and compliant working environment.

Management prioritizes maintaining a competent, adaptable workforce through focused training and skills development, delivering 1,679 training hours in 2024. Average training hours per employee increased, reflecting the shift towards quality over quantity.

Safety, Health, and Environmental (SHE) training remains a core, ongoing initiative, embedded in daily operations to cultivate a culture of safety, environmental stewardship, and risk mitigation. Training efforts are tailored to address operational needs, employee well-being, and environmental protection, ensuring alignment with the Company's broader sustainability goals.

What are the Risk/s Identified?

Management Approach

The loss of skilled employees and insufficiently trained personnel could lead to operational inefficiencies, increased safety incidents, project delays, and regulatory non-compliance.

BC Management prioritizes retaining skilled employees and ensuring continuous workforce development to safeguard operational efficiency, safety, and compliance.

External competition for talent heightens the risk of employee turnover, while inadequate training compromises productivity, workplace safety, and adherence to standards.

A strong succession plan for critical roles is maintained, alongside initiatives promoting an inclusive, engaging, and trust-based workplace culture.

Leadership development, regular monitoring of turnover, and proactive employee feedback mechanisms support continuous improvement.

These strategies collectively aim to minimize talent loss, address skill gaps, and sustain a resilient and high-performing workforce.

What are the Opportunity/ies Identified?

Management Approach

BC has a strong opportunity to build a highly skilled, engaged, and loyal workforce by investing in employee development, offering competitive rewards, and fostering a positive, inclusive work environment. By strengthening retention and training strategies, BC can position itself as an "Employer of Choice" in the mining sector and beyond, attracting top talent while enhancing productivity, innovation, and operational efficiency.

BC Management is committed to proactively leveraging identified opportunities to strengthen its workforce and drive sustainable growth. Talent development and retention are embedded into the Company's core strategy, supported by dedicated resources for training, competitive compensation, and employee engagement initiatives.

A continuous focus on safety, health, and environmental (SHE) training will reinforce a robust safety culture, minimize risks, and improve regulatory compliance.

Competency-based training, with a strong focus on Safety, Health, and Environment (SHE) standards, underpins operational excellence. BC also prioritizes an inclusive, thriving workplace through diversity, well-being programs, and regular feedback mechanisms. Strong partnerships with educational institutions and industry groups further enhance the talent pipeline. Through these actions, BC aims to transform talent management into a key driver of success, resilience, and competitive advantage.

Additionally, boosting employee morale through growth opportunities and recognition will drive engagement and collaboration.

By developing local talent and maintaining effective succession planning, BC can ensure a sustainable talent pipeline.

Labor-Management Relations

Disclosure	Quantity	Units
% of employees covered with Collective Bargaining Agreements	0	%
Number of consultations conducted with employees concerning employee-related policies		%

What is the impact and where does it occur? What is the organization's involvement in the impact?	Management Approach
BC maintains a non-unionized environment, focusing on fostering harmonious relationships between management and employees. This approach directly impacts morale, productivity, and workplace stability within its primary operations. Labor-related policies are developed, reviewed, and communicated through the Policies and Procedures Committee and the HR Department, with structured mechanisms in place for addressing employee grievances.	 BC fosters a positive, stable, and engaged workforce in a non-unionized environment through proactive management practices. Labor-related policies are developed and regularly reviewed with a focus on fairness, transparency, and employee input. Open communication is promoted via accessible grievance mechanisms and leadership training in employee relations. Competitive compensation and benefits are benchmarked to industry standards and clearly communicated. The Company upholds fair labor practices, full legal compliance, and ethical management conduct. Employee relations are monitored through turnover rates, grievance tracking, engagement surveys, and regular policy audits to ensure continuous improvement.
What are the Risk/s Identified?	Management Approach
Erring employees may seek attention from aggressive militant trade unions or organizations, which could disrupt the harmonious relationship and potentially lead to labor unrest. This risk is heightened if employees feel their concerns are not being adequately addressed through internal channels.	BC proactively fosters a positive, inclusive work environment by strengthening internal communication and grievance mechanisms. Through active listening, transparent processes, and daily leadership practices, the Company builds trust, addresses concerns early, and mitigates the risk of external disruption, ensuring a stable and engaged workforce.
What are the Opportunity/ies Identified?	Management Approach
By strengthening internal communication, grievance mechanisms, and leadership practices, BC can further enhance employee trust, engagement, and workplace stability, reducing the risk of external labor disruptions.	Management ensures that good leadership is maintained, there is competitive compensation package and established employee engagement strategies

Diversity and Equal Opportunity

Disclosure	Quantity (2023)		Units	Quantity (2024)		Units
% of female workers in the workforce	17%		%	21.9%		%
% of male workers in the workforce	83%		%	78.%		%
Number of employees from indigenous communities and/or vulnerable sector*						
	Elderly	16	#	Elderly	22	#
	Solo Parent	0	#	Solo Parent	5	#
	PWDs	2	#	PWDs	1	#
	Indigenous Peoples	198	#	Indigenous Peoples	118	#
	Approximately 90% of the site		%	Approximately 40% of	the site	%
	workforce are Indigenous			workforce are Indigend	ous	
	people.			people.		

*Vulnerable sector includes, elderly, persons with disabilities, vulnerable women, refugees, migrants, internally displaced persons, people living with HIV and other diseases, solo parents, and the poor or the base of the pyramid (BOP; Class D and E).

Workforce Distribution by Region

Region	No. of Employees (2023)	No. of Employees (2024)
National Capital Region (NCR)	52	55
CARAGA	1	0
Region 1	116	63
Region 2	7	6
Region 3	27	39
Region 4A (CALABARZON)	13	4
Region 4B	1	0
Region 5	5	4
Region 6	1	6
Region 7	8	0
Region 8	1	0
Region 11	4	2
Cordillera Administrative Region (CAR)	212	122
Total	448	301

What is the impact and where does it occur? What is the organization's involvement in the impact?

Management Approach

The Company's operations at Benguet Gold Operation (BGO) and Irisan Lime Project (ILP) have directly influenced employment levels and workforce composition in Benguet and nearby provinces. As of 2024, 81% of the workforce consisted of local residents, reflecting the Company's commitment to community employment and socio-economic development.

Efforts to promote gender equality also increased female representation from 17% in 2023 to 21.9% in 2024. However, a manpower rationalization program initiated in early 2024, due to continued financial losses at BGO, resulted in a 30% workforce reduction, negatively impacting employment opportunities despite maintaining a high proportion of local hires.

BC prioritizes local hiring and upholds a non-discriminatory employment policy, prohibiting bias based on vulnerability, sex, or religious affiliation. The Company is committed to providing equal employment opportunities to qualified candidates from impact and nearby communities, achieving an 81% local employment rate as of 2024.

Department Heads are responsible for enforcing hiring policies, while Medical and Safety teams monitor workplace conditions for persons with disabilities and underlying health concerns. Safety and HR departments jointly manage employee behavior regarding safety practices, with policy development supported by the HR department and the Policies and Procedures Committee.

Key initiatives include local hiring preference, programs to increase female employment, succession planning with local employee inclusion, monitoring of vulnerable employees, and reinforcement of behavioral safety practices through disciplinary measures.

What are the Risk/s Identified?

- Vulnerable employees (elderly, persons with disabilities, female workers) may face restrictions in hazardous areas.
- Productivity may decline if a large portion of the workforce is from vulnerable groups.
- Accident rates may rise if vulnerable employees are not adequately trained.

Management Approach

Departments identify hazardous jobs during hiring, ensuring proper PPE is provided. Succession planning for elderly managers and close monitoring by Medical and Safety teams help maintain a safe and healthy work environment for vulnerable employees. Behavioral safety is strongly emphasized, with Safety and HR teams enforcing discipline for safety violations.

What are the Opportunity/ies Identified?

1. Knowledge and Skills Transfer: Seasoned employees can transfer knowledge to younger generations, benefiting both the company and the employee (though potentially with initial costs).

Management Approach

Management maintains its approach of giving equal opportunities in the workplace and in the communities where the Company operates. The Company will continue to uphold its Hiring Policy, strengthen safety protocols, and actively promote an inclusive culture that values the contributions of all employees. Management will also explore structured

- 2. Self-Actualization: Providing work opportunities for the vulnerable sector (PWDs and retirees) can lead to self-worth and actualization.
- 3. Equal Competence: Women have proven to be equally capable and competent as men.

mentorship programs to facilitate knowledge transfer and ensure that our commitment to equal opportunities translates into tangible career advancement for all segments of our workforce.

Workplace Conditions, Labor Standards, and Human Rights

Occupational Health and Safety

	Quantity (2024)	Quantity (2024)	
Disclosure	BGO-CHQ	ILP	Units
Safe Man-Hours	2,431,040	87,449	Man-hours
No. of work-related injuries	8	0	#
No. of work-related fatalities	2	0	#
No. of work related ill-health	0	0	#
No. of safety drills:			
Fire Evacuation &Rescue Drill	3	1	#
Evacuation & Response	5	3	#
Earthquake Drill/Nationwide			
Simultaneous Earthquake Drill			
Chemical Spill Drill	1	0	#

What is the impact and where does it occur? What is the organization's involvement in the impact?

During the 2024 reporting period, BGO unfortunately recorded two (2) work-related fatalities due to a cave-in and cardiac arrest, and eight (8) work-related injuries consisting of minor abrasions, wounds, and one fracture. No cases of work-related ill-health were reported at BGO. While operations at BGO continued without suspension, the Company acknowledges the significant impact of these incidents on workforce well-being and operational integrity. A thorough review and continuous improvement of safety management systems remain a key priority.

In contrast, the ILP site, with a total of 87,449 safe man-hours, reported zero (0) work-related fatalities, injuries, or cases of work-related ill-health in 2024, indicating strong safety performance. This commitment to safety was further recognized with the SAFEST MINERAL PROCESSING-CALCINING PLANT CATEGORY 2024 award.

To bolster emergency preparedness across operations, both BGO-CHQ and ILP conducted safety drills in 2024. BGO-CHQ carried out three drills: Fire Evacuation & Rescue (3), Earthquake Evacuation & Response (5), and a Chemical Spill Drill (1). ILP also conducted a Fire Evacuation & Rescue Drill (1) and an Earthquake Evacuation & Response Drill (3). These drills are integral to the Company's ongoing commitment to cultivating a proactive safety culture and minimizing operational risks.

Further underscoring its commitment to safety, BGO received the 2nd Runner Up award in the Industrial Category and was Champion in the Bucket Relay at the 5th Itogon Fire Olympics. Additionally, the Company utilized 73.39% (₱5,285,148.81) of its allocated ASHP (Annual Safety and Health Program) budget for CY 2024.

Management Approach

Employee safety is a core priority across all operations. We implement comprehensive safety systems, conduct regular emergency drills, and provide ongoing training to ensure hazard awareness and risk mitigation. Incident monitoring and root cause analyses drive continuous improvement. Following 2024 incidents at BGO, we are strengthening safety protocols to further enhance workplace health, resilience, and operational integrity.

The Company recognizes that the incidents at BGO-CHQ underscore the need for enhanced safety initiatives. Accordingly, a comprehensive review of safety practices and additional corrective actions are being prioritized to uphold the highest standards of occupational health and safety across all sites.

What are the Risk/s Identified?

- High-Consequence Hazards: The inherent dangers of mining and milling (strenuous work, perilous conditions) create a significant risk of serious incidents, including fatalities.
- Persistent Injury Risk: Despite a decrease in injury numbers from 2023 to 2024, the continued occurrence of injuries indicates that hazards are not adequately controlled.
- Potential for Negative Impacts: Fatalities and injuries can negatively affect employee morale, productivity, legal/regulatory standing, and the company's reputation.

Management Approach

Mining and milling operations inherently involve highconsequence hazards and persistent injury risks. The Company is committed to minimizing these risks by maintaining a robust safety management system, focused on hazard identification, risk assessment, and the implementation of effective controls.

Comprehensive safety training, regular emergency response drills, and strict operational protocols are enforced to ensure all employees are physically prepared and fully aware of workplace hazards. Incident data is systematically analyzed to identify trends and inform continuous improvement initiatives.

Following the occurrence of fatalities and injuries at BGO in 2024, the Company is strengthening its safety programs through enhanced training, targeted risk mitigation measures, and more frequent safety audits. These actions aim to protect employee well-being, sustain productivity, and uphold our legal, regulatory, and social license to operate.

The Company remains fully committed to fostering a proactive safety culture, preventing serious incidents, and safeguarding both workforce morale and organizational resilience.

What are the Opportunity/ies Identified?

- Replicate best practices recognized through past safety awards.
- Strive for industry leadership to enhance reputation and stakeholder trust.
- Implement competency-based training to boost engagement and retention.
- Strengthen emergency preparedness through ongoing ERT development.
- Build on ILP's national safety recognition to drive continuous improvement. (The Irisan Lime Project (ILP) is awarded with SAFEST MINERAL PROCESSING-CALCINING PLANT CATEGORY in 2024 by the DENR-Mines and Geosciences Bureau and the Philippine Mine Safety and Environment Association in the pursuit of excellence in safety and health management.

Management Approach

The Company prioritizes strict compliance with its Occupational Health and Safety Policy, aligned with DENR DAO No. 2000-98, aiming to prevent all work-related fatalities, injuries, and illnesses. A proactive and preventive safety culture is fostered, emphasizing hazard anticipation and early intervention. Employees are empowered to take ownership of safety through active participation in hazard identification and improvement initiatives. The Company aspires to industry leadership in occupational health and safety by continuously improving practices and sharing best standards. Adequate resources are allocated to support these initiatives, the Company utilized 73.39% (₱5,285,148.81) of its allocated ASHP (Annual Safety and Health Program) budget for CY 2024 for BGO.

Please refer to Appendix "K" – Certificate of Approval of 2024 Safety and Health Program for BGO

Labor Laws and Human Rights

Disclosure	Quantity	Units
No. of legal actions or employee grievances involving forced or child labor	0	# of employees

Do you have policies that explicitly disallows violations of labor laws and human rights (e.g. harassment, bullying) in the workplace?

Policy on Labor Laws and Human Rights

Topic	Y/N	If Yes, cite reference in the company policy
Forced labor	У	Policy contains provisions of RA 10364 – An Act to Institute Policies to Eliminate Trafficking in Persons specially Women and Children, Establishing the Necessary Institutional Mechanism for the Protection and Support of Trafficked Persons, Providing Penalty for Its Violation and for other Purposes
Child labor	у	Policy contains provisions of RA 7610
Human Rights	У	Policy on Sexual Harassment – (see link- Policy on Sexual Harassment) Employees Code of Conduct – (see link http://benguetcorp.com/wpcontent/uploads/2018/05/ECD%20with%20ee%20acknowledgement.pdf)

What is the impact and where does it occur? What is the organization's involvement in the impact?	Management Approach
As a Company, Benguet Corporation does not tolerate forced or child labor and human right violations. It ensures that the Philippine law on such is strictly implemented across the organization.	As evidenced in the manpower profile, no employee in the roster is below 18 years of age. No incident of human right violation has been filed by any employee as of to date. Company Policy on Child Labor is in place.
	(see link http://benguetcorp.com/wp- content/uploads/2023/04/Child-Labor- Policy.pdf)
	No cases of child labor have been received as of this period.
What are the Risk/s Identified?	Management Approach
Contractors and suppliers may engage in forced labor or employment of minors or below 18 years of age and assign them on hazardous workplaces.	Provision in the contracts that Contractors and suppliers must comply with the Company policies and procedures applicable to them as well as with applicable Philippine laws.
	Stiffer penalty shall apply to those who will be in violation.
What are the Opportunity/ies Identified?	Management Approach
With the formulated policies on forced and child labor and human rights violation, Management and employees are properly guided	Employees are oriented on the Code of Discipline before start of employment and regular update is done as necessary.

Relationship with Community Significant Impacts on Local Communities

Operations with significant (positive or negative) impacts on local communities (exclude CSR projects; this has to be business operations) The Company actively fulfills its commitment to its Social Development and Management Programs (SDMP) by addressing key needs in its host and neighboring communities. Aligned with the SDMP framework outlined in DAO 2010-21 and DAO 2010-13, the company invested in the following priority areas:

- 1. Human Resource and Institutional Building
- 2. Enterprise Development and Networking
- 3. Infrastructure Development and Support Services
- 4. Education and Educational Support Programs
- 5. Health Services, Facilities, and Professionals
- 6. Protection and Respect of Socio-cultural Values

For the 2024 reporting period (January-December), SDMP implementation

	achieved 82.35%, with an expenditure of PhP 3,931,464.35 out of the PhP 4,774,155.24 budget. The main factor contributing to the 17.65% variance was the late submission of project proposals by beneficiary Barangays. The remaining funds will be allocated to the 2025 SDMP initiatives.	
Location	Itogon, Benguet & Baguio City	
Vulnerable groups (if applicable)	IPs, women, migrant groups, elderly, youth	
Does the particular operation have impacts on indigenous people (Y/N)?	Yes	
Collective or individual rights that have been identified that or particular concern for the community	Right to livelihood; Right to education; Right to shelter; Right to health;	
	Water resource and Infrastructure developments;	
Mitigating measures (if negative) or enhancement measures (if positive) *Wulnerable sector includes children and a	 The Company continues to uphold and respect the rights of Indigenous Peoples (IPs) in the vicinity of its mining operations, actively contributing to poverty reduction and an improved quality of life The Company actively shares the benefits of its operations with vulnerable community members to improve their quality of life. Furthermore, its mining operations and related projects generated significant employment opportunities for local communities. Recognizing the development challenges in the region, the Company actively partnered with the national government on infrastructure and other key projects. This collaboration involved the proactive promotion of responsible mining practices with the DENR and support for initiatives by the DILG and DA. Despite the contributions of bilateral and multilateral projects in sectors like infrastructure, water resources, rural development, and governance, strengthening LGU capacity remained a priority. The Itogon Municipality and Barangays Virac and Poblacion LGUs are significantly dependent on Internal Revenue Allotment, and limited economic growth perpetuates low-income levels. Notably, the approved and well-executed Social Development and Management Program (SDMP) and Environmental Protection and Enhancement Program (EPEP) from BC-BGO and ILP operations have been instrumental in addressing these limitations and strengthening the LGUs' development projects within their operational areas. 	

*Vulnerable sector includes children and youth, elderly, persons with disabilities, vulnerable women, refugees, migrants, internally displaced persons, people living with HIV and other diseases, solo parents, and the poor or the base of the pyramid (BOP; Class D and E)

What are the Risk/s Identified?

The fact that the main reason for the 17.65% variance in SDMP implementation was the delayed or incomplete project implementation due to late submission of proposal by beneficiary Barangays highlights a risk. If this issue persists, it could lead to:

- Communities may not receive the intended benefits (livelihood, infrastructure, education, health, etc.) in a timely manner, leading to dissatisfaction and erosion of trust.
- Delays could be perceived as a lack of commitment from the company, fostering negative sentiment and potentially leading to social unrest.
- Delayed projects can slow down the overall development progress in the host and neighboring communities.

Management Approach

It is the goal to ensure timely and efficient implementation of Social Development and Management Program (SDMP) projects by addressing the root causes of late proposal submissions from beneficiary Barangays, thereby meeting community needs, fostering trust, and supporting sustainable development.

The following are being implemented:

- 1. Collaborative Engagement: Working in close partnership with the Barangays throughout the project cycle.
- 2. Capacity Building: Empowering Barangays with the knowledge and resources to develop timely and quality proposals.
- 3. Clear Communication: Establishing transparent and consistent communication channels.

What are the Opportunity/ies Identified?

The following may optimize the timely and effective implementation of SDMP projects through collaborative empowerment, streamlined processes, and continuous learning, thereby maximizing community benefits and strengthening stakeholder relationships:

- a. Simplifying the proposal submission and review process.
- b. Defining clear roles and responsibilities for both the Company and the Barangays.
- c. Identifying potential delays early and providing necessary assistance.
- d. Actively engage with the Itogon Municipality and Barangays Virac and Poblacion LGUs to ensure SDMP projects are strategically aligned with their broader development objectives and contribute to local government capacity building.

Management Approach

The Company moves beyond simply addressing delays to proactively empowering communities, fostering collaboration and learning, to ensure that SDMP projects are not only timely but also impactful and sustainable, contributing directly to the long-term development of the host and neighboring areas.

The Community Relations Department leads the implementation of this management approach, providing necessary resources and support, facilitating capacity building, and ensuring effective monitoring and evaluation to foster even stronger relationships with the community and ensuring a more effective and timely delivery of benefits through the SDMP.

For operations that are affecting IPs, indicate the total number of Free and Prior Informed Consent (FPIC) undergoing consultations and Certification Preconditions (CPs) secured and still operational and provide a copy or link to the certificates if available:

Certificates	Quantity	Units
FPIC –	0	#
CP secured –	0	#

What are the Risk/s Identified? **Management Approach** Maintain Close Coordination with NCIP and IP Several of BC's upcoming projects (e.g., EXPA on mining claims, Community: Malouf SMP, and BTP) are located in areas with Indigenous Hiring an expert to develop and implement a Peoples (IPs) and thus require FPIC to proceed with regulatory strategic approach. approvals and operations. Continuous relationship-building efforts with IP communities to address concerns and reduce The following risks are identified: Denial of permits due to failure to secure FPIC (Free. opposition. Acknowledging and acting within the 3-year FPIC Prior and Informed Consent) from Indigenous Peoples (IP) limit under DENR policy. communities. Costly and time-consuming FPIC process, limited to 3 vears under DENR's Use it/Lose it policy. IP community opposition influenced by anti-mining NGOs, LGUs, and small-scale miners. Potential project cancellation, investment loss, and regulatory delays. Ambiguity in policies and guidelines regarding PPAs (Programs, Projects & Activities) may lead to misinterpretations, disagreement, and implementation delays. What are the Opportunity/ies Identified? **Management Approach** Improved Relations: Strengthening relationships with IP Uphold IPs' rights through transparent, inclusive, communities and NCIP (National Commission on and culturally sensitive consultations. Indigenous Peoples) opens doors to better collaboration Build trust-based relationships with IP Strategic Advisory: Engaging consultants for FPIC-related communities through ongoing dialogue, strategies helps BC proactively navigate the process. community development projects, and clear communication of project impacts and benefits. Reputation Enhancement: Demonstrating respect for indigenous rights can improve corporate reputation and Secure long-term community acceptance by social license to operate. aligning development goals with community needs and values. Adhere strictly to FPIC protocols under Indigenous Peoples Rights Act (IPRA) and DENR guidelines.

Customer Management Customer Satisfaction

Disclosure	Score	Did a third party conduct the customer satisfaction study (Y/N)?
Customer satisfaction	100%	N
What is the impact and where does it occur? What is the organization's involvement in the impact?	Management Approac	h
The company has both products and services. Its gold productions are sold and purchased by the Bangko Sentral ng Pilipinas (BSP) based on the prevailing market price. The world market dictates the price of gold. As to the services, the company complied and extended all what is due to the communities. Their desired quantity of PPAs implemented might not have fully satisfied them but all were undertaken based on quality and resiliency standards.	the buyer of our product Continued enhanced eng the services. Institutiona of coming up with PPAs.	with the Bangko Sentral ng Pilipinas as and abide by its rules and regulations. gagements with the clients/recipients of lized participative approach in all stages For quality assurance, involved the anning stage up to implementation and

What are the Risk/s Identified?	Management Approach
Sudden/abrupt reduction of the price of gold in the world market.	Maintained close monitoring of gold prices while constantly engaging with the BSP.
What are the Opportunity/ies Identified?	Management Approach
Selling BC's gold production to BSP directly contributed to the Philippine economy as opposed to selling the product to foreign buyers.	Continue selling gold produced to Bangko Sentral ng Pilipinas (BSP) and silver to local market.
Maintained or improved the purity of gold sold to BSP.	Provided better service to BSP by selling gold concentrate.

Health and Safety

Disclosure	Quantity	Units
No. of substantiated complaints on product or service health and safety*	0.00	#
No. of complaints addressed	0.00	#

^{*}Substantiated complaints include complaints from customers that went through the organization's formal communication channels and grievance mechanisms as well as complaints that were lodged to and acted upon by government agencies.

What is the impact and where does it occur? What is the organization's involvement in the impact?	Management Approach
Safety of employees during transport and delivery of gold to Bangko Sentral ng Pilipinas (BSP) in Baguio City.	No fixed schedule of transporting the commodity. Security alert must be imposed.
What are the Risk/s Identified?	Management Approach
There is potential possibility of hold-up and kidnap for ransom during delivery of gold to BSP in Baguio City.	Maintain confidentiality of information on gold production and details. No fixed schedule of transporting the commodity. Security alert imposed. Rotation of security escort during transport and delivery of product to Baguio City.
What are the Opportunity/ies Identified?	Management Approach
Accessibility of market – location of BSP is in Baguio City which is about 15 kms. away from the mine site.	Improve intelligence network and regular coordination with Itogon PNP.

Marketing and labelling

Disclosure	Quantity	Units
No. of substantiated complaints on marketing and labelling*		
No complaints received in 2024 from our only customer which is the BSP on quality of our products.	0.00	#
No. of complaints addressed. No complaints received/addressed in 2024 from our only customer which is the BSP.	0.00	#

^{*}Substantiated complaints include complaints from customers that went through the organization's formal communication channels and grievance mechanisms as well as complaints that were lodged to and acted upon by government agencies.

Identification of Impact	Management Approach
There was no determined impact because there are no complaints received/addressed in 2024 from BC's only customer, Bangko Sentral ng Pilipinas (BSP). Likewise, no complaint was received from ILP clients.	For the year under report, the Company did not receive any complaint from BC's customer, BSP, regarding the marketing and labeling of our gold product. Likewise, no complaint was received from ILP clients. If ever complaints arise in the future, the Company will handle/resolve the issues following the Company's policies and procedures.
What are the Risk/s Identified?	Management Approach
There were no determined risks because the Company delivers its product in accordance with the established guidelines of its sole customer, the BSP.	For the year under report, the Company did not receive any complaint from BC's sole customer, BSP, regarding the marketing and labeling of its product. Likewise, no complaint was received from ILP clients. If ever complaints arise in the future, the Company will handle/resolve the issues following the Company's policies and procedures.
What are the Opportunity/ies Identified?	Management Approach
Increased Gold sales will increase BSP's gold reserve.	Benguet Corporation will continue to maintain or improve further on gold production and purity.

Customer privacy

Disclosure	Quantity	Units
No. of substantiated complaints on customer privacy*	0.00	#
No. of complaints addressed	0.00	#
No. of customers, users, and account holders whose information is used for secondary purposes	Limited only to authorized Company engagement.	#

^{*}Substantiated complaints include complaints from customers that went through the organization's formal communication channels and grievance mechanisms as well as complaints that were lodged to and acted upon by government agencies.

What is the impact and where does it occur? What is the organization's involvement in the impact?	Management Approach
The gold products are sold only to Bangko Sentral ng Pilipinas. Benguet Corporation caters to a government institution as a customer. Thus, the company strives for confidentiality and accountability in all its public disclosures.	Observed the Data Privacy Policy of the company formulated in accordance with the Data Privacy Act of 2012 (R.A. 10173). This assures the confidentiality of customers' information. Moreover, the Company adopted control measures to prevent the occurrence of data breach incidents. Proactively managed risks to ensure the protection of data privacy at the start and throughout the lifecycle of any transaction. Appointment of Data Privacy Officer (DPO) for Baguio Operation.

What are the Risk/s Identified?	Management Approach
Loss of trust by either party (BC or customer) due to privacy breach. Unauthorized processing which includes but not limited to collection, recording, storage, updating or modification, retrieval, consolidation, use, erasure, or destruction of information/data gathered that may result in financial injury to both the company and the customer.	Security of the data collected from the Bangko Sentral ng Pilipinas is undertaken by limiting access to such information after it's been gathered. Direct and upfront communication with the customers about the information gathered and plans for using it.
What are the Opportunity/ies Identified?	Management Approach
Build stronger relationship with the customer.	Give customers an online form or email address for communicating their problems or concerns. Management undertakes to respond to these messages. Such two-way communication can help build trust and loyalty and help avoid potential privacy breaches.

Data Security

Disclosure	Quantity	Units
No case of data breaches, including leaks, thefts, and losses of data.	0.00	# of data breaches
There were no reported data privacy incidents, notifiable data breaches relating to cyber security, data governance, or failure in the internal controls, any substantiated complaints concerning breaches of customer privacy and losses of customer data for the reporting period.		

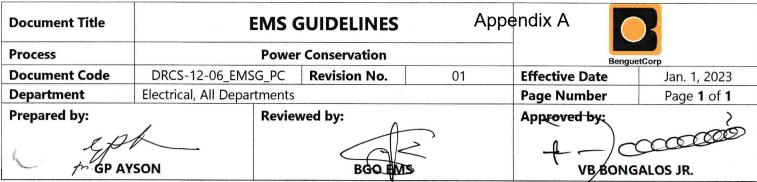
What is the impact and where does it occur? What is the organization's involvement in the impact?	Management Approach
Benguet Corp has a Data Privacy Policy in place being rolled out to all employees. The penalty for the violation of privacy rights resulting in data breaches are also incorporated in the Employee's Code of Conduct, thus it raises the security and privacy awareness further in the organizational culture. The Company implemented and continuously improved its internal control to minimize the risk of data breaches.	To establish and further reinforce the knowledge about security and data protection, the Data Privacy Policy forms part of the onboarding process of newly hired employees. Moreover, the Company adopts control measures to prevent the occurrence of data breach incidents. BC management also ensures that our stakeholders and those we do business or partner with, including third-party providers, follow the law on data privacy. This year the Company has obtained the seal of registration issued by the NPC as proof of compliance.
What are the Risk/s Identified?	Management Approach
The accelerating cyber-attack and continuous changing threat landscape.	We are using several frameworks to improve our concept of layered security and defense i.e. Microsoft Defender, Microsoft 365 security, anti-malware and similar security frameworks. We continuously follow security alerts and related information from our IT environment to be able to respond timely to any incident. The Company is compliant with the Data Privacy Law of 2016. Please refer to link on Data Privacy Policy http://benguetcorp.com/wp-content/uploads/2018/05P7-Data-Privacy-Policy.pdf

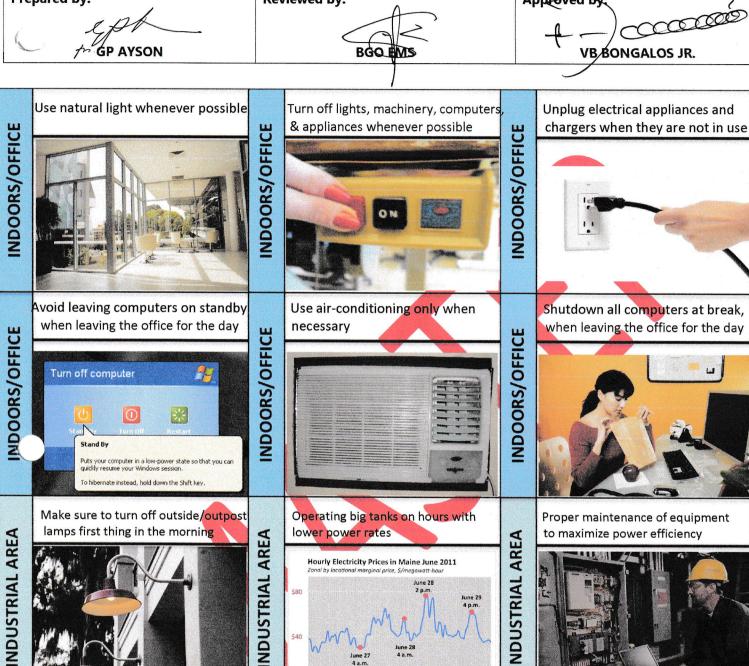
What are the Opportunity/ies Identified?	Management Approach
More opportunities in the field of training to keep abreast of new regulations and compliance management. Opportunity to be certified on ISO 27001:2013.	To ensure that all applicable NPC regulations are followed, our team continuously monitor NPC circulars like the new registration platform that pursues automation of registration process of personal data processing system, notification regarding automated decision-making or profiling, designation of Data Protection Officer. To obtain certification on ISO 27001:2013- Information and Data Security to develop the capabilities of employees engaged with data protection.

UN SUSTAINABLE DEVELOPMENT GOALS

Product or Service Contribution to UN SDGs

Key products and services and its contribution to sustainable development.


SDG No. & Goal	Key Products / Services	Societal Value / Contribution	Potential Negative Impact	Management Approach to Negative Impact
SDG 1: No Poverty	Gold & Silver Production (BGO)	Contributes to national economy, BSP gold reserves, employment, taxes, and local commerce	Land degradation due to small-scale miners; IP migrant influx; illegal squatting	Partner with LGU, MGB, DENR for regulation; enforce camp rules; reduce environmental footprint
SDG 2: Zero Hunger	Gold & Lime Products	Social Development and Management Program (SDMP); Implements livelihood programs, infrastructure development, and food security initiatives; Supports agricultural sustainability and local productivity; Empowers communities through training and capacity building	Potential conflict or resource competition due to program reach	Sustained community- based development project implementation; Engage local communities during planning; Promote transparency and equal access to resources
SDG 3: Good Health and Well-being	Medical missions; Medical services to employees and IP communities	Promotes health and safety among workers and local IP residents; Delivers essential medical services to workers and local IPs; Improves health outcomes in isolated and underserved communities	Poor sanitation; improper PPE disposal	Exposure to hazardous materials; Conduct regular IEC campaigns; Implement robust solid waste and hazardous waste management compliant with RA 9003 and RA 9275; Provide PPE and safety training to workers
SDG 4: Quality Education	Educational scholarships and IT equipment donation	Offers scholarships to indigent but deserving students; Enhances educational access and digital learning capacity in rural areas	Rivalries/envy from neighboring communities; Community tension from perceived favoritism or exclusion	Use objective, community- endorsed criteria for scholarship selection; Promote transparency and community consultation ; Candidate vetting by local officials;


SDG 6: Clean Water and Sanitation	Gold Processing / TSF operations and wastewater treatment	Equitable water access, solid waste segregation, pollution control; Ensures water quality in adjacent river systems; Prevents contamination through strict TSF operation protocol; Promotes community hygiene and water conservation	Tailings leakage, water contamination; Improper ecological solid waste management	Maintain and monitor TSF regularly, stop mill operation if leakage occurs, ISO 14001 compliance; Implement ISO 14001-aligned environmental protocols; Educate communities on waste disposal and sanitation practices
SDG 8: Decent Work & Economic Growth	All Mining & Support Operations	Livelihood generation, employment opportunities, wealth sharing with vulnerable sectors; Provides income-generating opportunities to local residents; Uplifts local economy through procurement and service contracts; Encourages inclusive economic participation	Limited job reach may exclude marginalized sectors; Fluctuations in demand may affect employment stability	Prioritize locals for jobs and contracts; Promote inclusive hiring policies and skill development
SDG 12: Responsible Consumption & Production	Procurement and supply chain management	Practices responsible sourcing and supplier partnerships; Ensures quality and timeliness of critical operational supplies; Encourages sustainable practices in logistics; Support to local suppliers	Substandard or delayed supply delivery; High costs of imported materials; Unstable supply chain affecting productivity	Vet suppliers with risk- based assessment; Require ISO certification and compliance; Develop long-term procurement forecasting and planning; Support capacity-building of local suppliers
SDG 13: Climate Action	Reforestation, Pollution Controls	Maintains reforested areas; Actively sequesters CO2 through tree planting; Minimizes air pollution with scrubbers and emission monitoring	Deforestation, air pollution, landslides, forest fires, underground water depletion	Continue preventive maintenance of equipment; Implement firebreaks and reforestation measures; Collaborate with local communities in disaster preparedness; Engage third-party air quality monitoring firms
SDG 15: Life on Land	Forest Park, Tree Planting and biodiversity programs	Preserves biodiversity through Crosby Forest Park; Promotes ecological tourism and awareness; Maintains reforestation efforts with tree density goals,	Land encroachment or unsanctioned land use; Loss of tree cover if neglected	Conduct regular forest inspections; Involve employee families in environmental stewardship; Sustain enrichment planting programs
SDG 16: Peace, Justice, and Strong Institutions	Security Operations and enforcement	Maintains peace and order within operational areas; prevents illegal mining & squatting	Disruption from illegal small-scale mining; Social instability from migrant influx	Partner with law enforcement and barangay units; Enforce rules fairly and transparently

SDG 17: Partnerships for the Goals	engagement with	Employment of workforce including IPs; Strengthens cooperation with MGB and other government agencies; Builds inclusive local economies thru business for suppliers and co-ops	reputational risks from non-compliance; Risk of	Certification; Align operations with DAO 2015-
--	-----------------	--	---	--

LIST OF APPENDICES:

APPENDIX	
NO.	TITLE
A	Environmental Management System Document No. EMSG-06 (Guidelines on Power Consumption)
В	Certificate of Approval of Annual Environmental Protection and Enhancement Program (AEPEP) given to Benguet
	Corporation-Acupan Contract Mining Project (ACMP)
B-1	Certificate of Approval of Annual Environmental Protection and Enhancement Program (AEPEP) given to BMC
	Forestry Corporation-Irisan Lime Project (ILP)
С	DRCS-09 (Summary of Risk and Opportunities)
D	Environmental Management System Document No. EMSG-03 (Guidelines on Diesel, Oil and Grease Handling,
	Transport and Storage)
E	Environmental Management System Document No. EMSG-12 (Guidelines on Contaminated Water)
F	Report of Greentek Environmental Engineering Services on Source Emission Test Result (BC-ACMP)
F-1	Report of BSI on Source Emission Test Result (BFC-ILP)
F-2	Report of BSI on Source Emission Test Result (BFC-ILP)
G	Ambient Air Quality and Noise Monitoring Report of Greentek Environmental Engineering Services (BC-ACMP)
G-1	Ambient Air Quality and Noise Monitoring Report of Greentek Environmental Engineering Services (BC-ACMP)
G-2	Ambient Air Quality and Noise Monitoring Report of BSI (BFC-ILP)
Н	Environmental Management System Document No. EMSG-07-A (Guidelines on Hazardous Waste Management –
	Used Oil, Oil and Grease, and Contaminated Items)
I	Environmental Compliance Certificate (BC-ACMP)
I-1	Environmental Compliance Certificate (BFC-ILP)
J	Registry of Compliance Obligations
K	Certificate of Approval of Amended 2024 Safety and Health Program (BC-ACMP)
K-1	Certificate of Approval of 2024 Safety and Health Program (BFC-ILP)
L	Certificate of Approval of Annual Social Development and Management Program (ASDMP) of BC-ACMP
L-1	Certificate of Approval of Annual Social Development and Management Program (ASDMP) of BFC-ILP

Data from New England Independent System Operator website

Republic of t Philippines

Department of Environment and Natural Resources MINES AND GEOSCIENCES BUREAU

Cordillera Administrative Region

80 Diego Silang St., Baguio City 2600

Tel. No. 63 74 442 6392; Fax No. 63 74 304 2596; Website: www.car.mgb.gov.ph E-mail: car@mgb.gov.ph; car mgb@yahoo.com; mgb.cordillera@gmail.com

ANNUAL ENVIRONMENTAL PROTECTION AND ENHANCEMENT PROGRAM (AEPEP)

CERTIFICATE OF APPROVAL No. 2024-02-CAR

BENGUET CORPORATION-ACUPAN CONTRACT MINING PROJECT PC-ACMP-002-CAR


The Mines and Geosciences Bureau - Cordillera Administrative Region (MGB-CAR) as Chair of the Mine Rehabilitation Fund Committee for Benguet Corporation-Acupan Contract Mining Project (MRFC-ACMP) that evaluated and approved the company's 2024 Annual Environmental Protection and Enhancement Program (AEPEP), hereby grants this Certificate of Approval of said AEPEP to BENGUET CORPORATION-ACUPAN CONTRACT MINING PROJECT (BC-ACMP) for its Patented Mining Claims-ACMP-002-CAR located at Barangay Virac, Itogon, Benguet after complying substantially with the requirements as mandated under DENR Administrative Order No. 2010-21.

This Certificate is being issued subject to the pertinent provisions of the above-mentioned DAO and to the following conditions:

- 1. This Certificate is valid only for the Programs/Projects/Activities (P/P/As) stipulated in the submitted 2024 AEPEP with a total budget of **PhP 18,117,248.00** reviewed and approved by the MRFC-BCACMP;
- 2. The Company shall submit a quarterly accomplishment report within 30 calendar days after the end of each quarter and annual accomplishment report within 30 calendar days after the end of each calendar year to MGB-CAR; and
- Additional conditions may be imposed to implement the approved AEPEP effectively and
 efficiently should the results of monitoring by the Multipartite Monitoring Team (MMT) for
 BC-ACMP warrant them.

Non-compliance with the above conditions shall be sufficient ground for the cancellation, revocation or termination of this Certificate or suffer the penalty prescribed in the Penal Provisions of Republic Act No. 7942, the Philippine Mining Act of 1995.

Given this 14th day of December 2023 at MGB-CAR, Baguio City, Philippines.

"MINING SHALL BE PRO-PEOPLE AND PRO-ENVIRONMENT
IN SUSTAINING WEALTH CREATION AND IMPROVED QUALITY OF LIFE."

Office of the Regional Director/Finance and Administrative Division – 63 74 442 6392; ICT – 63 74 661 7685; Geosciences Division/Laboratory Section 63 74 304 2500; Mine Management Division - 63 74 304 3068 (Monitoring and Technical Services Section/Mining Tenement Evaluation/Mineral Lands Survey Section); Mine Safety Environment and Social Development Section – 63 74 304 2595; Social Development Section/Environment Section 63 74 304 2530

Republic of the Philippines

Department of Environment and Natural Resources MINES AND GEOSCIENCES BUREAU

Cordillera Administrative Region

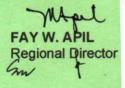
80 Diego Silang St., Baguio City 2600

Tel. No. 63 74 442 6392; Fax No. 63 74 304 2596; Website: www.car.mgb.gov.ph E-mail: car@mgb.gov.ph; car_mgb@yahoo.com; mgb.cordillera@gmail.com

ANNUAL ENVIRONMENTAL PROTECTION AND ENHANCEMENT PROGRAM (AEPEP)

CERTIFICATE OF APPROVAL No. 2024-04-CAR

BMC FORESTRY CORPORATION Mineral Processing Permit No. 01C-2022-CAR


The Mines and Geosciences Bureau - Cordillera Administrative Region (MGB-CAR) as Chair of the Mine Rehabilitation Fund Committee for BMC Forestry Corporation-Irisan Lime Project (MRFC BFC-ILP) that evaluated and approved the company's 2024 Annual Environmental Protection and Enhancement Program (AEPEP), hereby grants this Certificate of Approval of said AEPEP to BMC FORESTRY CORPORATION-IRISAN LIME PROJECT (BFC-ILP) for its Mineral Processing Project located at Barangay Irisan, Baguio City under its Mineral Processing Permit No. 01C-2022-CAR, after complying substantially with the requirements as mandated under DENR Administrative Order (DAO) No. 2010-21.

This Certificate is being issued subject to the pertinent provisions of the above-mentioned DAO and to the following conditions:

- This Certificate is valid only for the Programs/Projects/Activities (P/P/As) stipulated in the submitted 2024 AEPEP with a total budget of PhP 2,182,693.00 reviewed and approved by the MRFC BFC-ILP;
- The Company shall submit a quarterly accomplishment report within 30 calendar days after the end of each quarter and annual accomplishment report within 30 calendar days after the end of each calendar year to MGB-CAR; and
- Additional conditions may be imposed to implement the approved AEPEP effectively and efficiently should the results of monitoring by the Multipartite Monitoring Team (MMT) for BFC-ILP warrant them.

Non-compliance with the above conditions shall be sufficient ground for the cancellation, revocation or termination of this Certificate or suffer the penalty prescribed in the Penal Provisions of Republic Act No. 7942, the Philippine Mining Act of 1995.

Given this 18th day of December 2023 at MGB-CAR, Baguio City, Philippines.

"MINING SHALL BE PRO-PEOPLE AND PRO-ENVIRONMENT
IN SUSTAINING WEALTH CREATION AND IMPROVED QUALITY OF LIFE."

Office of the Regional Director/Finance and Administrative Division – 63 74 442 6392; ICT – 63 74 661 7685; Geosciences Division/Laboratory Section 63 74 304 2500; Mine Management Division - 63 74 304 3068 (Monitoring and Technical Services Section/Mining Tenement Evaluation/Mineral Lands Survey Section); Mine Safety Environment and Social Development Section – 63 74 304 2595; Social Development Section/Environment Section 63 74 304 2530

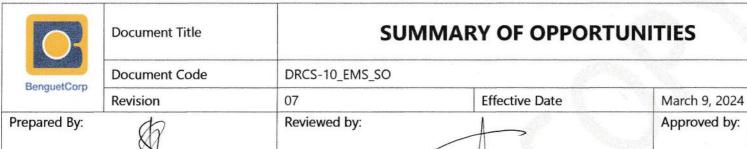
Appendix C

	Document Title		SUMMARY OF RISKS					
	Document Code	DRCS-09_EMS_SR	DRCS-09_EMS_SR					
BenguetCorp	Revision	09	Effective Date	March 9, 2024	Manufacture and the second			
Prepared By:	AROLYN G. CHUZ	Reviewed by:	BGO EMS	Approved by:	DOCOMUS BONGALOS, JR			

DEPARTMENT	PROCESS		RISK IDENTIFICATION			RISK ASSESSMENT
JEPAKTIVIEN I	PROCESS	RISK CATEGORY	DESCRIPTION	CAUSE	CONSEQUENCE	RISK RATING
Claims	Demolition of structures	Security and Safety	Safety being compromised while performing the said activity.	Hostile environment	Physical safety and attending legal issues	Moderate
ComRel	Implementation, monitoring and validation of approved SDMP Projects, Programs and Activities of host and neighboring Barangays	Operational	Failure to comply with SDMP Programs	LGU's late submission of SDMP Project proposals and approval of budget	May compromise company operations and lead to penalties, and cancellation of permits and/or ECCs	High
Construction	Infrastructure construction	Financial	Failure in implementing the project	No materials to be used	The project will be waiting	Moderate
Finance	Bookkeeping (making entries on various company transactions to come up with financial reports required by management and	Technical & Architectural / Operational/ Technology	Possible loss of data stored in cloud technology	Emergency and/or unscheduled power interruptions will disrupt the operations of our computerized accounting system; and cyber-attack and/or	No access to own computerized accounting system.	High MAS COPY

Document Title		SUMMARY OF RISKS			
Document Code	DRCS-09_EMS_SR				
Revision	09	Effective Date	March 9, 2024		

		RISK IDENTIFICATION				
DEPARTMENT	PROCESS	RISK CATEGORY	DESCRIPTION	CAUSE	CONSEQUENCE	RISK RATING
	external users)			password theft (program hacking)		
GeoEx	Geologic Interpretation and Resource Estimation	Operational	Erroneous resource estimation	Inadequate training	If interpretation of geologic data is incorrect, there is a risk of mining unprofitable areas	Moderate
МЕРЕО	Implementation of environmental programs	PEO environmental Regulatory	Failure to implement the established environmental programs	Delayed approval of funds	Issuance of Notice of Violation (NOV) from the regulatory agencies, and eventual issuance of Cease-and- Desist Order (CDO)	Moderate
				Natural disasters & Pandemic	Imposition of penalties	
				Community resistance		
Procurement	Processing procurement documents, licenses, and permits	Operational	Lengthy al process/method or system	inconsistencies of required documents/attachments	delayed approval of the required certificate, license and/or permit of explosives to operate.	Moderate
				change/revise authorize signatory		COP



Document Title	SUMMARY OF RISKS		SKS	
Document Code	DRCS-09_EMS_SR			
Revision	09	Effective Date	March 9, 2024	

			RISK ASSESSMENT				
DEPARTMENT	PROCESS	RISK CATEGORY	DESCRIPTION	CAUSE	CONSEQUENCE	RISK RATING	
Color	Underground and Surface Inspection	Operational	Failure to conduct full safety underground and surface inspection	Lack of manpower	Higher incident rate	Moderate	
Safety	Implementation of Safety Policy	Operational	Failure to implement the Company's Safety Policy	Inappropriate standard PPEs	Higher incident rate		
Special Project	Underdrain Tunnel/Penstock	Safety and Risk	Structural failure of the stopper boards leading to piping	Structural Failure	Downstream Community being submerged through tailings	Moderate	
		Failure; Piping	Regulatory	Work Stoppage	Non-compliant	Penalties and cease of operations	

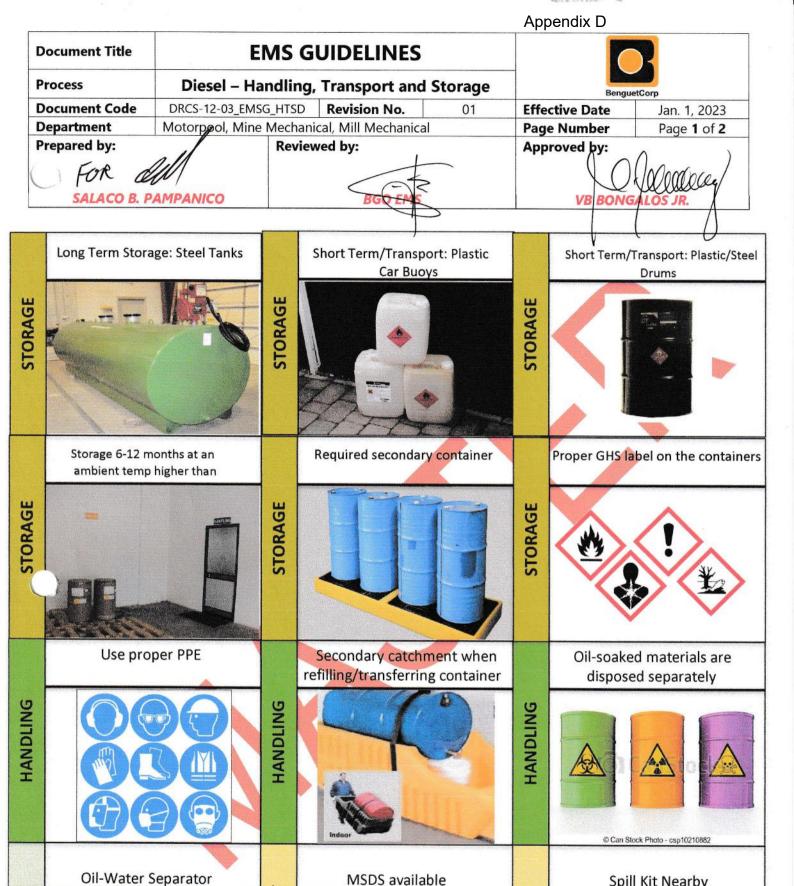
Y XILLIAN	, ,	•
VALERIANO B. BONGAL	os/i	R.
	1	1

NO.	DEPARTMENT	PROCESS	DESCRIPTION OF OPPORTUNITY	OPPORTUNITY RATING	ACTION
1	Assay	Assaying	Rendering Assaying services from external sources	Excellent	Opportunity shall be pursued immediately
2	ComRel	Development of SDMP Projects, Programs and Activities of host and neighboring Barangays	The company can create better partnership with the community in implementing environmental programs.	Excellent	Opportunity shall be pursued immediately
		Implementation, monitoring and validation of approved SDMP Projects, Programs and Activities of host and neighboring Barangays	Environmental awareness could be raised through community projects and programs.	Excellent	Opportunity shall be pursued immediately
		Administrative works	Cost saving measures from efficient use of energy, paper and other resource	Excellent	Opportunity shall be pursued immediately
3	Construction & Civil Works	Planning of proposed projects, drafts, and evaluation of project cost for construction/ repair/ rehabilitation projects.		Excellent	Opportunity shall be pursued immediately
4	Electrical	Energy Monitoring	Everyone will be energy conserving conscious and should participate in earth hour	Excellent	Opportunity shall be pursued immediately

BGO EMS

Document Title SUMMARY OF OPPORTUNITIES				
Document Code	DRCS-10_EMS_SO			
Revision	07	Effective Date	March 9, 2024	

NO.	DEPARTMENT	PROCESS	DESCRIPTION OF OPPORTUNITY	OPPORTUNITY RATING	ACTION
5	GeoEx	Mapping	Extend assistance such as geo-hazard mapping to other private and government entities	Excellent	Opportunity shall be pursued immediately
6	Met Lab	Metallurgical Tests	Optimization of plant operating parameters will result to higher gold production with the least operating cost (reagent and power consumption).	Excellent	Opportunity shall be pursued immediately
7	Mill	Carbon-in-Leach	Usage of other leaching reagents that are environmentally friendly and will produce higher gold recovery.	Excellent	Opportunity shall be pursued immediately
8	Mill Mechanical	Enhancement of the filtering of used hydraulic oil 68 for PMS lubrications.	Design a filtering device to be used for the filtering process of hydraulic oil 68.	Excellent	Opportunity shall be pursued immediately
9	Mines	Drilling and blasting	Worn out drill steel can be recycled and fabricated to pinch bars and claw bars	Excellent	Opportunity shall be pursued immediately
		Maintenance of track rails and cleaning at haulage roadways and drainage canal.	Worn out track rails can be used as ground support in underground	Excellent	Opportunity shall be pursued immediately
10	Safety	Emergency response	The company's Emergency Response Team (ERT) acts as volunteers during rescue operations within and nearby communities	Excellent	Opportunity shall be pursued immediately



Document Title	su	MMARY OF OPPORT	UNITIES		
Document Code	DRCS-10_EMS_SO	DRCS-10_EMS_SO			
Revision	07	Effective Date	March 9, 2024		

NO. DEPARTMENT		PROCESS	DESCRIPTION OF OPPORTUNITY	OPPORTUNITY RATING	ACTION	
11	Security	Administrative work	Cost saving measures from efficient use of energy, paper and other resources	Excellent	Opportunity shall be pursued immediately	
12	Warehouse	Distribution of Inventory lists, Notice of Arrivals, & other documents to concerned department heads & end users (e-mailed instead of duplicating/xeroxing)	Cost saving measures from efficient use of energy, paper & other resources	Excellent	Opportunity shall be pursued immediately	

EMERGENCY

Maleria

Safety

Daic

Sheets

OIL RECOVERY

From Restaurant Sinks & Dishwash

Typical Underground Grease Interceptor / Grease Trap

EMERGENCY

0000

Spill Kit Nearby

EMERGENCY

Document Title		EMS G	UIDELINES			7
Process	Diesel – H	landling,	Transport and	Storage	Bengu	etCorp
Document Code	DRCS-12-03_EN	/ISG_HTSD	Revision No.	01	Effective Date	Jan. 1, 2023
Department	Motorpool, Mir	ne Mechani	cal, Mill Mechanical		Page Number	Page 2 of 2
Prepared by:	-pell	Review	ved by:		Approved by:	amount

Use of Oil-Settling Tanks

SALACO B. PAMPANICO

Designated underground refuelling stations will be assigned

Monitoring and recording of consumption

Use mine cars when transporting diesel underground

Only authorized personnel are allowed to refuel diesel containers

BONGALOS JR.

All vehicles are required to bring spill kit for emergency spills on site

Spill Kit: contains SAND, hand shovel, small dustpan, rags, plastic bag (labeled "Toxic Waste"). After soaking the spill using sand, collect the contaminated sand into a labeled plastic bag. Dispose accordingly

HANDLING

EMERGENCY

Built underground drainage systems and canals to drain run-off water. These canals are drained by pump station near the portal, where a settling dam is installed before being discharged in the river. Some water are pumped to the mill (recycled)

MINES

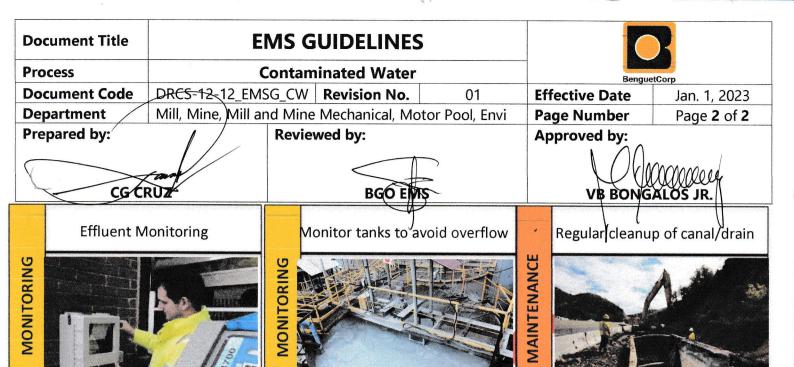
IOTORPOOL

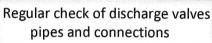
Oil-water separator built in motor pool workshop/garage that "de-contaminates" used water. Collected used oil from separator is stored in a hazard waste container to be disposed appropriately

Oil-water separator built in mechanical workshop that "de-contaminates" used water. Collected used oil from separator is stored in a hazard waste container to be disposed appropriately

MINE MECHANICAL

All discharge (pulp, tails, contaminated water) from the mill (from crushing, grinding to refining and smelting) goes into the Tails Treatment Facility. The solution is treated with SMBS before being pumped to Tails Storage Facility





MAINTENANCE

SOURCE EMISSION TEST REPORT

PARTICULATE MATTER (PM)

One (1) unit 46.58 m³/min Krypton Dust Collection Facility System

PARTICULATE MATTER (PM), SULFUR OXIDES (SOx), NITROGEN OXIDES (NOx) AND CARBON MONOXIDE (CO)

One (1) unit 5,013CFM Verantis Acid Fume Scrubber

Reference No.: GEPC-SST-2406-040

Prepared for:

BENGUET CORPORATION ACUPAN CONTRACT MINING PROJECT

Balatoc, Virac, Itogon, Benguet

Sampling Date: June 28 and 29, 2024

Report Date: July 23, 2024

REPORT CERTIFICATION

BENGUET CORPORATION ACUPAN CONTRACT MINING PROJECT Balatoc, Virac, Itogon, Benguet

SOURCE EMISSION TEST REPORT Reference No. GEPC-SST-2406-040

One (1) unit 46.58 m³/min Krypton Dust Collection Facility System One (1) unit 5,013CFM Verantis Acid Fume Scrubber

The sampling performed for this report was carried out under my direction and supervision. The analytical results that were performed by subcontracted, recognized laboratories have been verified and found to be in order.

Thus, I hereby certify, to the best of my knowledge, that this test report is authentic and accurate.

Prepared and Signed By:

ANGELO V. GUEVARRA

QAQC MANAGER SAT No. 2023-152

Date Signed: July 23, 2024

TABLE OF CONTENTS

 1.0 Introduction 2.0 Summary of Discussion Summary of test Result: Table 2-1 – 2-2 3.0 Process Description and Operation 	1 2 3-4 5 6 6 6 6
Summary of test Result: Table 2-1 – 2-2	3-4 5 6 6
Summary of test Result: Table 2-1 – 2-2	5 6 6
3.0 Process Description and Operation	6 6 6
	6
4.0 Sampling and Analytical Procedures	6
4.1 Method 1-2 Stack Velocity	_
4.1.1 Sampling Points	6-7
4.1.2 Cyclonic Flow Check	
4.1.3 Flue Gas Velocity	7
4.2 Method 3 Flue Gas Composition	7
4.3 Method 4 Flue Gas Moisture Content	7
4.4 Method 5 Particulate Matter and Sulfur Oxides	8
4.4.1 Sample Collection	8
4.4.2 Sample Recovery	8
4.4.3 Sample Analysis	8-9
4.5 Method 7 Nitrogen Oxides	9
4.5.1 Sample Collection	9
4.5.2 Sample Recovery	9 9
4.5.3 Sample Analysis	9
4.6 Method 10 carbon Monoxide	9-10
5.0 QA/QC Procedures and Results	11
E 4 Doution lete Metter Committee Dressedures	11-12
5.2 Particulate Matter Sampling Equipment	12
5.2.1 Barometer	12
5.2.2 Probe Nozzle	12-13
5.2.3 Pitot Tube	13
5.2.4 Calibration Meter and Metering System	13

	5.2.5 Post Test Meter Calibration	13-14	
	5.2.6 Thermocouples and Digital Temperature Indicator	14	
5.3	Particulate Matter Analysis	14	
5.4	Oxygen and Carbon Dioxide	15	
5.5	Sulfur Oxides	15	
5.6	Nitrogen Oxides	15-16	
5.7	Carbon Monoxide	16	

LIST OF APPENDICES

APPENDICES	TITLE
Α	Summary of Results and Example Computations
В	Field Data Sheets
С	Process Data
D	Analytical Data
E	Equipment and Calibrations Records
F	Test Participants
G	Source Specific Test Plan and Facility Permit

SECTION 1.0

INTRODUCTION

Benguet Corporation - Acupan Contract Mining Project contracted Greentek Environmental Phils. Co. to conduct stationary stack emission test on one (1) unit 46.58 m3/min Krypton Dust Collection Facility System and One (1) unit 5,013CFM Verantis Acid Fume Scrubber in their facility located at Balatoc, Virac, Itogon, Benguet. The emission testing involved three runs to measure particulate matter (PM) for the Dust Collection Facility System, while for the Acid Fume Scrubber, it included three runs to measure particulate matter (PM), sulfur oxides (SOx), nitrogen oxides (NOx), and carbon monoxide (CO) emissions. The said activity is part of their environmental program and in determination of the facility's compliance as compared to emission limits defined in the Philippine Clean Air Act of 1999 (PCAA) and Implementing Rules and Regulations (IRR). A list of participants in the project is included in Appendix F.

A summary and discussion of the test results are provided in Section 2. The source description, test procedures, and quality assurance activities are described in the subsequent sections. All supporting field data, analytical reports, calibration records, testing participants, test plans, and a copy of the facility permit are provided in the appendices.

SECTION 2.0

SUMMARY OF DISCUSSION

Tables 2-1 and Table 2-2 present the summary of the test results for the sources tested in comparison to the National Emission Standards identified in IRR Part VII Rule XXV Table 2. Detailed descriptions of the specific run information and the example calculations used to calculate the tabular summary are attached in Appendix A. The raw field data used to prepare the run summary information in Appendix A is included in Appendix B. Emissions have been corrected to the standard conditions of 250°C and 760 mmHg on a dry basis (unless otherwise indicated).

The Greentek monitoring logsheets, filled out by the facility's representative, show that the One (1) unit 46.58 m3/min Krypton Dust Collection Facility System was installed in September 2018 while, the One (1) unit 5,013CFM Verantis Acid Fume Scrubber was installed on 2018, when the Philippine Clean Air Act (PCAA) and Implementing of Rules and Regulations (IRR) were already being implemented. The applicable standards under the PCAA/IRR categorize Dust Collector and Acid Fume Scrubber as *new sources: other stationary source* located in an industrial area under the PCAA/IRR standards.

The results of the testing indicate that the average PM concentrations for the Dust Collector Facility System are within the applicable IRR standards. Similarly, the average PM, SOx, NOx, and CO concentrations for the Acid Fume Scrubber are within the applicable IRR standards. Particulate matter (PM), sulfur oxides (SOx), and nitrogen oxides (NOx) samples were submitted to Ostrea Mineral Laboratories, Inc., while carbon monoxide (CO) samples were submitted to Greentech Laboratory and Allied Services, Inc. An attachment of the laboratory results is included in Appendix D of this report.

A description of any method deviations and quality assurance assessments is included in Sections 4 and 5 of this report. Based on a review of the sampling data, facility operating information, test method description, and quality assurance results, the average of the three test runs is judged to be representative of the source and suitable for comparison to the regulatory limits.

Benguet Corporation – Acupan Contract Mining Project Reference No.: GEPC-SST-2406-040

TABLE 2-1

SUMMARY OF TEST RESULTS 46.58 m3/min Krypton Dust Collection Facility System N 16°21'34" E 120°39'31" BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT

Balatoc, Virac, Itogon, Benguet

Run Number Sampling Date Sampling Time	RUN 1 28-Jun-24 1323H-1437H	RUN 2 28-Jun-24 1459H-1615H	RUN 3 28-Jun-24 1630H-1743H	Average	CAA Limit mg/Ncm
Source Data					T
Volumetric Flow Rate (dry std), Nomm	47	44	46	46	1
Volumetric Flow Rate (actual), Nomm	55	53	55	54	1
Moisture Content, %	2.7	3.1	3.6	3.1	1
Stack Gas Temperature, °C	35	39	40	38	1
Carbon Dioxide Concentration, %	0.0	0.0	0.0	0.0	1
Oxygen Concentration, %	20.0	20.0	20.0	20.0	
Process Rate Information					1
Kilograms of Dust Collected	30	30	30	30	1
% of Capacity during test	100%	100.0%	100.0%	100.0%	1
Hours of operation per year	550	550	550	550	4
Particulate Matter (PM) Emissions					
O2 Corrected Concentration, mg/Ncm	3	4	3	3	200
Mass Emission Rate, kg/hr	0.00917	0.00942	0.00891	0.00917	1 200
Annual Emission Rate, MT/yr*	0.00504	0.00518	0.00490	0.00504	
DENR Classification			Stationary Sourc (New Source)	е	11

^{*} Annual emissions are presented as metric tons (MT) per year based on the reported plant operating hours per year.

Remarks:

a. Particulate matter (as PM) Emissions : Within the standard of 200 mg/Ncm

Parameters: Sampling Method: Analysis Method: a. Particulate matter (PM) USEPA Method 5 Gravimetric

Benguet Corporation - Acupan Contract Mining Project Reference No.: GEPC-SST-2406-040

TABLE 2-2

SUMMARY OF TEST RESULTS 5,013CFM Verantis Acid Fume Scrubber #2 N 16°21'34" E 120°39'32"

BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT Balatoc, Virac, Itogon, Benguet

Run Number Sampling Date Sampling Time	RUN 1 29-Jun-24 1050H-1205H	RUN 2 29-Jun-24 1242H-1358H	RUN 3 29-Jun-24 1411H-1525H	Average	CAA Limit mg/Ncm
Source Data					
Volumetric Flow Rate (dry std), Nomm	102	105	109	105	
Volumetric Flow Rate (actual), Nomm	117	125	130	124	
Moisture Content, %	3.4	3.3	4.0	3.6	
Stack Gas Temperature, "C	27	39	37	34	
Carbon Dioxide Concentration, %	0.0	0.0	0.0	0.0	
Oxygen Concentration, %	19.0	19.0	19.0	19.0	
Process Rate Information				70.0	
ounces of gold produced	22.88	22.88	22.88	22.88	
% of Capacity during test.	100%	100%	100%	100%	
Hours of operation per year	514.85	515	515	515	
Particulate Matter (PM) Emissions					
Concentration, mg/Ncm	65	66	73	68	200
Mass Emission Rate, kg/hr	0.40	0.42	0.47	0.43	200
Annual Emission Rate, MT/yr*	0.20	0.21	0.24	0.22	
Sulfur oxides (as SO ₂) Emissions					
Concentration, mg/Ncm	200	197	185	194	700
Mass Emission Rate, kg/hr	1.22	1.24	1.21	1.22	7.22
Annual Emission Rate, MT/yr*	0.63	0.64	0.62	0.63	
Nitrogen oxides (as NO) Emissions					
Concentration, mg/Ncm	262	253	271	262	500
Mass Emission Rate, kg/hr	1.60	1.59	1 76	1.65	10000
Annual Emission Rate, MT/yr*	0.83	0.82	0.91	0.85	
Carbon monoxide (CO) Emissions	100				
Concentration, mg/Ncm	127	132	134	131	500
Mass Emission Rate, kg/hr	0.78	0.83	0.87	0.83	500
Annual Emission Rate, MT/yr*	0.40	0.43	0.45	0.43	
DENR Classification			Stationary Source (New Source)	e	

^{*} Annual emissions are presented as metric tons (MT) per year based on the reported plant operating hours per year.

Remarks:

a. Particulate matter (as PM) Emissions Within the standard of 200 mg/Ncm b. Sulfur oxides (as SO) Emissions Within the standard of 700 mg/Ncm

Within the standard of 500 mg/Ncm c. Nitrogen oxides (as NO) Emissions d Carbon monoxide (CO) Emissions Within the standard of 500 mg/Ncm

Parameters:

Sampling Method: USEPA Method 5 a. Particulate matter (PM) b. Sulfur oxides (as SO) USEPA Method 6

c. Nitrogen oxides (as NO -) d. Carbon monoxide (CO)

USEPA Method 7 USEPA Method 10

Phenoldisulfonic Acid Non-Dispersive Infrared (NDIR)

Analysis Method:

Barium-Thorin Titration

Gravimetric

SECTION 3.0

PROCESS DESCRIPTION AND OPERATION

Benguet Corporation - Acupan Contract Mining Project operates and maintains one (1) unit 46.58 m3/min Krypton Dust Collection Facility System and One (1) unit 5,013CFM Verantis Acid Fume Scrubber in their facility located at Balatoc, Virac, Itogon, Benguet. The sources are a Dust Collector and Acid Fume Scrubber as air pollution control device installed in the facility.

The **46.58 m3/min Dust Collection Facility System** manufactured by **Krypton** operated at 100% load, having a temperature of an average of 38°C and uses electricity to power the dust collector. According to the facility representative, the dust collector collected 30 kilograms of dust throughout the entire day of operation. They also indicated that this Dust Collection Facility System typically operates for an estimated 550 hours per year.

The **5,013CFM Acid Fume Scrubber** manufactured by **Verantis** operated at 100% load, having a temperature of an average of 34°C and consumed 153 liters of kerosene as fuel during sampling. According to the facility representative, the generator set produced 22.88 ounces of gold throughout the entire day of operation. They also indicated that this Acid Fume Scrubber typically operates for an estimated 514.85 hours per year.

The monitoring logsheets, process facility data completed by a Benguet Corporation - Acupan Contract Mining Project facility representative during sampling, and the photos for documentation were collected by Greentek Environmental Phils Co. Personnel are included in Appendix C.

SECTION 4.0

SAMPLING AND ANALYTICAL PROCEDURES

All sampling and analytical procedures were those recommended by the Philippines Department of Environmental and Natural Resources (DENR) and the United States Environmental Protection Agency (EPA). This section provides brief descriptions of the sampling and analytical procedures with the focus primarily on any clarifications, deviations, or modifications to the stated test methods.

The test team utilized the following EPA Reference Methods:

Method 1:	Sample and Velocity Traverse Point Locations
Method 2:	Stack Gas Velocity and Volumetric Flow Rate (S-type Pitot)
Method 3:	Gas Analysis for Determination of Dry Molecular Weight
Method 4:	Determination of Moisture Content in Stack Gases
Method 5:	Determination of Particulate Matter Emissions from Stationary Sources
Method 6:	Determination of Sulfur Dioxide Emissions from Stationary Sources
Method 7:	Determination of Nitrogen Oxide Emissions from Stationary Sources
Method 10:	Determination of Carbon Monoxide Emissions from Stationary Sources

METHODS 1-2 - STACK VELOCITY

Α Sampling Points

The number and location of the sampling points were determined according to the procedures outlined in EPA Method 1. The pyrolysis reactors and thermal oil heater have two test ports were present in the same horizontal plane, forming two sampling axes at 90° to each other. A total of 24 points were sampled for pyrolysis reactor and thermal oil heater, with 12 points on each axis. Details of the number and location of sample points are included in the field data sheets in Appendix B.

В Cyclonic Flow Check

A type-S pitot tube assembly, a liquid manometer, and a universal protractor (angle finder) were used to determine the rotation angles at each of the sampling or velocity traverse points. The pitot tube was positioned at each point so that the planes of the face openings of the pitot tube were perpendicular to the cross-sectional plane, and

the rotational angles were determined by rotating the pitot tube until a null reading was obtained on the manometer. When the null angle reading was obtained the yaw angle of the pitot tube was recorded. the test location's average absolute value of the rotation angle was less than 20°, which met the Method 1 criteria.

C Flue Gas Velocity

The flue gas velocity and volumetric flow rate were determined according to the procedures outlined in EPA Method 2. Velocity head measurements (delta P) were made using type-S pitot tubes conforming to the geometric specifications outlined in EPA Method 2. Accordingly, each has been assigned a coefficient of 0.84. Differential pressures were measured with an inclined manometer. Flue gas temperatures were measured with chrome-alumel thermocouples equipped with digital readouts.

METHOD 3 – FLUE GAS COMPOSITION

The flue gas composition and molecular weight were determined using the EPA method 3. An integrated flue gas sample was collected from each particulate test point at a constant rate into a tedlar bag during EPA Method 5 and 6 sampling run. The sample was collected using a separate sample line attached to the Method 5 probe and using orsat sample pump, separate from the primary Method 5 pump, located in the Method 5-meter console. A small polyethyene knockout, maintained at ambient temperature, was place immediately before the gas sample entered the sample pump to remove any significant moisture. An fyrite analyzer was used to determine the concentration of oxygen and carbon dioxide in the sample. The same bag sample was also used for the carbon monoxide analysis by Method 10.

METHOD 4 – FLUE GAS MOISTURE CONTENT

The moisture content was determined by EPA Method 4 in conjunction with EPA Method 5 and 6, which was discussed in the following section.

METHODS 5/6 - PARTICULATE MATTER AND SULFUR OXIDES

A Sample Collection

Samples were withdrawn isokinetically from the source using an EPA Method 5 sampling train. The sampling train consisted of a stainless-steel nozzle, a heated 316 stainless steel probe with a type-S pitot tube attached, a heated filter, an unheated sample line, four chilled impingers, and a metering console. The particulate sample was collected on a glass fiber filter maintained at a temperature of 120°C ± 14°C. The sampling probe, a 316 stainless steel liner that is normally used in Method 5 particulate determinations. The liners were rinsed out prior to sampling and indicated no contamination or degradation. The first two impingers each contained 100 ml of 3 percent hydrogen peroxide, the third remained empty, and the fourth contained preweighed silica gel. Three replicate test runs, each approximately 60 minutes in duration of sampling.

B Sample Recovery

Sample recovery was performed inside a clean recovery area. The filter was removed from the filter holder and placed in a petri dish. The volume of water vapor condensed in the impingers and the volume of water vapor collected in the silica gel were summed and entered into moisture content calculations. The nozzle, probe, and front half of the filter holder were rinsed with acetone in a 500ml clear glass. A glass collection flask with a socket was attached to the ball end of the sample probe (opposite the nozzle) to facilitate cleaning the inside of the probe. The interior of the probe and nozzle were brushed repeatedly to remove any adhering PM from the inside surfaces. The brushes and interior surfaces were rinsed again into the flask and then combined with the rinses into the 500ml clear glass bottle.

The impingers were weighed individually, and the contents of impingers 1 to 3 were placed in a 500 ml polyethylene sample bottle. The three impingers connecting glassware were rinsed with distilled deionized (DI) water into the bottle containing the impinger contents. The silica gel was returned to the original container after weighing.

C Sample Analysis

EPA Method 5 analytical procedures were used to analyze the filter and front-half acetone rinse for filterable particulate matter. EPA Method 6 procedures were utilized to determine the mass of sulfur oxides in the impinger contents. Blank samples of the

acetone and peroxide solutions, sufficient to determine potential contamination or bias from the sampling media, were submitted to the laboratory for analysis with the stack samples.

METHOD 7 – NITROGEN OXIDES

A Sample Collection

Nitrogen oxides (composed of both NO and NO2) were determined for each test run according to EPA Reference Method 7, "Determination of Nitrogen Oxide Emissions from Stationary Sources". The sampling train consisted of an evacuated flask connected to a heated glass probe with glass wool at the tip to function as a filter. The evacuated flask contained 25 mL of the nitrogen oxide-absorbing solution. The flask was evacuated to within 75 mmHg (3 inHg) of absolute pressure or less. The initial flask temperature and evacuated pressure were recorded. The probe was placed in the stack and connected to the flask. After purging the probe, a grab sample was drawn into the flask. The flask was shaken for five minutes. Three flasks were collected for each test run.

B Sample Recovery

After a minimum of 16 hours, the flask was shaken for two minutes, and then the final flask temperature and pressure were measured. The contents were transferred to a polyethylene bottle, and the flask was rinsed as per the test method. The pH was adjusted to between 9 and 12.

C Sample Analysis

The samples were prepared for analysis as per EPA Method 7 and then measured colorimetrically using a spectrophotometer.

METHOD 10 CARBON MONOXIDE

The integrated grab sample that was collected per EPA Method 3 for oxygen and carbon dioxide was also used for EPA Method 10 analysis for carbon monoxide. An integrated flue gas sample was collected from each particulate test point at a constant rate into a Tedlar bag during EPA Method 5 and 6 sampling run. The sample was

analyzed in accordance with EPA Method 10 using the non-dispersive infrared (NDIR) analyzer HORIBA PG-350 S/N: 2JFEHYJ2 at Greentech Laboratory and Allied Services, Inc. Samples were analyzed using the 513 ppm analytical span. The analyzer has a built in sample pump and was filtered prior to introduction to the analyzer. Analytical results were recorded on the CO analytical data sheet in ppm from the analyzer display. The value was recorded several minutes after the sample was first introduced, and a stable concentration reading was observed.

SECTION 5.0

QA/QC PROCEDURES AND RESULTS

The objective of an internal quality assurance and quality control (QA/QC) program is to assure that the precision and accuracy of all data generated are scientifically sound and documented to be "in control". To accomplish this, standardized methods or procedures were used. They must be validated for their intended use, rigorously followed, and data reported with quality indicators (precision, accuracy, completeness, representativeness, etc.).

As a guide, Greentek uses the EPA document Quality Assurance Handbook for Air Pollution Measurement System, Volume III (EPA-600/4-77-027b). The Greentek QA/QC plan has incorporated certain considerations into the production of quality data in all its sampling programs, regardless of the scope and purpose of the testing. These considerations include:

- Planning the individual test programs by preparation and submission of a Source Specific Test Plan to (DENR-EMB (included in Appendix G)
- Using reliable and well-maintained calibrated equipment.
- Using appropriate forms for recording sampling data (Appendix B),
- Using calibration and audit gases traceable to the National Institute of Standards and Technology (NIST),
- Controlling errors by checking data input and performing redundant calculations,
- Analyzing audit materials, and
- Adhering to the established Test Plan.

5.1 Particulate Matter Sampling Procedures

Particulate matter (PM) was determined according to EPA Method 5 in "Determination of Particulate Emissions from Stationary Sources". The appropriate performance of this test method includes the performance of EPA Methods 1, 2, 3, and 4. The following items describe the primary quality control measures that The Greentek used to ensure a representative sample that met the method precision and bias criteria, was collected:

- Measurements of the upstream and downstream disturbances (to the velocity at the test location) and selection of the appropriate number of sampling test points to determine a representative stack gas velocity.
- Performance of a cyclonic flow check
- Calibration and QA/QC checks of the dry gas meter, thermocouples, pitot tubes, nozzles, temperature display, and manometer assembly,
- Leak checks of the entire Method 5 sampling train were performed before and after each sampling run. All leak checks and leakage rates were documented on the relevant field test data sheets. The acceptance criteria for the Method 5 train post-sample leak check are a leak rate of <0.00057 m³/minute at the highest vacuum obtained during the test run.
- Maintenance of the chilled impinger system below 20°C (measured at the silica gel outlet),
- Collection of an integrated Tedlar bag sample for oxygen, carbon dioxide, and carbon monoxide
- Maintenance of the isokinetic sampling rate at 90–110% of the actual gas stream velocity.
- Maintenance of the heating system for the filter and sampling probe at 120°C (±14°C),
- Proper recovery of the sample.
- Accurate gravimetric analysis of samples.
- Collection and analysis of representative "blank" samples.

Equipment calibration procedures are described below.

5.2 Particulate Matter Sampling Equipment

A Barometer

Barometric pressure values for the testing period were recorded from a calibrated digital barometer on-site at the platform level. A digital barometer was calibrated in Swichtek Measurements Systems located at 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines. A copy of the barometer calibration form is in Appendix E.

B Probe Nozzle

The probe nozzles used in this test were calibrated initially by the manufacturer and prior to use by the field sampling crew by checking for dimension roundness. This was

done by making three separate measurements using alternative inside diameters and calculating the average. A micrometer with a minimum tolerance of 0.025mm was used for measuring. If a deviation of more than 0.1mm is found between any measurements, the nozzle is either discarded or repaired and re-measured. A copy of the nozzle calibration forms is in Appendix E.

C Pitot Tube

Each pitot tube used in sampling meets the design specifications for Type S pitot tubes in EPA Method 2. Therefore, in accordance with Method 2 procedures, a baseline coefficient (C_P) of 0.84 was assigned to each pitot tube. Calibration at the manufacturer for pitot face-opening alignment included measuring the external tubing diameter (dimension D_t) and the base-to-opening misalignment angles, with all terms as described in Figures 2-2 and 2-3 of EPA Method 2. Pitot tubes were visually inspected at the completion of the test to ensure structural integrity. A copy of the calibration check is included in Appendix E.

D Calibration Meter and Metering System

The meter console dry gas meter calibration was performed in accordance with EPA Method 5, Section 16, using critical orifices. The meter is allowed to warm up and is leak checked using the specifications in Method 5 of no detectable leak for a period of one minute. The dry gas meter is calibrated with five orifices with orifice values that ranged 14.50 to 116.0mm of water. For each critical orifice, the meter coefficient (γ or gamma) and the orifice pressure differential (delta H@) were calculated. The criterion for the gamma difference for each point is not to exceed ±0.02 of the average of all the points. The orifice pressure differential that equates to 0.0212 m3/min at standard conditions (Delta H@) was then calculated for each point and averaged. A copy of the metering system calibration is included in Appendix E.

E Post-Test Meter Calibration

Post-test meter calibrations to determine the γ (or Yqa) were conducted on the dry gas meter after the test to check their accuracy against the original pretest calibration. This post-test calibration was made using the alternative procedure defined by the EPA as ALT-009. This procedure is performed on site using the data collected for each of the test runs. It is preferred by EPA over the post-test procedure identified in Method 5 because it 1) eliminates the question of possible meter damage during transport after the emission test; and 2) because the calibration data are available in the field

immediately following the test, it eliminates the costly travel, remobilization, and scheduling of a retest should the meter fail the post-test calibration. A copy of the post-test calibration is included in Appendix E of this test report. A complete copy of EPA ALT-009 is available on the EPA website.

F Thermocouples and Digital Temperature Indicators

Thermocouples were calibrated by comparing them against an ASTM-3F mercury-inglass thermometer at approximately 0°C (ice water), ambient temperature, and approximately 100°C (boiling water). A post-test calibration was performed in accordance with EPA ALT-011 using a single point calibration against an ASTM mercury-in-glass thermometer in addition to a continuity check of the thermocouple. The continuity check involved verifying that the thermocouple read-out trended in the appropriate direction when exposed to a temperature change. A copy of the original calibration and the ALT-011 post-test QA check is included in Appendix E. A complete copy of EPA ALT-011 is available on the EPA website.

Digital indicators were checked by introducing a series of millivolt signal strengths to the input and comparing the indicator reading with the actual signal strength. Acceptable calibration error does not exceed 1.5 percent when temperatures are expressed in °K.

5.3 Particulate Matter Analysis

The primary quality control procedures involved in the particulate matter analysis include use of a properly calibrated analytical balance, use of appropriately specified sampling media (filters and acetone) and following the Method 5 analytical procedures. The laboratory followed the procedures specified in the method and calibrated the analytical balance using Class S weights. A routine calibration log is maintained at the laboratory with the analytical balance. The acetone probe rinse was taken to dryness at ambient temperature in a laboratory fume hood. Pre- and post-measurements were made until replicate analyses at least 6 hours apart agreed within 0.5 mg. The summary gravimetric analysis data sheet presents the final measurement results, while any intermediate measurements are maintained in a sample log at the laboratory.

5.4 Oxygen and Carbon Dioxide Analysis

The primary quality control procedures involved in the analysis of the oxygen (O₂) and carbon dioxide (CO₂) samples include collection of a representative bag sample, use of fresh absorbing solutions. The Fyrite analyzers are checked against the ambient air for oxygen and exhale breath for carbon dioxide prior to sample analysis. The field staff followed the procedures specified in the method.

The Greentek work plan specified that the Fyrite analysis should be performed within 8 hours from the time the bag were collected, the values are considered valid. The O₂ and CO₂ values are used only in calculating for the molecular weights.

5.5 Sulfur Oxides

This sample procedure for sulfur oxides (SO₂) was combined with EPA Method 5 as described. The primary QA/QC procedures utilized during testing were as follows.

- Use of fresh chemical solutions (mixed daily).
- Proper recovery of the sample.
- Accurate analyses (using barium- thorin titration) of samples.
- Collection and analyses of representative "blank" samples.
- Calibration and QA/QC checks of the sampling system.
- Analysis of audit samples.

The laboratory followed the procedures specified in the method. EPA quality audit samples for SO₂ were analyzed within 30 days of the field samples using the barium chloride titration solution. The results of the laboratory's audit analyses were within 5% of the audit value as required by the test method. The blank samples from the field test were analyzed with the samples and demonstrated the no contamination was present from the chemical reagents used.

5.6 Nitrogen Oxides

This sample procedure for nitrogen oxides (NOx) is described in Section 4.5. The primary QA/QC procedures utilized during testing and analysis were as follows:

- Use of fresh chemical solutions
- Proper recovery of the samples
- Accurate analyses (using spectrophotometry) of samples.
- Calibration of the spectrophotometer and verification of linearity

Calibration and QA/QC checks of the sampling system

The laboratory followed the procedures specified in the method. The spectrophotometer was calibrated on the day the samples were analyzed and verified to be linear over the range to be measured.

If any of the three runs of NOx results from each set of sample runs are found to be outliers, the said results are discarded, and the final NOx result is computed from the average of the two remaining good runs. The discarded test trial runs are noted in the nitrogen oxide emission data as part of the Appendix Summary Table in Appendix A.

It should be noted that EPA Method 7 does not clearly specify a certain number of NOx samples for each run. The three NOx samples per run are generally practiced, providing a "spare set" in case one of the samples gets spoiled or becomes an outlier.

5.7 Carbon Monoxide

This sample procedure for carbon monoxide (CO) is describe. The primary QA/QC procedures utilized during the testing and analysis were as follows:

- Collection and analyses of representative gas samples
- Maintenance of a leak-free bag prior to sampling.
- Calibration of the CO NDIR instrument prior to analysis
- Analysis of samples within three days of collection.
- Strict acceptance of the span and drift criteria (2% and 10%, respectively).
- Use of EPA Protocol 1 calibration gases (although the method allows use of certified rather than Protocol 1 gas standards for calibration)
- Interference check for carbon dioxide (or use of an ascarite trap to remove CO₂)

The analyst in the field equipment office, where the analyzer is maintained, followed the procedures specified in the method. The CO analyzer met the calibration and the drift requirements in the test method. No audit samples, separate from the calibration gas, are specified in EPA Method 10. An interference check was performed on the CO analyzer prior to any analysis as described in EPA Method 20, to ensure there is no interference from carbon dioxide, oxygen, sulfur oxides and nitrogen oxides. The analyzer QA/QC check performed by the vendor also includes both a linearity verification of the 0-1,000 ppm scale and an interference check for carbon dioxide (for 10% and 22% CO₂). Because the analyzer met the acceptance limit for the interference, no ascarite trap to remove CO₂ was used during the analysis.

"APPENDIX A"

SUMMARY OF RESULTS AND EXAMPLE COMPUTATIONS

APPENDIX TABLE TEST RESULTS

PARTICULATE MATTER

BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT

Balatoc, Virac, Itogon, Benguet

46.58 m3/min Krypton Dust Collection Facility System

	RUN NUMBER	RUN 1	RUN 2	RUN 3	
	RUN DATE	28-Jun-24	28-Jun-24	28-Jun-24	AVERAGE
	RUN TIME	1323H-1437H	1459H-1615H	1630H-1743H	
	MEASURED DATA				
(Y)	Meter Box, Y	1.0102	1.0102	1.0102	
(Delta H)	Avg Delta H, mm H ₂ O	12.3	11.6	12.9	
(Pbar)	Barometric Pressure, mm Hg	690.4	690.9	691.1	
(Vm)	Meter Volume,m ³	0.7928	0.7672	0.8084	
(Tm)	Avg Meter Temp, °C	35	38	36	
(Pg)	Static Pressure, mm H ₂ O	-3.0	-3.0	-3.0	
(Ts)	Avg Stack Temp, °C	35	39	40	
(VIc)	Water Collected, mg	14.5	16.0	19.5	
$(\%CO_2)$	Carbon Dioxide, %	0.0	0.0	0.0	0.0
(%O ₂)	Oxygen, %	20.0	20.0	20.0	20.0
$(\%N_2)$	Nitrogen, %	80.0	80.0	80.0	
(Cp)	Pitot Tube Coefficient	0.84	0.84	0.84	
sqrtDeltaP)avg	Avg Sqrt Delta P, (mm H2O)½	3.519	3.349	3.527	
(time)	Sample Time, min	72	72	72	
(Dn)	Nozzle Diameter, mm	4.480	4.480	4.480	
	CALCULATED DATA				
(An)	Nozzle Area, m ²	1.58E-05	1.58E-05	1.58E-05	
(Vmstd)	Standard Meter Volume, Ncm	0.7055	0.6760	0.7170	
(Ps)	Stack Pressure, mm Hg	690.2	690.7	690.9	
(%H ₂ Omeas)	Moisture (measured), %	2.7	3.1	3.6	3.1
(%H ₂ Osat)	Moisture (at saturation), %	6.1	7.4	8.0	
(%H ₂ O)	Moisture (actual), %	2.7	3.1	3.6	3.1
(Vwstd)	Standard Water Vapor Volume, Ncm	0.020	0.022	0.026	
`(Mfd)	Dry Mole Fraction	0.973	0.969	0.964	
(MWd)	Molecular Weight-dry, gm/gm-mole	28.80	28.80	28.80	
(MWs)	Molecular Weight-wet, gm/gm-mole	28.51	28.46	28.42	
`(Vs) [´]	Velocity, m/s	12.9	12.4	13.1	12.8
(A)	Stack Area, m ²	0.07	0.07	0.07	
(%EA)	Percent Excess Air, %	126	126	126	126
Qa (act)	Actual Volumetric Flow, acmm	55	53	55	54
Qs (std)	Standard Volumetric Flow, dscmm	47	44	46	46
(1)	Isokinetic Rate, %	93.7	95.2	96.4	
	PARTICULATE EMISSIONS DATA				
		2	2	2	
(mg)	Mass, mg				
(mg) (mg/Ncm)	Mass, mg Concentration, mg/Ncm	3	4	3	3

EXAMPLE CALCULATIONS BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT 46.58 m3/min Krypton Dust Collection Facility System RUN 1

VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS

VOLUME OF WATER VAPOR AT STANDARD CONDITIONS

PERCENT MOISTURE, BY VOLUME, AS MEASURED IN FLUE GAS

$$\% H_2 O = \frac{Vwstd}{Vwstd + Vmstd}$$
 x 100

$$\% H_2 O = \frac{0.020}{0.020 + 0.7055}$$
 x 100 = **2.7** %

ABSOLUTE FLUE GAS PRESSURE

$$Ps = Pbar + \frac{Pg}{13.6}$$

$$Ps = 690.4 + \frac{-3.0}{13.6} = 690.2 \text{ mm Hg}$$

DRY MOLE FRACTION OF FLUE GAS

$$Mfd = 1 - \frac{\% H_2 0}{100}$$
 $Mfd = 1 - \frac{2.7}{100} = 0.973$ (unitless)

PERCENT EXCESS AIR

% EA =
$$($$
 %O $_2$ - 0.5 * %CO $)/[$ 0.264 * %N2 - $($ %O $_2$ - $($ 0.5 * %CO $)]$ x 100 %
% EA = $($ 20 - 0.5 * 0.0 $)/[$ 0.264 * 80 - $($ 20 - $($ 0.5 * 0.0 $)]$ x 100 %
% EA = $($ 26 % excess air

DRY MOLECULAR WEIGHT OF FLUE GAS

$$MWd = \begin{pmatrix} & \%CO_2 & * & \frac{44}{100} & \end{pmatrix} & + & \begin{pmatrix} & \%O_2 & * & \frac{32}{100} & \end{pmatrix} & + & 100.0 & - & \%CO_2 & - & \%O_2 & * & \frac{28}{100} & \end{pmatrix}$$

$$MWd = \begin{pmatrix} & 0.0 & * & \frac{44}{100} & \end{pmatrix} & + & \begin{pmatrix} & 20.0 & * & \frac{32}{100} & \end{pmatrix} & + & 100.0 & - & 0.0 & - & 20.0 & * & \frac{28}{100} & \end{pmatrix}$$

$$MWd = \begin{pmatrix} & 28.80 & \text{g/g-mole} & \end{pmatrix}$$

WET MOLECULAR WEIGHT OF FLUE GAS

AVERAGE FLUE GAS VELOCITY

VOLUMETRIC FLUE GAS FLOW RATE AT ACTUAL CONDITIONS (wet basis)

VOLUMETRIC FLUE GAS FLOW RATE AT STANDARD CONDITIONS (dry standard basis)

$$Qs(std) = 60 * Mfd * Vs * A * \frac{298}{273 + Ts} * \frac{Ps}{Pstd}$$

$$Qs(std) = 60 * 0.973 * 12.9 * 0.07 * $\frac{298}{273 + 35} * \frac{690.2}{760} = 47$ dscmm$$

PERCENT ISOKINETIC OF SAMPLING RATE

PARTICULATE CONCENTRATION

/= **93.7** %

$$mg/Ncm = \frac{mg_{particulate}}{Ncm}$$

$$mg/Ncm = \frac{2.3}{0.7055} = 3.3$$
 mg/Ncm

PARTICULATE MASS EMISSION RATE

$$kg/hr = \frac{60}{10^{\circ}6} * \frac{O_{13\%} mg}{Ncm} * Qs$$

$$kg/hr = \frac{60}{10^{\circ}6}$$
 * 3.3 * 47 = **0.009** kg/hr

APPENDIX SUMMARY TABLE NITROGEN OXIDES (as NO2) EMISSIONS DATA BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT Balatoc, Virac, Itogon, Benguet 46.58 m3/min Krypton Dust Collection Facility System

Sample Collection Information

Sample Recovery Information

			Barometric Pressure, Pbar (in Hg):	ıre, Pbar (in Hg):	29.68	Barometric P	29.68 Barometric Pressure, Pbar (in Hg):	⊣g):	29.72
		Evacuated	Flask abs.		Flask	Sample	Final	Flask abs.		Flask
	Flask	Pressure	Pressure Initial	Flask	Temp	Collection	Pressure	Pressure Final	Flask	Temp
Sample	Volume	Pgi	Pi, Pbar - Pgi	Temp	Ξ	Time ²	Pgf	Pf, Pbar - Pgf	Temp	Ţ
ID	(Iml)	(in Hg)	(in Hg) ¹	ွင	°К	24-Hour	(in Hg)	(in Hg) ¹	၁ွ	$^{\circ}$
Run 1A	Run 1A 2,212.50	28.33	1.35	32.8	305.8	1142	1.20	28.52	30.5	303.5
Run 1B	Run 1B 2,226.13	28.47	1.21	33.4	306.4	1147	1.16	28.56	30.2	303.2
Run 1C	Run 1C 2,221.18	28.16	1.52	33.5	306.5 1152	1152	1.45	28.27	30.4	303.4

Calculated Results

0	Average	
0	0	1,929
0	0	1,978
0	0	1,951
(mg/Ncm)	(bd)	(ml)
as NO2	Weight, µg	Volume
Concentration,	Mass Catch	Std. Gas
×ON		

			Barometric Pressure, Pbar (in Hg):	ure, Pbar (in Hg):	29.67	Barometric P	Barometric Pressure, Pbar (in Hg):	Hg):	29.72
Run 2A	Run 2A 2,211.35	28.36	1.31	33.4	306.4	1213	1.29	28.43	30.6	303.6
Run 2B	2,210.08	28.25	1.42	33.6	306.6	1217	1.37	28.35	30.5	303.5
Run 2C	Run 2C 2,208.25	28.51	1.16	32.8	305.8	1221	1.10	28.62	30.2	303.2

0	Average	
0	0	1,969
0	0	1,932
0	0	1,945

72	4.	ω.	.2	
	1,949	1,952	1,920	
	0	0	0	Average
	0	0	0	0

			Barometric Pressure, Pbar (in Hg):	ıre, Pbar (n Hg):	29.66	Barometric P	Barometric Pressure, Pbar (in Hg):	ا ق):	29.72
Run 3A 2,	2,196.25	28.27	1.39	32.7	305.7	1339	66.0	28.73	30.4	303.4
Run 3B	2,206.38	28.41	1.25	33.6	306.6	1342	1.23	28.49	30.3	303.3
ın 3C	Run 3C 2,201.00	28.19	1.47	33.7	306.7	1346	1.4	28.32	30.2	303.2

APPENDIX TABLE TEST RESULTS

PARTICULATE MATTER, NITROGEN OXIDES, SULFUR OXIDES AND CARBON MONOXIDE BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT

Balatoc, Virac, Itogon, Benguet 5,013CFM Verantis Acid Fume Scrubber #2

	RUN NUMBER RUN DATE	RUN 1 29-Jun-24	RUN 2 29-Jun-24	RUN 3 29-Jun-24	AVERAGE
	RUN TIME	1050H-1205H	1242H-1358H	1411H-1525H	AVENAGE
	MEASURED DATA				
(Y)	Meter Box, Y	1.0102	1.0102	1.0102	
(Delta H)	Avg Delta H, mm H ₂ O	16.6	17.6	18.5	
(Pbar)	Barometric Pressure, mm Hg	690.4	690.6	690.9	
(Vm)	Meter Volume,m³	0.8986	0.9516	0.9536	
(Tm)	Avg Meter Temp, °C	35	38	36	
(Pg)	Static Pressure, mm H ₂ O	-2.0	-2.0	-2.0	
(Ts)	Avg Stack Temp, °C	27	39	37	
(VIc)	Water Collected, mg	20.5	21.0	26.0	0.0
(%CO ₂)	Carbon Dioxide, %	0.0	0.0	0.0	0.0
(%O ₂)	Oxygen, %	19.0	19.0	19.0	19.0
$(\%N_2)$	Nitrogen, %	81.0	81.0	81.0	
(Cp)	Pitot Tube Coefficient	0.84	0.84	0.84	
sqrtDeltaP)avg	Avg Sqrt Delta P, (mm H2O)½	2.104	2.200	2.288	
(time)	Sample Time, min	72	72	72	
(Dn)	Nozzle Diameter, mm	6.090	6.090	6.090	
	CALCULATED DATA				
(An)	Nozzle Area, m ²	2.91E-05	2.91E-05	2.91E-05	
(Vmstd)	Standard Meter Volume, Ncm	0.7980	0.8381	0.8449	
(Ps)	Stack Pressure, mm Hg	690.2	690.5	690.7	
(%H ₂ Omeas)	Moisture (measured), %	3.4	3.3	4.0	3.6
(%H ₂ Osat)	Moisture (at saturation), %	3.8	7.7	7.0	3.0
		3.4	3.3	4.0	3.6
(%H ₂ O)	Moisture (actual), %				3.0
(Vwstd)	Standard Water Vapor Volume, Ncm	0.028	0.029	0.035	
(Mfd)	Dry Mole Fraction	0.966	0.967	0.960	
(MWd)	Molecular Weight-dry, gm/gm-mole	28.76	28.76	28.76	
(MWs)	Molecular Weight-wet, gm/gm-mole	28.39	28.41	28.33	
(Vs)	Velocity, m/s	7.6	8.2	8.5	8.1
(A)	Stack Area, m ²	0.26	0.26	0.26	
(%EA)	Percent Excess Air, %	116	116	116	116
Qa (act)	Actual Volumetric Flow, acmm	117	125	130	124
Qs (std)	Standard Volumetric Flow, dscmm	102	105	109	105
(I)	Isokinetic Rate, %	95.1	97.4	94.7	
	PARTICULATE EMISSIONS DATA				
(mg)	Mass, mg	52	56	61	
(mg/Ncm)	Concentration, mg/Ncm	65	66	73	68
(kg/hr)	Emission Rate, kg/hr	0.40	0.42	0.47	0.43
	SULFUR OXIDES (as SO ₂) EMISSIONS D)ATA			
(mg)	Mass, mg	159	165	156	
(mg/Ncm)	Concentration, mg/Ncm	200	197	185	194
(hg/hcm) (kg/hr)	Emission Rate, kg/hr	1.22	1.24	1.21	1.22
	NITROGEN OXIDES (as NO ₂) EMISSIONS	S DATA			
(mg/Ncm)	Concentration, mg/Ncm	262	253	271	262
(kg/hr)	Emission Rate, kg/hr	1.60	1.59	1.76	1.65
	CARBON MONOXIDE EMISSIONS DATA				
(ppm)	Concentration, ppm dry	111	115	117	114
(mg/Ncm)	Concentration, mg/Ncm	127	132	134	131
	· · · · · · · · · · · · · · · · · ·	141	102	10-7	0.83

EXAMPLE CALCULATIONS BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT 5,013CFM Verantis Acid Fume Scrubber #2 RUN 1

VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS

VOLUME OF WATER VAPOR AT STANDARD CONDITIONS

PERCENT MOISTURE, BY VOLUME, AS MEASURED IN FLUE GAS

$$\% H_2 O = \frac{Vwstd}{Vwstd + Vmstd}$$
 x 100
$$\% H_2 O = \frac{0.028}{0.028 + 0.7980}$$
 x 100 = **3.4** %

ABSOLUTE FLUE GAS PRESSURE

$$Ps = Pbar + \frac{Pg}{13.6}$$
 $Ps = 690.4 + \frac{-2.0}{13.6} = 690.2 \text{ mm Hg}$

DRY MOLE FRACTION OF FLUE GAS

$$Mfd = 1 - \frac{\% H_2 O}{100}$$
 $Mfd = 1 - \frac{3.4}{100} = 0.966$ (unitless)

PERCENT EXCESS AIR

%
$$EA = ($$
 % $O_2 - 0.5$ * % CO)/[0.264 * % $N2 - ($ % $O_2 - ($ 0.5 * % CO)] x 100 % % $EA = ($ 19 - 0.5 * 0.0)/[0.264 * 80.989 - (19 - (0.5 * 0.0)] x 100 % % $EA =$ 116 % excess air

DRY MOLECULAR WEIGHT OF FLUE GAS

WET MOLECULAR WEIGHT OF FLUE GAS

AVERAGE FLUE GAS VELOCITY

VOLUMETRIC FLUE GAS FLOW RATE AT ACTUAL CONDITIONS (wet basis)

$$Qa(act) = 60 * 7.6 * 0.26 = 117$$
 acmm

VOLUMETRIC FLUE GAS FLOW RATE AT STANDARD CONDITIONS (dry standard basis)

$$Qs(std) = 60 * Mfd * Vs * A * \frac{298}{273 + Ts} * \frac{Ps}{Pstd}$$

$$Qs(std) = 60 * 0.966 * 7.6 * 0.26 * \frac{298}{273 + 27} * \frac{690.2}{760} = 102 dscmm$$

PERCENT ISOKINETIC OF SAMPLING RATE

95.1 %

PARTICULATE CONCENTRATION

$$mg/Ncm = \frac{mg_{particulate}}{Ncm}$$

$$mg/Ncm = \frac{51.7}{0.7980} = 64.8$$
 mg/Ncm

PARTICULATE MASS EMISSION RATE

$$kg/hr = \frac{60}{10^{\circ}6} * \frac{O_{13\%} mg}{Ncm} * Qs$$

$$kg/hr = \frac{60}{10^{\circ}6}$$
 * 64.8 * 102 = **0.397** kg/hr

SULFUR DIOXIDE CONCENTRATION

$$mg/Ncm = \frac{mg_{SO2}}{Ncm}$$

$$mg/Ncm = \frac{159}{0.7980} = 200 mg/Ncm$$

SULFUR DIOXIDE EMISSION RATE

$$kg/hr = \frac{60}{10^{\circ}6} * \frac{0^{11\%} mg}{Ncm} * Qs$$

$$kg/hr = \frac{60}{10^{\circ}6}$$
 * 200 * 102 = **1.2237** kg/hr

NITROGEN OXIDES (as NO2) EXAMPLE CALCULATIONS, RUN 1a

1.0 INITIAL ABSOLUTE PRESSURE IN FLASK

$$P_{mmHg} = P_{inHg}$$
 x 25.4 mmHg/in Hg

$$Pi = Pbar(i) - Pg(i)$$

$$Pi = 27.2 - 26.11 = 1.09$$
 in Hg = 27.686 mm Hg

2.0 FINAL ABSOLUTE PRESSURE IN FLASK

$$Pf = Pbar(f) - Pg(f)$$

3.0 VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS USING FLASK

$$Vsc = (Vf-25) * Pf Pi Pi Vsc = (Vf-25) * (------- Tf +273 Ti +273 Ti +273$$

Vsc =
$$\begin{pmatrix} 2226.3 - 25 \end{pmatrix} * \begin{pmatrix} 662.9 & 27.7 \\ (-------) & -------- \end{pmatrix} * 0.392 = 1,801 ml$$

4.0 CONCENTRATION OF NO x as NO 2

$$mg/Ncm = (\mu g/Vsc) * 10^6 (1,000 ml/1L) * (1,000 L / Ncm) * (1mg / 1,000 ug)$$

 $mg/Ncm = (439 / 1,801) * 1,000 = 244 mg/Ncm$

NITROGEN OXIDES EMISSION RATE

$$kg/hr = \frac{60}{10^{\circ}6} * \frac{0.013\% mg}{Ncm} * Qs$$

 $kg/hr = \frac{60}{10^{\circ}6} * 243.7 * 102 = 1.493 kg/hr$

CARBON MONOXIDE (CO) CONVERSION, ppm to mg/Ncm (Run 1)

$$CO_{mg/Ncm} = (CO_{ppm} \times MW_{CO}) / 24.5 \text{ Liters CO/mole}$$
 $CO_{mg/Ncm} = 111.0 \times 28.01 / 24.45 = 127.2 \text{ mg/Ncm}$

CARBON MONOXIDE EMISSION RATE

$$kg/hr = \frac{60}{10^{\circ}6} * \frac{O_{13\%} mg}{Ncm} * Qs$$

 $kg/hr = \frac{60}{10^{\circ}6} * 127.2 * 102 = 0.779 kg/hr$

BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT NITROGEN OXIDES (as NO2) EMISSIONS DATA 5,013CFM Verantis Acid Fume Scrubber #2 Balatoc, Virac, Itogon, Benguet APPENDIX SUMMARY TABLE

Sample Collection Information

Sample Recovery Information

Calculated Results

			Barometric Pressure, Pbar (in Hg):	ıre, Pbar (in Hg):	27.20	Barometric P	27.20 Barometric Pressure, Pbar (in Hg):	1g):	27.12
		Evacuated	Flask abs.		Flask	Sample	Final	Flask abs.		Flask
	Flask	Pressure	Pressure Initial	Flask	Temp	Temp Collection	Pressure	Pressure Final	Flask	Temp
Sample	Volume	Pgi	Pi, Pbar - Pgi	Temp	ï	Time ²	Pgf	Pf, Pbar - Pgf	Temp	Ţ
ID	(ml)	(in Hg)	(in Hg) ¹	ွ	٦°	24-Hour	(in Hg)	(in Hg) ¹	°C	° Y
Run 1A	Run 1A 2,226.30	26.11	1.09	29.2	302.2	1132	1.02	26.10	31.2	304.2
Run 1B	Run 1B 2,247.00	25.79	1.41	28.6	301.6	1137	1.34	25.78	31.6	304.6
Run 1C	Run 1C 2,236.40	25.88	1.32	28.9	301.9	1142	1.25	25.87	31.4	304.4

Concentration, (mg/Ncm) Mass Catch Weight, µg (bd) 439 Std. Gas Volume 1,801

as NO2

244 268 262

Average

485

474

1,769 1,775

Œ

Š

	236	278	245	253
	421	480	437	Average
	1,780	1,728	1,783	
			1	•
27.12	304.0	305.6	305.4	
))	1	

Barometric Pressure, Pbar (in Hg):

27.18

Barometric Pressure, Pbar (in Hg):

177	Average	
268	458	1,712
278	485	1,746
266	471	1,768

Run 2A	Run 2A 2,221.30	25.98	1.20	28.3	301.3	1324	1.16	25.96	31.0	304.0	
Run 2B	Run 2B 2,211.40	25.74	1.44	29.9	302.9	1329	1.41	25.71	32.6	305.6	
Run 2C	Run 2C 2,227.20	26.03	1.15	28.7	301.7	1334	1.12	26.00	32.4	305.4	
											I
			Barometric Pressure, Pbar (in Hg):	ure, Pbar ((in Hg):	27.17	Barometric P	27.17 Barometric Pressure, Pbar (in Hg):	Hg):	27.12	
Run 3A	Run 3A 2,237.30	25.86	1.31	28.9	301.9	1413	1.27	25.85	32.6	305.6	
Run 3B	2,225.00	25.77	1.40	28.8	301.8	1418	1.36	25.76	32.4	305.4	
Run 3C	Run 3C 2,220.00	25.59	1.58	28.5	301.5	1423	1.58	25.54	32.6	305.6	

"APPENDIX B"

FIELD DATA SHEETS

METHOD 1 TRAVERSE POINT LOCATIONS

Facility Name	BENGUET LORD-ACUPATI CONTRACT MINING AZ
Town/Province	ITUSON - PIET GUET
Source Tested	DUST COLLECTION PAGILITY SYSTEM
Personnel	Div, avi, mrc, mrc Date 104/78/24

Type of Stac	k (Circular	1	Rectangle
Ports	No. of port	s availab	le	7
	No. of port	s used		7
	Port inside	dia., cm		10


Dimensions	Far wall to end of port, cm (a)	30.5
	Port length, cm (b)	11.5
Draw a diagram of	Stack Dia. or depth, cm (a-b)	30
the test location on the back of the sheet	Stack width (if rectangle), cm	-
	Equivalent Stack Diameter, cm	
Shoot	Area of stack, m ²	0.071

Distance to flow disturbance	Meters	Diameters
Upstream (A)	1,04	2.4+6
Downstream (B)	1.15	2 830

Minimum # of trav	erse points	required:	
		Particulate traverse	24
		Velocity traverse	24
# of ports used)	# points/port	12
1	lumber of t	raverse points used	21

Point #	Fraction of stack diameter	Dist. From inside wall	Port Length	Dist. From edge of port
1	6.021	1.30	8.5	9.8
2	0.067	2.0	85	10.5
3	0.118	3-54	B.5	12.0
4	0.17	5.31	8-5	13.8
5	0.250	7-50	8.5	6.0
C	0.356	10.68	3.5	19.2
7	0 649	19.32	8.5	27-8
8	0-750	22.5	8.5	71.0
Di.	0.823	74.69	8-5	33.2
1.0	0.882	26.96	8.5	34.96
11	0-933	27.99	8.5	36-5
10	0-979	28.7	8-5	37.2
	T-12-0			

Note: When using 4 points in a circular duct, the probe is marked with only the points for the first half of the full diameter traverse.

Equivalent of					
$D_e = 2 \times dep$	otn x widi	n ÷ (dept	n + wid	th)	
$D_e = 2 \times ($) x () ÷ (+)=	

	LANCIN	on or stack	diameter	mom insi	ge Mall	-
	2	4	6	8	10	(12
1	0.146	0.067	0.044	0.032	0.026	0.021
2	0.854	0.250	0.146	0.105	0.082	0.067
3	100	0.750	0.296	0.194	0.146	0.118
4	J.	0.933	0.704	0.323	0.266	0.177
5	1		0.854	0.677	0.342	0.250
6			0.956	0.806	0.658	0.356
7	1			0.895	0.774	0.644
8	1			0.958	0.854	0.750
9					0.918	0.823
10					0.974	0.882
11						0.933
12						0.979

	2	3	4	Ė,	e.	7	0	nside v			40
	250	167	125	100	.083	071	0	9	10	11	12
						1 4 7 1 5	063	056	050	045	-042
1	750	500	375	.300	250	214	188	167	150	138	125
1		833	525	500	417	357	313	278	250	227	208
			875	700	.583	500	438	389	350	318	292
				900	750	.643	563	500	450	409	379
Š					917	796	688	611	.550	500	458
•						929	813	722	650	591	542
							938	.833	750	682	625
								944	850	773	708
0									950	864	792
										955	875
2										500	95

	ACCEPTABLE	MATRICES FOR SQL	ARE DUCTS
	3 x 3	4 x 5	6 x 6
	3 x 4	5 x 5	>6 x 7
	4 x 4	5 x 6	- 7x7
			2
Team	Leader / Date:	DARGIEL (14	TUIDAD IN.
		-1	06/28/24
QAQ	Date: ANGE	LO / GUEVAR	RA
	1	1	6/28/24
(01-0129
,	/		
)
		TR. sale	SST-FD-001 rev 06
		ETHBOT AIC	v Date: Feb: (7: 2023

Source Emission Testing Firm SAT No. 2019-115 SAT No. 2021-93

EPA METHOD 1 & 2

GAS VELOCITY and CYCLONIC FLOW CHECK

Facility	PHONET CORP-ACUPAN CUPTRACI	MINING PROJECT		Assume Values
Town/Province	MIGON, BENEVET	11.00		
Source	DUST COLLECTION PACILITY SY	(TEM		%BWS = 7 3
Personnel	DLN, AUL, MPC, AMC	Bar. Pressure, inHg	77-18	MD = 30.0
Date / Time	04/28/24, 1206	Pitot Coefficient	0.89	TM = 35.0

Pitot Tube Leak Check, mmH₂O

Static Pressure, mmH₂O

Measured at which traverse point

A • 6

Traverse Point	Velocity Pressure (mmH ₂ O)	Temperature (°C)	Angle Which Yields Null (Degrees)
1-12	15.0	26	10
LI -	15.0	26	11
10	16.0	26	in.
G	16.0	27	16
8	15.0	27	14
	(9.0	77	11
6	15.0	Uo	12
5	14.0	26	11
4	14.0	26	10
3	15.0	26	10
2	5.0	25	G
1	18.0	25	11
13-12	18.0	2G	10
11	19.0	26	10
0	4.0	74	12
9	19.0	18	12
8	15.0	78	14
\$	15.0	29	11
6	14.5	26,	13
5	14.7	24	12
9	19.2		11
3	15-2	30	13
2	19.2	30	12
	15.2	34	12
Average:	15.0917	27.3	4.9
Ave. v:	3.8840	3 -	17.

Team Leader / Date: Mark + PASHOW TV

DENR ACCREDITED Source Emission Testing Firm SAT No. 2019-115 SAT No. 2021-93 04/28/29

DAGO DATE: ANGEN V. GUBARPA

Effectivity Dale: Fab. 01, 2023

METHOD 3

FYRITE ANALYSIS FIELD DATA

Facility	BENGUET CORP. PROMAN CONTRACT MINNEY PRO	Euel Type	Electricity
Town/Province	INDON, BENGUET	Fyrite ID	931=-TOI
Source	DUST COLLECTION FACILITY SYSTEM	Analysis Location	OH-517E

Run N	o Ba	ag ID:	-	Operator (name & sign):						
0/28/24 06/21		te of Analysis	% CO ₂	% O ₂	% N2					
		Tim	e of Analysis	Reading (A)	Reading (B)	100-(A+B)				
Start	(323	Start	1470	0	20.0					
				0	10.0					
Stop	(937	Stop	1443	0	20.0					
Look										
Leak check 🚺		Average		0	20.0	80,0				

Run N	o. 2 B	ag ID:	Operator (name & sign): DW						
Run Date (% / 2 g / 24 Run Time		Date of Analysis	% CO ₂	% O ₂	% N2				
		Time of Analysis	Reading (A)	Reading (B)	100-(A+B)				
Start	1459	Start 617	D	200					
			0	20.0					
Stop	1615	Stop 1620	0	20.0					
Look	eak check								
Leak check		Average	6	70.0	80.0				

Run No. 3 Ba	ag ID:	Operator (name & sign):					
Run Date	Date of Analysis	% CO ₂ Reading (A)	% O ₂	%N2			
Run Time	Time of Analysis		Reading (B)	100-(A+B)			
Start /630	Start 1749	0	200	, , , ,			
		0	200				
Stop (743	Stop 777	0	20.0				
Leak check 🗸							
Leak Clieck V	Average	0	20.0	80.0			

Team Leader / Date : _

DANIER ENDANIVAGE SYR

04/28/24

N CASTAKA

6/28/24

SST-FD-001 rev.06 Effectivity Date: Feb. (11, 2023

DENK ACCREDITED
Source Emission Testing Firm
SAT No. 2019-115
SAT No. 2021-93

METHOD 4 MOISTURE ANALYSIS DATA SHEET

Facility	Benguet Corp-Acupan	Contract Mining Pr	Sample Method	5
Town/Province	Itagon, Benquet		Recovery Location	on-site
Source	Dust Collection Facil	ity system	Personnel	AVG. DLN,
		J 0		MRCIAMC
Run Number	1	2	3	
Test Date	6 28 24	6 28 24	6 28 24 .	
Recov y Date	6/28/24	-6/28 24	6 28 24	
Recovered By	AVG	AVG	AVG	
Impiriger 1 Joom L	D-J H2O .			
Pin: Weight, g	636.0	632-5	642-5	•
Initial Weight, g	G29. 0	. 625.5	632.5	
Net Weight, g	• 7.0	9.0	10.0	
Impinger 2 100m L .	DJ H20 .			
 Final Weight, g 	634-0	630.0	637-5	
Initial Waght, g	632.0 -	627.0	635-5	
 Net Weight, g 	2.0	. 3.0	2-0	
Impinger 3 EMptu	L			
Final Weight, g	509.5	. 589.5	.51.5	
Initial Weight, g	508-5	588-D	. 509 5	
Net Weight, g	1.0	1-5	2-0 .	
Impinger 4 2006 - 3	3000 silica Gel			
Final Weight, g	7760.0	795-0	781-0	
Initial Weight, g	771.5	790.5	776-5	
Net Weight, g	• 4-5	4-5	5.5	
Impinger 5		1		
Final Weight, g				
Initial Weight, g				
Net Weight, g	*			
Impinger 6				
Final Weight, g				
Initial Weight, g*				
Net Weight, g				
Impinger 7				
Final Weight, g				
Initial Weight, g				
Net Weight, g				
Total Catch, g	14-5	(6.0	19.5	
Silica Gel Spent, %	5%.	51.	£%.	
Filter ID #	03245159	12235247	03248145	
Filter Wt.	0.2527	0 2456		
		2700	0-2533	-

Team Leader / Date: DADIE

Source Emission Testing Firm SAT No. 2019-115 SAT No. 2021-93 QA

QAQC / Date: ANGEN V. GUENARPA

ST-FD-001 rev.05

06/28/29

ISOKINETIC FIELD DATA SHEET

	PROJECT								
Facility Name	BENEVET COKP - ACUPAN CONTRACT MINING	Run Number	1						
Town/Province	ITOGOL-RENGUET	Type of APCD Installed	TOT CORE VINE						
Source	DUST COLLECTION FACILITY SYSTEM	Test Date	06/78/29						
Test Personnel	DUP, AUF, MPC, AMC	Operator Signature	1						
			1						

Filter ID	Tare(a)	Barometric Pressure	Statio			Meterbox			Noz	zte	Pitot Tu	Probe					
74195159	0-2527	(In Hg)	Pressu (mmH)		3.6	Gamma	Delta H@	ID#		Diameter	ID#	Ср	Material				
		27.18	-3	9 GM	1C-0/	1.0102	77-66	6471	-01	4.48	617.09	0.81	22				
					Sample Train Leak Checks						Fyritos						
							Initi	al		Interim	1		/	Final	Time	%CO2	%O ₂
K Factor	6.987	Vacuum, inHg	15	. 0	/		1	/		20	1312	0	20-0				
Pitot Leak C		Leak Rats, m³/m	0	0.00	/	/		/	1	0	-	-	-				
39/86	Pre-test	Start Volume	421.	1110	/	/	1		122	. 2012	Fyrite System L	eak Check	OK				
223/97	Post-test	Stop Volume	421-	1110/		/			100	1,062	Bag ID		-				

Port &	Clock	Test	DGM Reading	Pitot	Delta H	Delta H	Gauge		Te	mperature °C		
Point	(24-hr)	(mins)	(cu. Meter)	Reading (mmH ₂ O)	(mmH ₂ Q)	Actual (mmHsO)	(In Hg)	Stack	DGM	Probe	Filler	Imp.
1-17	1323	0	421. 9132	15.0	14.8	14.8	2.0	32	32	121	115	16
11	1276	3	121.9602	15.0	14-8	14.8	2.0	32	72_	120	118	1/=
10	1379	6	121. 4900	15.0	19.2	14.8	2.0	32	32	120	118	13
G	1332	9	121. 5250	17-0	19-8	19.8	2.0	33	33	120	119	11
8	1335	12	121. 5600	15.0	19.3	19.8	2 . 0	73	33	120	120	11
7	1338	15	121.5922	5-0	14.8	19.8	2.0	32	34	1100	121	111
6	1392	18	121.6292	19.0	19.8	14.8.	20	32	31	120	123	9
9	1399	171	121. 6689	19.0	13.6	199	2.0	33	34	120	108	9
1	1377	"29	121.7032	14.0	13-8	19.3	20	33	7 10	120	120	10
3	135 1	27	44. 7700	17.0	11.8	11.9	2.0	35	35	120	120	1-
2	353	30	121- 7698	12.0	11.9	11,2	2.0	35	35	120	118	17
1 4	1356	-33	921 8032	12.0	11.3	11.2	200	35	36	120	125	1/3
-12	1930	36	94.8384	12.0	(1.8	11.2	5.0	37	36	121	121	1/8
11	1404	39	921 8674	17.0	11.8	11.8	1.0	37	36	120	120	1/4
10	1407	17	921.8969	11.0	10.9	11.0	2,0	32	36	110	21	14
G	170	1	121. 9296	11.0	10.9	11	20	32	36	120	1/20	13
8	1913	48	121. 9598	11.0	10.9	11	2.0	3,9	26	120	121	13
1	1416	51	121.9909	11.0	10.9	(1	2.0	37	36	120	122	1/1.
6	419	50	12.0222	11.0	109	11	200	37	36	120	120	16
5	422	57	922. 0584	11.0	13.9	11	2.0	36	75	120	118	M
9	125	60	922. 0929		9.9	10	2-0	76	35	121	120	17
3	1929	63	125 1500	10.0	9.9	10	2.0	36	35	120	122	1
L	(431)	46	14 1402	0.0	99	(0	2.0	36	35	120	122	1
0	1939	69	425. 17Ca	10.0	9.9	10	20	36	35	120	122	13
	1933	The	427. 2060			MINIST.					-	
-										-004		

Run Time	Total Volume	RMS Delta P
72	0.7978	3.5193

High Vac. Ts Ave. Tm Ave. 12.39

Isokinetic %

Team Leader / Date: DATHER

whyther on 04/28/21 QAQE Date: ANGELO GUEVARPA

SAT-FRANCIS MY DO My Dove Title (1) 1925

ISOKINETIC FIELD DATA SHEET METHOD(S) 5

Facility Name	BENGI	UETCORP	·ACUPA	J CONTRA	of Kuritil	PROSE	Run Num	ber		7
Town/Province		or, Bh					Type of A	lled A	CHURA	
Source				PRILLIM S	VITEM		Test Date		26/78/2	
Test Personnel		AND ME			12:0		Operator			
Filter ID Tare(s)	Barometric	Static		Meterbox		N	lozzle	Pitot Tut	pe/Probe /	1
225240-1992	(In Hg) Pressure (mmHg)		ID#	Gamma	Delta H@	1D#	Diameter	ID#	Ср	Probe Material

Filter ID	Tare(s)	Barometric Pressure	Static		Meterbox		No	Nozzie		Pitot Tube/Probe	
223524	0.199	(In Hg)	(mmHg)	ID#	Gamma	Delta H@	10#	Diameter	ID#	Ср	Probe Material
		27.20	-3.0	GAC Q	1-0102	17.60	GN7-02	9-93	6P-09	0.24	55
				Sample	Train Leak Chec	ks	Fyrites				
			Initial		m		Final	Time	%CO2	%O2	
K Factor	1.035	Vacuum, inHg	15.0	>	/	/	1	2.0	1110	0	20.0
Pitot Leak C	hecks	Leak Rate, m³/m	0		/			0	-	~	-
200 BH		Start Volume	122.210	CA /	1	1/	023	2-9856	Fyrite System L	eak Check	OK
28/90	Post-test	Stop Volume	422.216	4/		/	42	2-9856	Bag ID		-

Port &	Clock	Tiek	DGM Reading	Pitol	Delta H	Delta H	Gauge		Te	emperature *C		
Point	(24-hr)	Test (mins)	(cu. Meter)	(mmH ₂ O)	calc. (mmH ₂ O)	Actual (mmH ₂ O)	(In Hg)	Stack	DGM	Probe	Filter	Imp.
4-17	1959	0	122 7182	12.0	12.9	12.4	20	36	36	122	123	13
11	1502	1	122-2530	12.0	12.4	12.4	2-0	36	36	120	122	15
10	1505	4	9223	11.6	20	12.0	2-0	36	36	1191	122	1
9	1508	9	422. 3226	11.60	17.0	15-0	2-0	36	36	120	123	14
9	1511	12	12 3522	11.6	12.0	120	20	76	36	120	119	15
+	1514	15	122 3839	11.0	12-0	17.3	2.0	20	36	120	120	1/9
6	1517	18	122 ABO	11-0	11.4	11.4	17.0	30	38	120	122	19
5	1520	4	122.4564	11.0	11.4	11.4	50	3.8	38	120	113	1.
9	(523	24	922. 4896	11-0	11.4	11-4	2.0	34	38	120	120	15
3	1526	77	922.5292	11.0	11.4	11 "4	200	38	28	112	120	14
2	1520	30	412.5598	12-0	12.4	17.9	2.0	38	38	120	1/20	14
1	1532	39	127. 5896	12.0	12.9	17.4	219	32	28	120	120	13
3-12	52510	36	422.6060	12.0	12.9	17.7	2.0	38	38	120	120	13
11	1593	79	922. 6397	12.0	12.4	124	2.0	32	20	118	120	13
10	(515	12	177.6689	12.0	12.9	12.9	20	38	90	120	120	10
01	1512	45	122 7/12	10.0	10.7	10. 4	20	40	10	120	118	1/9
8	1551	98	122.700	10-0	10.3	10.4	100	₹0	40	120	122	10
7	554	51	42.7689	0.0	10.3	10.4	2-0	10	10	120	120	10
6	1557		422. 7486	10.0	10.3	10.4	2.0	10	10	120	118	16
5	1660	57	12. 8290	11-0	11.4	11.4	2.0	91	38	120	120	14
4	1003	60	927. 8584	1.0	11.9	11.4	2.0	91	38	120	116	13
1	606	63	92. 88 76	11.0	11.9	11.0	2-0	41	38	120	120	1/2
2	1609	66	25 . dor	11.0	11-7	11.1	2-0	17	38	118	116	18
	16/2	69	12. 9590	11-0	1.1	11.4	2-0	41	38	120	120	12
0	15/5	72	427,9854					1 3 4 5				-

Run	Total Volume	RMS Delta P
72	0.7672	3.3988

Delta H Ave. High Vac. Ts Ave. Tm Ave. Isokinetic %

Team Leader / Date: PAPIEL C. WASHING

06/18/14

QAQC LOTE ANGELO

DINK ACCREDITED

Source Entagen Texting Fe
EAY No. 2010-115

SAT No. 2021-93

\$819D mt 40

ISOKINETIC FIELD DATA SHEET

Facility Name	PIENGUET CORP AWPAN CONTRACT MINING PREC	Run Number	3
Town/Province	MUGUE, BENGUET	Type of APCD Installed	MA SUBJERES
Source	DUST COLLE CTION FACILITY SYCTEM	Test Date	06/78/21
Test Personnel	DW. AND MPC. Anc	Operator Signature	1/1/

Filter ID Tare(s)		Barometric Pressure	Static		Meterbox		Na	zzle	Pitot Tube/P	robe 4	
33295195	0-2533	(In Hg)	(mmHg)	10#	Gamma	Delta H@	ID#	Diameter	10#	Cp	Probe Material
3.1.7	1.10	27-21	-3.0	GMC-01	1.0102	47.66	GATLOZ	4.98	617-04	0.27	37
				Sample	Train Leak Ched					Fyrites	
			Initial		Interi	m		Final	Time	%CO2	%O ₂
K Factor	-027	Vacuum, inHg	15.0)	/	1	/	7:0	1617	0	20.
Pitot Leak C	hecks	Leak Rate, m³/m	0		1			6	-	-	-
7,30/00	Pre-test	Start Volume	\$22.98	98	1	/	n	7 -300	Fyrite System Le	ak Check	Ou
200/97	Post-test	Stop Volume	122.98		/		17	7 2990	Bag ID		_

Fort &	Clock	Test	DGM Reading	Pitot	Delta H	Delta H	Gauge		Te	emperaturo *C		
Point	(24-hr)	(mins)	(cu, Meter)	Reading (mmH ₂ O)	calc. (mmH ₂ O)	Actual (mmH ₂ O)	(In Hg)	Stack	DGM	Probe	Filter	Imp.
4-12	1630	0	177.4908	4.0	11.3	11.4	2-0	29	35	121	123	16
11	6 73	3	723 0392	11.0	11.3	11.4	2.0	39	35	120	120	19
10	1636	6	123 0601	11.0	1.3	1).4	2.0	39	75	120	120	14
9	1639	7	12.0840	11.0	11.3	11.4	2.0	39	35	120	118	1/4
8	1692	12	123, 1170	13.0	13.3	17.4	2.0	39	35	Ino	120	16
7	1645	19	173 1550	13.0	13.3	13.4	2.0	79	36	120	118	19
6	1648	B	923.1884	13.0	13 3	13.4	2.0	39	34	120	120	1/3
5	1681	21	723.2204	13.0	13.3	12.9	200	Za	36	120	120	13
4	654	54	923. 2590	12.0	123	17.4	200	16	35	120	120	1/3
3	657	77	923.2910	12.0	12 3	129	20	20	35	120	120	13
2	1700	30	123.3240	12.0	12.3	12.9	2.0	40	35	120	120	14
1	703	33	723-3560	12.0	12.3	124	2.0	90	35	120	113	171
3-12	1303	36	123.3882	12.0	12.3	12.4	5-0	90	36	120	120	15
11	1710	39	423. 4214	14.0	19.4	14 . 4	20	10	35	121	121	15
142	17:3	12	123. 4590	14.0	19.4	19.4	2.0	10	36	120	118	15
9	17-16	15	13. 4130	14.0	14.4	4.4	20	90	36	120	120	14
8	1719	11	923. 5292	12.0	17.3	12.4	2.0	90	36	120	120	19
7	1722	51	93. 8662	1200	12.3	12.4	2-0	91	37	120	120	11
6	1725	54	23. 6639	12.0	12.3	12.4	2.0	71	77	120	118	14
5	17-29	57	\$23, 630G	13.0	13.3	13.9	2.0	77	37	120	120	19
1	1931	60	173 666 Y	13.0	13.3	134	1.0	17	37	120	120	14
7	1734	03	123.7002	13.0	13.3	13.4	20	1	37	120	120	13
2	1737	CC	723 7362	13-0	13.3	13.4	2.0	12	38	120	120	13
1	1790	64	723. 7640	13.0	13.3	13:1	20	25	38	120	120	15
0	1302	22	123.7992			,		13000				

Run	Total Volume	RMS Delta P
72	0.8084	3-57.73

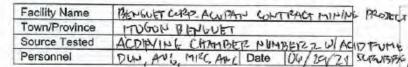
Delta H Ave.	High Vac.	Ts Ave.	Tm Ave.
12.9	2.0	40-0	36.0

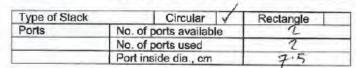
Isokinetic % 96-5

Team Leader / Date: TANTEL

DADE Date: ANGELO

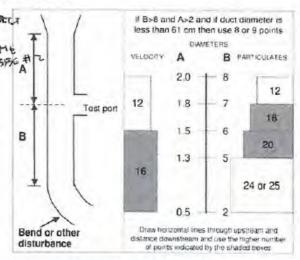
6/28/24




Shirthead with Florido bate Fob of 300

METHOD 1

TRAVERSE POINT LOCATIONS


Dimensions	Far wall to end of port, cm (a)	67
	Port length, cm (b)	10
Draw a diagram of	Stack Dia. or depth, cm (a-b)	57
the test location on	Stack width (if rectangle), cm	-
the back of the sheet	Equivalent Stack Diameter, cm	-
31000	Area of stack, m ²	0.255

Distance to flow disturbance	Meters	Diameters
Upstream (A)	2.80	4-910
Downstream (B)	1.15	7.07 D

Minimum # of trave	rse points r	equired:				
	F	Particulate traverse	24			
cicles and		Velocity traverse	09			
# of ports used						
N	umber of tra	averse points used	24			

Point#	Fraction of stack diameter	Dist. From inside wall	Port Length	Dist. From edge of port
1	0,00	1.30	10	11.3
2	0.067	3.81	10	13.8
3	0.118	6.73	10	16.7
4	0.177	10.04	10	20.1
5	0.250	(4.25	10	24.3
6	0-356	20.79	10	30.3
7	0-694	36 - 71	10	96.7
2	0.750	42.75	10	52.8
4	0.423	16.91	10	56.5
10	0.887	50-27	10	60.3
11	0.933	53.20	18	632
12	0-979	55.7	10	65.7
for stacks have	ing dia, bet. 30 to 61 cm, no 1	noverse points shall be wit	hin 1.3cm of the st	ack walls.

Note: When using 4 points in a circular duct, the probe is marked with only the points for the first half of the full diameter traverse.

Equivalent of	diameter	for rectar	igular d	luct;	
$D_e = 2 \times dep$	oth x widt	h ÷ (dept	h + wid	th)	
$D_e = 2 \times ($) x () ÷ (+)=	

	2	4	6	8	10	(12)
1	0.146	0.067	0.044	0.032	0.026	0.021
2	0.854	0.250	0.146	0.105	0.082	0.067
3	1000	0.750	0.296	0.194	0.146	0.118
4		0.933	0.704	0.323	0.266	0.177
5			0.854	0.677	0.342	0.250
6			0.956	0.806	0.658	0.356
7	1			0.895	0.774	0.644
8				0.958	0.854	0.750
9	l.				0.918	0.823
10					0.974	0.882
11						0.933
12						0.979

	2	3	4	5	6	7	В	- 6	10	11	12
	.250	167	125	160	083	071	063	056	050	045	042
	750	500	375	300	250	214	188	167	150	138	125
		833	525	500	417	357	313	278	250	227	204
			.875	700	583	500	436	389	350	318	297
				900	750	643	563	500	450	409	374
					917	786	58B	611	.550	500	458
						929	813	722	650	591	542
						-	938	833	750	682	625
								944	850	773	708
3									950	864	790
1									900	955	575
2										Morre	958

ACCEPTABLE	E MATRICES FOR SOU	ARE DUCTS
3 x 3	4 x 5	6 x 6
3 x 4	5 x 5	6×7
4 x 4	5 x 6	- 7X7

Team Leader / Date: PANHEL

QAQC / Date: ANGENO V. GUEVARSA

6/29/24

BST-FD-001 mm (in Eriscavity Date: Feb. (11, 2728

DENR ACCREDITED Source Emission Testing Firm SAT No. 2019-115 SAT No. 2021-93

EPA METHOD 1 & 2

GAS VELOCITY and CYCLONIC FLOW CHECK

Facility	BENGUET WAP-AWITHN CONTRACT	MIMPL PROTECT		Assume Values
Town/Province		V-		æ
Source	ACIDIFYING CHAMPSER # 2 WALLD	PUME SURVIGATION H	2	%BWS = 14
Personnel	DW, ANG, MPC, AMC, PMC	Bar. Pressure, inHg	27.18	MD =30.0
Date / Time	06/29/24, 0000	Pitot Coefficient	6.81	TM = 35 -=

Pitot Tube Leak Check, mmH₂O

Static Pressure, mmH₂O

Measured at which traverse point

A - 6

Traverse Point	Velocity Pressure (mmH₂O)	Temperature (°C)	Angle Which Yields Null (Degrees)
4-17	4.0	22	10
11	4 - 0	22	12
10	4.0	73	/2
9	3.6	23	13
λ	3.6	2-3	14
7	3.6	72	10
	1.0	21	12
5	6.0	211	12
1	6.0	71	14
3, 7	6.7	n	12
2	6.2	22	13
		23	11
-12	3.8	23	in
11	3.8	23	12
10	3.8	29	p
9	7.8	29	9
8	4-0	54	Ġ
2	4.0	26	h
5	4-6	20	in
5	4.6	20	13
1	4.0	21	14
3 2	5.0	31	14
2	5.0	21	13
	5.0	21	13
Average:	4.5333	21.9	12.0

Team Leader / Date:

DENR ACCREDITED
Source Emission Testing Firm
SAT No. 2019-115
SAT No. 2021-93

06/19/24

QAQC DATE: ANGELO V. GVEVAKPA

037-FD-001 -ev 06 Elfocuvior Dans, Fug. 01 - 2021

METHOD 3 FYRITE ANALYSIS FIELD DATA

Facility	BEHEVET CORP AW SAM CONTRACT MINING PROJECT	Fuel Type	FERESINE
Town/Province	MULON BENGUET	Fyrite ID	GBE-701
Source	AGDIFYING CHAMBER HT WACIP FUME SCRUBI	Analysis Location	OP-577E

	un Date		e of Analysis	% CO ₂	% O ₂	% N2
R	un Time	Tim	e of Analysis	Reading (A)	Reading (B)	100-(A+B)
Start	1050	Start	1228	0	19.0	() _ /
				0	14.3	
Stop	1205	Stop	1231	0	14.0	
l oak o	heck 🗸					
Leak C	HECK [V]		Average	0	19.0	91.0

41 17	un Date	Date	e of Analysis	% CO ₂	% O ₂	% N2
R	un Time	Tim	e of Analysis	Reading (A)	Reading (B)	100-(A+B)
Start	1212	Start	1702	0	19.0	V - 1
				Ø.	19.0	1
Stop	1358	Stop	1405	0	19.0	
l ook o	heck 🗸					
Leak C	Heck 🔽		Average	0	19.0	81.0

Run Date		of Analysis	% CO ₂	% O2	%-N2
Run Time	Time	e of Analysis	Reading (A)	Reading (B)	100-(A+B)
Start /-11	Start	1520	0	19.0	
			0	19.0	
Stop (57.5	Stop	1524	G	19.0	
Leak check					
Leak Check V		Average	0	19-8	81.0

Team Leader / Date : Day

010/ 20 24

6 29/24 6 V. GUETARIPA

Source Emission Testing Firm SAT No. 2019-115 SAT No. 2021-93

S87-AD-001 (MULTIP ETICLIAND DAIG PRO AT 2028

METHOD 4 MOISTURE ANALYSIS DATA SHEET

Facility	Benovet Corp Awa	on Contract Mining	Sample Method	6
Town/Province	Itogon, Benguet	Project	Recovery Location	on-site
Source	Acidipying Chamber	(2) W/ Acid	Personnel	AVG, DLN, MP
	Funie scrubbor			AMC, RMC
Run Number	Moistue Run	1	2	3
Test Date	6/29/24	6 29 24	6/20/24	6/20/24
Recovery Date	6/29/24	6/29/24	4/20/24	6/29/24
Recovered By	Ava	AVG	AVG	AVG
Impinger 1 100mL	3% H202	7).01	2004	7104
Final Weight, g	639.5	622-0	640.5	623.0
Initial Weight, g	636.5	611.0	629.0	611.5
Net Weight, g	3.0	11.0	11.5	11.5
Impinger 2 JOOm L	3/. 1/202			,, -
Final Weight, g	642-0	641-0	644.0	641-5
Initial Weight, g	636.5	638.0	689.5	636.0
Net Weight, g	5.5	3.0	4.5	5.5
Impinger 3 Emphy				0,0
Final Weight, g	530.5	588.5	534.5	593.5
Initial Weight, g	528.5	587.5	533.5	590.5
Net Weight, g	2. 0	1.0	1.0	3.0
Impinger 4 200a -	300g silica Gel			
Final Weight, g	776.5	831-0	781-0	836.5
Initial Weight, g	77 . 0	825-5	774-0	33b. 5
Net Weight, g	5.5	5.5	5.0	6.0
Impinger 5	0 0			6,0
Final Weight, g				
Initial Weight, g				
Net Weight, g				
Impinger 6				
Final Weight, g				
Initial Weight, g				
Net Weight, g				
Impinger 7				
Final Weight, g				
Initial Weight, g				
Net Weight, g				
Total Catch, g	14.0	20.5	21-0	26.0
Silica Gel Spent, %		10./	10:/-	10./
Filter ID #	_	0424579	0424678	0424561
Filter Wt.		0.2482	6-2470	0.2495

DENR ACCREDITED Source Emission Testing Firm SAT No. 2019-115 SAT No. 2021-93

Team Leader / Date: Date: ANGETO V. SUCAPPA

erraction V Date Feet 01 2027

ISOKINETIC FIELD DATA SHEET METHOD(S) 4

	/ Name		BENG	RTADR	2-ACUPA	TO CONT	PACI M	ואוואי פשינ	Run Ne	umber		MOILTU	et Pro
Town/	Province	3		भ उर्मि						F APCD I	nstalled		IME SCA
Source	9		ACIDIF	4116 CH	mBire p	+2 IJ/A	TUID FUM	+ Scizing	Bru Test D	ate		00/29	
Test P	ersonne	el	DIN	AVE ME	CANT	RMC	151515	2		or Signat	ure	Cur	
			,	14-11-1	27111	11.1					2	1	-
Filter ID	Tare(s)		ometria	Static		Meterbox	K		Nozzle	P	tot Tube/Probe	1	
-	-		n Hg)	Pressure (mmHg)	ID#	Garrena	Delta	H@ ID	# Diameter			ip	Probe Material
		27		- 20	GML-01	1.0107	17.1	of		GD.		29	22
			-			Train Leak Cl				- OF		ites	77
		1		Initial		In	terim		Final	Time	***		%O ₂
K Factor	-		um, inHg	15.0		X		/	10.0	0947	3 0	2	19.0
Pitot Leak	Pre-test		tate, m³/m	0 0	/		/	/	0	-	tem Leak Check	-	-
2/84			art Volume op Volume	123 8001		1		/	429.620		Ole		
20/10	r der toat	Sit	op volume	HZ3.802	1/	/	V		458.05	2 Bag ID		-	-
Port &	Time		1 000	I Danille	Pitot	Delta H	Delta H	Gauge		Tr	emperature °C		
Point	Clock (24-hr)	Test (mins)		M Reading u. Meter)	Reading (mmH ₂ O)	calc. (mmH:O)	Actual (mmH ₂ O)	Vacuum	Stack	DGM	Probe	Filter	lmp.
4-6	0994	0	177	8070	5.0		48	2.0	20	30		12+	Exit (C
1.0	0917	3	123	8712	5-0	*	18	2.0	20	30	122	1	-
-	0950	C		9002	5.0	-	-	2.0	20	30	1	120	19
	0953	9	ora	1.00	5.0	-	98	2.0		35	150	118	17
	096	12	124	0562	-		48	1	20		120	120	13
	0959	15	174		4	-	18	2.0	22	35	(20)	120	13
A-61		13		2396	5.0	-	18	200		30	120	1/8	1/3
5	1000	1	129	-	50	-	48	7.0	25	35	-	120	10
A.6	1006	14		3060	5.0	_	-	2-0	22	35	120	118	13
-	1011	27	129	- Company		-	48	2.0	70	34	120	120	13
	diam'r.	30	ma	5000	5.0	-	98		-	34	120	118	12
1 -	(0)4	33	- 00	5622	-	-	48	2 - 3	20	39	120	120	12
-	1020	_	-		5.0		40	2.0	20	39	150	120	13
A.6	122	34	914	6100									
	-												
-	-	_	-				-						
-		_	-						-				
			1										
-			-								-		
			-										4
			1										
						1							
			1										
													1
			1		1								
			1										
	Г	Run	Tols	al Volume	RMS		Delta H	High Vac.	Ts Ave.	Tm Ave.		Isokin	atio M.
		Time			Delta P		Ave.					ISCHI	- NE - NE
		46	10.	8/80	2-2361		_48	7.0	20-7	33 4		-	

Team Leader / Date:

V. GUDVARPA 6/29/24 QAQC Date: ANGE LO

ISOKINETIC FIELD DATA SHEET METHOD(S) 5/6

Facility				CORP A		MARAU	MININ		n Numbe				1	
Town/F	3.2.000			BENGI						CD Install	1	4412 1	PUMF	SURVER
Source				NG CHA			PLME SU				(26/1	9/2	1
Test P	ersonn	el	Zr. A	JL IMPE,	AME ,	Penc-		Op	erator Si	gnature		1	1	15
Charle	Tourse	p-	rometric	Otatia I							1	-		/
Filter ID	Tare(s)	P	essure	Static Pressure	iD#	Meterbox	Delta F	(@ ID	Nozzie	_	t Tube/Pro	-	Frobe Ma	terial
भरवर्ड २०	0-2-487		1-18	(mmHg) -Z·O	LM1-01	1 - Of O	-	-		09 6P-	Contract In Co.	Cp Cp	0.6	
	7	r.L.	10	-2.0	~	Train Leak Ci		ואטן אט	F-07 (0-	04 61		Fyrites	22	
				Initial		Int	terim		Final	Time		%CO ₂	960	
K Factor	3.706		oum, inHg	15.0		1			120	104	7	0	19	.0
Pitot Leak	Pre-test	-	Rate, m³/m art Volume	424 62	/		/	-/	ALC CO	O C Date O		e me	-	11
78/86	Post-test	_	op Volume	124.05	1	1/		/	125.57	3 G Bag ID	ystem Leal	A Cita	_	W_
147110				101 00	7	/			14/27- 4/	() a nog in	1/0	AUTO	-1-1-1	3/2/12-1
Port &	Clock	Test		d Reading	Pilot Reading	Delta H calc.	Delts H Actual	Gauge Vacuum		Ten	perature '	°C	-	
Point	(24-hr)	(mins)	-	J. Meter)	(mmH ₂ O)	(mmH ₂ O)	(mmH ₂ O)	(In Hg)	Stack	DGM	Probe	-		imp. Exit
	1050	0	479	4017	3.4	12.6	12.6	2-0	20	3 10	12.		17	18
-	1053	- 6	124		. 7.4	12.6	125	20	20	30	12		22	18
9	1356	5	474	7027	7.1	12.4	12.6	2.0	20	30	12	-	22	17
8	102		129	7550	3.4	12 4	12.6	2-3	22	32	120	-	20	17
-	1/05	12	979	-	3.1	12.6	12.6	2.3		32	170	- 1	0	16
-	110%	15	121	7276	5.2	190	19.9	2.0	22	34	120	-	18	(3)
5	irii	21	424		_	216	21.6	2.0	23	34	120	-		13
7	1114	29	129	9120	5.8	21-5	21.60		23	37	120	-	18 1	13
3	1112	27	129	9690	5.8	21.5	21-6	2.0		34	120		18	12
7	120	30	1125	The second second second	5.3	71.5	21.6	2.0	25	36	120		23	12
1 1	123	33	415	2420	T. 8	215	21.6	200	25	36	118		oy	15
12-12 (129/1991	36	425.	0800	4.4	16.3	16.9	2-0	25	36	120		27	15
in	1132	39	tris.	1224	44	16.3	(6.4	2-0	27	3%	12:		25	14
10	1135	12	125	. 622	4.4	16-3	16.4	2.0	20	38	120		8 /	14
	1138	15	125	2016	4.4	16.3	164	7-0	30	38	12	-	15	15
3	141	43	125	. 7164	4.1	16.3	16.4	2.0	30	38	120	17	0	14
7	1194	51	425	9672	4.2	15.6	19.6	2.0	32	32	120	1/	18	14
-	197	59		.3002	1.5	15-C	15:2	5.0	32	38	120			4
	150	57	125	3420	412	15.6	16.9	2.0	32	38	120		- 7	15
	53	Co	925		9'2	19.8		6	34	38	120			15
3 1	156	66	425	4164	4.0	14.8	19.8	2.0	34	38	120			15
1	WL	69	920		4.0	19.8	19.3	2.0	-	38	12			13
0	205	72	125		1	11.0	14.3	2.0	39	38	120	117	× /	3
V	117	10	112	74)4								-	-	
					(1)	-		-						
							1000							
		Run	Tot	el Volume	RMS		Delta H	High Vac.	Ts Ave.	Tm Ave.			sokinetic ?	*
	-	Time			Dolto P		Aye.	-						
	1	72	0.	1986	2-1003		16.6	1.0	26.7	39.4			15-1	
			1	1/1	2		,				_1	1		_ 6
		200	PONOT.		4000	n 100 -		- 2		ate: AN	//	10	WEVA	

ISOKINETIC FIELD DATA SHEET

Facility Name	BENGUETCHEP. AWPEN CONTRACT MINING PROJ ETHOCH , BEN FUET	Run Number	2
Town/Province	TTIGON, BEN FUET	Type of APCD Installed	AUDPUNESCHUS
Source	AUDIFYING CHAMISTIEFT WACHD FUME SCAN	Test Date	00/29/29
Test Personnel	DW, AUG, MIRC. AM, 12MM	Operator Signature	SAST /

FilterID	Tare(s)	Barametria	Static		Meterbox		1	lozzte	Pitot Tubel)	Probe	
SER ESTE	0-2000	Pressure (In Hg)	Pressure (mmHg)	ID#	Gamma	Delta H@	ID#	Diameter	ID# C	Cp	Probe Material
	-000-5	2719	-20	GMC-UI	1.0101	17.66	(PM)-0	6 69	60.09	0.89	I
		*		Sample	Train Leak Cha	cks				Fyrites	
			Initial		Inter	rim	-	Final	Time	%CO2	%O2
K Factor	3.600	Vacuum, inHg	5.0		1	/	/	2.0	1228	0	19.0
Pitot Leak (Checks	Leak Rate, m³/m	0	/		/	/	0	-	~	-
130/4	Pre-test	Start Volume	475.51	72/	1/	1/	1	16. 980x	Fyrite System L	eak Check	Ou
20192	Post-test	Stop Volume	425 52	72/		/	0	6.9860	Bag ID 19	CACH	25-M3/A

Port &	Tin		DGM Reading	Pilot	Delta H	Delta H	Gauge		Ter	nperature °C		
Point	Clock (24-hr)	Test (mins)	(cu. Meter)	Reading (mmH ₂ O)	calc. (mmH ₂ O)	Actual (mmH ₂ O)	Vacuum (In Hg)	Stack	DGM	Probe	Filter	Imp.
4-17	1292	0	475 5288	40	19-9	14.4	2.0	32	38	122	122	10
1)	11.15	3	125.5684	4.0	14.4	19.9	2-0	3,8	38	120	123	18
10	1290	6	75.6012	30	19.4	19.4	2-0	38	3.8	120	118	10
9	1251	9	125.6372	418	17-3	17.4	2.0	38	32	120	122	14
8	1254	12	15.6722	9.8	17.3	74	200	38	38	1115	122	19
7	1297	15	1297196	4.8	17-3	17.9	20	38	38	120	120	15
Ç.	1300	13	725.7522	V 12	17-3	17.4	200	78	28	12	120	1/4
5	1303	21	125.7984	5.1	18.7	18.8	2.0	38	38	120	121	11
4	1306	29	725 8339	5.7	18.7	18.2	200	38	39	120	122	19
3	(309	27	125. 820	5-2	18.7	18.8	2.0	3-7	39	120	120	1
2	1312	30	125 710	7.0	25-2	29-7	7.0	79	34	120	120	12
	1315	33	725.9690	710	29.2	25.2	2.0	39	39	120	120	12
-12	13/222	36	126.0156	5.0	17.9	180	9.0	10	39	108	115	10
11	1325	301	46.0564	5-0	17 9	180	2.0	90	39	115	1/8	13
10	1328	12	16.1502	5.0	12.9	180	2.0	40	39	120	120	15
9	1331	竹	16 352	5.0	1914	180	5.0	10	39	120	118	13
3	1334	93	17he 1732	9.8	13.3	14-4	2.0	41	32	150	119	1
7	1337	5/	974 20R4	98	7.3	17.4	20	41	38	120	120	1
6	1340	50	14. 2540	4.2	17.3	17:04	2.0	41	38	120	112	14
5	1343	57	1260. 2930	4.8	17.3	17:4	2.0	91	37	120	120	13
4	13980	60	126.3100	9.2	152	15 2	2	40	37	120	120	13
3	1349	63	124. 3698	1.2	15.2	15.2	2.0	40	37	120	118	1
4	1352	64	126. 407 0	4.2	15.2	15-2	2.0	90	37	120	118	1
1	1355	Ca	126 ATO	12	15.2	15.2	2.0	10	37	120	120	1
0	1358	72	14. 4301		137-313	L William						
	0.00	1								Chical		

Run	Total Volume	RMS Delta P
72	0.996	2-2001

	Web.	High Vac.	Ta Ave.	Tm Ava.
117	.6	2.0	39.3	38-1

Isokinetio % 97.5

Team Leader / Date: Thit & Northwood

DAGE Date: ANGEN V. GUENAPEA

ISOKINETIC FIELD DATA SHEET METHOD(S) 5/C

Facility Name	BENGUET CORP-AW PAY CONTRACT MINING PROTECT	-Run Number	3
Town/Province	ITOLOP, BENEUET		MID FUNE SINGS
Source	ACIDIFUNG CHAMBERS # ZW/ACID FUME SCAUBBORD		06/25/79
Test Personnel	DIN, MUL, MPC, AMC, PLACE	Operator Signature	

Filter ID	Tare(s)	Barometric	Static		Meterbox		No	zzle	Pitot Tul	be/Probe	Probe
A24561	0-2999		(mmHg)	10#	Gamma	Delta H@	ID#	Diameter	ID#	Ср	Material
		27.70	-2.0	GMC-01	1-0102	17.6c	4-17-03	6.09	CF-04	0.84	22
				Sample	Train Leak Chec	ks				Fyrites	
			Initial		Interi	m		Final	Time	%CO2	%O ₂
K Factor	3.989	Vacuum, inHg	15.0		/	/	/	2.0	1402	0	140
Pitet Leak (Checks	Leak Rate, m ³ /m	0	/				0		-	
240/04	Pre-test	Start Volume	426.49	194	1	1/	14	27.99	Fyrite System Le	ak Check	OK
20/90	Post-test	Stop Volume	926.98		1/	1	d	7. 7997	Bag ID	RCACMP	5-M3/41

Port &	Tin		DGM Reading	Pitot	Delta H	Delta H	Gauge		Te	emperature *C		
Point	(24-hr)	Test (mins)	(cu. Meter)	(mmH ₂ O)	(mmH ₂ O)	Actual (mmH ₂ O)	(In Hg)	Stack	DGM	Pilibe	Filter	imp.
9-12	(41)	0	14.4910	3-4	11.9	12.3	2.0	34	34	123	120	16
(1	1914	3	The 5234	7.4	11.9	120	2.0	37	34	119	123	A
10	107	4	120. 5506	34	119	12.0	2-0	34	3<1	120	123	14
9	1920	9	16 5890	3 1	11.9	12.0	2.0	34	34	118	1/9	175
8	1113	12	126 C204	50	17.4	17 -4	2.0	36	34	120	1/20	13
7	126	12	TV6 6560	5.0	17.9	17.4	20	36	36	120	120	14
6	104	19	TV6. 6952	5.0	17:4	17/1	20	36	36	120	118	12
5	1432	Zi	14. 7308	6.0	17:1	174	1.0	38	36	120	120	12
4	1435	29	26. 7782	5.0	17. 1	17.4	2.0	38	3,6	118	1/3	13
3	14138	22	120 8180	5.0	17-4	17.4	2.0	38	36	120	120	12
2	1991	20	126. 8600	7.2	75.1	75.2	2.0	39	37	120	120	15
	994	73	4L6 8940	22	251	75.1	20	38	37	120	120	12
7-12	14 799	34	94,9414	7.2	251	25.2	2.0	38	37	120	120	17
11	1452	301	Tu 9920	4.5	251	25.2	200	3,8	37	120	118	1:
0	1472	12	17 0330	6.0	200	21.0	2.0	38	37	120	120	16
9	1458	05	122.0261	6.0	20.9	210	2-0	38	22	120	118	14
8	1501	48	127 (184	6.0	20.9	21.0	2.0	38	37	120	120	14
7	504	51	172.1630	6.0	20.9	21.0	2.0	38	37	120	1/8	14
C	1507	54	127.2069	5.2	181	18.2	2.0	39	37	120	120	110
5	1510	3	177:2958	5.2	18-1	18.2	2.0	39	38	120	120	16
1	1513	60	1977. 264	5-2	18-1	18-2	2-0	79	3%	120	120	18
3	1516	63	127. 3309	5.2	18-1	18.2	7.0	39	38	170	172	16
7	1519	66	927. 3650	5.0	17.4	19.4	200	79	38	120	120	14
1	1527	Ga	127.4030	50	17:4	17-4	2.3	39	38	120	120	11
0	1525	72	19771996		70000							1

Run	Total Volume	RMS Delta P
72	0.9536	2-2882

Delta H Ave.	High Vac.	Ts Ave.	Tm Ave.
18.5	2.0	37.4	364

Isokinetic % 94. 7

Team Leader / Date: partie L. Deoropo Jr.

04/29/24

QAQCTDate: ANGRIO V. GUDIARRA 6/29/24

METHOD 7 FLASK SAMPLE AND RECOVERY DATA

Town/Province Source Facility

Personnel Test Date

beneuet wardowation - Acudan Contract mining

Absorbing Solution, Volume, ml 25 Heated Probe? (check) Yes

ACADITATION CHAMIDER NO. 2 IN ACID FUME BALATOC, VIRAC, ITDION BEMILLET AVU, MKC, DLM, AMC, RING 12 29 24

Filter Used? (check) Yes -Remarks

- 11	2	Temp (3)	31.1	3.18	31.9	
"if no, explain in "Remarks" "if no, explain in "Remarks"		Flask Abs Press Initial Pf. Poer- (InHg)	26.10	29.78	25.87	
cplain in cplain in	S Records Lifes	Final Pressure Pgf (inHg)	1.02	1.34	1.25 25.	
1f no, e	A TO	Sample Recovery Time ² (24-hour)	100)	200	600)	
, , ,	Bar, Pressure, O	Shaken for 2mins?	XX	VES	763	
o v	_					

Shaken For Smins?

Sample Callection Time² (24-Hour)

Fask (*C)

Flask Abs Press Initial Pt. Pbar Pgl (inHg)

Evacuated Pressure Pgr¹ (inHg)

Leak Check <0.4 (InHg/min)

Flask Volume (mL)

Flask

Sample (From Sample Label)

Run Number

Box, Pressure, (In Hg) 24-10

Post

12

路 1132

> 1.83 289

74.79

1.32

25.88

8

4

19 \$ 自

· M7- RIB - M7- RIC

BCACUMP - S

McAconp -

29.2

-08 1.4

100

000 8

212 te. 50 2547. 50 22.24. 40

\$

BCAUMBG- MIT - MIX

Post

By (Init) AMC.

Bar, Pressure, (in Hg) 23 18 Date Performed: (c/25) 75

Time 1324

> 28. 4 29.9

24.98 pt. 32 60.72

8 8

2221.90

1 my - 424 M7- 18218 M7 - 1820

incacinp -

MCACAIP-MCACIND-

Sample ID

241.12

五

世

Vol. (mL.)

2

183 (-12 (.16 25.	Date: C	10/2	4	By (rik): D	200
1.4	763	10/2	1.16	25.96	31.0
	عو	5101	14	25.71	32.
Mrs 1018 1:12 26	Z	1018	1.12	26.0	32.

1870

1.44 1

28.7

DIK

2027.20

3

By (rie) De	25.96 31.	25.71 32.	26.0 32.	1	ey earl: DL	25.85 31.	25.76 32.	25.54 27.	-
6	20	2	2	4	, A	_	2	2	
	(.16	14	1:12		12	なら	136	1.50	-
Date 67/10/12	2101	5101	1018		力のなか	(sal	1201	4201	
Deter C	7	عو	¥		Bor, Prosture Date: 0	X	3	5	3
a from	2	15	2	7		支	3	148	

200

							Ber, Pressure,	Ber. Prossure, (In Hg) 27. F.	WH-	System Lost Disc. Pro Pro Post -	Pro Pro	Post
Run No.		Sa	Sample ID	-	Flask ID	Vot. (mL)	Leak Chk	(InHg)		Temp. (°C)	Time	ŝ
6	10chcup-	-	- M7-RRA	45	1	2007 00 5725	DO	IF. 84	16-1	6.82	4h1	Ľ
	Bacamo -	2	- M7- RYB	OB3	00	2225. 00	75	张. 孙	1.4	\$.87	1418	
	bc4cmp- 5	5	5 - M7-KBG		P 0	2220. W	DR	25.29		1.58 88.5	MIN	
	Source Oxygen % Concentration?	Conc.	Sentration?				9	М-0%.		,	(

Source Oxygen % Concentration? Was Additional Oxygen Introduced to the Flask? (circle)

Pg. the initial fack prossure, must be evacuated to within 3 inches of mercany (inhig) of the absolute pressure (Blarometric Pressure).

*Addillonal oxygen should be introduced to the fleak if the Source O: is below 3%

*Islank must be stand for 16sours or greater after sampling before recovery can be performed.

DENR ACCREBITED SOUTO Ensolo Tocky Firm SAT No. 2010 **15 SAT No. 2021-43

Toam Leader | Date: Defellon C. MAN 10 Am Ja

V-GUOTARPA VANCE PORTE ANGELO the 100

(2)

Yes

6 29/24

"APPENDIX C"

PROCESS DATA

GREENTEK MONITORING LOGSHEET

	Benguet Corporation - Acupan Contract Mining Project (BC-ACUP Assay Laboratory & Mill Refinery)
Facility Information	COC ACUE ACON Laboration & Hill Refinent
FACILITY NAME	
LOCATION	Balatoc, Virac, Itogon, Benguet
PCO NAME	Ms. Jemimah R. Galayog
TELEPHONE/FAX NUMBER	0917-136-1496
EMAIL ADDRESS	h
DATE OF SAMPLING	June 28, 2024
STACK TEST PERSONNEL	AVG. DLN, MPC, ADM
Course Decembries	
SOURCE TESTED (ID or NAME used by Facility)	Dust collection Facility Justem
SOURCE TYPE (Genset, Boiler, etc.)	(1) Jaw Crusher, (2) Poller Crushers, (2) Pulvarizers
BRAND (Made by)	Stunetant BICO
RATED CAPACITY (with units: BHp, MW, MT/hr., etc.)	0.06 MT/hr, 0.06 M+ /hr, 0.041 MT/hr
DATE CONSTRUCT STARTED (on source) month/year	V.SEPT. 2012
DATE OF ANY MODIFICATION (that increased emissions)	Na
HAS THE SOURCE BEEN MOVED (Specify Date)	YES / NO If Yes, Date Moved:
EXISTING (const. before 11/25/00) or NEW (or modified) SOURCE	EXISTING SOURCE / NEW SOURCE
OPERATION (estimated hours per year for source)	VISIO HRS / YEAR
TYPE OF APCD* (baghouse, ESP, cyclone, scrubber, etc.)	Dust schubber
DATE OF APCD INSTALLED	VCEPT. 2018
TOTAL STACK HEIGHT (m, ft., etc.)	3M)
STACK ORIENTATION	VERTICAL / HORIZONTAL V w/ w/o Cover
* APCD – Air Pollution Control Device	
* This item is critical for determining the standards that apply to the	emission point
Fuel Information	+1441 6144
TYPE OF FUEL USED, %S (during sampling)	Electricity
ORIGINAL FUEL USED, %S DATE FUEL CHANGE?	tiech a D
ACTUAL FUEL CONSUMPTION DURING SAMPLING (liters, kg, etc.)	n C
* Provide Certificate of Fuel Analysis for strict compliance with DEN	IR
Trovide delaneate of Facilitary sis for safet compilation with DEI	
Process Information	
OPERATING RATE DURING TESTING?	100.
IS THE APCD OPERATING DURING SAMPLING?	YES / NO
IS PROCESS LOGSHEET PROVIDED BY THE PLANT?	YES / NO
PRODUCTION OUTPUT DURING SAMPLING	V 30 KLOGRAMS
NOTES:	h miles
	Raymundo ED
W/ EMB - CAR Representative: Zarth	haymunded
- Em	
Information recorded/gathered by:	nformation supplied by:
	JEMINAH P. CALAYOG
ANGOLO V. GUEVARPA	
Name and signature of GEPC personnel on site	Name and signature of facility representative
DENR ACCREDITED	
Source Emission Testing Firm	SST-FD-001 rev.06
SAT No. 2019-115 SAT No. 2021-93	The state of the s

GREENTEK MONITORING LOGSHEET

FACILITY NAME	Benquet comporation - Awpan contract mining f
LOCATION	Balatoc, Itogon, Benovet
PCO NAME	Ms. Jemiman R. Jahua
TELEPHONE/FAX NUMBER	0917-136-1496
EMAIL ADDRESS	
DATE OF SAMPLING	June 29, 2024
STACK TEST PERSONNEL	AVG. DLN. MPC. AMC, RNC
Source Description	Acidiquina Chamber H O . I daid Fine
SOURCE TESTED (ID or NAME used by Facility)	Acidifying Chamber # 2 W Acid Fume
SOURCE TYPE (Genset, Boiler, etc.)	Acid chamber
BRAND (Made by)	Fabricated .
RATED CAPACITY (with units: BHp, MW, MT/hr., etc.)	Ja
DATE CONSTRUCT STARTED (on source) month/year	2003
DATE OF ANY MODIFICATION (that increased emissions)	NA
HAS THE SOURCE BEEN MOVED (Specify Date)	YES / NO) If Yes, Date Moved:
EXISTING (const. before 11/25/00) or NEW (or modified) SOURCE	EXISTING SOURCE / NEW SOURCE
OPERATION (estimated hours per year for source)	JUL. 05 MM.
TYPE OF APCD* (baghouse, ESP, cyclone, scrubber, etc.)	5013 CFM Verantis Acid Fume embber System
DATE OF APCD INSTALLED	2013
TOTAL STACK HEIGHT (m, ft., etc.)	
STACK ORIENTATION	VERTICAL / HORIZONTAL W/Wo Cover
* APCD – Air Pollution Control Device	
* This item is critical for determining the standards that apply to the	emission point
Fuel Information	
TYPE OF FUEL USED, %S (during sampling)	KEROJENE
ORIGINAL FUEL USED, %S	KEBOJENE
DATE FUEL CHANGE?	Na
ACTUAL FUEL CONSUMPTION DURING SAMPLING (liters, kg, etc.)	V 153-LITERS
* Provide Certificate of Fuel Analysis for strict compliance with DEN	VR
Process Information	100.1
OPERATING RATE DURING TESTING?	1007.
IS THE APCD OPERATING DURING SAMPLING?	KES / NO
IS PROCESS LOGSHEET PROVIDED BY THE PLANT?	YES / (0)
PRODUCTION OUTPUT DURING SAMPLING	188 05 OF 6000
NOTES:	
Information recorded/gathered by:	Information augustical
	Information supplied by.
ANGELO N. GUEVAREA	JEMINAU R. ALAYOG
ANGELO N. GUEVAREA	
Name and signature of GEPC personnel on site	Name and signature of facility representative
DENR ACCREDITED	
Source Emission Testing Firm SAT No. 2019-115	SST-FD-001 rev.06
SAT No. 2019-115 SAT No. 2021-93	Effectivity Date: Feb. 01, 2023

Customer:

CHEVRON PHILIPPINES, INC.

Reference:

0060-0424-CVX

Location:

Batangas Terminal

Sample No.:

Date Tested:

BT-0089-04/24

Date Received: April 14, 2024

April 14, 2024

Product:

Tank

Kerosene

Batch Number:

Sample Description As Declared:

110

Sample Type:

Composite (U, M, L)

Sampling Date: April 14, 2024

Sampling Time: 2110H

Date Released: April 14, 2024

The above sample was tested in accordance with the test method(s) stipulated, with the result(s) as follows:

TEST CONDUCTED	METHOD	UNIT	SPECIFICATION	RESULT
Appearance	Visual Inspection		Clear and Bright	Clear and Bright
*Burning Quality	ASTM D187		Pass	Pass
Color, Saybolt	ASTM D156		+16 Min	+24
Density at 15°C	ASTM D4052	kg/L	Report	0.7934
*Distillation, Recovered Basis				
Initial Boiling Point	ASTM D86	•c	Report	148.0
10% Recovered	ASTM D86	•с	205 Max	168.0
50% Recovered	ASTM D86	•c	Report	194.0
90% Recovered	ASTM D86	*C	Report	240.0
Final Bolling Point	ASTM D86	*C	300 Max	262.0
Flash Point, TCC	ASTM D56	°C	38 Min	39.5
*Smoke Point	ASTM D1322	mm	20 Min	24.0
*Sulfur Content	ASTM D4294	% mass	0.30 Max	0.209

Remarks:

1. The above results are descriptive of the sample tested and will be descriptive of the entire batch If the sample taken is fair and the proper procedures have been followed.

2. "The result indicated is traceable to Certificate of Quality with Report No. YL24-20027053-D (MT Son Jack Voyage Number 90015).

PREPARED BY:

Registered Chemist

PRC Ucense No. 0013859

RECEIVED BY/ DATE:

Oil Movements and Shippi

APPROVED BY:

Original Copy Signed

Manuel A. Bringuela, Jr.

Registered Chemist

PRC License No. 0006646

This report (including any enclosures and attachments hereof) has been prepared for the exclusive use and benefit of the addressee(s) and solely for the purpose for which it is intended. Unless Intertek Philippines provide or express prior written consent no part of this report should be reproduced, distributed, or communicated to any third party. We do third party in respect of this report has been used maliciously or used for purpose other than it was originally intended or stated, nor do we owe any duty of care to arrace 1 or 1

One (1) unit 46.58 m3/min Krypton Dust Collection Facility System Stack Sampling for Methods 5 – Run 1

One (1) unit 46.58 m3/min Krypton Dust Collection Facility System Stack Sampling for Methods 5 – Run 2

One (1) unit 46.58 m3/min Krypton Dust Collection Facility System Stack Sampling for Methods 5 – Run 3

One (1) unit 5,013CFM Verantis Acid Fume Scrubber

One (1) unit 5,013CFM Verantis Acid Fume Scrubber Stack Sampling for Methods 5 – Run 1

One (1) unit 5,013CFM Verantis Acid Fume Scrubber Stack Sampling for Methods 5 – Run 1

One (1) unit 5,013CFM Verantis Acid Fume Scrubber Stack Sampling for Methods 5 – Run 2

One (1) unit 5,013CFM Verantis Acid Fume Scrubber Stack Sampling for Methods 5 – Run 2

One (1) unit 5,013CFM Verantis Acid Fume Scrubber Stack Sampling for Methods 5 – Run 3

"APPENDIX D"

ANALYTICAL DATA

OSTREAMMERAL LABORATORES, Inc.

Assaying and Environmental Testing Specialist

Berangay Road, Bo. Mampietan, Bifian, Lagure, Philippines 4024 Telefax : (02) 669-9058; (049) 539-0102; (02) 848-951 Ernell : customer.sen/te@ostre/ebs.com.ph

USEPA METHOD 5 ANALYTICAL DATA SHEET

Source: 46.58 m3/min Krypton Dust Collection Facility System

RAN No.: B-27924

Date Analyzed: July 5 - 12, 2024

Analytical Balance: KERN & Sohn ABJ 220-4NM

Sensitivity: 0.1mg

SAMPLE ID	Units	Run 1	Run2	Run 3
FILTER ANALYSIS				Truit V
Filter ID		03245159	12235247	03245145
Filter appearance/observations			Off white	1 00210110
Initial weight	g	0.2527	0.2456	0.2533
Final weight	g	0.2552	0.2482	0.2559
Particulate Mass filter, m	9	0.0025	0.0026	0.0026
ACETONE RINSE ANALYSIS				0.0020
Dried PM rinse appearance			Off white	
Acetone rinse, volume, A ,	mL	65	72	66
Beaker ID		SP29	SP28	SP30
Initial weight, beaker	9	76.7210	76.7441	76.2114
Final weight, beaker	g	76.7211	76.7442	76.2114
Particulate Mass, acetone rinse, m a	g	0.0001	0.0001	0.0000
ACETONE REAGENT BLANK				0.0000
Acetone blank volume, A b	mL.	83	83	83
Acetone blank mass, A m *	g	65.2131	65.2131	65,2131
Beaker ID		SP04	SP04	SP04
Initial weight, beaker	g	77.7721	77,7721	77,7721
Final weight, beaker	g	77.7724	77,7724	77.7724
Particulate Mass, blank, m b	g	0.0003	0.0003	0.0003
C _b = m _b /A _b	g/mL	3.61446E-06	3.61446E-06	3.61446E-06
Acetone blank, W b = C b x A r	g	0.0002	0.0003	0.0002
Acetone Residue, <0.001	%	0.0005	0.0005	0.0002

^{*} Density of acctone 0.7857 g/mL

^{**} Acetone residue should be less than 0.001% otherwise apply corresponding correction factor from Total PM. Acetone residue, % - m _b / a _{in} x 100

Total PM = m _f + m _{at} - W _b	mg	2.3	2.4	2.3
				2.0

Analyzed by: Vka S. Diaz

Reviewed by: Kemberly M. Carain

OSTREAMMERAL LABORATORES, Inc.

Assaying and Environmental Testing Specialist

Barangey Road. Bo. Mampiesan, Birlan, Lagune, Philippines 4024 Telefax (02) 839-9056: (049) 539-0102: (02) 849-9951 Ernail customer.sen/ice@ostraciabs.com.ph

USEPA METHOD 5 ANALYTICAL DATA SHEET

Source: 5,013CFM Verantis Acid Fume Scrubber #2

RAN No.: B-27925

Date Analyzed: July 5 - 12, 2024

Analytical Balance: KERN & Sohn ABJ 220-4NM

Sensitivity: 0.1mg

SAMPLE ID	Units	Run 1	Run2	Run 3
FILTER ANALYSIS			3.1111	T THE T
Filter ID		0424579	0424878	0424561
Filter appearance/observations			Gray particulates	7.2.00
Initial weight	g	0.2482	0.2470	0.2495
Final weight	g	0.2922	0.2970	0.2982
Particulate Mass filter, m r	9	0.0440	0.0500	0.0487
ACETONE RINSE ANALYSIS				515,161
Dried PM rinse appearance			Gray particulates	
Acetone rinse, volume, A ,	mL	66	69	67
BeakerID		SP31	SP32	SP33
Initial weight, beaker	g	76.7210	76.7441	76,2114
Final weight, beaker	9	76.7290	76.7500	76.2244
Particulate Mass, acetone rinse, m a	g	0.0080	0.0059	0.0130
ACETONE REAGENT BLANK				
Acetone blank volume, A b	mL	83	83	83
Acetone blank mass, A m *	g	65.2131	65.2131	65.2131
Beaker ID		SP04	SP04	SP04
Initial weight, beaker	g	77.7721	77.7721	77.7721
Final weight, beaker	9	77.7724	77.7724	77,7724
Particulate Mass, blank, m b	g	0.0003	0.0003	0.0003
C _b = m _b /A _b	g/mL	3.61446E-06	3.61446E-06	3.61446E-06
Acetone blank, W _b = C b x A _r	g	0.0002	0.0003	0.0002
Acetone Residue, <0.001	%	0.0005	0.0005	0.0005

Density of acetone 0.7857 g/mL

^{**} Acetone residue should be less than 0.001% otherwise apply corresponding correction factor from Total PM. Acetone residue, % - m_b / a_m x 100

T-1-1 D11				
Total PM = m _f + m _{ar} - W _b	mg	51.7	55.6	61.4
			0,00	01.4

Analyzed by: Wa S. Diaz

Reviewed by: Kemberly M. Caraig

OSTREAMMERAL LABORATORES. nc.

Assaving and Environmental Testing Specialist

Sarangey Road. Bo. Mampissan, Biffan, Laguna, Philippines 4024 Telefax (02) 889-9058; (049) 539-0102; (02) 848-8951 Email customer.service@ostrealabs.com.ph

USEPA METHOD 8 ANALYTICAL DATA SHEET

Source: 5,013CFM Verantis Acid Fume Scrubber #2

RAN No.: B-27925

Date Analyzed: July 8, 2024

SAMPLE ID	1	1.444 1.27 34					
SAMPLE ID	Sample V _{soln}	Aliquot Va	Titrant (T1)	Titrant (T1)	Titrant Vave	Titrant V _{blk}	Mass SO ₂ ,mg
Run 1	1000	10	5.4	5.3	5.35	0	159.4
Run 2	1000	10	5.6	5.5	5.55	0	165.3
Run 3	1000	10	5.2	5.3	5.25	0	156.4

Mass SO₂, mg = (32.03)(N_{BeCl2})(V_{ave}-V_{blk})
$$\left[\frac{V_{soin}}{V_a}\right]$$

Trial No.	Volume, mi H ₂ SO ₄	Normality, H ₂ SO ₄	Volume, ml BaCl ₂	Normality BaCl ₂
1	25	0.0109	29.1	0.009364
2	25	0.0109	29.2	0.009332

Analyzed by: Lyka S. Diaz

Reviewed by: Kemberly M. Caraig

OSTREAMNERAL LABORATORES, INC.

Assaying and Environmental Testing Specialist

Barangey Road, Bo. Marriplesan, Billian, Laguria, Philippines 4024 Telefax : (02) 889-9058; (049) 539-0102; (02) 848-6951 Email : customer.service@ostrealebs.com.ph

USEPA METHOD 7 ANALYTICAL DATA SHEET

Source: 5,013CFM Verantis Acid Fume Scrubber #2

RAN No.: B-27925

Date Analyzed: July 9, 2024

SAMPLE ID	Sample absorbance, A	Blank adjusted absorbance, A1	Dilution factor, F	Total Mass Nox as NO 2 in sample, m (ug)
Run 1A	0.245	0.245	1	439
Run 1B	0.265	0.265	1	474
Run 1C	0.271	0.271	1	485
Run 2A	0.235	0.235	1	421
Run 2B	0.268	0.268	1	480
Run 2C	0.244	0.244	1	437
Run 3A	0.263	0.263	1	471
Run 3B	0.271	0.271	1	485
Run 3C	0.256	0.256	1	458

Total NO2 / sample, ug = 2 Kc A1 F

 Blank Absorbance
 0

 Aliquot Factor
 2

 Calibration Factor
 894.95

Note: If other than 25 ml aliquot is used for analysis, the factor 2 must be replaced by a corresponding factor

Analyzed by: Lyka S. Diaz

Reviewed by: Kemberly M. Caraig

3F, Hizon Building, #29 Quezon Ave., Quezon City, Metro Manila Tel. No.: (02) 7341-0962 | Mobile No.: +593173248175 Email: greentechlab@yahoo.com ENVIRONMENTAL LABORATORY
DEPARTMENT
Doc No. E-001

Certificate of Analysis

Client Name	Greentek Environme	Greentek Environmental Phils. Co.							
Address		353 RJ Place Bldg. Unit 3A, Selya St. Pandacan, Manila							
Sample Source	Stack	COA No.	GLAS-24-253						
Date of Sampling	June 29, 2024	RAN No.	RAN-24-059	_					
Date of Analysis	July 5, 2024	Laboratory Nos.	A-24-0902 to A-24-0904	_					

	F	re-Test Calibration	Check	
Time:	Gas Value (ppm)	CO Response	%Difference	Ar i Triani
1244H	Cas vaide (ppiii)	(ppm)	(% span)	Status (≤2% span
Zero Gas	0	0	0	Passed
CO Gas	513	513.2	0.0	Passed

Note: % Difference = (Gas Value - CO Response)/Gas Value x 100

		Results		
Parameter	Laboratory No.	Sample ID	Run No.	Result (ppm)
	A-24-0902		1	111
00	A-24-0903	BCACMP-S	2	115
CO A-24-0903 A-24-0904		3	117	
(ppm)				
			18 18 18 18 18	

	P	ost-Test Calibration	Check		
Time: 1532H	Gas Value (ppm)	CO Response (ppm)	% Drift (% span)	Status (≤10% span	
Zero Gas 0		0	0	Passed	
CO Gas	513	512.8	0.1	Passed	

Note: % Drift = CO response (pre-test) - CO response (post-test)/Gas Value x 100

REMARKS:

- Method of Analysis used: USEPA 40 CFR Appendix A-4 to Part 60 Method 10
- The gas analyzer used throughout the analysis is HORIBA PG-350 S/N: 2JFEHYJ2.
- The result values shown are based only upon the samples collected and submitted by Greentek Environmental Phils. Co. on July 5, 2024.
- 4. The test results shall be reproduced only in full and with approval of the laboratory.

Analyzed by:

Ruth Kathleen L. Telada

Laboratory Analyst PRC License No. 0001417 Certified by:

Alma A. Hascual-Ferareza

Laboratory Head PRC License No. 0004984 Approyed, by:

Engr. Wilma/R. Uyaco

Managing Director

ENVIRONMENTAL PHILS. CO.

CHAIN OF CUSTODY, RECORD AND SAMPLE LOG

Name of firm: GREENTEK ENIVIRONMENTAL PHILS. CO.

Tested by QAQC & Team Leader: Angelo V. Guevarra

Address: 2353 RJ PLACE BLDG. UNIT 3A, SELYA ST. PANDACAN, MANILA

Type of fuel used by the facility during sampling: ELECTRICITY

Source: 46.58 m3/min Krypton Dust Collection Facility System

	Sample ID No. & Description			5 0.00 200	The same of		Analysis
Sample ID	Sample Method	Run #	Train Fraction	Sample Date	Sample Type	Type of Container	Requested
BCACMP - D - R1	M5	1	FH ACETONE	28-Jun-24	ACETONE	PE BOTTLE	PM
BCACMP - D - M5 - FILTER - R1	M5	1	FILTER	28-Jun-24	FILTER	PETRI DISH	PM
Filter Id: 0324S159 Filter Wt: 0.2527							
BCACMP - D - R2	M5	2	FH ACETONE	28-Jun-24	ACETONE	PE BOTTLE	PM
BCACMP - D - M5 - FILTER - R2	M5	2	FILTER	28-Jun-24	FILTER	PETRI DISH	PM
Filter Id: 1223S247 Filter Wt: 0.2456							
BCACMP - D - R3	M5	. 3	FH ACETONE	28-Jun-24	ACETONE	PE BOTTLE	PM
BCACMP - D - M5 - FILTER - R3	M5	3	FILTER	28-Jun-24	FILTER	PETRI DISH	PM
Filter Id: 0324S145 Filter Wt: 0.2533							
BCACMP - D - BLANK	M5	1, 2, 3	FH ACETONE	28-Jun-24	ACETONE	PE BOTTLE	PM
BCACMP - D - M5 - FILTER - BLANK Filter ID : Filter Wt.	M5	1, 2, 3	FILTER	28-Jun-24	FILTER	PETRI DISH	PM

To be assigned by the laboratory staff RAN# (Request for Analysis Number)	
	1.

Submitted by:

JAnime DETERA 17 05/2024 Signature and Date

Received by:

07/05

Signature and Date

ENVIRONMENTAL PHILS. Co.

CHAIN OF CUSTODY, RECORD AND SAMPLE LOG

Name of firm: GREENTEK ENIVIRONMENTAL PHILS. CO. Tested by QAQC & Team Leader: Angelo V. Guevarra

Address: 2353 RJ PLACE BLDG. UNIT 3A, SELYA ST. PANDACAN, MANILA

Type of fuel used by the facility during sampling: KEROSENE

Source: 5,013 CFM Verantis Acid Fume Scrubber

	Sample ID No. & Description					Law allegation	Analysis
Sample ID	Sample Method	Run#	Train Fraction	Sample Date	Sample Type	Type of Container	Requested
BCACMP - S - R1	M5	1	FH ACETONE	29-Jun-24	ACETONE	PE BOTTLE	PM
BCACMP - S - M5 - FILTER - R1	M5	1	FILTER	29-Jun-24	FILTER	PETRI DISH	PM
Filter Id: 0424579 Filter Wt: 0.2482							
BCACMP - S - R2	M5	2	FH ACETONE	29-Jun-24	ACETONE	PE BOTTLE	PM
BCACMP - S - M5 - FILTER - R2	M5	2	FILTER	29-Jun-24	FILTER	PETRI DISH	PM
Filter Id: 0424S78 Filter Wt: 0.2470							
BCACMP - S - R3	M5	3	FH ACETONE	29-Jun-24	ACETONE	PE BOTTLE	PM
BCACMP - S - M5 - FILTER - R3	M5	3	FILTER	29-Jun-24	FILTER	PETRI DISH	PM
Filter Id: 0424S61 Filter Wt: 0.2495							
BCACMP - S - BLANK	M5	1, 2, 3	FH ACETONE	29-Jun-24	ACETONE	PE BOTTLE	PM
BCACMP - S - M5 - FILTER - BLANK	M5	1, 2, 3	FILTER	29-Jun-24	FILTER	PETRI DISH	PM
Filter ID ; Filter Wt.							

To be assigned by the laboratory staff RAN# (Request for Analysis Number)		
	14.	

Submitted by:

IANINE DELENA D

17/05/24

Received by:

07/05

ignature and Date

me of firm: GREENTEK ENIVIRONMENTAL	PHILS. CO.			Tested by QAQC & Team	Leader: Angelo V. Gue	evarra	
dress: 2353 RJ PLACE BLDG, UNIT 3A, SEL urce:5,013 CFM Verantis Acid Fume Scrub		AN, MANIL	Α	Type of fuel used by the fa	acility during sampling:	KEROSENE	
		ole ID No. &	Description			1	Analysis
Sample ID	Sample Method	Run#	Train Fraction	Sample Date	Sample Type	Type of Container	Requeste
BCACMP - S - R1	M6	1	IMPINGER	29-Jun-24	3% H2O2	PE BOTTLE	SOx
BCACMP - S - R2	M6	2	IMPINGER	29-Jun-24	3% H ₂ O ₂	PE BOTTLE	SOx
BCACMP - S - R3	M6	3	IMPINGER	29-Jun-24	3% H ₂ O ₂	PE BOTTLE	SOx
BCACMP - S - BLANK	M6	BLANK		29-Jun-24	3% H ₂ O ₂	PE BOTTLE	SOx
be assigned by the laboratory staff RAN# (Request for Analysis Nu	mber)	A					

ENVIRONMENTAL PHILS. CO.

CHAIN OF CUSTODY, RECORD AND SAMPLE LOG

Name of firm: GREENTEK ENIVIRONMENTAL PHILS, CO.

Tested by QAQC & Team Leader: Angelo V. Guevarra

Address: 2353 RJ PLACE BLDG, UNIT 3A, SELYA ST, PANDACAN, MANILA

Type of fuel used by the facility during sampling: KEROSENE

Source; 5.013 CFM Verantis Acid Fume Scrubber

4. 3.4.1.1	Sample ID No. & Description			20000000	E1 - 7. E - 1	Construction of	Analysis
Sample ID	Sample Method	Run #	Train Fraction	Sample Date	Sample Type	Type of Container	Requested
BCACMP - S - R1A	M7	1	FLASK	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - R1B	M7	2	FLASK	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - R1C	M7	3	FLASK:	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - R2A	M7	1	FLASK	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - R2B	M7	2	FLASK	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - R2C	M7	3	FLASK	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - R3A	M7	1	FLASK	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - R3B	M7	2	FLASK	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - R3C	M7	3	FLASK	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - BLANK	M7	1,2,3	FLASK		Absorbing Solution	PE Bottle	NOx

To be assigned by the laboratory staff RAN# (Request for Analysis Number)			
	11.		

Submitted by:

JANINE DELENA Signature and Date 07/05/24

Received by:

Signature and Date

ENVIRONMENTAL PHILS. Co.

ame of firm: GREENTEK ENIVIRONMENTAL	PHILS. CO.		1	ested by QAQC & Team	Leader: Angelo V. Gue	evarra	
853 RJ PLACE BLDG. UNIT 3A, SELYA ST. P	ANDACAN, MANIL	A	7	ype of fuel used by the fa	acility during sampling:	KEROSENE	
ource:5,013 CFM Verantis Acid Fume Scrul	ober						
- 15 may 2	Sam	ole ID No. 8	& Description	A SWORD	I Salva a Salva	1	Analysis
Sample ID	Sample Method	Run#	Train Fraction	Sample Date	Sample Type	Type of Container	Requeste
BCACMP - S - M10 - R1	M10	1	TEDLAR BAG	29-Jun-24	GAS	TEDLAR BAG	СО
BCACMP - S - M10 - R2	M10	2	TEDLAR BAG	29-Jun-24	GAS	TEDLAR BAG	co
BCACMP - S - M10 - R3	M10	3	TEDLAR BAG	29-Jun-24	GAS	TEDLAR BAG	co
		9					
be assigned by the laboratory staff RAN# (Request for Analysis Submit		Anin E a) ZY	Received by:	- 07/05	

"APPENDIX E"

EQUIPMENT CALIBRATION RECORDS

METER BOX POST TEST CALIBRATION CHECK BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT

Balatoc, Virac, Itogon, Benguet 46.58 m3/min Krypton Dust Collection Facility System

Calculate Yqa for each test run using the following equation:

$$Y_{qa} = \frac{\theta}{V_m} \sqrt{\frac{0.00115 T_m}{\Delta H_{@} (P_b + \frac{\Delta H_{avg}}{13.6})} \frac{29}{M_d} (\sqrt{\Delta H})_{avg}}$$

where:

Yqa dry gas meter calibration check value, dimensionless.

 θ total run time, min.

Vm total sample volume measured by dry gas meter, dcm.

Tm absolute average dry gas meter temp., °K.

Pb barometric pressure, mm Hg.

 $\begin{array}{ll} 0.00115 & = (760/298)(21.2/1000)^2 \; (mm \; Hg/^\circ K) \; m^3/min^2. \\ \Delta Havg & \text{average orifice meter differential, mm H20.} \\ \Delta H_{@} & \text{orifice meter calibration coefficient, mm H2O.} \\ Md & \text{dry molecular weight of stack gas, gm/gm-mole.} \end{array}$

29 dry molecular weight of air, gm/gm mole.

13.6 specific gravity of mercury.

After each test run series, do the following:

Average the three or more Yqa's obtained from the test run series and compare this average with the dry gas meter calibration factor, Y. The average Yqa must be within 5 percent of Y.

If the average Yqa does not meet the +/- 5 percent criterion, recalibrate the meter over the full range of orifice settings, as detailed in Section 5.3.1 of Method 5. Then follow the procedure in Section 5.3.3 of Method 5.

	RUN 1	RUN 2	RUN 3	Average
Meter Box	GMC 01	GMC 01	GMC 01	
time	72	72	72	
Vm - total	0.7928	0.7672	0.8084	
Tm avg, deg C	35	38	36	
Tm, degrees K	308	311	309	
Barometric, mm Hg	690.4	690.9	691.1	
DH _{avg} , mm H ₂ O	12.3	11.6	12.9	
DH@, mm H ₂ O	47.7	47.7	47.7	
Md stack gas, g/g-mole	28.80	28.80	28.80	
Md Air, g/g-mole	29.00	29.00	29.00	
Meter Box Gamma	1.0102	1.0102	1.0102	1.0102
QA Gamma	1.0462	1.0569	1.0179	1.0403
Difference:	-3.6%	-4.6%	-0.8%	-3.0%
Average Difference within +/-5%			•	PASS*

^{*}The difference is based on the average QA gamma of the three test runs

METER BOX POST TEST CALIBRATION CHECK BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT

Balatoc, Virac, Itogon, Benguet 5,013CFM Verantis Acid Fume Scrubber #2

Calculate Yqa for each test run using the following equation:

$$Y_{qa} = \frac{\theta}{V_m} \sqrt{\frac{0.00115 T_m}{\Delta H_{@} (P_b + \frac{\Delta H_{avg}}{13.6})} \frac{29}{M_d}} (\sqrt{\Delta H})_{avg}$$

where:

Yqa dry gas meter calibration check value, dimensionless.

 θ total run time, min.

Vm total sample volume measured by dry gas meter, dcm.

Tm absolute average dry gas meter temp., °K.

Pb barometric pressure, mm Hg.

 $\begin{array}{ll} 0.00115 & = (760/298)(21.2/1000)^2 \; (mm \; Hg/^\circ K) \; m^3/min^2 \\ \Delta Havg & \text{average orifice meter differential, mm H20.} \\ \Delta H_{@} & \text{orifice meter calibration coefficient, mm H2O.} \\ Md & \text{dry molecular weight of stack gas, gm/gm-mole.} \end{array}$

29 dry molecular weight of air, gm/gm mole.

13.6 specific gravity of mercury.

After each test run series, do the following:

Average the three or more Yqa's obtained from the test run series and compare this average with the dry gas meter calibration factor, Y. The average Yqa must be within 5 percent of Y.

If the average Yqa does not meet the +/- 5 percent criterion, recalibrate the meter over the full range of orifice settings, as detailed in Section 5.3.1 of Method 5. Then follow the procedure in Section 5.3.3 of Method 5.

	RUN 1	RUN 2	RUN 3	Average
Meter Box	GMC 01	GMC 01	GMC 01	
time	72	72	72	
Vm - total	0.8986	0.9516	0.9536	
Tm avg, deg C	35	38	36	
Tm, degrees K	308	311	309	
Barometric, mm Hg	690.4	690.6	690.9	
DH_{avg} , mm H_2O	16.6	17.6	18.5	
DH@, mm H ₂ O	47.7	47.7	47.7	
Md stack gas, g/g-mole	28.76	28.76	28.76	
Md Air, g/g-mole	29.00	29.00	29.00	
Meter Box Gamma	1.0102	1.0102	1.0102	1.0102
QA Gamma	1.0710	1.0466	1.0179	1.0451
Difference:	-6.0%	-3.6%	-0.8%	-3.5%
Average Difference within +/-5%				PASS*

^{*}The difference is based on the average QA gamma of the three test runs

GREENTEK ENVIRONMENTAL PHILS. CO. DRY GAS METER 5 POINT CALIBRATION

Meter Console Model: XC-572-0V
Meter Console ID Number: GMC-01
Dry Gas Meter Model: SK25EX
Dry Gas Meter Serial Number: 2344

Pressure Side Leak Check : OK Vacuum Side Leak Check : OK

Date and Time of Calibration; Critical Orifice Model Number; Theo. Critical Vacuum For Orifice;

Barometric Pressure:

07-May-24 1300H ST 40-73 15 in Hg 752.602 mmHg

IMPORTANTIII

**For the Indivicual dry gas meter calibration factor, YI, the allowed variation is 0.02 from the average value.

**For the individual Dh@ values, the orifice setting that equates to 21.2 ipm, the allowed variation is 0.2 in. (5.1mm) from the average value.

**Acceptable range for the average Dh@ value is 46.7±6.4 mmH20 (1.84±0.25 inH20).

ST40 332,3020 332,3452 0.0432 30 303 298.6 5.0 8.4 1.000 1.0	Run No.	Orifice ID No.	Dry Ga	Dry Gas Meter Volume (m3)	(m ₃)	Dry	Dry Gas Meter Temp.Tm (°C)	T_ (°C)	Amb. Temp.	Time	Orifice Rdg.	Pump Vac.
5T40 332.3020 332.3452 0.0432 30 303 298.6 5.0 8.4 5T48 332.3510 332.4260 0.0750 30 303 298.6 6.0 17.0 5T55 332.4340 332.4260 0.0750 30 303 298.6 6.0 17.0 5T63 332.4340 332.542 0.182 30 303 298.4 7.0 30.0 5T63 332.7550 332.7428 0.1788 30 303 298.4 8.0 50.0 5T73 332.7550 333.0290 0.2740 30 303 298.4 8.0 50.0 5T73 332.7550 333.0290 0.2740 30 303 298.4 8.0 50.0 5T40 X10-4 X10-4 <td< th=""><th></th><th></th><th>Initial</th><th>Final</th><th>Diff., V_m</th><th>initial</th><th>Final</th><th>Ave ^UK</th><th>Temb OK</th><th>min.</th><th>mmH₂O</th><th>in.Hg</th></td<>			Initial	Final	Diff., V _m	initial	Final	Ave ^U K	Temb OK	min.	mmH ₂ O	in.Hg
5T48 332.3510 332.4260 0.0750 30 30 303 298.6 6.0 17.0 5T55 332.4340 332.552 0.1182 30 30 303 298.4 7.0 30.0 5T63 332.5540 332.7428 0.1788 30 30 303 298.4 7.0 30.0 5T73 332.7550 333.0290 0.274G 30 30 298.4 8.0 50.0 5T73 332.7550 333.0290 0.274G 30 303 298.4 7.0 30.0 5T73 332.7550 333.0290 0.274G 30 303 298.4 8.0 50.0 5T40 5T5 333.0290 0.274G 30 303 298.4 8.0 50.0 5T40 5T5 35 30 303 298.4 8.0 50.0 5T40 5T5 35 35 30 303 298.4 8.0 50.0 5T40	н	5740	332,3020	332,3452	0.0432	39	30	303	298.6	5.0	4.80	15
ST55 332,4340 332,5522 0.1182 30 30 303 298.4 7.0 ST63 332,5640 332,7428 0.1788 30 30 303 298.4 8.0 ST73 332,7550 333,0290 0.2740 30 303 298.4 8.0 Orifice ID No. K Factor Vmstd Vcrstd DGM Callb. Factor Variation Dh@ X 10-4 x 10-4 dscm dscm Vf (± + 0.02) mmH ₂ O (≤ ST40 1.9790 0.0421 0.0431 1.0180 -0.013 49.7 ST5 3.8204 0.0155 0.1165 1.0062 0.001 47.8 ST63 5.0531 0.1750 0.1761 1.0065 0.004 45.7 ST73 6.8217 0.2693 0.2676 0.9938 0.016 47.660	2	5148	332,3510	332,4260	0.0750	39	30	303	298.6	6.0	17.0	15
ST63 332.5640 332.7428 0.1788 30 30 303 298.4 8.0 ST73 332.7550 333.0290 0.2740 30 30 298.4 8.0 Action of the proof of the p	m	5135	332.4340	332,5522	0.1182	30	30	303	298.4	2.0	30.0	15
ST73 332.7550 333.0290 0.2740 30 303 298.2 9.0 Action of the proof of the p	4	ST63	332.5640	332.7428	0.1788	30	30	303	298.4	8.0	50.0	15
Orifice ID No. K' Factor Vmstd Vcrstd DGM Callb. Factor Variation Dh@ \$140 1.9790 0.0421 0.0431 1.0235 -0.013 49.7 \$148 2.8501 0.0732 0.0745 1.0180 -0.003 48.6 \$155 3.8204 0.1155 0.1165 1.0062 0.001 47.8 \$173 6.8217 0.2693 0.2676 0.9938 0.016 46.5 Average	Ŋ	5773	332.7550	333.0290	0.2740	30	30	303	298.2	9.0	92.0	15
Orifice ID No. K¹ Factor Vmstd Vcrstd DGM Callb. Factor Variation Dh@ X 10 ⁻⁴ X 10 ⁻⁴ dscm dscm dscm V ₁ (s±0.02) mmH ₂ O (s ST40 1.9790 0.0421 0.0431 1.0235 -0.013 49.7 ST48 2.8501 0.0732 0.0745 1.0180 -0.003 48.6 ST55 3.8204 0.1155 0.1165 1.0062 0.001 47.8 ST63 5.0531 0.1750 0.1761 1.0065 0.004 45.7 ST73 6.8217 0.2693 0.2676 0.9938 0.016 46.5 Average								RESULTS				_
X 10 ⁻⁴ dscm dscm dscm V ₁ V ₁ (≤±0.02) mmH ₂ O (≤±1.9790 1.9790 0.0421 0.0431 1.0235 -0.013 49.7 2.8501 0.0732 0.0745 1.0180 -0.003 48.6 3.8204 0.1155 0.1165 1.0092 0.001 47.8 5.0531 0.1750 0.1761 1.0065 0.004 45.7 6.8217 0.2693 0.2676 0.9938 0.016 46.5 Average	No.	Orifice ID No.	K' Factor		Vmstd	Vcrstď	DGM Callb. Fa	actor	Variation	Dh@		1
1.9790 0.0421 0.0431 1.0235 -0.013 49.7 2.8501 0.0732 0.0745 1.0180 -0.008 48.6 3.8204 0.1155 0.1165 1.0092 0.001 47.8 5.0531 0.1750 0.1761 1.0065 0.004 45.7 6.8217 0.2693 0.2676 0.9938 0.016 46.5			×10 ⁴		dscm	dscm			$(< \pm 0.02)$	mmH ₂ (
2.8501 0.0732 0.0745 1.0180 -0.008 48.6 3.8204 0.1155 0.1165 1.0062 0.001 47.8 5.0531 0.1750 0.1761 1.0065 0.004 45.7 6.8217 0.2693 0.2676 0.9938 0.016 46.5	H	ST40	1.9790		0.0421	0.0431	1.0	235	-0.013	49.7		
3.8204 0.1155 0.1165 1.0092 0.001 47.8 5.0531 0.1750 0.1761 1.0065 0.004 45.7 6.8217 0.2693 0.2676 0.9938 0.016 46.5 Average> 47.660	7	ST48	2,8501		0.0732	0.0745	1.0	180	-0.008	48.6		
5.0531 0.1750 0.1761 1.0065 0.004 4 6.8217 0.2693 0.2676 0.9938 0.016 4 Average>	m	ST55	3.8204		0.1155	0.1165	0.1	092	0.001	47.8		
6.8217 0.2693 0.2676 0.9938 0.016 4	4	ST63	5.0531		0.1750	0.1761	1.0	265	0.004	45.7	2.0	
1.0102 Average>	Ŋ	ST73	6.8217		0.2693	0.2676	6.0	938	0.016	46.5	1.2	
					Average	?	1.0102		Average	000	960	

I certify that the above Dry Gas Meter was calibrated in accordance with EPA Method 5, Paragraph 7.2 CFR 40, Part 60, using Critical Orifice as calibration standard. From these results, I assign a value for the following parameters:

As the average value of the individual results.

1.0102 &

ď

DH @ -> 47.660 mmH20

Calibrated by:

Banie L. Navidad

Noted by:

かんするする

ANGELO V. GUEVARRA
Angelo V. Guevarra
OA/QC Manager

CRITICAL ORIFICE COEFFICIENT CALCULATION GREENTEK ENVIRONMENTAL PHILS. CO.

ST 40-73 SK25EX 1,0000 2344 Critical Orifice Calibration Factor, Yc : Dry Gas Meter Model Number: Dry Gas Meter Serial Number: Critical Orifice Model Number:

07-May-24	1300H
752.602	in Hg
15	in Hg
OK.	

Theo. Critical Vacuum For Orifice:

eak Check:

Calibration Date and Time

Barometric Pressure :

Run No.	Orifice ID No.	Dry	Dry Gas Meter Volume (m	e (m³)	Dry Ga	Dry Gas Meter Temp. T _m (°C)	Tm (°C)	Amb. Temp. Time	Time	Orifice Rdg.	Pump Vac.
		Initial	Final	DIFF., V _m	Initial	Final	Ave ok	Tamb, ok	min.	mmH ₂ O	in.Hg
7	ST 40	331,1110	331.1542	0,0432	23	23	296.0	299,5	'n	8.40	15
2	ST 40	331,1580	331,2012	0.0432	24	24	297.0	299.5	3	8.40	15
		- X		X .							
1	ST 48	331,2070	331.2820	0.0750	25	52	298.0	299.5	9	17.0	15
2	ST 48	331.2890	331.3642	0.0752	26	56	299.0	299.5	0	17.0	15
1	ST 55	331,3730	331.4912	0.1182	27	27	300.0	298.9	7	30.0	15
2	ST 55	331,4940	331.6122	0.1182	28	28	301.0	298.9	7	30.0	15
1	ST 63	331.6240	331.8028	0.1788	53	59	302.0	298.6	8	50.0	15
2	ST 63	331,8100	331.9888	0.1788	29	59	302.0	302.0	80	20.0	15
	ST 73	332.0130	332.2870	0.2740	32	32	305.0	298.4	6	92.0	15
2	ST 73	332.2882	332.5622	0.2740	32	32	305.0	298.4	6	92.0	15

_	
=	
5	
₹	
눖	
ō	
흨	
=	

- **For valid results, the actual vacuum should be 1 to 2 in. Hg greater than the theoretical critical vaccum.
- **The average value for the K' FACTOR should not vary by more than ±0.5% from the individual results.
 - **The times should not differ by more than 3 seconds for each run.
- **The unit for critical orifice coefficient is in m^3*K^0.5/(mmHg*min).

messo

Angelo V. Guevarra OA/OC Manager

5/1/24

Variation (< ± 0.5%) -0.17% 0.17% -0.03%

> 1.9790 1.9790 2.8501

1.9823 1.9756

X 10-4

K Factor

Orifice ID No.

Run No.

RESULTS

X 104

-0.17% 0.03%

> 3.8204 3.8204

2.8501

2.8511 2.8491 3.8267

ST 48 ST 48 ST 55 ST 55 ST 63 ST 63

0.17% 0.28% -0.28% 0.00% 0.00%

3.8140 5.0388 5.0674

5.0531 6.8217 6.8217

6.8217 6.8217

5.0531

Calibrated by:

Feam Leader

CERTIFICATE OF CALIBRATION GREENTEK ENVIRONMENTAL PHILS. CO. TEMPERATURE DISPLAY CALIBRATION

Meter Console No.:	GMC - 01	Operator:	DLN
Model:	XC - 572 - OV	Calibration Date:	May 07, 2024
Serial No.:	1703043	Calibration Due:	November 6, 2023

TC Channel ID	Reference Temp 1,°C	Temp. Reading 1,°C	Criteria	Criteria Met	Reference Temp 1,°C	Temp. Reading 1,°C	Criteria	Criteria Met
Probe	0	0	0	YES	50	51	-0.309	YES
Filter	0	0	0	YES	50	51	-0.309	YES
Exit	0	0	0	YES	50	51	-0.309	YES
Stack	0	0	0	YES	50	51	-0.309	YES
Stack	200	198	0.425	YES	250	248	-0.384	YES

TC Channel ID	Reference Temp 1,°C	Temp. Reading 1,°C	Criteria	Criteria Met	Reference Temp 1,°C	Temp. Reading 1,°C	Criteria	Criteria Met
Probe	100	100	0	YES	150	151	-0.236	YES
Filter	100	100	0	YES	150	151	-0.236	YES
Exit	100	100	0	YES	150	151	-0.236	YES
Stack	100	100	0	YES	150	151	-0.236	YES
Stack	350	348	0.322	YES	450	448	-0.277	YES

Criteria:

Percent difference between the Reference temperature and the Average Temperature can be only ±1.5% °K

[(Ref. Temp. + 273) – (Temp. Reading + 273)] x 100

Equation:

(Ref. Temp. + 273)

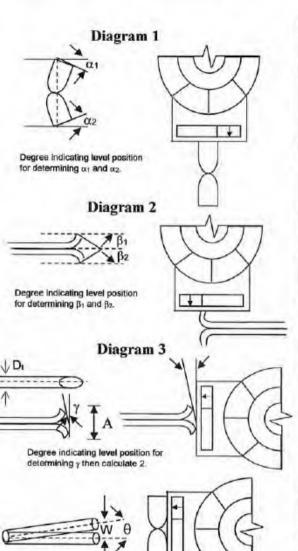
		Refe	erence used in cali	bration	
Туре	Model	Serial No.	Calibration Date	Certificate No.	Issuing Lab/Traceability
Thermocouple Simulator	ALTEK Series 22	9330065	August 17, 2023	23-08-106-2	Acculab Calibration Laboratory Inc.

Calibrated by:

Daniel L. Navidad, Jr. Team Leader

Checked by:

Angelo V. Guevarra QA/QC Manager


GREENTEK ENVIRONMENTAL PHILS. CO. PITOT TUBE INSPECTION DATA SHEET

Pitot Number:

GP-04A

Date:

March 13, 2024

_evel? =	YES
Obstructions? =	NO
Damaged? =	NO
Diagram 1	
10° < □1 < + 10° =	0°
.10° < □2 < + 10° =	1°
Diagram 2	
5° < β1 < + 5° =	1°
5° < β ₂ < + 5° =	0°
Diagram 3	
·=	0°
) =	0°
4 =	2.46
1.05 Dt < Pa < 1.5 Dt =	1.23
1.05 D _t < P _b < 1.5 D _t =	1.23
0.48 cm ≤ D ₁ ≤ 0.95 =	0.94
A tan Υ < 0.32 cm =	0
\ tan θ < 0.08 cm =	0
P _a = P _b =	1.23

The pitot tube/probe meets or exceeds all specifications criteria and/or applicable design features and is hereby assigned a pitot tube calibration factor of 0.84.

Comments:

		Ec	uipment used in o	calibration	
Туре	Model	Serial No.	Calibration Date	Certificate No.	Issuing Lab/Traceability
Digital Caliper	MITUTOYO CD-6" ASX	A22099212	July 30, 2023	10 0000.01-8588- 1.23	Switchtek Measurement Systems

Calibrated by:

Daniel L. Navidad Jr. Team Leader

Degree indicating level position

for determining θ .

Reviewed by:

Angelo V. Guevarra

OA/QC Manager

GREENTEK ENVIRONMENTAL PHILS. CO. **TEMPERATURE SENSOR CALIBRATION** CERTIFICATE OF CALIBRATION

Thermocouple No. Ambient Temperature:

GP-04C 20.6°C

Date:

March 14, 2024

Thermocouple	Display Temperature Difference %	2.7 0.3	27.6 -0.3	100.2 -0.5
Therm	Display T		6	=
Reference	Thermometer Temperature °C	3.4	26.8	98.4
	Source (Specify)	COLD WATER	TAP WATER	HOT WATER
	Reference Point Number	-	2	ю

Percent difference between the Reference temperature and the Average Temperature can be only ±1.5% °K Criteria:

[(Ref. Temp. + 273) - (Temp. Reading + 273)] x 100

Equation:

(Ref. Temp. + 273)

		ı	Reference used in calibration	ibration	
Type	Model	Serial No.	Calibration Date Certificate No	Certificate No.	Issuing Lab/Traceability
Digital hermometer	SUPCO	EM02	June 3, 2023	100.10-8227-2.23	Switchtek Measurement Systems

Team Leader

AAAC Manager Checked by:

Calibrated by:

Switchtek Measurement Systems

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph

www.switchtek.com.ph

Calibration of

Certificate No.: Identification:

4000.23-9142-1.23

GREENTEK ENVIRONMENTAL PHILS., CO

3 IN1 (barometer function)

Barigo, precision barometer

Lumel temp and humidity transmitter

Temperature and Humidity chamber

Druck, pressure calibrator

XB-OTS-34

20130803

CNAS

Job: Fin.acc:

P1

32

Test and Verification Certificate of Calibration Initials ...

CALIBRATOR INFORMATION:

Instrument-

Instrument

Instrument

Instrument:

Wodel No.:

Serial No.:

Traceability:

Men

2

Done Categories Cal Officer

November 22, 2023 Calibration

CAC

Mours

3.00

Total cost

Type Certificate

CERTIFICATE OF CALIBRATION - 3 IN 1 (Barometer Function) This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 1782S against NIST

GREENTEK ENVIRONMENTAL PHILS., CO

Address

2353 RI PLACE UNIT 3A SELYA STREET BRIGY, 860 PANDACAN, MANUA, PHILIPPINES

UNIT UNDER TEST (UUT):

Instrument:

3 IN1 (barometer function)

LUTRON

traceable reference standards and its co-equal standards.

Model No.: Serial No.:

PHB-318 No record No record

ID code: Ranges

Temp. (0-50 Deg. C)

Humidity (10 to 95%) Dewpoint (-25.3 to 48.9 Deg. C)

Barometer (10 to 999.9 hPa)

Resolution:

Temp. (0.1 Deg. C) Humidity (0.1 %) Dewpoint (0.1 Deg. C) Barometer (1 hPa)

Accuracy:

Temperature: ±0.8/1.5°C°F

%RH

≥± (3% reading + 1% RH). < 70% RH - 3% RH.± 3% RH.

Barometric pressure

10.0 to 999.9 (± 1.5 hPa) 1000 to 1100 (± 2 hPa) November 20, 2023

Calibration Date: Calibration Due:

November 19, 2024

Environmental Condition:

Condition:

DRY/BASIC/NEUTRAL Relative Humidity: 55.6 ±5%, 1007 hPa

Ambient Temp. (Deg C): 24.4±2

By comparison technique, unit under test was placed in a Chamber with a Standard precision barometer, Temperature and Humidity calibrator. Procedures of calibration and test conform to the requirements of NPL NIST and ISO/IEC Guide 17025. Data were gathered and plotted against an ideal curve.

Standard error and uncertainty of measurement are written on the attached sheet.

Remarks:

All data pertain only to the unit described ob ed at the time of test. This certificate is not valid w/out seal and signature. Unauthorized reproduction is prohibited.

Calibrated By:

Date:

C.A. CASADO

November 20, 2023

Date:

Temperature* Pressure* Sound* Gas Detector/Analyzer "Effor *Volume* Weight* Re* Ph* Conductivity "Resistativy *Conductivity "Volume* Ampares *Soundmenter "Enquesia Controller "High consiste "Controller "Analyzer Advantage *Ampares *Soundmenter *Resistance *Ampares *Ampares

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph

www.switchtek.com.ph

November 20, 2023

November 19, 2024

C.A. CASADO

Certificate No.:

4000.23-9142-1.23

Calibration of

3 IN1 (barometer function)

Calibration Date:

Calibration Due:

Calibrated By:

Identifications Address:

GREENTEK ENVIRONMENTAL PHILS., CO

2353 RJ PLACE UNIT 3A SELYA STREET BRGY.860 PANDACAN, MANILA, PHILIPPINES

CERTIFICATE OF CALIBRATION - 3 IN 1 (Barometer Function)

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

UNIT UNDER TEST (UUT):

Instrument:

3 IN1 (barometer function)

Brand:

LUTRON

Model No.:

PHR-318

Serial No.: Range:

No record

Temp. (0-50 Deg. C)

Humidity (10 to 95%)

Dewpoint (-25.3 to 48.9 Deg. C)

Barometer (10 to 999.9 hPa)

Resolution:

Temp. (0.1 Deg. C)

Humidity (0.1 %) Dewpoint (0.1 Deg. C)

Barometer (1 hPa)

ID code:

No record

Recuire-

Barometer

REFERENCE READING (hPa)	UNIT UNDER TEST READING (hPa)	ERROR IN READING (hPa)	STANDARD DEVIATION	REMARKS
1009:0	1003.0	6.00	4.2426	
1005.0	1000.0	5.00	3,5355	The user should determine the
1000.0	995.0	5.00	3,5355	suitablity of the instrument f
990.0	984.0	6.00	4.2426	its intended use

Standard error: ± 7.78 hPa

Uncertainty: ±

6.09 hPa

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.:84420560 / 89282869 / 83517471 Fax No.:89282869 email Address: admin@switchtek.com.ph

www.switchtek.com.ph

Certificate No.:

200.13-9142-1.23

Identification: Job:

P1

Fin.acc:

Done.....

Categories Cal Officer

GREENTEK ENVIRONMENTAL PHILS., CO

32 November 25, 2023

Calibration

Calibration of

Digital Vacuum Gauge

Test and Verification

Certificate of Calibration

Initials.... Mon

CAC Hours

10

Total cost

Type Certificate

CERTIFICATE OF CALIBRATION - PRESSURE

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/EEC 17025 against NIST traceable reference standards and its co-equal standards.

Issued To-

GREENTEK ENVIRONMENTAL PHILS., CO

Address:

2353 RI PLACE UNIT 3A SELVA STREET BRGV. 860 PANDACAN, MAMILA, PHILIPPINES

UNIT UNDER TEST (UUT):

Instrument: Brand:

Digital Vacuum Gauge

Model No.:

DWYER DPGA-00 No record

Serial No.: Range:

30 inHg to 0.0 in Hg

Resolution: Calibration Date:

0.01 in Hg

Calibration Due:

November 24, 2023 November 23, 2024 CALIBRATOR INFORMATION:

Instrument:

Master gauge

Brand-Model No.:

LA No record E8090001

Serial No.: Range:

0 to 30.0 in Hg 0.25%

Accuracy: Calibrated Against:

ASME B40.1, UKAS

Environmental Condition:

Condition:

DRY/BASIC/NEUTRAL

Relative Humidity: 52 ± 5%, 1010 hPa

Ambient Temp. (Deg C): 23 ±2

Calibration Method:

By comparison technique, test pressures were applied at the port, at planned intervals, by a Standard Pressure Calibrator. Procedures of test conducted conform to the requirements of UKAS and NIST in compliance with IEC/ISO Guide 17025. Data were gathered and tabulated.

During calibration, the unit was found to have a standard error of ± 0.15 in Hg with a confidence level of not less than 95%.

Uncertainty of measurement is ± 0.31 in Hg. Calculations were taken using the Standard Deviation Formula.

Reading-

APPLIED PRESSURE (inHg)	UNIT UNDER TEST READING (in Hg)	ERROR IN READING	STANDARD DEVIATION
0.00	0.0	0.000	0.0000
10.00	9.85	-0.150	0.1061
14.93	14.83	-0.100	0.0707
29.50	29.33	-0.170	0.1202

Remarks:

naries:
All data pertain only to the unit described obtained at the time of test. This certificate is not valid without seal and signature. Unauthorized reproduction is prohibited.

Calibrated By:

Date:

November 24, 2023

Certified 8

Dat

Temperature * Personne * Scend* Gas Detroiter/Analysis * Flow "Volume" Weight * Bir* Ph* Committeey * Essistivity * Conductivity * Voltage * Ampères * Essiminater * Programmy Controlles * Hyperim * Hactarier * Thermostat * Torque Wranch * Calerimeter * Calerimeter * Micrometer * Refractameter * Multi-traner * Hydremostar * Capacitance & Industrier Meter * Sphagmost moments* Sicrometer (Burnater ** Standard voltage ** Amprees ** Numberies ** Programmy Controller ** Hypermetra (Biologia B) Wystell Thornsoncore ** Par ** Sicrometer (Burnater ** Hydermeter ** Appenditure Andre ** Appenditure A

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.:84420560 / 89282869 / 89287769 Fax No.:84537694 email Address: switchtekbilers@yahoo.com

www.switchtek.com.ph

Fin.acc

Certificate No.: 100.10-9142-2.23

Identification: GREENTEK ENVIRONMENTAL PHILS., CO Job:

P1

Done..... Categories

Cal Officer

Calibration

November 28, 2023

Calibration of

Probe Huster Temperature Controller

Test and Calibration Certificate of Calibration

Initials...: CAC

Men

Total cost

Type Contiliente

CERTIFICATE OF CALIBRATION - TEMPERATURE

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

1

issued To:

GREENTEK ENVIRONMENTAL PHILS., CO

Address:

2353 RI PLACE UNIT BA SELYA STREET BRGY.860 PANDACAN, MANILA, PHILIPPINES

UNIT UNDER TEST (UUT):

Instruments

Probe Heater Temperature Controller

Manufacturer: Model No.: Serial No.:

CAL CONTROLS CAL 3200 3212212190 2022TCT2A

-200 to 1800.0 Deg. C

1 Deg. C

Calibration Date: November 27, 2023 Calibration Due: November 26, 2024

CALIBRATOR INFORMATION:

instrument:

SPRT, Standard Platinum resistance thermometer

instrument: Manufacturer: Process Calibrator FLUKE

Model No.:

726 3266078

Serial No.: Traceability:

Environmental Condition:

Condition:

DRY/BASIC/NEUTRAL Relative Humidity: 52.3 ±5%, 1011 hPa

Ambient Temp. (Deg C): 25 ±2

Calibration Method:

By comparison technique, test temperatures were measured from the unit under test at fixed point method in reference with a Multi-function Calibrator, SPRT, NIST and ITS 1990. Procedures of test conform to the requirements of ISO/IEC Guide 17025. Data were gathered and tabulated.

During calibration the unit under test was found to have a standard error of ± 6 °C with a confidence error of not less than 95%. Uncertainty of unceasurement is ± 2.88 °C. Calculations were taken using the standard deviation formula.

Resulte-

	ULIT SETTING CORRECTION	CORRECTION	STANDARD DEVIATION	REMARKS
	T	100		
1	772		°C	
-	27	-3.000	2.1213	
	47	-3.000	2.1213	_
	77	-3.000	The same of the sa	
	97	-3.000	2.1213	The user should determin
	117		2.1213	the suitability of the
1		-3.000	2.1213	instrument of its intender
-	147	-3.000	2.1213	use.
	177	-3.000	2.1213	_
	197	-3.000	2.1213	_

*Recorder *Thermostat *Tongor Weench *Color

sales:
All data pertain only to the unit described obtained at the time of test. This certificate is not valid without seal and signature. Unauthorized reproduction is prohibited.

Calibrated By:

are" Scient" (Les Detector) Ansigne" "Flow "Volume" Weight" RA" Ba" Condessiny "Residuity "Condustries" "Volume" Volume" Weight" RA" Ba" Condessiny "Residuity "Condustries" Volume "America" "Weight "Residuity "Condustries" Volume Ra" Condustries "Weight "Residuity "Condustries" Condustries "Weight "Residuated Teamstonies" Condustries "Weight "Residuated Teamstonies Teamstonie

Certified By:

SHIT TO STORE OF THE PROPERTY OF VALUE WAS A ter "Dut Thet Gauge Course Bleck" Butter

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph

www.switchtek.com.ph

Certificate No.: Identification:

100.08-9142-1.23

Pi

Done Categories

Cal Officer

GREENTEK ENVIRONMENTAL PHILS., CO

32

November 28, 2023

Calibration

Calibration of

Digital thermometer

Test and Calibration

Certificate of Calibration

tritials...:

CAC Hours

Total cost

Type Certificat

CERTIFICATE OF CALIBRATION - TEMPERATURE

This report of calibration shall document that the instru mined and tested in compliance with ISO/IEC 17025 against NIST traceable references star

GREENTEK ENVIRONMENTAL PHILS... CO.

Address:

2430 LAURA STREET BRGY. 862 PANDAN MANILA, PHILIPPINES

LIMIT UNDER TEST (UUT):

lastroment:

Digital thermometer SUPCO EM02

Model No.: Serial No.: Location:

No record No record

Range: Resolution: -40.0 to 200.0 Deg. C 0.1 Dest. C

Calibration Date: Colibration Dun:

November 20, 2023 November 19, 2024

CALIBRATOR INFORMATION:

Instrument: Brande TECHNO

Model No: TB-30 Social Mo-A275

instrument: Standard platinum

> SPH-01 40 to 420.0 Deg. C

Connections Four (4) wires Traceability: INMETRO, UKAS

Liquid Bath Calibrator Instrument: Liquid Bath Calibrator

Brand: TECHNO Model No: TB-30 Serial No: A275 Instrument: Process meter

resistance thermometer Brand: ERRINE Model No: 726 Serial No: 3266078

Traceability: NIST

Environmental Condition:

Condition: Relative Homiditus

DRY/BASIC/NEUTRAL

54.2 ± 5%, 1007 hPa

Ambient Temp. (Deg C): 22.2 ±2

Brand:

Range:

(Model No:

Colibration Method-

By comparison technique, temperature values were simulated at planned intervals, using fixed point method in reference with a Temperature Bath Calibrator, Multifunction Calibrator, SPRT and ITS-1990. Span and errors were checked and tabulated. Procedures of tests conform to the requirements of ISO/IEC Guide 17025 and NIST.

During calibration the unit under test was found to have a standard error of ± 4.33 Deg. Cwith a confidence level of not less than 95.0%.

Uncertainty of measurement is ± 2.41 Deg. C. Calculations were taken using the standard deviation formula.

REMARKS	STANDARD DEVIATION	ERROR IN READING	UNIT UNDER TEST READING (°C)	REFERENCE READING (°C)
		-2.000	-32.0	-30.00
	1.4142		-11.0	-10.00
	0.7071	-1.000		0.00
	0.7071	-1.000	-1.0	
The user should determin	0.1414	-0.200	9.8	10.00
the suitability of the		0.100	49.9	50.00
instrument for its intende	0.0707		97.0	100.00
use.	2.1213	-3.000		150.00
	3.5355	-5.000	145.0	
	3,5355	-5.000	195.0	200.00

All data pertain only to the unit described obtained at the time of test. This certificate is not valid without snal and signature. Unauthorized reproduction is prohibited.

Calibrated By:

C.A. CASADO

Date:

November 20, 2023

Certified By:

A.R. CAMDOC

Date:

November 28, 2023

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.84420560 / 89287769 / 89287769 Fax No.:89282869 email Address: admin@switchtek.com.ph

www.switchtek.com.ph

Certificate No.:

200.06-9142-1.23

Identification:

GREENTEK ENVIRONMENTAL PHILS., CO

Job: Fin.acc

P1

Done. Categories Cal Officer

November 25, 2023

Calibration of

Digital Manameter

Test and Calibration Certificate of Calibration

Initials...:

Type Certificate

CERTIFICATE OF CALIBRATION - PRESSURE

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against MIST traceable reference standards and its co-equal standards.

GREENTEK ENVIRONMENTAL PHILS., CO

Address:

2353 RJ PLACE UNIT 3A SELYA STREET BRGY. 860 PANDACAN, MANILA, PHILIPPINES

UNIT UNDER TEST (UUT):

Instrument:

Digital Manometer

Grand-Model No.: Serial No.:

No record HT-1890 No record

Range: Graduation:

± 4.072 in Hg 0.001 in Hg

ID code; Calibration Date: No record November 24, 2023

Calibration Due:

November 23, 2024

Environmental Conditions

DRY/BASIC/NEUTRAL

51.6 ±5%, 1006 hPa

CALIBRATOR INFORMATION:

Instrument

Digital Pressure Calibrator

Manufacturer:

DRINCK DPI 204

NIST

Model No.: Serial No.:

SMS/ DPI 104

Traceability:

Relative Humidity:

Ambient Temp. (Deg C):

22.4 ±2

Calibration Method:

By comparison technique, test pressures were applied at the port, at planned intervals, by a Standard Pressure Calibrator. Procedures of test conducted conform to the requirements of ASME 840.1 and NIST in compliance with IEC/ISO Guide 17025. Data were gathered and tabulated.

During calibration the unit under test was found to have a standard error of ± 0.02 in Hg with a confidence level of not less than 95.0 %. Uncertainty of measurement is ± 0.018 in Hg. Calculations were taken using the standard deviation formula.

Results:

APPLIED PRESSURE (in Hg)	UNIT UNDER TEST READING (in Hg)	CORRECTION	STANDARD DEVIATION	REMARKS
0.000	0.000	0.000	0.0000	
0.100	0.099	0.001	0.0007	The user should determine the
0.500	0.507	-0.007	0.0049	
1.000	1.013	-0.013	0.0092	suitability of the instrument for its
2.000	1.997	0.003	0.0021	intended use.
3.000	3.026	-0.026	0.0184	
4.000	4.015	-0.015	0.0106	1

time of test. This certificate is not valid without seal and signature. Unauthorized reproduction is prohibited. All data pertain only to the unit described obtained

Calibrated By:

CA CASADO Date: November 24, 2023

Certified By:

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines

Tel Nos.: 84420560/ 89282869 /8 9287769 Fax No.:84537694 email Address: switchtekbollers@yshoo.com

www.switchtek.com.ph

Certificate No.:

Identification:

100.10-9142-3,23

GREENTEK ENVIRONMENTAL PHILS., CO

Job:

Fin.acc:

Done.....

Categories

P1

November 28, 2023

Cal Officer

32

Calibration of

Digital thermometer w/ dual input

Test and Verification

Certificate of Calibration

CALIBRATOR INFORMATION:

Instrument:

Wodel No:

Traceability:

Sprial Mar

Brand-

Initials...: Man

Moures

Total cost

Type Certificate

8.0

Process meter

FLUKE

3266078

726

NIST

CERTIFICATE OF CALIBRATION - TEMPERATURE

This test report shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against MIST traceable reference standards and its co-equal standards.

Issued To:

GREENTEK ENVIRONMENTAL PHILS., CO

Address:

2353 RI PLACE UNIT 3A SELVA STREET BRGY.860 PANDACAN, MARILA, PHILIPPINES

UNIT UNDER TEST (UUT):

Instrument:

Digital thermometer w/ dual input

Brand: Model No.: FLUKE

Serial No. iD corler

5505853 No record

Meter range:

-200.0 to 760.0 Deg. C, type J

-200.0 to 1372.0 Deg. C, type k

Resolution:

0.1 °C

Calibration Due:

November 24, 2023 November 23, 2024

Calibration Date:

Environmental Condition:

Condition: Relative Humidity: DRY/BASIC/NEUTRAL

51.2 ±5%, 1011 hPa

Ambient Temp. (Deg C): 22.3 ±2

Calibration Method:

By comparison technique, the temperature was simulated at planned intervals, using fixed point method in reference with a Temperature Process calibrator and ITS-1990. Procedures of test conform to the requirements of ISO/IEC Guide 17025. Data were gathered and tabulated.

Standard error and uncertainty of measurement were indicated on the attached sheet.

All data pertain only to the unit described obtained at the time of test. This certificate is not valid without seal and signature. Unauthorized reproduction is prohibited.

Calibrated By:

Date:

November 24, 2023

C.A. CASADO

Certified By:

Temporature* Pressure* Sound* Gas Detector/Analyzer *Flow *Volume* Weight* Rh* Ph* Conductivity *Redistivity *Conductivity *Voltage *Amperes* *Swhrmotor *Frequency Controller *Hygrometer *Glass & B-Metal Thermometer *PRV *SKV *TRW
*Relativities *Moltification* Thermostar *Temporator *Temporator *Controller *Sphygromanometer *Low Clammeter *Dist Test Gauge *Conge
Black* Ruler* Oxygen Meter* *Psychometer* Vibration* Olefectric kV Meter* Transformer Turns Ratio* #R Pot Meter* Capacitance & Classification*

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.: 84420560/ 89282869 /8 9287769 Fax No.:84537694 email Address: switchtekboilers@yshoo.com

www.switchtek.com.ph

Certificate No.:

100.10-9142-3.23

Calibration of

Digital thermometer w/ dual input

Identification:

GREENTEK ENVIRONMENTAL PHILS., CO

Address:

2353 RJ PLACE UNIT 3A SELYA STREET BRGY.860 PANDACAN, MANILA, PHILIPPINES

CERTIFICATE OF CALIBRATION - TEMPERATURE

This test report shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

UNIT UNDER TEST (UUT):

Instruments

Digital thermometer w/ dual input

Brand:

FLUKE

Model No.: Serial No.:

52 5505853

ID code:

No record

Calibration Date:

November 24, 2023

Calibration Due: Calibrated by:

November 23, 2024

C.A. CASADO

TYPE K

REFERENCE READING (°C)	UNIT UNDER TEST READING (°C)	ERROR IN READING (°C)	STANDARD DEVIATION	REMARKS
-10.0	-10.2	-0.200	0.1414	
0.0	0.0	0.000	0.0000	
10.0	10.2	0.200	0.1414	The user should determine the
50.0	49.7	-0.300	0.2121	
100.0	100.0	0.000	0.0000	suitability of the instrument for
300.0	300.0	0.000	0.0000	its intended used.
500.0	499.8	-0.200	0.1414	
700.0	699.8	-0.200	0.1414	
1000.0	999.6	-0.400	0.2828	

Standard error: ±

0.35 °C

Uncertainty: ±

0.22 °C

Results: T2

REMARKS	STANDARD DEVIATION	ERROR IN READING (°C)	UNIT UNDER TEST READING (°C)	REFERENCE READING (°C)
	0.2828	-0.400	-10.4	-10.0
The user should determine the suitability of the instrument for	0.7071	-1.000	-1.0	0.0
	0.0707	0.100	10.1	10.0
	0.4243	-0.600	49.4	50.0
	0,2121	-0.300	99.7	100.0
its intended used.	0.2121	-0.300	299.7	300.0
1	0.0707	-0.100	499.9	500.0
7	0.2828	-0.400	699.6	700.0
	0.0707	-0.100	999.9	1000.0

Standard error: ±

0.78 °C

Uncertainty: ±

0.46 °C

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.: 84420560/ 89282869 /8 9287769 Fax No.:84537694

email Address: switchtekboilers@yshoo.com

www.switchtek.com.ph

Certificate No.:

100.10-9142-3.23

Calibration of

Digital thermometer w/ dual input

Identification:

GREENTEK ENVIRONMENTAL PHILS., CO

Address:

2353 RJ PLACE UNIT 3A SELYA STREET BRGY.860 PANDACAN, MANILA, PHILIPPINES

CERTIFICATE OF CALIBRATION - TEMPERATURE

This test report shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

UNIT UNDER TEST (UUT):

Instrument:

Digital thermometer w/ dual input

Brand:

FLUKE

Model No.:

52

Serial No.: ID code:

5505853

No record

Calibration Date:

November 24, 2023

Calibration Due:

November 23, 2024

Calibrated by:

C.A. CASADO

TYPEJ

Results: T1

REFERENCE READING (°C)	UNIT UNDER TEST READING (°C)	ERROR IN READING (°C)	STANDARD DEVIATION	REMARKS
-200.0	-199.7	0.300	0.2121	
-100.0	-99.9	0.100	0.0707	
0.0	0.0	0.000	0.0000	The user should determine the suitability of the instrument for
50.0	49.6	-0.400	0.2828	
100.0	99.9	-0.100	0.0707	
200.0	199.6	-0.400	0.2828	its intended used.
300.0	300.1	0.100	0.0707	
400.0	399.9	-0.100	0.0707	
760.0	759.7	-0.300	oloi oi	

Uncertainty: ±

0.25 °C

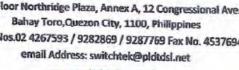
Results: T2

REFERENCE READING (°C)	UNIT UNDER TEST READING (°C)	ERROR IN READING (°C)	STANDARD DEVIATION	REMARKS
-200.0	-199.5	0.500	0.3536	
-100.0	-99.8	0.200	0.1414	1
0.0	0.0	0.000	0.0000	The user should determine the suitability of the instrument for its intended used.
50.0	49.4	-0.600	0.4243	
100.0	100.0	0.000	0.0000	
200.0	199.7	-0.300	0.2121	
300.0	300.0	0.000	0.0000	
400.0	399.9	-0.100	0.0707	
760.0	759.8	-0.200	0.1414	

Standard error: ±

0.45 °C

Uncertainty: ±


0.30 °C

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No. 4537694

Certificate No.:

100.10-9142-1.23

Calibration of

Thermocouple, TC source calibrator

Identification:

GREENTEK ENVIRONMENTAL PHILS., CO

Test and Verification

lob: Fin ares

Certificate of Calibration

Done:

November 28, 2023 Test and Calibration

Categories Cal Officer

Initials Men

CALIBRATOR INFORMATION:

Instrument:

Madel No:

Serial No:

Traceability:

Brand:

2

Hours

Process meter

FLUKE

3266078

725

MIST

10

Total cost

Type Certificate

CERTIFICATE OF CALIBRATION - THERMOCOUPLE TC SOURCE CALIBRATOR

This test report shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

issued To:

GREENTEK ENVIRONMENTAL PHILS., CO

Address:

2353 RJ PLACE UNIT 3A SELYA STREET BRGY. 860 PANDACAN, MANILA, PHILIPPINES

UNIT UNDER TEST (UUT):

Instrument:

Thermocouple, TC source calibrator

Brand: Model No.

ALTEK SERIES 22

Serial No.: ID code:

107173 No record

Ranges:

Thermocouple TYPE K

-200 to 1371 Deg. C

Calibration Date: Calibration Due:

November 26, 2023 November 25, 2024

Environmental Condition:

Condition:

DRY/BASIC/NEUTRAL

Relative Humidity: \$4.5 ± 5%, 1008 hPa

Ambient Temp. (Deg C):

22.1 +2

Calibration Method:

By comparison technique, electrical values/magnitudes were measured at the terminals in milliampere DC at planned intervals as a function of electrical values. Data gathered were referenced to a Standard Multimeter. Data were gathered and tabulated.

Standard error and uncertainties (u) of measurement were indicated on the attached sheet with a coverage factor of k=2 and with a confidence level of not less than 95%. Calculations were taken using the Standard Deviation Formula.

Remarks:

An data pertain only to the unit described obtained at the time of test. This certificate is not valid without seal and signature. Unauthorized reproduction is prohibited.

Calibrated By:

Date:

November 26, 2023

Certified By: Date:

Temperature* Pressure* Sound* Gas Detector/Analyzer * Flow *Volume* Weight* Rh* Ph* Conductivity *Resistivity *Conductivity *Voltage * Amperes *Evaluation of the Physiological Programme Controller * Hygrometer * Glass & Bi-Metal Thermomoter "PRV "SRV "TRV "Relief-Valve "Recorder "Thermostat "Torque Wrench "Calorimeter "Calipar" Micrometer "Durometer "Refractometer "Multi-tester" Hydrometer "Capacitance & Inductance Meter "Sphygmornanicameter *Low Olim meter *Dial Test Gauge *Gauge Block* Ruler* Daygen Meter* Psychometer* Vibration* Dialectric kV Meter* Transformer Turns Basto* +I not Meter

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No. 4537694 email Address: switchtek@pldtdsl.net

www.switchtek.com.ph

Certificate No.:

100.10-9142-1.23

Calibration of

Calibrated By:

Calibration Date: November 26, 2023

Calibration Due: November 25, 2024

C.A. CASADO

Thermocouple, TC source calibrator

Identification:

GREENTEK ENVIRONMENTAL PHILS., CO

Address:

2353 RI PLACE UNIT 3A SELYA STREET BRGY. 860 PANDACAN, MANILA, PHILIPPINES

CERTIFICATE OF CALIBRATION - THERMOCOUPLE TC SOURCE CALIBRATOR

This test report shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

UNIT UNDER TEST (UUT):

Instrument:

Thermocouple, TC source calibrator

Brand:

ALTEK

Model No.:

SERIES 22 107173

Serial No.: ID code:

No record

Ranges:

Thermocouple TYPE K

-200 to 1371 Deg. C

Results:

REFERENCE READING (Deg. C)	UNIT UNDER TEST READING (Deg. C)	ERROR IN READING	SATNDARD DEVIATION
-54.10	-50.000	4.100	2.8991
0.10	0.000	-0.100	0.0707
50.30	50.000	-0.300	0.2121
100.10	100.000	-0.100	0.0707
200.00	200.000	0.000	0.0000
300.00	300.000	0.000	0.0000
399.90	400.000	0.100	0.0707
499.90	500.000	0.100	0.0707
600.00	600.000	0.000	0.0000
700.00	700.000	0.000	0.0000
800.00	800.000	0.000	0.0000
900.00	900,000	0.000	0.0000
1000.00	1000.000	0.000	0.0000

Standard error:± 0.9414

Deg. C

Uncertainty:±

1,1430 Deg. C

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave. Bahay Toro, Quazon City, 1100, Philippines. Tel Nos.:84420560 / 89282869 / 89287769 Fax No.:89282869 email Address: admin@switchtek.com.ph

www.switchtek.com.ph

Certificate No.:

600.01-8588-1.23

Calibration of

Set of Weights

Identification: Inb:

GREENTEK ENVIRONMENTAL PHILS., CO

Test and Verification

Fin.acc:

August 2, 2023

Certificate of Calibration Initials....

CAC

Categories

Calibration

Hours 1.0

Total rost

Type Certificate

Cal Officer

CERTIFICATE OF CALIBRATION - SET OF WEIGHTS

This report of calibration shall does ein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

Issued To:

GREENTEK ENVIRONMENTAL PHILS., CO.

Address:

2353 RJ PLACE UNIT 3A SELVA STREET BRGY.860 PANDACAN, MANHA, PHILIPPINES

UNIT UNDER TEST (UUT):

Instrument: Set of Weights Brand: No record

Model No -No record Sorial No.: G.201501

10g;20g (2pcs.); 50 g, 100g (2 pcs.) Range: 200g; 500 g

ID code: G50W-01 Calibration Date: July 29, 2023 Calibration Due: July 28, 2024 CALIBRATOR INFORMATION:

Traceability:

Instrument: Analytical Balance Instrument: Brand: KERN Model No.: AES-200-4C Serial No.: WL170025 Range: 220.0 g Graduation:

Brand: Model No.: Serial No.: 0.0001 g Range: NIST Traceability:

Digital weighing scale KERN

EG4200-2NM sms4200 4200.0 g

Environmental Condition:

Condition: DRY/BASIC/NEUTRAL Relative Humidity: 58 ±5%, 1008 hPa

Ambient Temp. (Deg C): 23.3 ±2.

By comparative technique, calibration was done in reference with a Calibrated precision scale at planned intervals. Procedures of test conform to the requirements of NIST. Data were gathered and tabulated.

NO.	REFERENCE READING (g)	UNIT UNDER YEST CAPACITY (g)	ERROR IN READING (g)	UNCERTAINTY OF MEASUREMENT (mg)	REMARKS
1	10.0030	10.0	-0.0030	1.587	
2	20.0005	20.0	-0.0005	1.16	
3	20.0060	20.0	-0.0060	3.21	The user should determine the
4	50,0027	50.0	-0.0027	1.76	
S	100.0064	100,0	-0.0064	3.39	suitability of the instrument of
6	100.0062	100.0	-0.0062	3.30	its intended use.
7	200.0127	200.0	-0.0127	5.40	
8	500.0040	500.0	-0.0040	2.17	

Remarks:

All data pertain only to the unit described obta at the time of test. This contificate is not valid without seal and closature. Use is prohibited.

Calibrated By:

Date:

July 29, 2023

Figureature* Frances* Search Search (Analysis *Fire *Volume* Weight* Rh* Ph* Conductivity *Persuance *Forces *Conductivity *Voltage *Ampres* *Knitmenter* *Frances* *Conductivity *Conductivity *Conductivity *Voltage *Ampres* *Knitmenter* *Frances* *Conductivity *Conduc oter "Glass & 6-Metal Therapareter "PRV

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph

www.switchtek.com.ph

Certificate No.:

100.08-9142-1.23

GREENTEK ENVIRONMENTAL PHILS., CO.

PI

Fin.acc:

Categories Cal Officer

February 2, 2024 Calibration

Digital thermomet

1.0

Test and Calibration Certificate of Calibration

Initials + CAC Men Hours

Total cost

Туре

CERTIFICATE OF CALIBRATION - TEMPERATURE

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable

Identification: Address:

GREENTEK ENVIRONMENTAL PHILS... CO

2430 LAURA STREET BRGV. 862 PANDAM MANILA, PHILIPPINES

UNIT UNDER YEST (UUT):

Digital thermometer

Instrument: Reand-Model No.: Serial No.:

LUTRON PT 816 No record No record

Ranger -40.0 to 230.0 Deg. C 0.1 Deg. C Resolution

Calibration Date-Calibration Due:

February 1, 2024 January 31, 2025 CALIBRATOR INFORMATION:

Serial No:

Instrument: Liquid Bath Calibrator Instrument: Liquid Bath Calibrator Model No:

TECHNO TB-30 A275 Standard platinum

Brand: TECHNO Model No: TB-30

Sertal Rice A275 Instrument: Process meter resistance thermometer Brand: FLUKE

Brand: Horaeus Model No: 726 Model No: SPH-01 Serial No: 3266078 Range: -40 to 420.0 Deg. C Traceability: NIST

Connection: Four (4) wires Traceability: INMETRO, LIKAS

Environmental Condition:

Relative Humidity

DRY/BASIC/NEUTRAL 55.2 ± 5%, 1010 kPa

Ambient Temp. (Deg C): 25:±2

Calibration Method:

By comparison technique, temperature values were simulated at planned infervals, using fixed point method in reference with a Temperature Bath Calibrator, Multifunction Calibrator, SPRT and ITS-1990. Span and errors were checked and tabulated. Procedures of tests conform to the requirements of ISO/IEC Guide 17025 and NIST.

During calibration the unit under test was found to have a standard error of ± 1.03 Deg, C with a confidence level of not less than 95.0 %.

Uncertainty of measurement is ± 0.51 Deg. C. Calculations were taken using the standard deviation formula.

REFERENCE READING (°C)	UNIT UNDER TEST READING ("C)	ERROR IN READING	STANDARD DEVIATION	REMARKS
-25.00	-24.2	0.800	0.5657	
-10.00	-9.2	0.800	0.5657	
0.00	0.2	0.200	0.1414	The user should determine
10.00	9.8	-0.200	0.1414	the suitability of the
40.00	40.2	0.200	0.1414	Instrument for its intended
100.00	99.2	-0.800	0.5657	use.
150.00	149.7	-0.300	0.2121	
200.00	199.2	-0.800	0.5657	

Remarks

ed at the time of test. This conditions is not valid without you and signature. Unsulberized reproduction is prolabited.

CA. CASADO

Certified By

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.:84420560 / 89282869 / 89287769 Fax No.:8453769email Address: switchtekbilers@yahoo.com

Certificate No.: Identification:

100.10-9390-1.24

GREENTEK ENVIRONMENTAL PHILS., CO

Calibration of

Probe Heater Temperature Controller

Job: FinLacc:

P1

Test and Calibration

Certificate of Calibration

Done:

32 February 2, 2024 Initials...: CAC

Type

Categories Cal Officer

Calibration

1

Certificate

CERTIFICATE OF CALIBRATION - TEMPERATURE

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against RIST traceable reference standards and its co-equal standards.

(squed To:

GREENTEK ENVIRONMENTAL PHILS.. CO

Aridress:

2353 RI PLACE UNIT 3A SELYA STREET BRGY.860 PANDACAN, MANILA, PHILIPPINES

UNIT UNDER TEST (UUT):

Manufacturer:

Probe Heater Temperature Controller

CAL CONTROLS

Model No.: Serial No.:

CAL 3700 E9979EE4089

Codes

2022TCT3A, TEAM 3A -200 to 1800.0 Deg. C

Resolutions 1 Deg. C Calibration Date: February 1, 2024 Calibration Due: January 31, 2025 CALIBRATOR INFORMATION:

SPRT, Standard Platinum resistance thermometer

Instrument: Manufacturor

Process Calibrator FILIKE

Model No.:

726 3256078

Serial No.: Traceability:

MIST

Environmental Condition:
DRY/BASIC/NEUTRAL

Relative Humidity: 55 ±5%, 1011 hPa

Ambient Temp. (Deg C): 23.5 ±2

By comparison technique, test temperatures were measured from the unit under test at fixed point method in reference with a Multi-function Calibrator, SPRT, NIST and ITS 1990. Procedures of test conform to the requirements of ISO/IEC Guide 17025, Data were gathered and tabulated.

During calibration the unit under test was found to have a standard error of ± 0.26 °F with a confidence error of not less than 95%. Uncertainty of unceasurement is ± 0.69 °F. Calculations were taken using the standard deviation formula.

REMARKS	STANDARD DEVIATION	CORRECTION	UUT SETTING	(ACTUAL TEMP.)
	¥	7	Ŧ	7
	0.7071	1.000	1	0.00
- 1 Lane - Tour	0.0000	0.000	50	50.00
The user should determ	0.000.0	0.000	100	100.00
the suitability of the	0.0000	0.000	150	150.00
instrument of its intend	0.0008	0.000	200	200.00
use.	0.0000	0.000	250	250.00
	0.000.0	0.000	300	300.00

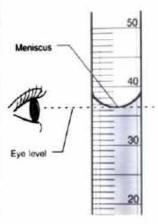
All data pertain only to the unit described of probibited.

Calibrated By: Date:

C.A. CASADO February 1, 2024

at the time of test. This certificate is not valid without seal and signature. Unauthorized reproduction is

CERTIFICATE OF CALIBRATION


GREENTEK ENVIRONMENTAL PHILS. CO. METHOD 7 – FLASK CALIBRATION

Date Calibrated:M	arch 01, 2024	Graduated Cylinder: 100	00mL, 500mL, 100mL
Date of Next Calibration: _	August 31, 2024	Pipette/Syringe:	10mL, 5mL
Flask Measurement with V	alve? Yes ✓ No		

Temperature(°C): 30.4 - 30.9

Relative Humidity: 80.8% - 80. %

Flask ID / Valve ID	Volume (mL) Trial 1	Volume (mL) Trial 2	Average (mL)
GF-11/V-11	2,226.20	2,226.40	2,226.30
GF-12/V-12	2,247.00	2,247.00	2,247.00
GF-13/V-13	2,236.20	2,236.60	2,236.40
GF-14/V-14	2,221.40	2,221.20	2,221.30
GF-15/V-15	2,227.20	2,227.20	2,227.20
GF-16/V-16	2,211.20	2,211.60	2,211.40
GF-17/V-17	2,237.00	2,237.60	2,237.30
GF-18/V-18	2,225.00	2,225.00	2,225.00
GF-19/V-19	2,220.00	2,220.20	2,220.10

Note:

The flask volumes were measured within \pm /- 10mL. All calibrations are done in a room temperature. Glassware used during calibration are within \pm 2 0mL tolerance for Graduated Cylinder (TC) and \pm 0.02mL tolerance for Pipette (TD)

Reference used in calibration						
Туре	Model	Serial No.	Calibration Date	Certificate No.	Issuing Lab/Traceability	
Graduated Cylinder	Pyrex 100mL	No. 70075	April 10, 2023	2000.05-8004-3.23	Switchtek Measurement Systems	
Graduated Cylinder	Pyrex 500mL	3025	April 11, 2023	2000.05-8004-2.23	Switchtek Measurement Systems	
Graduated Cylinder	Pyrex 1000mL	3025	April 11, 2023	2000.05-8004-1.23	Switchtek Measurement Systems	
Pipette	Pyrex 5mL	No. 7085	April 12, 2023	2000.07-8004-2.23	Switchtek Measurement Systems	
Pipette	Pyrex 10ml	No. 7085	April 12, 2023	2000.07-8004-1.23	Switchtek Measurement Systems	

QA/QC Check:

Completeness Legibility: Accuracy: Specification: Reasonableness: Checked By: Avantable Value Va

CERTIFICATE OF CALIBRATION GREENTEK ENVIRONMENTAL PHILS. CO. NOZZLE CALIBRATION

Date of Calibration: March 13, 2024 Calibration Due: September 12,2024

Nozzle Box ID: GGN-T1 Calibrated By: AJRR

Nozzle Type: GLASS NOZZLE

Nozzle ID	D ₁ (mm)	D ₂ (mm)	D ₃ (mm)	D (mm)	Average (mm)
GGNT1-01	4.64	4.61	4.62	0.03	4.62
GGNT1-02	4.80	4.80	4.81	0.01	4.80
GGNT1-03	6.40	6.41	6.41	0.01	6.41
GGNT1-04	7.80	7.81	7.83	0.01	7.81
GGNT1-05	9.58	9.57	9.57	0.01	9.57
GGNT1-06	11.10	11.13	11.11	0.02	11.11
GGNT1-07	12.79	12.78	12.80	0.02	12.79

Note:

 D_1 , D_2 , and D_3 = Nozzle Diarneter, measured different diameter. Tolerance = 0.0125mm D = maximum difference in any two measurements. Tolerance = 0.1mm Average = Average of D_1 , D_2 , and D_3 .

Equipment used in calibration						
Type Model Serial No. Calibration Date Certificate No. Issuing Lab/T						
Digital Caliper	MITUTOYO CD-6" ASX	A22099212	July 30, 2023	10 0000.01-8588-1.23	Switchtek Measurement Systems	

Calibrated by:

Daniel L. Navidad Jr. Team Leader Angelo V. Guevarra QA/QC Manager

Checked by:

CERTIFICATE OF CALIBRATION GREENTEK ENVIRONMENTAL PHILS. CO. BALANCE CALIBRATION

Date of Calibration: March 13, 2024 Calibration Due: September 12, 2024

Instrument: Top Loading Balance Brand: Tanita

Instrument ID: Team 1 Model No. KD-321

Environmental Conditions:

Temperature (C°): 20.8 - 22.2 Relative Humidity (%): 47.0

Test Point	Reference Weight (g)	Trial 1 (Reading) (g)	Trial 2 (Reading) (g)	Difference < 0.5g (g)	Remarks
1	10	10	10	0	OK
2	20	20	20	0	OK
3	50	49.9	49.9	0	OK
4	100	100	100	0	OK
5	200	199.8	199.8	0	OK
6	400	400	400	0	OK
7	500	499.5	499.5	0	OK
8	700	699.5	699.5	0	OK
9	800	799.5	799.5	0	OK
10	900	899.5	899.5	0	OK

Note:

Trial 1 and 2 shall be less than 0.5g difference. The instrument was left standby for a minimum of 30-mins before calibration. Reference weights used for the calibration of this instrument complied with ISO/IEC 17025 against NIST traceable reference standards and its co- equal standards.

Reference used in calibration						
Туре	Model	Serial No.	Calibration Date	Certificate No.	Issuing Lab/Traceability	
Set of Weights	No Record	G.201501	July 29, 2023	600.01-8588-1.23	Switchtek Measurement Systems	

Calibrated by:

Daniel L. Navidad Jr. Team Leader Angelo V. Guevarra QA/QC Manager

Checked by:

CERTIFICATE OF CALIBRATION GREENTEK ENVIRONMENTAL PHILS. CO. NOZZLE CALIBRATION

Date of Calibration: March 13, 2024 Calibration Due: September 12, 2024

Nozzle Box ID:

GN-T1

Calibrated By: AJRR

Nozzle Type: STAINLESS STEEL

Nozzle ID	D ₁ (mm)	D ₂ (mm)	D ₃ (mm)	D (mm)	Average (mm)
GNT1-01	3.11	3.12	3,11	0.01	3.12
GNT1-02	4.48	4.48	4.49	0.01	4.48
GNT1-03	6.08	6.08	6.10	0.02	6.09
GNT1-04	7.74	7.71	7.73	0.03	7.73
GNT1-05	9.60	9.60	9.59	0.01	9.60
GNT1-06	10.88	10.86	10.89	0.03	10.88
GNT1-07	12.32	12.34	12.33	0.02	12.33

Note:

 D_1 , D_2 and D_3 = Nozzle Diameter, measured different diameter. Tolerance = 0.0125mm D = maximum difference in any two measurements. Tolerance = 0.1mm Average = Average of D₁, D₂ and D₃.

Equipment used in calibration						
Type	Model	Serial No.	Calibration Date	Certificate No.	Issuing Lab/Traceability	
Digital Caliper	MITUTOYO CD-6" ASX	A22099212	July 30, 2023	10 0000.01-8588-1.23	Switchtek Measurement Systems	

Calibrated by:

Daniel L. Navidad Jr. Team Leader

Checked by:

Angelo V. Guevarra QA/QC Manager

"APPENDIX F"

TEST PARTICIPANTS

TEST PARTICIPANTS

BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT

Ms. Jemimah R. Salayog - Pollution Control Officer

DENR EMB REPRESENTATIVE

Mr. Garth Raymundo - EMB CAR EMED Representative

GREENTEK ENVIRONMENTAL PHILS. CO.

Mr. Danilo M. Palaypay, Jr. - Technical & QA/QC Manager

Mr. Angelo V. Guevarra - Technical Head & QA/QC Manager

Mr. Daniel L Navidad, Jr. - Team Leader / Safety Officer
Mr. Manny R. Cruz - Senior Field Technician / Driver

Mr. Anthony M. Cabungcal - Field Technician Mr. Rodel M. Castante - Field Technician

Mr. Leo R. Toca - On Call Field Technician / Welder

Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU Visayas Avenue, Diliman, Quezon City

SAT No. 2023 - 151

CERTIFICATE OF ACCREDITATION

Pursuant to DENR Administrative Order No. 26 Series of 2013 of the Department of Environment and Natural Resources having substantially met all the requirements prescribed therein,

GREENTEK ENVIRONMENTAL PHILS. CO.

#2430 Laura St., Pandacan Manila

is hereby duly accredited as

SOURCE EMISSION TESTING FIRM

As such, the following are authorized as:

QA/QC Manager Danilo M. Palaypay, Jr.

Team Leader
Aaron Jonathan R. Regilme

This certification shall allow the above firm and personnel to conduct stack testing limited to the following methods and parameters:

1. US-EPA Method 1 to 5 - PM

2. US-EPA Method 6/8 - SO₂

3. US-EPA Method 7 - NOx

4. US-EPA Method 10 - CO

Granted this __ December 22, 2023 and valid until

December 22, 2026

GILBERT C. GONZALES, CESO III

Director and concurrent
Assistant Secretary for Field Operations

Republic of the Philippines Department of Environment and Natural Resources **ENVIRONMENTAL MANAGEMENT BUREAU** Visayas Avenue, Diliman, Quezon City

SAT No. 2023 - 152

Pursuant to DENR Administrative Order No. 26 Series of 2013 of the Department of Environment and Natural Resources having substantially met all the requirements prescribed therein.

GREENTEK ENVIRONMENTAL PHILS, CO.

#2430 Laura St., Pandacan Manila

is hereby duly accredited as

SOURCE EMISSION TESTING FIRM

As such, the following are authorized as:

QA/QC Manager Angelo V. Guevarra

Team Leader Daniel L. Navidad, Jr.

This certification shall allow the above firm and personnel to conduct stack testing limited to the following methods and parameters:

US-EPA Method 1 to 5 - PM

2. US-EPA Method 6/8 - SO2

3. US-EPA Method 7 - NOx

4. US-EPA Method 10 - CO

Granted this _ December 13/202

December 13, 2026

GILBERT C. GONZALES, CESO III

Director and concurrent Assistant Secretary for Field Operations

"APPENDIX G"

SOURCE SPECIFIC TEST PLAN AND FACILITY PERMIT

05 June 2024

ENGR. JEAN C. BORROMEO

OIC, Regional Director Environmental Management Bureau Cordillera Administrative Region DENR Compound, Gibraltar Road, Baguio City

Dear Director Borromeo:

We have contracted GREENTEK ENVIRONMENTAL PHILS. CO. to conduct Source Emission Test of the following:

- 1. ONE (1) UNIT 5,013 CFM VERANTIS ACID FUME SCRUBBER
- 2. ONE (1) UNIT DUST COLLECTION FACILITY SYSTEM
- THREE (3) STATIONS AMBIENT AIR (TSP, NO2, SO2 & NOISE LEVEL MEASUREMENT)

The facility plant is located at Benguet Corporation – Acupan Contract Mining Project (BC-ACMP Assay Laboratory and Mill Refinery), Balatoc, Virac, Itogon Benguet. The purpose of this test is for our compliance to the terms and conditions of the issued Permit to Operate.

We therefore submit the attached source specific test plan which was prepared by GREENTEK ENVIRONMENTAL PHILS. CO. for your review and approval that the test will be accepted by EMB for the above purposes.

The proposed date of testing is on **June 28 & 29, 2024**, and each of the unit will be tested with a load of at least 90% of our rated capacity.

Thank you for your consideration on this request.

Respectfully yours,

JEMMAH R. SALAYOG Pollution Control Officer

VALERIANO B. BONGALOS VP / Resident Manager

Benguet Gold Operation

2353 RJ Place Bldg. Unit 3A, Selya St. Pandacan, Manila – OA
2430 Laura St. Pandacan, Manila -WO
Telephone no: (028)2446900, (027)5052335
Email address: greentek.services@yahoo.com

SITE SPECIFIC STACK EMISSION TEST PLAN

Facility Name: BENGUET CORPORATION - ACUPAN CONTRACT MINING

PROJECT (BC-ACMP Assay Laboratory and Mill Refinery)

Facility Address: Balatoc, Virac, Itogon, Benguet

Sources to be tested: 1 unit Acid Fume Scrubber & 1 unit Dust Collection

Facility System

INTRODUCTION:

GREENTEK ENVIRONMENTAL PHILS. CO. was contracted by BENGUET CORPORATION – ACUPAN CONTRACT MINING PROJECT (BC-ACMP Assay Laboratory and Mill Refinery) to conduct source emission testing at their facility located on the mentioned address.

The purpose of the test is to determine the compliance of the above sources with the emission standards. This test plan is prepared for review and approval by the **DENR-EMB – CAR** so that the results of the emission tests can be used as basis of their Permit to operate compliance to conditions.

The said sources will be tested of the following.

- 1. One (1) unit 5,013 CFM Verantis Acid Fume Scrubber PM SOX NOX & CO
- Particulate Matter (PM), Sulfur Dioxide (Sox), Nitrogen Oxides (NOx), Carbon Monoxide (CO)
- 2. One (1) unit Dust Collection Facility System
- Particulate Matter (PM)

The test will be conducted in three (3) runs per unit source.

FACILITY INFORMATION:

The above testing activity will be performed at the facility specified below with the following contact information:

BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT (BC-ACMP Assay Laboratory and Mill Refinery)

Contact Person: JEMIMAH R. SALAYOG VALERIANO B. BONGALOS JR.

POLLUTION CONTROL OFFICER VP/RESIDENT MANAGER

BENGUET GOLD OPERATION

Contact Number: 0917-136-1496

BRIEF DESCRIPTION OF THE SOURCE TO BE TESTED:

BENGUET CORPORATION – ACUPAN CONTRACT MINING PROJECT (BC-ACMP Assay Laboratory and Mill Refinery, is a mining company and has maintains and One (1) unit 5,013 CFM Verantis Acid Fume Scrubber & One (1) unit Dust Collection Facility System.

Emission testing will be conducted with a load of at least 90% for each of the unit source.

TEST METHODOLOGIES:

The sampling will be conducted in three sampling runs per source. The following DENR Standard Procedure (US-EPA Reference Methods) will be used in this stack- sampling program. These procedures are based on the US-EPA 40 CFR 60, Appendix A – Reference Methods for Emission Testing of Stationary Sources:

Method 1	Sample and velocity traverses
Method 2	Stack gas velocity and volumetric flowrate
Method 3	Gas analysis for O2 and CO2 and dry molecular weight
Method 4	Determination of moisture content
Method 5	Determination of particulate emission
Method 6	Determination of sulfur dioxide emission
Method 7	Determination of nitrogen oxides emission
Method 10	Determination of carbon monoxide emission

Methods 1 to 4 will be conducted in conjunction with Methods 5 and 6 which requires isokinetic emission sampling. **GREENTEK ENVIRONMENTAL PHILS. CO.**, will use stainless steel probe liner and sampling nozzle which is an accepted alternative of the USEPA (DENR approved) methods.

In addition to PM and SO_x sampling, the NO_x testing will be conducted using three samples per test run where one result may be disregarded if they are found to be an outlier from other values. CO samples will be collected in a tedlar bag and will be analyzed using a non-dispersive infra-red analyzer.

The table below describes the implementation of the above sampling procedures:

TABLE 1 – Sampling Matrix

<u>Parameter</u>	Abbr.	Test Method	<u>Test</u> <u>Duration</u>	<u>Notes</u>
Volumetric Flow Rate	VFR	EPA Method 1-4	Minimum of 60 minutes per run (3 Runs)	Performed concurrent with M5 test run
Particulate Matter	PM	EPA Method 5	Minimum of 60 minutes per run(3 Runs)	Performed concurrent with M5 test run
Sulfur Oxides	SO _x (as SO ₂)	EPA Method 6	Minimum of 60 minutes per run (3 Runs)	Performed concurrent with M5 test run
Oxygen	O2	EPA Method 3Fyrite	Minimum of 60 minutes per run (3 Runs)	Integrated Tedlar bagsample during M5 test run
Carbon Dioxide	CO2	EPA Method 3Fyrite	Minimum of 60 minutes per run (3 Runs)	Integrated Tedlar bag sample during M5 test run
Nitrogen Oxides	NO _x (as NO2)	EPA Method 7	Minimum of 60 minutes per run (3 Runs)	Grab Sampling during M5 test run
Carbon Monoxide	CO	EPA Method 10	Minimum of 60 minutes per run (3 Runs)	I integrated Tedlar bag sample during Method 5, same tedlar bag for CO2/ O2

The facility should operate each unit source continuously during the actual testing. In case the unit is operating intermittently, or the stack test ports did not comply with the Method 1 requirements, only gaseous pollutants will be tested such as SOx, NOx and CO including gas analysis of CO2 and O2. Three replicate test runs, about 30minutes in duration shall beperformed when the boilers are intermittently.

TEST SCHEDULE AND IMPLEMENTATION PLAN:

Table 2 - Sampling Schedule

<u>Date</u>	<u>Source</u>	Test Run	<u>Notes</u>	
June 28 & 29, 2024	One (1) unit 5,013 CFM Verantis Acid Fume Scrubber & One (1) unit Dust Collection Facility System.	Runs 1, 2 & 3	Duration of testing is 7 to8 hours includes set up to actual test per unit source.	

The actual run date and time may vary based on the facility process conditions, weather and testing logistics. The Test Team leader will coordinate the specific run plans with the designated facility representative.

TEST PERSONNEL:

Any of the following persons will be involved in the testing:

QA/QC MANAGER Danilo M. Palaypay Jr. Aaron Jonathan R. Regilme **TEAM LEADER**

Angelo V. Guevarra **QAQC MANAGER** Daniel L. Navidad Jr. TEAM LEADER

Sampling Personnel (any of the following)

Manny Cruz Reynaldo S. Pile Anthony M. Cabuncal Ronnie S. Basa Kristoffer Camarillo Rodel M. Castante

Prepared by:

QA/QC MANAGER

QA/QC MANAGER

SAT NO: 2021-93 / 2023-151 SAT NO: 2023-152

Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU

Cordillera Administrative Region Baguio City

Permit No. : 2007-POA-B-141105-043

Date Issued : March 11, 2020

Validity Period: February 17, 2020 to February 16, 2025

PERMIT TO OPERATE

AIR POLLUTION SOURCE AND CONTROL INSTALLATION

Pursuant to Rule XIX, Part VI, of the Implementing Rules and Regulations of the Clean Air Act (Republic Act 8749), this Permit to Operate is hereby issued to:

BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT

Balatoc, Virac, Itogon, Benguet ECC CAR 1012-174-2110 (Amended)

for the emission, discharge or release of air pollutants from the following facilities/equipment (16.359434, 120.658985) installed at the Mill Plant Refinery:

Two (2) units Kerosene-fired Flame Torches of the Acidfying Chamber No. 2 which is connected to the One (1) unit 5,013 CFM "VERANTIS" Acid Fume Scrubber System (No. 2)

and are subject to the conditions specified on the attached two (2) pages.

Recommended by:

Approved by:

NESTOR M. DONAAL
OIC-Chief, Clearance & Permitting Division

MA. VICTORIA V. ABRERA Regional Director

Permit Fee : PhP 1,900.00 O.R. No.: 4702000 Date: January 21, 2020 PhP 5,000.00 O.R. No.: 4702496 Date: March 3, 2020 O.R. No.: 4702000 Filing Fee PhP 600.00 Date: January 21, 2020 Pres. Decree 1856 Fee : PhP O.R. No.: 4702000 10.00 Date: January 21, 2020 Documentary Stamp Tax: PhP 30.00 O.R. No.: 4700883 Date: January 21, 2020

Page 1 of 3

B-CAR \ ON: 3 / 1/2020

20201800

CONDITIONS:

- This Permit is issued for the permittee to operate two (2) units Kerosene-fired Flame Torches of the Acidifying Chamber No. 2 which is connected to the one (1) unit 5,013 CFM "VERANTIS" Acid Fume Scrubber System (No.2) at the permittee's establishment, Benguet Corporation – Acupan Contract Mining Project, located at Balatoc, Virac, Itogon, Benguet.
- This Permit shall be valid until <u>February 16, 2025</u>, as indicated in the validity period on page 1 of this Permit, unless suspended or revoked by the Bureau.
- The Bureau may modify the Permit by amending any existing condition or imposing any new or additional condition during the period of validity, subject to the provisions of DENR Administrative Order No. 2004-26 (Amending Rule XIX of DENR Administrative Order No. 2000-81, the Implementing Rules and Regulations of RA 8749).
- 4. An application for <u>renewal</u> of this Permit shall be filed not less than <u>thirty (30) days</u> before the expiry date indicated on page 1 of the Permit.
- Page 1 of this Permit shall be posted in a conspicuous location at the premises and shall be adequately framed or otherwise protected against damage.
- 6. The operation of any installation, process activity at this establishment that produces, generates, captures, treats, reduces, controls, emits, releases or disperses air pollutants without a valid Permit to Operate, or in a violation of any of the conditions of this Permit, shall be subject to penalties of not less than ten thousand (10,000) pesos and not more than one hundred thousand (100,000.00) pesos, pursuant to Rule LVI of the Implementing Rules and Regulations of RA 8749.
- 7. The installations, processes or activities at this establishment shall be operated, conducted and managed by the permittee, and the associated plant and equipment shall be properly maintained and operated by the permittee, so that emissions of air pollutants from the establishment, including fugitive or uncontrolled emissions or releases of air pollutants from abnormal or unexpected events, do not cause air pollution in the surrounding air environment or have adverse effects on persons in that environment.
- 8. Without limiting the generality of the previous condition, the permittee shall ensure that the emissions from the regulated installations or processes comply with:
 - The National Emission Standards for Source Specific Air Pollutants as specified in Rule XXV of the IRRs of RA 8749; and
 - The National Ambient Air Quality Standards for Source Specific Air Pollutants from Industrial Sources/Operations as specified in Rule XXVI of the IRRs of 8749.
- 9. The permittee shall submit Self-Monitoring Reports to the Bureau on a quarterly basis in accordance with DENR Administrative Order No. 27 (Series of 2003) and any written instructions by the Bureau based on the following schedule:

Quarter	Coverage	Submission	Quarter	Coverage	Submission
First	Jan Mar.	1-15 Apr.	Third	Jul Sept.	1-15 Oct.
Second	Apr. – Jun.	1-15 Jul.	Fourth	Oct Dec.	1-15 Jan.

- 10. The permittee shall at all times have an appointed or designated Pollution Control Officer (PCO) who shall be the day-by-day contact person between the Bureau and the establishment. The permittee shall ensure that the PCO is familiar with the operations and activities undertaken at the establishment, and the relevant emission sources and air pollution control devices and equipment. The permittee shall give the PCO the authority to implement corrective action in the event of a malfunction, accident, breakdown or other abnormal event that results in emissions that do not comply with emission standards or ambient air quality standards.
- 11. The permittee shall report in writing to the Bureau any malfunction, accident, breakdown, leak, spill or other abnormal or unexpected event which results in emissions to atmosphere that do not comply with the emission standards or ambient air quality standards, or in any other abnormal or unexpected releases of air pollutants. The report shall indicate the nature of the incident or event, its impact on emissions, the time period involved, and any actions or measures taken to control the emissions or releases, remedy any air pollution problems that may have occurred, and minimize the probability of a reoccurrence of the event the release.
- 12. The permittee shall at all times allow entry by the Department or the Bureau an access to any part of the establishment to conduct inspections, gather information, test emissions or take samples. The permittee and its personnel shall not obstruct such officers in the performance of these functions, and shall furnish pertinent information or materials requested from them. The permittee shall comply with any lawful instruction or direction given by the Department or the Bureau at all times.
- 13. The permittee shall not make or allow any alterations or modifications to operations, activities, installations, processes, plan or equipment at the establishment that may substantially change the nature or quantity of the associated emissions without obtaining the approval of the Bureau, including obtaining any necessary Permit to Operate.

31 July 2024

Ref. No.: LT-24-241-1-68

MR. FRANCISCO O. FLAVIER
Resident Manager
BMC FORESTRY CORPORATION
Irisan Lime Project.,
Irisan, Baguio City

ATTN: NARHY C. POMILBAN
Pollution Control Officer

Subject: Source Emission Monitoring Report

Dear Mr. Flavier:

We are pleased to submit the final report of the source emission monitoring as a result of our visit to your facility in Irisan, Baguio City on May 28, 2024.

We hope that this report addresses your requirements.

Very truly yours,

EXECUTIVE VICE President

ERA/mla

SOURCE EMISSION MONITORING REPORT

one (1) Unit 1.08 MT/hr Vertical Shaft Kiln

BMC FORESTRY CORPORATION

Irisan, Baguio City

DENR SOURCE EMISSION TESTING FIRM ACCREDITATION NO: SAT NO. 2022-72

2nd Floor, VAG Building Ortigas Avenue, Greenhills, San Juan, Metro Manila, Philippines

SOURCE EMISSION MONITORING REPORT (May 28, 2024)

BMC FORESTRY CORPORATION

Irisan, Baguio City

Prepared for:

BMC Forestry Corporation Km. 5, Naguilian Rd., Irisan, Baguio City Tel. No.: 445-7177

Prepared by:

BSI 2nd Floor VAG Building, Ortigas Avenue Greenhills, San Juan, Metro Manila Tel. No.: (02) 863 6129; Fax. No.: (02) 727 9831

TABLE OF CONTENTS

CUNTER	PAGE	
1. INTI	RODUCTION	4
1.1	PROCESS DESCRIPTION AND OPERATION	4
	Reason for Testing	
	IMARY OF RESULTS	
	Conclusions	
	IPLING AND ANALYTICAL PROCEDURES	
	Methods I and 2 – Traverse Point and Stack Velocity	7
3.1.1		
3.1.2	Cyclonic Flow CheckFlue Gas Velocity	o R
3.2	METHOD 3 – FLUE GAS COMPOSITION	8
3.3	METHOD 4 – FLUE GAS MOISTURE CONTENT	9
3.4	METHOD 5/6 (MODIFIED) – PARTICULATE MATTER AND SULFUR OXIDES	9
3.4.1		9
3.4.2		9
<i>3.4.3</i> 3.5	Sample Analysis METHOD 7 – NITROGEN OXIDES	10
3.5.1		10
3.5.2	Sample Recovery	10
3.5.3	Sample Analysis	11
	METHOD 10 – CARBON MONOXIDE	
3.6.1		I I
3.6.2 3.6.3	· ·	11
	PROCEDURES	
·=	PARTICULATE MATTER AND SULFUR OXIDES (AS SO ₂)	
4.1 <i>4.1.1</i>		
4.1.2		
4.1.3	Analysis	
	NITROGEN OXIDES (AS NO ₂)	
4.3	CARBON MONOXIDE	14
110= 0=	TENIFO	
LIST OF	TABLES	
TABLE 1.	EQUIPMENT INFORMATION	
TABLE 2.	OPERATING CONDITIONS	5
TABLE 3.	VERTICAL SHAFT KILN NO. 1 EMISSION TEST RESULTS	e

TABLE OF CONTENTS

LIST OF ANNEXES

ANNEX A	SOURCE EMISSION MONITORING SUMMARY OF RESULTS
ANNEX B	Source Emission Monitoring Field Data
ANNEX C	PERMIT TO OPERATE AND FACILITY PROCESS DATA
ANNEX D	ANALYTICAL DATA
Annex E	EQUIPMENT CALIBRATION CERTIFICATES
ANNEX F	DENR ACCREDITATION
ANNEX G	TEST PARTICIPANTS
ANNEX H	TEST PLAN
ANNEX I	PHOTO DOCUMENTATION
ANNEX F ANNEX G ANNEX H	DENR ACCREDITATION TEST PARTICIPANTS TEST PLAN

Emission Test Report Certification

The emission sampling reported herein was performed under the direction and supervision of Mr. Edindo C. Fernando of BSI. The analyses of samples were conducted under the direction and supervision of Mr. Renato M. Gofredo, Jr. of ELARSI, Inc., a DENR-recognized Environmental Laboratory

I certify that the information contained in this report is authentic and accurate to the best of my knowledge.

Signed:

Edindo C. Fernando

RSI

DENR Accredited QA/QC Manager

Date: 0.7. AUG. 2024

1. INTRODUCTION

This report presents the procedures and results of the source emission monitoring conducted on May 28, 2024 at BMC Forestry Corporation situated in Irisan, Baguio City. BSI was commissioned to conduct the monitoring wherein Mr. Halcy Lemon P. Orquina led the team that administered the source emission sampling with Mr. Edindo C. Fernando as QA/QC Manager. Meanwhile, Mr. Francisco O. Flavier, Resident Manager of BMC Forestry Corporation, served as site contact person during sampling.

The pollutants considered for the source emission monitoring were: particulate matter (PM), sulfur oxides (as SO₂), nitrogen oxides (as NO₂) and carbon monoxide (CO) at one (1) unit 1.08 MT/hr vertical shaft kiln exhaust stack. The source was tested for three runs.

1.1 Process Description and Operation

BMC Forestry Corporation – BC ILP is an enterprise in the Philippines, with the main office in Baguio City. It operates in the Crop Production Industry (https://www.emis.com/php/company-profile/PH/Bmc_Forestry_Corporation_en_3256166.html) and a producer and supplier of burnt lime. Its Kiln plant located at Km. 5 Naguilian Road, Irisan, Baguio City operates three (3) vertical shaft kilns, three (3) gas scrubbers, two (2) cyclone dust collectors and one (1) jaw crusher.

One (1) unit of 1.08 MT/hr *Vertical Shaft Kiln No. 2* was operated at 100% operating rate was tested during sampling, and used low sulfur fuel oil as fuel source.

This report covers the source emission monitoring of the vertical shaft kiln no. 2 only.

1.2 Reason for Testing

The purpose of the monitoring was to verify the company's compliance with the source emission standards of the Department of Environment and Natural Resources (DENR) Administrative Order No. 81 Series of 2000 (Implementing Rules and Regulations of the Philippine Clean Air Act of 1999).

1.3 Facility Operating Conditions during the Test

The equipment information and operating conditions of the facility monitored were summarized in *Tables 1* and 2, respectively.

Table 1.		Equipment	t I	nformation
----------	--	-----------	-----	------------

Stationary Sou	rce Information	Vertical Shaff Kiln No. 2
Brand	Name	N/A
Rated C	lapacity	1.08 MT/hr
Year In	istalled	No information provided
	Diameter	40 cm
Exhaust Stack	Height*	14 m
	Orientation	Vertical
Air Pollution	Control Device	Wet Gas Scrubber
GPS Coo	rdinates	16°25'9.012"N; 120°33'28.542"E

^{*}Measured from the ground to the tip of the stack

Table 2. Operating Conditions

Stationary Source Information	Vertical Shaft Kiln No. 2
Load During Sampling	100%
Fuel Used	BFO/IFO
Fuel Sulfur Content	No information provided
Fuel Consumption	No information available
Annual Operating Hours	8760 hours

2. SUMMARY OF RESULTS

Table 3 presents the summary of test results of the vertical shaft kiln no. 2 exhaust stack. The test results were compared with the National Emission Standards identified in IRR Part VII Rule XXV Table 2. A detailed description of the test run information and sample calculations used to derive the values in the tabular summary were attached in *Annex A*.

Three test runs were performed to collect: PM, SOx (as SO₂), NOx (as NO₂) and CO at vertical shaft kiln no. 2 exhaust stack. Three trial tests per run were conducted to collect samples of nitrogen oxides (as NO₂). The raw field data used to prepare the summary reports in *Annex A* was included in *Annex B*. Emissions have been corrected to the standard conditions of 25°C and 760 mmHg on dry basis (unless otherwise indicated). Moreover, in accordance with EMB Memorandum Circular No. 2021-15, the pollutant concentrations from the Vertical Shaft Kiln were not corrected with standard oxygen correction factor since the PTO of the unit was issued before the effectivity of the mentioned EMB memorandum.

Table 3. Vertical Shaft Kiln No. 2 Emission Test Results

Table 3.	v Ci tica	I SHAIL IXIII	110. Z E11135	ion Test Resi	uits	
		Run 1	Run 2	Run 3		
Sampling date		28-May-24	28-May-24	28-May-24		FOS. 28-L8: - 11-14-15".
Begin sampling time		1030H	1300H	1505H		
End sampling time		1135H	1410H	1610H		
Parameter	Units				Average	DENR Standard
Average stack temperature	°C	219.7	264.7	281.7	255.3	
CO ₂ measured in stack gas	%	8.5	8.5	8.5	8.5	
Oxygen measured in stack gas	%	12.0	12.0	12.0	12.0	
Stack gas moisture content	%	6.77	6.94	6.62	6.78	
Flue gas velocity	m/s	15.86	16.42	16.70	16.33	
Actual volumetric flow	m³/min	119.6	123.8	125.9	123.1	
Dry volumetric flow at STP	dsm³/min	58.0	54.8	54.1	55.6	·
Isokinetic flow rate	%	101.1	100.8	101.2		
Particulate matter data						·
Concentration	mg/Nm³	31.9	27.0	20.7	26.5	150
Annual emission rate	tons/yr	1.0	0.8	0.6	0.8	
Sulfur oxides data			···			
Concentration (as SO ₂)	mg/Nm³	24.0	16.4	14.5	18.3	1500
Annual emission rate	tons/yr	0.7	0.5	0.4	0.5	
Nitrogen oxides data		·		· <u> </u>		
Concentration (as NO ₂) *	mg/Nm³	< 23.6	< 20.4	< 20.3	< 21.4	1000
Annual emission rate	tons/yr	< 0.7	< 0.6	< 0.6	< 0.6	· · ·
Carbon monoxide data		·			····	
Concentration	mg/Nm³	121.4	113.4	128.2	121.0	500
Annual emission rate	tons/yr	3.7	3.3	3.6	3.5	

Annual emission rates were based on one (1) year continuous operation.

* Average of three (3) trial tests

2.1 Conclusions

A description of any method deviations and quality assurance assessment was included in *Sections* 3 and 4 of this report. Based on a review of the sampling data, facility operating information, test method description and quality assurance results, the concentration values presented in *Table 3* have passed the criteria to be considered as representative emission test results of the source and are suitable for comparison with the regulatory limits.

Under the Implementing Rules and Regulations of the Clean Air Act (CAA), the standards applicable to vertical shaft kiln no. 2 are as "existing fuel-burning equipment; other stationary source".

In conclusion, the test results indicate that the average emissions from vertical shaft kiln no. 2 exhaust stack:

- comply with the applicable standard for PM emissions;
- comply with the applicable standard for SOx (as SO₂) emissions;
- comply with the applicable standard for NO_X (as NO₂) emissions; and
- comply with the applicable standard for CO emissions.

3. SAMPLING AND ANALYTICAL PROCEDURES

All sampling were undertaken in accordance with US EPA standard methods, viz:

Method 1	Sample and Velocity Traverse Point Locations
Method 2	Stack Gas Velocity and Volumetric Flow Rate (S-type Pitot Tube)
Method 3	Gas Analysis for Determination of Dry Molecular Weight
Method 4	Determination of Moisture Content in Stack Gases
Method 5	Determination of Particulate Matter Emissions from Stationary Sources
Method 6	Determination of Sulfur Dioxide Emissions from Stationary Sources
Method 7	Determination of Nitrogen Oxide Emissions from Stationary Sources
Method 10	Determination of Carbon Monoxide Emissions from Stationary Sources

3.1 Methods 1 and 2 - Traverse Point and Stack Velocity

3.1.1 Sampling points

For the vertical shaft kiln no. 1 exhaust stack, the number and location of the sampling points were determined using the procedures of US EPA Method 1 since the equivalent stack diameter was measured to be greater than 30 cm.

The vertical shaft kiln no. I was sampled at a total of twenty-four (24) traverse points. Having two (2) available portholes that are 90° apart, twelve (12) traverse points were sampled for each.

Some of the traverse points of the exhaust stack were less than the criterion of Method 1 for allowable distance from the stack wall of stacks with diameter less than 0.61 meters. These points were relocated 1.3 cm (0.5 in) away from the stack wall.

3.1.2 Cyclonic Flow Check

For each sampling point, the rotation angle was determined using an "S-type" pitot tube assembly, liquid manometer and angle finder in accordance with section 2.4 of US EPA Method 1.

For each test point, the average absolute value of the rotation angle was less than the 20 degrees criterion of Method 1.

3.1.3 Flue Gas Velocity

The procedures of US EPA Method 2 were employed to determine the flue gas velocity and volumetric flow rate using an "S-type" pitot tube in making velocity head measurements (Δp). The "S-type" pitot tube conforms to the geometric specifications of Method 2 and has therefore been assigned a coefficient of 0.84. An inclined manometer built onto the meter console box was used to measure the differential pressures, while flue gas temperatures were measured with chromelalumel thermocouples equipped with digital readouts.

3.2 Method 3 – Flue Gas Composition

US EPA Method 3 procedures were used to determine the flue gas composition and molecular weight. An "Orsat" sample pump was operated continuously at a constant rate during each Method 5/6 (Modified) sampling run to collect an integrated flue gas sample into a tedlar bag through a separate sample line attached to the probe. Moisture was removed from the sample by passing it through a small impinger charged with silica gel.

The content of each tedlar bag was analyzed using a Fyrite analyzer to determine the concentration of oxygen and carbon dioxide in the sample.

The same bag samples were also used for the carbon monoxide analysis by Method 10.

3.3 Method 4 - Flue Gas Moisture Content

The moisture content of the flue gas was determined using the US EPA Method 4 procedures in conjunction with Method 5/6 (Modified).

3.4 Method 5/6 (Modified) - Particulate Matter and Sulfur Oxides

3.4.1 Sample Collection

A US EPA Method 5/6 (Modified) sampling train was used to extract samples isokinetically from the stack which comprised the following elements:

- a stainless steel nozzle;
- a heated stainless steel probe with "S-type" pitot tube;
- a glass fibre filter maintained at 120°C ± 14 °C;
- four chilled impingers:
 - 1st and 2nd containing 100 mL 3% H₂O₂;
 - 3rd left empty; and
 - 4th containing 200 to 300 grams of silica gel; and
- a metering console.

Each of the impingers was labeled and weighed.

Three test runs were conducted at the available sampling ports. The actual sampling time was 60 minutes per run.

3.4.2 Sample Recovery

Sample recovery was undertaken at the sheltered area near the source of emission. The filter was removed from the filter holder and placed on a petri dish. The volume of water vapor condensed in the impingers was measured to determine the volume of water vapor collected.

The nozzle, probe and front half of the filter holder were rinsed with acetone, and the interior of the probe and nozzle were rinsed and brushed repeatedly to remove any adhering PM from the inside surfaces. All rinses were collected into a 250 mL glass bottle.

The contents of the impingers 1, 2 and 3 were transferred to a 1000 mL polyethylene sample bottle. The glass sample line between the heated filter holder and the first impinger, the first three impingers and connecting glasswares were all rinsed with distilled deionized water and the rinse was added into the sample bottle.

3.4.3 Sample Analysis

The filter and sample bottles, together with the blank samples of acetone and H₂O₂, were submitted to a DENR-recognized laboratory.

The mass of filterable particulate matter collected on the filter and in the acetone rinse was determined in accordance with US EPA Method 5 analytical procedures.

The mass of sulfur oxides in the impinger contents and rinse water was determined in accordance with US EPA Method 6 analytical procedures.

3.5 Method 7 - Nitrogen Oxides

3.5.1 Sample Collection

The sampling of the flue gas to determine the concentration of nitrogen oxides was undertaken in accordance with US EPA Method 7 using a nominal 2 L glass collection flask containing 25 mL of NO_x absorbing reagent (Sulfuric Acid-Hydrogen Peroxide) connected to a Borosilicate glass probe sufficiently heated to avoid condensation and equipped with a glass wool filter at the end for particulate matter screening.

During the Method 7 testing, a flask was evacuated to an absolute pressure of 76 mmHg (3 inHg) at most less than the barometric pressure, and the initial flask temperature and pressure were recorded. The sampling train was then checked for leakage not exceeding 10 mmHg (0.4 inHg) in 1 min. The probe was inserted into the stack, connected to the flask and after purging the probe, a sample was drawn into the flask. The flask was then shaken for five minutes. This procedure was carried out thrice for three test runs resulting in the collection of nine samples for the exhaust stack.

3.5.2 Sample Recovery

The NO_x flasks were set at least 16 hours, shaken for two minutes and then the final flask temperature and pressure were measured. The contents of each flask were transferred to a leak-free polyethylene bottle and rinsed twice with 5 mL portions of deionized distilled water, and the rinse water was added into the bottle. Prior to analysis, the pH was adjusted to a value within 9 to 12 by adding 1N NaOH.

3.5.3 Sample Analysis

The sample preparation procedures of US EPA Method 7 were applied and each sample was then subjected to colorimetric analysis.

3.6 Method 10 – Carbon Monoxide

3.6.1 Sample Collection

The integrated samples that were collected into tedlar bags were used for the determination of CO in accordance with US EPA Method 10.

3.6.2 Sample Recovery

The tedlar bags were sealed and transported for analysis.

3.6.3 Sample Analysis

The sample was analyzed using a non-dispersive infrared (NDIR) analyzer. The analyzer was flushed with nitrogen and zero setting confirmed. The tedlar bag was attached to the sample input and the gas sample was introduced at a flow rate of about 0.5 L/min by applying gentle pressure to the tedlar bag. The concentration was recorded when the value indicated on the display stabilized.

4. QA PROCEDURES

The US EPA "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III Stationary Source-Specific Methods" was used as a guide to achieve the quality assurance objectives of producing data that are complete, representative and of known precision and accuracy.

4.1 Particulate Matter and Sulfur Oxides (as SO₂)

4.1.1 Sampling Procedure

US EPA Method 5/6 (Modified) was employed to determine the concentration of particulate matter in the gas stream. This method requires the use of Methods 1 to 4 to determine sampling port locations, sample traverse points within the stack, as well as the flow rate, molecular weight and moisture content of the flue gas.

The quality of the emission test was assured by:

- Ensuring that the test port is located sufficiently distant from both upstream and downstream flow disturbances (such as bends and changes in stack diameter).
- Ensuring that stack gas flow is essentially parallel to the stack walls by conducting a cyclonic flow check.
- Determination of a representative stack gas velocity by the selection of sampling test points appropriate to the stack diameter in accordance with the method.
- Leak testing of the sampling train before and after each sampling run.
- Testing and calibration of the dry gas meter, thermocouples and temperature displays, pitot tubes, nozzles, and manometer assembly.
- Ensuring that the temperature of the impinger system is maintained below 20°C.
- Maintaining the filter and sampling probe temperature at 120°C (±14°C).
- Sampling at between 90 110% of the actual gas stream velocity (isokinetic sampling).

The procedure for sampling SOx (as SO₂) was combined with US EPA Method 5 as described in *Section 3.4*. The quality of the test was assured by:

- The use of freshly-prepared chemical solutions;
- Care in the recovery of the sample;
- Attention to detail in the analysis of samples in accordance with the US EPA Method 6;
- The collection and analysis of representative "blank" samples; and
- Proper calibration and QA/QC checks of all elements of the sampling system.

4.1.2 Sampling Equipment

Copies of various calibration and test certificates were included in *Annex E*.

Barometer

A calibrated digital barometer was used to measure atmospheric pressure at the platform level.

Probe Nozzle

The probe nozzles were calibrated by the manufacturer and were inspected and checked for roundness before use to ensure that they met the specifications of the method.

Pitot Tube

The pitot tube meets the EPA Method 2 design specifications for "S-type" pitot tubes and was therefore assigned a baseline coefficient of 0.84. After each test, the pitot tube was visually inspected for damage.

Metering System

The meter box was leak checked and a calibration was carried out using five (5)-point calibrating orifices in accordance with EPA Method 5.

Post-Test Meter Calibration

A post-test meter calibration was made using the data collected for each of the test runs in accordance with the procedure set out in EPA ALT-009.

Temperature Sensors

An ethanol-filled thermometer with NIST traceable calibration was used to calibrate thermocouples at approximately 0°C in iced water, ambient temperature and approximately 100°C in boiling water. At the completion of each test, the thermocouples were compared to the ethanol-in-glass thermometer at ambient temperature and a continuity check was performed to ensure that the thermocouple read-out trended in the correct direction when subjected to a temperature change.

4.1.3 Analysis

Filters and acetone used in the emission test met the required specifications and Method 5 analytical procedures were employed using a properly calibrated analytical balance.

The mass of sulfur oxides in the impinger contents and rinse water were determined in accordance with US EPA Method 6 analytical procedures.

4.2 Nitrogen Oxides (as NO₂)

The procedure for sampling NO_X (as NO₂) was described in *Section 3.5*. The quality of the test was assured by:

- The use of freshly-prepared chemicals;
- Care in the recovery of the sample;
- Attention to detail in the analysis of samples in accordance with the US EPA Method 7;
- Calibration and verification of linearity of the spectrophotometer; and
- Proper calibration and QA/QC checks of all elements of the sampling system.

4.3 Carbon Monoxide

The procedure for sampling CO was described in Section 3.6. The quality of the test was assured by:

- Care in the collection of the gas samples to ensure that they are representative of the emission;
- Maintenance of a leak-free bag at all stages of sampling and analysis;
- Calibration of the analytical instrument prior to analysis; and
- Attention to detail in the analysis of samples in accordance with the US EPA Method 10.

ANNEX A

SOURCE EMISSION MONITORING SUMMARY OF RESULTS

EMISSION TEST RESULTS SUMMARY

BMC FORESTRY CORP. ILP IRISAN, BAGUIO CITY VERTICAL SHAFT KILN NO. 2

		-	Run 1	Run 2	Run 3	
	Sampling date		28-May-24	28-May-24	28-May-24	
	Begin sampling time		1030H	1300H	1505H	
	End sampling time		1135H	1410H	1610H	
Symbol	Parameter	Units				Average
Υ	Meter box gamma	none	0.9884	0.9884	0.9884	
ΔΗ	Average ΔH	mm H₂O	63.5	58.0	52.3	
P_{bar}	Barometric pressure	mm Hg	652.7	651.5	650.5	
	Metered sample gas volume	m³	1.6272	1.5420	1.5294	
T_{m}	Average meter temperature	°C	29.8	30.5	29.9	
P_g	Static pressure	mm H ₂ O	10.0	10.0	10.0	
T_{s}	Average stack temperature	°C	219.7	264.7	281.7	255.3
Ds	Stack diameter	cm	40	40	40	
V _{Ic}	Volume of water collected	mL	73.4	71.1	67.0	
%CO₂	CO ₂ measured in stack gas	%	8.5	8.5	8.5	8.5
$\%O_2$	Oxygen measured in stack gas	%	12.0	12.0	12.0	12.0
C_{ρ}	Pitot tube coefficient	none	0.84	0.84	0.84	
√∆P	Average of square roots of ΔP	(mm H₂O) ^½	3.350	3.316	3.321	-
θ	Sampling run time	min	60	60	60	
D_n	Nozzle diameter	mm	7.89	7.89	7.89	
A_n	Nozzle area	m^2	4.89E-05	4.89E-05	4.89E-05	
V _{m(std)}	Metered gas volume at STP	Nm ³	1.3684	1.2904	1.2799	
P_s	Stack pressure	mm Hg	653.44	652.24	651.24	
B_{ws}	Stack gas moisture content	%	6.77	6.94	6.62	6.78
$V_{w(sld)}$	Water vapour volume at STP	Nm³	0.100	0.096	0.091	0.70
M _{fd}	Dry mole fraction of flue gas	none	0.932	0.931	0.934	
M _d	Dry molecular weight	g/g-mole	29.84			
M _s	Wet molecular weight			29.84	29.84	
_	Flue gas velocity	g/g-mole	29.04	29.02	29.06	
ν _s Α _s	Stack area	m/s m²	15.86	16.42	16.70	16.33
	Actual volumetric flow		0.126	0.126	0.126	
Q _{a(act)}		m³/min	119.6	123.8	125.9	123.1
Q _{s(sid)}	Dry volumetric flow at STP Isokinetic flow rate	dsm³/min	58.0	54.8	54.1	55.6
۱ ۸0		%	101.1	100.8	101.2	
AOH	Annual operating hours	hrs/yr	8,760	8,760	8,760	
NA	Particulate matter data					
M _{part}	Measured mass	mg a	43.6	34.8	26.5	
C _{part}	Concentration	mg/Nm³	31.9	27.0	20.7	26.5
	Mass emission rate	kg/hr	0.11	0.09	0.07	0.09
	Annual emission rate	tons/yr	1.0	0.8	0.6	8.0
1.4	Sulphur oxides data					
M _{SOx}	Measured mass	mg ੍ਰ	32.78	21.22	18.57	
C_{SOx}	Concentration	mg/Nm ³	24.0	16.4	14.5	18.3
	Mass emission rate	kg/hr	0.08	0.05	0.05	0.06
	Annual emission rate	tons/yr	0.7	0.5	0.4	0.5
	Nitrogen oxides data	7.				-
C_{NOx}	Concentration	mg/Nm³	< 23.6	< 20.4	< 20.3	< 21.4
	Mass emission rate	kg/hr	< 0.08	< 0.07	< 0.07	< 0.07
	Annual emission rate	tons/yr	< 0.7	< 0.6	< 0.6	< 0.6
_	Carbon monoxide data					
CCOppm	Concentration	ppm	106.0	99.0	112.0	
C_{COmg}	Concentration	mg/Nm³	121.4	113.4	128.2	121.0
	Mass emission rate	kg/hr	0.42	0.37	0.42	0.40
	Annual emission rate	tons/yr	3.7	3.3	3.6	3.5
						Ť

Notes: Italics indicates calculated value

Annual emission rates were based on one (1) year continuous operation.

NITROGEN OXIDES (as NO₂) EMISSIONS DATA BMC FORESTRY CORP. ILP IRISAN, BAGUIO CITY VERTICAL SHAFT KILN NO. 2

Sample Co	imple Collection					2777		Sample Recovery	Sample Recovery	31	00			Correctiva	Concentration Calculation	
3arometric	3arometric Pressure, P _{ber⊕} (in Hg):	(in Hg):		29.69				Harometric	Harometric Pressure, Plane (In Fig).	@ (In Hg):	29.70					
Sample ID	Flask	Flask	Evacuated	Initial Absolute Pressure	Flask Temp Flask Temp	Flask Temp	Collection	Sample ID	Flask	Final Pressure	Final Absolute Pressure	Flask Temp Flask Temp	Flask Temp	Volume at STP		Mass Catch NO _x Conc.
:		>	4	O.		1				g.	٩	Тетр	1	\ sc	MNO2	C _{NO2}
		E	무	(in Ha	ပ္	×				in Hg	in Hg	ပ္	Å	Ē	gr	mg/Nm³
1719171	C18111 BC 12.619	2315	23.30	639	27.6	300.75	1035H	S1R1T1	S1R1T1 BSI T2-F19	0.30	29.40	28.7	301.85	1736.8	< 40.4	< 23.3
C104T2	S18172 BS T2,F20		23.20	6 49	28.4	301.55	1045H	S1R1T2	BSI T2-F20	0.50	29.20	28.6	301.75	1667.4	< 40.4	< 24.2
STRITE	S1R1T3 BSI T2-F21		23.40	6.29	28.3	301.45	1056H	S1R1T3	S1R1T3 BSI T2-F21	0.50	29.20	28.1	301.25	1731.0	< 40.4	< 23.3
Date Collected	ted.	28-						Date Recovered		29-May-2024					Average	< 23.6

Sample Collection								Sample R	Sample Recovery	, Table 1	02.00		Recovery	Concentrati	Concentration Calculation	: dadon
Barometric F	Barometric Pressure, P _{bar(t)} (in Hg):	(in Hg):		25.65				Barometric	Barometric Pressure, Pbarth (In Hg).	_{गरी} (III Hg):	29.70					
Sample ID	Flask	Flask	Evacuated	Initial Absolute Pressure	Flask Temp Flask Temp	Flask Temp	Collection Time	Sample ID	Flask	Final Pressure	Final Absolute Pressure	Flask Temp Flask Temp	Flask Temp	Volume at STP	Mass Catch	NO, Conc.
		>	a.*	a.		<u>+</u>		İ		a.b	ď	Temp	-	> 3	MNO2	CNO2
		뒽	in Hg	(in Hg)	ပ္	×		1		ēH Fi	in Hg	ပွ	Å	Ę	롸	mg/Nm³
S1R2T1	S1R2T1 BSI T2-F22	2250	23.20	2.45	27.72	300.85	1304H	S1R2T1	BSI T2-F22	0.40	29.30	28.3	301.45	1973.4	< 40.4	< 20.5
S1R2T2	S1R2T2 BSI T2-F23	2235	23.30	2.35	27.8	300.95	1314H	S1R2T2	BSI T2-F23	0.60	29.10	28.2	301.35	1953.6	< 40.4	< 20.7
S1R2T3	S1R2T3 BSI T2-F24	2285	23.30	2.35	28.2	301.35	1324H	S1R2T3	S1R2T3 BSI T2-F24	0.40	29.30	28.2	301.35	2012.9	< 40.4	< 20.1
Lotollo O oto O		28-May-2024						Date Recovered:		29-May-2024					Average	< 20.4

Sample Collection	flection							Sample Re	covery				Sample Recovery	Concentrat	Concentration Calculation	ulation
Barometric	Barometric Pressure, P _{betti} (in Hg)	(in Hg)		25.61				Barometric	Barometric Pressure, P _{bar(I)} (in Hg):	:(δH u;) ⁽⁾	29.70					
Sample ID	Flask	Flask Volume	Evacuated	Initial Absolute Pressure	Flask Temp Flask Temp	Flask Temp	Collection	Sample ID	Flask	Final Pressure	Final Absolute Pressure	Flask Temp Flask Temp	Flask Temp	Volume at STP	Mass Catch	NO _x Conc.
		5	م	a.		Ļ	-			a 5	P	Temp	۲,	> >	M _{NO2}	C _{NO2}
		Ę	EH u	(in Hg)	ပ	×				in Hg	in Hg	ၞ	*	뒽	T	mg/Nm³
S1R3T1	S1R3T1 BSI T2-F25	2250	23.30	2.31	27.0	300.15	1510H	S1R3T1	BSI T2-F25	0.40	29.30	28.5	301.65	1981.9	< 40.4	< 20.4
S1R3T2	S1R3T2 BSI T2-F26	2230	23.50	2.11	27.0	300.15	1520H	S1R3T2	S1R3T2 BSI T2-F26	09:0	29.10	28.6	301.75	1963.4	< 40.4	< 20.6
S1R3T3	S1R3T3 BSI T2-F27	2280	23.50	2.11	27.2	300.35	1530H	S1R3T3	S1R3T3 BSI T2-F27	0.50	29.20	28.4	301.55	2016.9	< 40.4	< 20.0
Date Collected:		28-May-2024	E.					Date Recovered		29-May-2024		i			Average	< 20.3

SAMPLE CALCULATIONS

BMC FORESTRY CORP. ILP

IRISAN, BAGUIO CITY

VERTICAL SHAFT KILN NO. 2

VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS

$$V_{m(std)} = Y x 0.3921 x V_m x \frac{P_{bar} + (\Delta H + 13.6)}{(273 + T_m)}$$

VOLUME OF WATER VAPOUR AT STANDARD CONDITIONS

$$V_{w(std)} = 0.001356 x V_{tc}$$

$$V_{w(std)} = 0.001356 \text{ x} 73.4 = 0.100 \text{ Nm}^3$$

PERCENT MOISTURE IN FLUE GAS

$$B_{ws} = \frac{V_{w(std)}}{(V_{w(std)} + V_{m(std)})}$$

$$B_{ws} = \frac{0.100}{(0.100 + 1.3684)} = 6.77 \%$$

ABSOLUTE FLUE GAS PRESSURE

$$P_s = P_{bar} + \frac{P_g}{13.6}$$

$$P_s = 652.7 + \frac{10}{13.6} = 653.44 \text{ mm Hg}$$

DRY MOLECULAR WEIGHT OF FLUE GAS

$$M_d$$
 = (%CO₂ x 0.44) + (%O₂ x 0.32) + {{ 100 - (%CO₂ + %O₂)} x 0.28 }

$$M_d$$
 = (8.5 x 0.44) + (12.0 x 0.32) + [{ 100 - (8.5 + 12.0)} x 0.28] = 29.84 g/g mole

WET MOLECULAR WEIGHT OF FLUE GAS

$$M_s \quad = \quad M_d \quad x \; \left(\begin{array}{ccc} 1 & \cdot & 8_{ws} \end{array} \right) \; + \; \left(\begin{array}{ccc} mol.wt. \\ H_2O \end{array} \; x \quad B_{ws} \; \right)$$

$$M_s = 29.84 \times (1 - 0.0677) + (18 \times 0.0677) = 29.04 g/g mole$$

AVERAGE FLUE GAS VELOCITY

$$v_s = 34.97 \times C_p \times \sqrt{\Delta P} \times \sqrt{\frac{T_s + 273}{P_s \times M_s}}$$

$$v_s = 34.97 \times 0.84 \times 3.350 \times \sqrt{\frac{219.7 + 273}{653.4 \times 29.04}} = 15.86 \text{ m/s}$$

ACTUAL WET FLUE GAS FLOW RATE

$$Q_a = 60 x v_s x A_s$$

$$Q_a = 60 \times 15.86 \times 0.126 = 119.6 \text{ m}^3/\text{min}$$

DRY, NORMAL FLUE GAS FLOW RATE

$$Q_{s} \quad = \quad Q_{a} \quad x \quad M_{fd} \quad x \frac{298}{273 + T_{s}} x \frac{P_{s}}{760}$$

$$Q_s = 119.6 \times 0.932 \times \frac{298}{273 + 219.7} \times \frac{653.4}{760} = 58.0 \text{ dsm}^3/\text{min}$$

SAMPLE CALCULATIONS

BMC FORESTRY CORP. ILP IRISAN, BAGUIO CITY VERTICAL SHAFT KILN NO. 2

ISOKINETIC FLOW RATE

$$I = \frac{P_{std}}{T_{std}} \times \frac{100}{60} \times \frac{T_s + 273}{P_s} \times \frac{V_{m(std)}}{v_s \times M_{fd} \times \theta \times A_n}$$

$$I = \frac{760}{298.15} \times \frac{100}{60} \times \frac{219.7 + 273}{653.44} \times \frac{1.3684}{15.86 \times 0.932 \times 60 \times 4.89E.05} = 101.1\%$$

PARTICULATE MATTER CONCENTRATION

$$C_{part} = \frac{M_{part}}{V_{m(std)}}$$
 $C_{part} = \frac{43.6}{1.3684} = 31.9 \text{ mg/Nm}^3$

SULPHUR OXIDES CONCENTRATION

Concentration of SO_x as SO₂

$$C_{SOx} = \frac{M_{SO2}}{V_{m(std)}}$$

$$C_{SOx} = 24.0 \text{ mg/Nm}^3$$

NITROGEN OXIDES CONCENTRATION

Concentration of NO_{χ} as NO_{2}

$$C_{NOx} = \frac{M_{NO2}}{V_{sc}} x \qquad 1000$$

$$C_{NOx} = 23.3 \text{ mg/Nm}^3$$

CONVERSION OF CO IN ppm TO mg/Nm³

$$C_{CO(mg)} = \frac{C_{CO(ppm)} \times mol. wt. CO}{24.5}$$

$$C_{CO(mg)} = \frac{106.0 \times 28.01}{24.5} = 121.4 \text{ mg/Nm}^3$$

ANNEX B

SOURCE EMISSION MONITORING FIELD DATA

MONITORING LOGSHEET

Facility Information

Facility Name Facility Address Name of Pollution Control Officer Maintenance Supervisor / Engineer Telephone and Fax Number Sou	BMO FORESTRY ORP, ICP KM, G NAGULLAN, ROAD, JKISAN, BAGUIO CITY MS. NARHY C. POMILBAN urce Description
Source Type	VERTICAL SHAFT KILN #2
Source ID	PJ24 241 S1
Manufacturer / Brand of Equipment / Serial No. Equipment Capacity (BHp,MW,MT/hr) Date of Installation (month/year)	7.08 MT/HR.
Date of Modification (that may increase emissions)	
Operational Hours per Year (hrs/year)	v 8,760 hr. Year
Operating rate (%)	√ (m), (m)
Air Pollution Control Device (APCD) attach source? Type of APCD Date of Installation APCD parameters (flowrate,gpm,delta P,etc) Is the APCD operating during emission sampling	YESNO
The Art Co operating during emission sattifating	YESNO
Fuel An	alysis / Information
Type of Fuel used during emission sampling (%S)	u Bunker Fyel Oil/Industrial Fyel Oil
Original Fuel used	V pro
Date of Fuel change	
Daily Fuel Consumption (Liters/day)	
Is the Fuel Analysis Available?	YES NO
Will the company provide the Fuel Analysis	YES NO
Please attach the following -Fuel Analysis -Permit to Operate -APCD Process Logsheet -Source Process Logsheet	Althornithan Warth JC. Romiliban

a vironnia	noi Monagement Sanice i	TOKAL MET	HOD 1 - 1	TRAVERSE POI	NT LOCATIONS
acilia	Name	BMCKARE	MEY CO	RP. 11.9	If more than 8 and 2 diameters and if duck
ddres		(KCI)(I) OA	ROAD.	RISAN, BAGUIDGT	diameter is less than 810 mm, use 8 or 9 points
ource		1,08MThe	VERTICAL	SHAFT KILN 42	
	nel / Date	ECE HPA	ME CAS	, MOL, JBT	DIAMETERS Vielopity A 8 Particulate
			Al-al-a	Rectangle	Velocity A 8 Particulate
ack/	Ports	Type of Stack No. of Ports Available	Circular	Recognigies	
		No. of Ports Used		2	12 1.5 7
		Port inside Diameter, cm			* Tost Port 16 20
men	lons	Far Wall to Culaide of Port.	cm(e)	49	
Pui	dlagram of tast	Port length, cnt (b) Stack Diameter or Depth, cn	1 (s-b)	40	13 5
	ion (s) on back	Stack Width (if rectangle), o			24 or 25
	of this sheet	Stack Length (if rectangle), Equivalent Stack Diemeter,			85 + 2
	Ol (1)19 \$11001	Area of Steck, cm²			DISTURBAÇO ORAW HORZONTAL LINES THROUGH UPSTREAM AND DOWNSTREAM
ulos.	e to Flow Disturt	mences	Distance	, cm Diametere	DIAMETERS AND USE THE HIGHER PAINAGER OF POINTS
4 4311	TO I that Dividity	Upstresm (A)	(8)	C 9.6x	
		Downstream (B)	4	p scp	
umbe	r of Traverse Pol			Minimum # Required	Equivalent Dermster (for rectangular duets): De = 2 * Depth * Width / Depth + Width)
		p	eniculate Traverse Velocity Traverse	1/5	De=2*()*()/()*()=
	# of Ports used	1	# Points / Port	13	
		Number o	Traverse Po	ints Used 24	LODATION OF POINTS IN CIRCULAR STACTS OR DUCTS
Paint	Fraction of	Dist. Prom	Port	Dist. From Edge	(Frection of stack diameter from inside well to traverse point) 2 4 5 8 10 12
No.	Stack Ola.	Inside Wali	Length	of Port	1 .148 .007 .044 .032 .028 .021
1	0.021	0,84	 9	9.34	3 .760 296 .194 .148 .118
2	0.847	2.43	9	11.63	4 .933 .704 .323 .226 .177 .5 .654 .577342 .280
3	0-1/3	4 72	9	13.72	6 .956 .809 .658 .356 7 .895 .774 .844
. 4	6.177	7.08	9	16.08	8 .955 .954 .750 - 9 .916 .823
5	0.250	10 . 0	9	19 0	.974 .882
6	0.362	14.24	9	13 rg	11 12 205 12 316
7	0.449	2 .71	9	34 n	1
8	6.70	70.0	9.	34.0	LOCATION OF POINTS IN RECTANGULAR STACKS OR DUCTO (Fraction of stack diameter from inside wall to traverse point)
		72.94	G	41.92	2 3 4 5 9 7 8 9 10 11 12 1 250 .157 .125 .100 .083 .071 .063 .050 .050 .050 .045 .042
- 9	0.802	35 28	9	44 28	2 .780 .500 .376 .300 .250 .214 .188 .187 .180 .136 .128 3 .833 .628 .500 .417 .357 .313 .278 .250 .227 .208
10		37.12	9	4/ 72	4
11	0 957	39 .16	9	43 14	6 817 785 888 811 .666 .500 .458 7 928 813 .722 .650 .591 .442
12	0979	1 -1 -1 -1	·	77 - 0,	8 930 893 790 682 626
13			-	 	10 950 864 762
14			- 		11 2
15			 	 	takgustol pt.
16	ļ	1	<u> </u>	 	-
17					Notes/Remarks:
18		<u> </u>			
19					
20					
2					1 Manual Damay
					Team Leader / Date: 1197 VAVIOR 1 1719
1	- i				
22				l	and the same of th
2					
22					CAVOCIDASE EL CITEMMANDO 18 MAS

Znd Ploor, VAG Bidg, Ortigas Avo., Greenhiës San Juan City, Matro Manëa, Philippinas Tels. 883-6129- Fax (632) 717-8831

Dentale of Environment and Andural Resources (DEFR) Environmental Management Bureau Accredited therd party tester

EPA METHODS 1 & 2 GAS VELOCITY and CYCLONIC FLOW CHECK

Facility	BMC FORESTRY CORP. I	Thermocouple ID	TMC - 12
Town/Province	IFISAN, BAGUID CITY	Manometer ID	TM10 - 12
Source	KAOMITHY VERTICAL SHAFT KILL 2	P barometer, mm Hg	6727
Personne!	ECF, HPO. RNE, MCL, CAC-JBT	Pitot ID	107-12-6
Date	128 MAY 2024 (TIPESDAY)	Pitot Coefficient	10,84

Pitot Tube Leak Check

| Polity | Polit

Traverse Point	Velocity Pressure	Temperature	Angle Which Yields Null
	(mm H ₂ O)	(Degrees C)	(degrees)
- 12	0.6	180	12
11	lo h	180	12
10	10.6	185	6
.9	1100	185	/>
8	1.0	/90	3
7	11.0	140	3
6	114	190	8
5	11.4	G2	<i> </i> >
4	1/.0	191	/3
3	11,0	185	/3
2	10.6	130	IN
1	10-6	190	Įν
5 - 12	10-6	/30	/2
11	10-10	186	12
10	16.0	135	100
ä	11.0	186	/>
Ø	11.4	190	3
7	1.4	190	8
6	1.4	140	3
5	11.0	193	10
4	11.2	Br	18
,3	66	127	- /3
Ź	0.4	190	12
1	(D. y	130	K
			4
Average	JAmes 3.304	134.0	pend adois to

Note: 262-12.0; (02=80; BWS= 50)

eam Leader/Date: HP. OKOVIN A / 28 MAY 24 QA/QC / Date: E.C. FERNANDI 28 MAY 24

2nd Flour, VAG Bldg, Ortigas Ava., Greenhills San Juan City, Metro Marilla, Philippines Fais, 363-6129> Fax (632) 727-9831 Department of Environment and Natural Resources IDENRY
ENVIRONMENTAL MANAGEMENT BUREAU
ACCITEOTIES CHIRD FARIY TESTER

ISOKINETIC FIELD DATA SHEET METHOD(s) 4

Address Banco Crasson Source Year installed Field Personnel Operations Signature Operations S	Facility Na	me	BM				1975 <u>-, 1986, 1986, 1986, 1986</u>		Test Date		5224		
Control device	Address		Ban	o City					Jab Numbe	r			
Control devices Control de	Source		S.O	,	······································				Year install	led	. ,		
Contact Person Cont		vice	·	/		····	····		Field Perso	nnel			
Sec. Fig. Sec.	L		 ,	······································		·····			Operations	Signature	10		
10 10 10 10 10 10 10 10	Filter 10	Tar	e(s)	Baramatria (mm	Chris	And the second second	Meterbox		No.	zzle	Plot Tub	8	Probe
						ID#		DeltaH Ø -	<u></u>				ID#
Semple Tesh Leek Checks	30-	' 0.5	4,5								1		7.400
Nam No				USE	10.0		rain Leak Ch	ecks	1	I	17.42770		4,,,
Frederick	Run No				lolital					Final	Time		%CO₂
Point Start Volume 33, 22 to 32, 240 33, 240 33, 240 33, 240 33, 240 33, 240 33, 240 33, 240 34, 240		<u> </u>		Vacuum mm Ha				<u> </u>	T	10-2	001/4/1	120	2.0
Firstest 98 10 Shert Volume 33. 22 to 13. 24.00 13.		l										120	8.0
Foote at Title Point Title Tree Point Title Point Cast Title Title Cast Title Titl			140			10				THE RESERVE AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE		it .	
Ports & Tine Points (24-17) (min) (m								 					114
Points Clock Test OSM reading (min)	- File	والمراجع والتالة		Cop Coame	07 10								
[24-17] (min) (mi) (min H ₁ O) (mm H ₂ O) (m		<u></u>									Temperature (PC	
Delia 1 1 1 1 1 1 1 1 1	Points			j -	i -				Ai. 1	Loon	I Broba I	Eilter	Imp Evit
091911 C 27.3340 120 44 6.0 136 24 120 11 /3 642014 10 37.44140 12.0 40 40 11.0 134 44 120 17 09201 15 37.44140 12.0 40 6.0 134 44 120 120 17 093711 15 37.74160 12.0 40 6.0 135 14 14 17 17 17 6 18 093711 15 37.74160 12.0 40 6.0 185 14 17 17 17 6 18 094001 30 9.2546 PRUNTIME TOTAL Volume RMS Delia P 748 6.7 185.8 7 185.8 7 186.8 7 1			(min)			(mm H ₂ O)					 		-
64 20 1 10 83 . 144 to 12.0 40 1.00 184 24 120 20 17 67 20 20 20 10 12.0 40 12.0 40 12.0 40 12.0 185 29 1/7 1/6 18 GRUN 10 10 10 10 10 10 10 10 10 10 10 10 10	PAT	10/10	0	83.250	12.0		90	6/2	[76	19	I pe		
64 20 1 10 83 . 144 to 12.0 40 1.00 184 24 120 20 17 67 20 20 20 10 12.0 40 12.0 40 12.0 40 12.0 185 29 1/7 1/6 18 GRUN 10 10 10 10 10 10 10 10 10 10 10 10 10						<u> </u>		 	100		 		1/2
97071		09/50		14 . 33.90	120	 	9-	4.0	10	14	120		 /a
97071				22 111	- 12.0	ļ	//-	 	<u> </u>	0	 , , 	Tau	1/2
1		64 2014	<u> </u>	107 + 4920	1 (4/7		40	40	[X]/-	1-7-	120	120	1- <i>17</i>
1		ļ		3	17.		A/2	 - 7 	<u> </u>	744	1-2-1	ha	
Property 12.0 12.0 13.5 14 15 15 16 17 17 17 18 18 18 18 18		onn		01. 44 610	1649		1 -13	(III)	مادا	1 9	100		'/
Property 12.0 12.0 13.5 14 15 15 16 17 17 17 18 18 18 18 18	<u> </u>	<u> </u>					40	1.0	- hi	140	120	0.4	17
Run Time Total Volume RMS Delta P Delta H High Vac. Avg Avg Avg W S S S S M4		0432	. 60	14) LC 10	12-0		1 4/5	100	146		 	-14	 ', '
Run Time Total Volume RMS Delta P Delta H High Vac. Avg Avg Avg W S S S S M4	ļ		7	27 . 7.4 .	12 -	<u> </u>	1/-	 	161	1.9	 7/5 	1.1	/3
Run Tirrie Totel Volume RMS Delta P TOTEL V	<u> </u>	06374	- ~	17. 16%	12.6	 	.4D	100	 (85	 	 // / 	116	
Run Tirrie Totel Volume RMS Delta P TOTEL V		-	25	10 . 0 = 11		<u> </u>	 	<u> </u>	 		<u> </u>		
Run Time Total Volume RMS Delta P October 1999 3 404 Delta H High Vac. TS Stack Avg	Bross	69404	- 20	11, 17746				 			 -		
Run Time Total Volume RMS Delta P October 1999 3 404 Delta H High Vac. TS Stack Avg	ļ	ļ	<u> </u>			 		 		 	 	· <u> </u>	
Run Time Total Volume RMS Delta P October 1999 3 404 Delta H High Vac. TS Stack Avg	ļ	 	<u> </u>	 	<u> </u>	 	 	 			 		
Run Time Total Volume RMS Delta P October 1999 3 404 Delta H High Vac. TS Stack Avg	<u> </u>	 		 	<u> </u>	 	 	}			 		
Run Time Total Volume RMS Delta P October 1999 3 404 Delta H High Vac. TS Stack Avg	ļ	 -	}				 		 	 	+		
Run Time Total Volume RMS Delta P October 1999 3 404 Delta H High Vac. TS Stack Avg	ļ	<u> </u>	 	 	 	 -			 	 	+		
Run Time Total Volume RMS Delta P October 1999 3 404 Delta H High Vac. TS Stack Avg		 	}	} _	 	 	 	 					
Run Time Total Volume RMS Delta P October 1999 3 404 Delta H High Vac. TS Stack Avg		 		1		 	 	 -	 				-
Run Time Total Volume RMS Delta P October 1999 3 404 Delta H High Vac. TS Stack Avg		 		 	ļ	 	 	 	 	 	 		—
Run Time Total Volume RMS Delta P 30 0. (19) 3.404 Delta H High Vac. TS Stack Tmeter Avg Avg Avg E. 2 8 5.83 244	ļ					 	 	-	 		-		
Run Time Total Volume RMS Delta P October 1999 3 404 Delta H High Vac. TS Stack Avg	}	 	 	<u> </u>	 	 	 			 	 		
Run Time Total Volume RMS Delta P October 1999 3 404 Delta H High Vac. TS Stack Avg		 	 	 	-	 		 	+	 	 		-
Run Time Total Volume RMS Delta P October 1999 3 404 Delta H High Vac. TS Stack Avg		<u>-</u> }	 	 		 	 	 	-	-	┪		
Run Time Total Volume RMS Delta P October 1999 3 404 Delta H High Vac. TS Stack Avg		 	}	 	ļ		╁──		 		 		
Run Time Total Volume RMS Delta P 30 0. (19) 3.404 Delta H High Vac. TS Stack Tmeter Avg Avg Avg E. 2 8 5.83 244	 	 	<u> </u>	 	 	1 -	 			 	+		
30 0. (19) 3.404 Avg Avg Avg Avg S.83 24	<u> </u>		 	 	 	 	 	 		-{	- 		
30 0. (19) 3.404 Avg Avg Avg Avg S.83 24						1				<u> </u>			
30 0. (19) 3.404 Avg Avg Avg Avg S.83 24						1	Delta H		TS Stack	Tmeter	7 / r		
30 10.4/14 33.404	·		Run Time	1]			Avg	Avg	1 /	/	
Team Leader / Date: House Cary QA/QC / Date: HOUSE TENAND / LANATA			30	0.6196	3,464		Τ'	18.0	NB 5.83	1 44	1	\mathcal{I}	
Team Leader / Date: TENAND 2004/S					V								/
Team Leader / Date: Thurway CA/QC / Date: Th				16	D	_ ^	~~~.			5		And /	A DAM IN DA
	Team Lea	der / Date:		FTE	sur	-	- <i>4</i> 7	•	QA/QC / Date		74/12/PM	144V W() 1	CENNK 1/2

Department of Environment and Natural Resources (DENK)
ENVIRONMENTAL MANAGEMENT BUREAU
ACCREDITED THIRD PARTY TESTER

FYRITE ANALYSIS DATA SHEET

Facility	ВМС	Fuel Type	FB-TZ LSF4
Town/Province	Baguio Cifa S	 Fyrite ID	FIP -12
Test Location	<u> </u>	 Analysis Location	/N SIN

Run No.	1	Date: 28 may 24	Bag ID SIM	Operator (Signature)	10
	· · · · · · · · · · · · · · · · · · ·		% CQ 2	%O ₂	% N ₃
	Run Time	Time of Analysis	Reading (A)	Value (B-A)	Value (100-C)
Start	100014	[138]4	3.<	120	
		114219	8.0	ميدا	
Stop	11301-1	114714	8.5	1200	
Leak Chec	k 🗌				
		Avg	8.	12:0	79.5

Run No.	2 !	Date: 18 may 14	Bag ID <1 ≥	Operator (Signature)	90
			% CO ₂	% O 2	% N 2
Rur Tîm		Time of Analysis	Reading (A)	Value (B-A)	Value (100-C)
Start />	A CO	141417	8.0	3.0	
		14174	8.5	12.0	
Stop 14	104	14224	3.1	(2.0	
Leak Check					
		Avg	8.5	12-0	74.⊤

Run No. 3	Date: 28 may 24	Bag ID City	Operator (Signature)	70
Run Time	Time of Analysis	% CO 2 Reading (A)	% O 2 Value (B-A)	% N ₂ Value (100-C)
Start 15054	16144	8·5	120 120	
Stop / b/old	1644	87	12.1	
Leak Check	Avg	9.5	7.00	79. T

Team Leader/Date:	D	may 24	QA/QC / Date:
-------------------	----------	--------	---------------

METHOD 4 - MOISTURE ANALYSIS DATA SHEET

Facility	IBMC FOREST	RY CORPORATIO	N. IFISAN LIME	PROJECT (ILP)
Address	IKM B, NAGILLIAN		Saguio City	
Source	1.08 MThe V		2LN NO.2.	
Recovery Loaction	INSITY (SEE	VICE VEHICLE)		
Run Number	MOISTIRE PLA	PM-1	PM-2	PM-3
Test Date	28 MAY 2024	18 MAY 2024	28 MAY 2024	MAY 2024
Recovery Date	28 MAY	MAY 2024	NAY 9014	MAY 2024
Recovered By	ECF HPO			
Impinger 1_100 M	D, I, H2()	30 H202	3% Hg D2	3/4 1202
Final Weight, g	725.5	741-1	799.3	742.7
Initial Weight, g	719,0	7/5/5	713.4	114,8
Net Weight, g	11.5	25.4	3/12	27.8
Impinger 2 100 M	D. E. #20	31/4 12/12	3% H2112	34 4209
Final Welght, g	7643	7221	7174	720.1
Initial Weight, g	1094 T	691.4	693.	6927
Net Weight, g	4,7	3/. [(4).(279
Impinger 3 EMP 77	EMPTY	EMPTY	EMPTY	EMPTY
Final Weight, g	4168	415.7	6/5.5	6/07
Initlal Weight, g	607.9	610.3	610.0	411
Net Weight, g	4.0	5.4	2.6	4,5
Impinger 4 200-300g	I I I I I GEL	SILICAT GEL	SWIA GEL	JUG LEL
Final Welght, g	933.4	9447	949.6	948.0
Initial Weight, g	927.9	933.8	939.7	940.7
Net Weight, g	6,2	10.9	9.9	4-3
Impinger 5				<u> </u>
Final Weight, g			, (2) 2- 1- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3	
Initial Weight, g				
Net Weight, g				. Sec.
Impinger 6				
Final Weight, g	<u> </u>			
Initial Weight, g	<u> </u>		<u> </u>	
Net Weight, g				
Impinger 7		<u>.</u>		, .
Final Weight, g	<u> </u>			
Initial Weight, g			ļ	·
Net Weight, g				
		,		

Total Catch, g

Note: 73. 9

Total Catch, g

Silica Gel Spent, %

Team Leader / Date: H. P. URBUNA/24MY24 QA/QC/D

QA/QC/Date:

KPO / 28 MAY 2024

Facility Name

ISOKINETIC FIELD DATA SHEET METHOD(s) <u>タ/G</u>

Test Date

racilly Nam				DRP, 1	4		Test Date		1 29 MA	7 2014	
Address			DAD, RISA	N. BA	and Cit	9	Job Numb	er	PJ24 2	41 31	RVNI
Source			TIAL SHAF			2	Year Instal	led		Δ.	
Control devi							Field Perso	onnel	FAF. HPD.	ANK MC	LIACIP
Contact Pers	son MS.	NARTY C	LOMILBAN	J	· ····································		Operations	Signature		11-1	a-t-mranaract
Filter ID	Tare(s)	Barometric (mm	-	1	Meterbox		AL.	ozzie	Pitot Tu		Project
C03-	0,3610	Hg)	Static (mm H ₂ O)	ID#	,				1D#		Probe
20 OI	0.36.4	452.7		RCT-79	Gamma	DeltaH @	1D#	Dia.	<u>. </u>	Cp C	ID#
		482.1	10.0	184 <u>-1 /</u> 4	6.9884	41 /784	7M4	7.75	Decem		HUM
Run No.	· · · · · · · · · · · · · · · · · · ·	 	Latit	Sample i	rain Leak Ch			T		Fyrites	
Factor	(,67)	1/000000	Initial	 	in:	terim t		Final	Time	%O ₂	%CO ₂
Itot Leak Che	 	Vácuum, mm Hg	15.0	ļ	ļ			120	2374	120	80
		Leak rate, m³/m	10	<u> </u>		ļ		2	1234		7.0
Pretest	10/12	Start Volume	83. 75°8 83 98°9	ļ			J	C.6450	ORSAT Leak Che		
Post-tes	1 /18/19	Stop Volume	85 75 9				3	2.6430	Tedian Bag ID	181247	<u>/41 S1 K1 C</u>
Ports &	Time			Delta H	Delta H	Gauge		ا در	-		*****
Points	Clock Test	DGM reading	Pitot Reading	Calc.	Actual	Vacuum	1		Temperature	°C	
	(24-hr) (min)	(m³)	(mm H ₂ Q)	(mm H₂O)	(mm H₂O)	(mm H ₂ O)	Stack	DGM	Probe	Filter 🛰	imp. Exit
771	63010 ()	84.0110.	10.6	6012	60	6.0	190	26	110	1/0	18
11	~ · · · · · · ·	80 0748	0.10	60:12	60	6-2	40	Ho	1/7	1/4	R
7016	3334 5	99, 1426	10.4	G612	w	6.0	AO	16	17	1le	10
ď	-736	84. 2004	11.0	6287	62	6.0	200	26.	126		75
BK	3454 (84.27/2	11.0	(2.37)	a	6.9	200		127	1/8	16
	J. 1. U.	84 312	110	62.19	690	6.0	205	78.	127	17	15
6/1	e4(1) 15	84.4090	/2.0	1304	68	30	200	28	14		19
- 	- NT L1	84.4210	12.0		48	8.0	220	28		13	
$-\frac{1}{2}$	oto4 11)	24-368	120	13.0C	· · · · · · · · · · · · · · · · · · ·			08.	122	1/6	1/2
			· · · · · · · · · · · · · · · · · · ·	(8.a	68	8.5	225	29	m	170	 //
	(OSTH 25	94.61(0	11.0	62.39	62	25	220	27	17	1/8	 ///
	7.5	84. 6464	(60	62.79	6-2	8-5	558		1/9-	130	4
\\\\	1604 30		11.0	62.90	62	<i>.</i> /o	278	3/	m	121	/2-
V L	1100A 30	9904									
2 (1	100	2//24								122	
5-121	1001 30	848304.	11.0	42.73	€2	10	220	31	112	179	14
- 111	80 to 0 m	84.9006	1100	42-23	42	10	220	3/	1/4	1/25	19
10	11011 25	84.9632	11,0	G 2.7	62	10	224	31.	fr	125	/.3'
- 91	4 8	86.09n	11.2	63.5	64	10	227	31.	No	110-	<u></u> ろ
<u> 8 III</u>	100 40	85.1190	1100	63.1		/6	230	31.	121 +	11.Z	14
		25.777	1/12	(2,12	14	10	234	カン	120	120	13
	12010 45	1.25 n	2.0	(8.04	68.	105	236	32:	1/17	1/22	19
5		20.9244	12.9	48-05,	12	10-	236	32	17	1/29	14
4/	171 50	85.3966	12.0	68.04	C8	10.5	256	32	116	122	13
3		25.4014	11.0	62-17	62	16-5	230	73 .	124	127	14
2 14	1304 55	20.4770	11.0	(2337	ÇZ	10.5	290	33	120	116	15
71		OC .5000	110	62-33	62	165	210	3₹	122	166	100
· () (t	130p GD	80, 6392									17
	1							,			1
											
			-								
	Run Time	Total Volume	/RMS Delta P		Delta H	Ulab Ma	TS Stack	Traeter			
	KUH HITE	Total volume	/ KMO Delia?		*Avg	High Vac.	Avg	Avg			

Team Leader / Date: H.P. ORRINA / JANAY 24

QA/QC/Dete:

2nd Floor, VAS Bidg, Ortigas Ave., Greenhills San Juan City, Metro Manilo, Philippines Tels. 853-5239+ Fax (692) 727-9831

Department of Environment and Natural Resources (DENR)
ENVIRONMENTAL MANAGEMENT BUREAU
ACCREDITED THIRB PABTY TESTER

ISOKINETIC FIELD DATA SHEET METHOD(S) 5/6

Facility Na	me	SMC	FORESTE	Y CAPPL	PATION		(9)	Test Date		20 M	7 202	<u> </u>
Address		KMJ			ILLIAN		h lity	Job Numbe	Γ	1914	<u> 24151</u>	RVN 2
Source		1,08 V	17/NR. VERT				2	Year Install	ed ·			····
Control de	vice	11.00 P.	1.1.4 1286. (F.5.1.1.1	:_Y_L				Field Perso	nnel	EEFIH	DEMEN	SI CAS
Contact Pe	erson	Ms.	NARHY CI	POMILBOL	j			Operations	Signature	16		
Fitter ID	Tare		Barometric (mm	Static		Meterbox		No	zzle	// Pitot	Tube	Probe
SOZ 10	<u></u>	3610	Hg)	(mm H₂O)	ID#	Gamma	DeltaH @	1D#	Dia.	ID#	Ср	iD#
30 8 0	67 V	74	641.5	100	प्रतातर		43.1744	7313-4	7.75	Prigni	0.84	Pt UP
	ļ		0.31.3	100	Sample Ti	rain Leak Ch			' 		Fyrites	,
Run No.	1	· ·		Initia		Int	erim		Final	Ţime	%O ₂	%CO2
K Factor	\$17	14	Vacuum, mm Hg	1,5,0					140	1004	120	1200
Pitot Leak			Leak rate, m³/m	0			· ·		P	124714	120	8-0
Prete		1119	Start Volume	85.69	00			2	7.2014	Fyrite System		
Post-I		12/2	Stop Volume	80.65			3	8	2.2014	Tedlar (D	RI 24 241	S1 <i>K///</i> /
			<u> </u>		Delta H	Delta H	Gauge	r				
Ports &		ne Test	DGM reading	Pitot Reading	Calc.	Actual	Vacuum		Te	mperature o	С	
Points	Clock (24-hr)	(min)	(m³)	(mm H ₂ O)	(mm H _z O)	(mm H _z O)	(mm H _z O)	Stack	DGM	Probe	Filter	Imp. Exit
K = 10	13004	Λ	25.6530	10.6	55.26	te	6.0	254	28.	1K	1/6	14
├ / 	1700-1		85.7110	10.6	CSV	T.	6.0	724	23	12	119	1/2
├──┰╏	13001	7	86-7140	10.6	50024	T	6.0	255	1/2	124	120	10
- ' \	1,1,20(1,1)	7	2500	11.0	52.50	\$8	60	260	28'	123	4/09	9
\$	13104	10	25: 9240	11.0	5735	173	6.5	260	24	124	119	2
1	1772	1.02	25:9960	11.0	5735	Ø	80	240	78	12	117	9
	13171	15	35.0682	11.4	39.44	60	8.0	160	29	124	119	8
F	12131	1-2	86 1300	1,4	\$4,44		80	765	301	120	1K	9
1 	00-11	20	24.1994	11.0	57.35	38	7.0	160	30.	124	123	9
1 - 7	Mel	~	ne voto	11.0	5735	28	9.0	260	30.	107	120	10
 	13744	25	96.320	11.0	5735	(3)	9.0	263	80	18	120	10
1	11700	120	84.4083	110	C791		90	"Mes-	72	/20	1/2	8
CTOP	13301+	30	86.4704	11.								<u> </u>
	1,3					<u> </u>						
13-12	134JH	30	24,4704	10,4	85.20	54	07.0	Ver	31.	112	119	14
1	- 101		34.5140	104	50.4	146	90	248	37	1/80	119	U
 	Burt	25	36-6119	19.6	152		7.0	21.2	2.	124	117	60
1 8	170.7		21 (7) 24	110	572	13	10.1	170	32.	m	1/6	9
A	132014	4)	36.7990	1/0	5735	18	100	270	32	174	1/7	9
- H	193X	 	36. 3118	11.4	57.44	40	10	270	n	179	124	10
- 6	3247	45	He 2560	11.4	79.44	60	10	2720	132	129	In	L p
\ \text{\tin}\exiting{\text{\tert{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\ti}\titt{\text{\text{\texi}\text{\texititt{\text{\text{\texit{\texi}\texi{\texi{\texi{\texi{\texi}\texi{\texi{\texi{\texi{\texi{\texi}\titt{\texi{\texi}\texi{\texi{\texi{\texi{\texi{\texi	, , , ,	 	869,104	11,9	59.44		10	Co	32.	1/20	pr	A
4	Woots	50	86.960	11.4	59.94	60	10	270	82.	121	119	4
3	1 1 1/2- 1/	44-14-	87.0096	11.0	\$7.50	L CX	10	270	32.	120	114	1//
'/	LYNH	45	87.1096	11.0	57-34	18	10	2/29	33 .	M	1/<	p
1	C P (1/2) (1/2	1		160	17.31		10	7/19	33 · 33 ·	1/17	1/5	12
END	4101	60	87-1450		 							1
TAND	- L-110161	100	01									
		†										1
<u></u>		<u></u>) .	•
		G	e Total Volume	RMS Delta F		Delta H	High Vac.	TS Stack	Tmeter/	'	/	

Run Time Total Volume RMS Delta P

 Delta H
 High Vac.
 TS Stack
 Tmeter / Avg

 \$\forall 1000\$
 \$\forall 2\left(\frac{1}{2} \right) \frac{1}{2} \right) \frac{1}{2} \right. \$\forall 2\left(\fr

Team Leader / Date: HI FORDUNA 28 MAY 24

A/DOTTale: LITA

Sattment of Environment and Matural Resources (DENR)
ENVIRONMENTAL MANAGEMENT BUREAU
ACCREDITED THIRD PARTY TESTER

2nd Floor, VAG Bidg, Ortigos Ave., Greenhills San Juan City, Matro Menila, Philippinas Tels. 863-6129- Fax (532) 727-9831

ISOKINETIC FIELD DATA SHEET METHOD(S) <u>5</u>/6

Facility Na	ame BV	C FOREST	RY CORP	ORATIO	N (11	(P)	Test Date		2.8/	MAY 20	114
Address	KM	NAGUI HAI		LSAN	BAGUIO	UTY	Job Numbe	r	P124	14151	RUN 3
Source	1.08	MT/hr Ver	ILCAL SHI	IFT KIL	N NO.	2	Year Install				
Control de	evice						Field Perso	nnel	(L	TEME W	SI CAS
Contact P	erson MS,	MAKHY (C.	POMILB	AN			Operations	Signature 4	10.	·.	
Filter ID	Tare(s)	Barometric (mm	Static		Meterbox		No	zzle	Pito	t Tube	Probe
C - 50	2 13588	Hg)	(mm H ₂ O)	ID#	Gamma	DeltaH @	ID#	Dia.	ID#	Ср	10#
	· ·	10x	1000	BS1-12	0.9884	43.174	TYSG	7.89	7-6×17	20845	RUPT
•				Sample T	rain Leak Ch	ecks	· · · · · · · · · · · · · · · · · · ·	·	ļ	Fyrites	·
Run No.	3		Initial		Ini	erim		Final	Time	%O₂	%CO,
Factor	4.782	Vacuum, mm Hg	15:0		· · · · · · · · · · · · · · · · · · ·			140	15124	120	30
Pitot Leak (Leak rate, m³/m	_0			· · · · · · · · · · · · · · · · · · ·		77.	15471	<u> </u>	80
Preter	17-11-	Start Volume	27.2/10	<u></u>			3	3.77:00	Fyrite System	Leak Check	CAVAI
Post-I	test /20 // 13	Stop Volume	27 2410				<u> </u>	2.17 ±0	Tedlar (D)	11/24 241	71191
Ports &	Time	4	-	Delta H	Delta H	Gauge	,	Ter	mperature o	c	
Points	Clock Test	DGM reading	Pitot Reading	Calc.	Actual	Vacuum	Cicali		<u>,</u>		[1505 F
1 - 10	(24-hr) (min)	87. 23(0	(mm H₂O) √10 -4	(mm H ₂ O) 49,73	(mm H₃O)	(mm H₂O)	Stack 29C	DGM 3k:	Probe	Filter	Imp. E:
11 17	/SUCFF V	27,3006	10.4		73	7 4	275	28.	122	117	12
	1004 5	57.368	10.0	52.60	£2	6.5	280	28	124	1/7	1/2
- ' X	12017	27. 9250	110	5260	52	6:5	200	28:	122	115	18
B	1004 10	87-4404	11.0	\$260	52	70	980	28.	124	119	10
H	13.5	07. 500	11.4	900	લ	20	285	8	124	120	70
6	10204 15	8 .6144	l a	54.0	(c)	840	125		126	m	10
Ē		87.6770	11.4	5910	121	8,0	785	78	126	120	1.0
4	1524 20	87.7420	1.4	59.0	54	8.0	785	78	127	117	11
3		37.8104	110	260	52	90	380	29.	124	1/3	1/1
2	100 15	37.8746	14.0	2.6		9.0	235	29.	ru	1//8	4
1		87.9784	11,0	£260	52	9.0	230	29	126	122	P
STOP	100 30	87.9460									
PA V A	14			-		b			,	1. =	
<u> 12</u>	1049 30	87-9962	10.6	50.68	70	8.5	27	3° ,	120	//Ţ	12
	100	88-0644	Poly	SD-La	50	XI	n	30.	10	120	12
<u> </u>	100g 35	8.1340	11.5	D/60	12	9.0	280	30	127	1/4	IN.
N R	1000	8.7004	110	1260		7.0	280	30	117	117	12
· · · · · · · · · · · · · · · · · · ·	1504 40	83.2446	11.4	0.60	54	9.5	780	32.	124	1/4	
	1000 45	8 8292	11.9	(4.02		.9.5	235	32	120	127	13
 - <u>-</u> -	1, 2001	8 4co	11.4	54.0	1	/0	281	30	12	117	1
7	1604 50	98'5714	11.0	526		70	30	33	14	10	94
	The state of the s	88 5340	11.0	2.60		70	387	33.	120	117	1/4
-7	16074 55	9R(41)2	11.0	\$2.60		10	230	3 3 ·	117	1/8	1/2
1	1 1~-	98,7010	11.0	5240		10	288	33	116	117	/2
FND	1404 60	8 , 7444							 	11/1	1
											
			DMC Date P	j .	Delta H		TS Stack	Tmeter	1 \		-

Run Time Total Volume RMS Delta P

Team Leader / Date: H. P. ORGILINA 24 MAY 24

Delta H High Vac. TS Stack Treefer Avg Avg S 2.71 10 231.92 75 234

QA/QC / Date;_

28 MAY 2024

Dipartment of Environment and N

2nd Floor, VAG Bldg, Onigas Ave., Greenhills Sau Juon City, Matro Manila, Philippines Tols. 863-6129+ Fax (632) 727-9831 Settment of Environment and Natural Resources (DENR)
ENVIRONMENTAL MANAGEMENT BUREAU
ACCREDITED THIRD PARTY TESTER

METHOD 7 FLASK SAMPLE AND RECOVERY DATA

Test Date	Personnel	Source	Address	Facility	
To May he	ELA HO, MIL MAB COX	81 / 1/h	bague ch	BMC	
	Remarks	Filter Used? (check) YesNo	Heated Probe? (check) Yes	Absorbing Solution Volume, ml	
		*If No.	*!f No,		

explain in "Remarks" explain in "Remarks"

	<u></u> ,		···	·				,					-		
		_	4.	2	1	4	r	ل	Þ	Ð	Sample				
	ð	4	ሽ ባ	33	r.T	B.	В	r	SIRT	Number	Run				
	77	PV	アメニ	+2	t ,	#	*	1 P3	1315P.	Number	Flask ID	·			
	ogn,	m	nso	mar	ngs	nzo	01810	3750	>180	Volume (ml)	Flask				
	1	4			`	١	<u>,</u>)	١	(<0.4°Hg/min)	Leak Check		Date Performed:	Barometric Pressure, Pbar (in Hg)	
	3. 20 2. E	29.80	23.30 2.31	25-30	24.30	29.20	77.40	14.20	23.20	Pgi (in Hg)	Pressure	Evacuated		essure, Pb	Sar
	2.2	23.80 2.2	2.7	~ 3√	12.30 Bill 15.00 12.12	24 40	7.76	3.49	2.39	(in Hg)	Pi, Pbar-Pgi	Evacuated Press Initial	12 Sond 80		Sample Collection Information
	3223	220	240	20.2	25.8	27.7	78-3	784	242	(in Hg) Temp °C			şy	2 22	tion Info
	D. 3	700, (C	3 0 -/s	20.2 x 3	30-41	30.53	307:4/	20.55	30.7	(°K)	Flask Temp, Ti	Flask	800,0	Sec / 5	mation
	1053/ 15 afred	20 Bas, 10 15 704	300-15 150AH	15244	13/46	8 /304 1	12801 Mr. Las	104974	H160) 21.05	24hour	Time?	Sample Collection	By Set May Phase	19:32/20.52/50.52	
		١)		7)	\	١	١	for Smin	Shaken			13.3	
		1		١	١	١	١	1)	for 2min	Shaken		Date Performed:	Barometr	
	WATEL BO	B < 0 1	R 484	Q 4011	Ø 38H	Q75/×	ش ا	627014	~ 03/5H	Time ³ 24hour	Recovered	Sample	ormed:	Barometric Pressure, Pbar (in Hg)	
•	25	0.60	040	6.40	0-40	2.40	0.50	0.50	5.30	(in Hg)	Pressure Pgf	Final	12 hay 22.	bar (in Hg)	Sample Co
	Ju. 16	7g. 10	99.30	29. 5 X.2	16. 10 28.2 301	74. 90 PB.3	74° 72	78 01. bl	7. 40 B.7	Pbar-Pgi (in Hg) Temp °C Temp Tf °K	Press Initial Pi,	Flask abs.	By: & 4	29.75	Sample Collection Information
	12.4 Ja1	1.56	3.EL	1.86	28.2	23.3	20 W.1	385	7.28) Temp °C	Flask		Mar.	-	mation
	<u>, 20,</u>	<u> </u> કેવા	\$0).	la	, les	<u>એ</u> •	الع	3	39. JY	Temp If	Flask		por fine		
)	1	7	<u>۲</u>	3	73	44	3	×	<u>ਡੱ</u>	_		Sam	Pince		
		\	\	\		\	1)		- 12)	Adjusted (9	Sample pH	"		

Was additional oxygen introduced to the Flask? Source Oxygen Concentration?__ erely

¹Pi ~ Pbar - Pgi, Flask must be evacuated to within 3 inches of mercury (Hg) of the absolute pressure (barometric pressure).

No

 2 Additional oxygen should be introduced to the flask if the source O_2 is below 3%

³Flask must stand for 16 hours or greater after sampling before recovery can be performed.

Checked By:

QA/QC / Date: ..

Department and Environment and Heutral Resources (DEMR)
ENVIRONMENTAL MANAGEMENT BUREAU
ACCREDITED THERD PARTY TESTER

hed Room, VAG Stigs, Ordges Ave., Geterhille Sen lurn Glz., Metro Munika, Philippines , Yels, BCh-6129+ Fax (192) 227-5831

Fr. Ly

ANNEX C

PERMIT TO OPERATE AND FACILITY PROCESS DATA

Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU

Cordillera Administrative Region (CAR)
Cordillera Administrative Region DENR Compound, Gibraller Baguio

City Tel No: (074) 448-64-40

Permit No: PTO-OL-CAR-2021-09103-R

Application Type: Renewal

Date Issued: 30 Oct 2021 Date Expiration: 30 Oct 2026

PERMIT TO OPERATE Air Pollution Source and Control Installations

Pursuant to Part IV, Rule XIX of the Rules and Regulations of R.A. 8749, authority is hereby granted to:

BMC Forestry Corporation (Irisan Lime Kiln)

Km. 5 Naguillan Road, Irisan, Baguio City, Benguet

subject to the following terms and conditions:

TERMS AND CONDITIONS

- This Permit is issued for the permittee to operate the following facilities/equipment described below at the permittee's establishment located at the above-mentioned address (geolocation of entrance gate: 16.419336°, 120.557358°);
 - Air Pollution Source Installations/Equipment:
 - Three (3) units Vertical Shaft Kiln (Cap.: 1.08 MT/hr; Fuel used: Regular Fuel Oil or Bunker Oil) for the purpose of calcinations of limestones (geolocation of kiln plant building 16.419198°, 120.557922°);
 - · One (1) unit Jaw Crusher (Cap.: 1 MT/hr; With Conveyors) for the purpose of pulverizing the quicklimes;
 - · One (1) unit Lime Storage Silo (Cap.: 90 MT);
 - One (1) unit Aboveground Fuel Storage Tank (Cap.: 60,000 liters; Fuel: Regular Fuel Oil or Bunker Oil; Vertical Cylinder);
 - Seven (7) units Aboveground Fuel Storage Tanks (Cap.: 15,000 liters each; Fuels: Regular Fuel Oil of Bunker Oil; Horizontal Cylinders);
 - One (1) unit Standby Generator Set (Cap.: 200 kW / 250 kVA; Make: SEALEY; Model: SLC250GF; S/N: 151118001; P.F. = 0.8; Silent-type): Alternator/Generator (Make: MBH; Model: XN274G; S/N: 31512006; Cap.: 180 kW / 225 kVA, continuous; P.F. = 0.8) primed by Diesel Engine (Make Chongqing Cummins; Model: NT855-GA; S/N: 41226017; Cap.: 257 kW @ 1800 RPM, max);
 - One (1) unit Standby Generator Set (Cap.: 75 kW; Open-type): Alternator/Generator (Make: Caterpillar) primed by Diesel Engine (Make: Isuzu; Model: E120; S/N: 202587); and
 - One (1) unit Standby Generator Set (Cap.: 200 kW / 250 kVA; Make: DCA; Model: 200DC; S/N: 8221-002; P.F. = 0.8; Open-type): Alternator/Generator (Make: DCA; Model: 200DC; S/N: A73281AC; Cap.: 200 kW / 250 kVA, standby; P.F. = 0.8) primed by Diesel Engine (Make: Cummins; Model: NT-855-G; S/N: 30104629) all generator sets are installed in the Powerhouse with geolocation of 16.419050°, 120.557809°; and
 - Air Pollution Control Facilities:
 - Three (3) units Gas Scrubber Systems (Cap.: 66 m3/min; Wet-type; 1-unit scrubber is exclusively connected to 1-unit shaft kiln); and
 - One (1) unit Dust Collector and Scrubber System (Cap.: 505.84 m3/min; composed of 1-unit 12,850 CFM Cyclone Dust Collector interconnected to 1-unit 5,000 CFM Cyclone Dust Collector with their bottom open and submerged on Water-bed Scrubber) for the purpose of controlling the airborne particulates/dusts from the sorting, crushing and loading areas (geolocation: 16.419132°, 120.557396°).
- This Permit shall be valid until <u>SEPTEMBER 10, 2026</u> (PLEASE DISREGARD THE EXPIRATION DATE INDICATED ABOVE) unless suspended or revoked by the Bureau.
- The Bureau may modify the Permit by amending any existing condition or imposing any new or additional condition
 from the date of issuance (as indicated above) until its expiration on SEPTEMBER 10, 2026, subject to the provisions
 of Rule XIX of the Implementing Rules and Regulations (IRR) of the Republic Act No. 8749.

Filing Fee : Php 600.00 O.R. No.: 1809914 & 1810468 Date: Oct. 11, 2021 Permit Fee : Php 47300.00 O.R. No.: 1809914 & 1810468 Date: Oct. 11, 2021 PD1856 : Pho 10.00 O.R. No.: 1809914 & 1810469 Date: Oct. 11, 2021 Documentary Stamp Tax : Php 30,00 O.R. No.: 1809914 & 1810468 Date: Oct. 11, 2021

This is a computer generated certificate. To verify the authenticity of this file, kindly seen the generated QR Code using your QR Code scenner/reader or visit the OPMS website for details.

- An application for <u>renewal</u> of this Permit shall be filed not less than <u>thirty (30) days before the explry date</u> the explry date - SEPTEMBER 10, 2026.
- This Permit shall be posted in a conspicuous location at the premises and shall be adequately framed or otherwise protected against damage.
- 6. The operation of any installation, process activity at this establishment that produces, generates, captures, treats, reduces, controls, emits, releases or disperse air pollutants without a valid Permit to Operate, or in violation of any of the conditions of this Permit, shall be subject to penalties pursuant to Rule LVI of the IRR of RA 8749.
- 7. The installations, processes or activities at this establishment shall be operated, conducted and managed by the permittee, and the associated plant and equipment shall be maintained and operated by the permittee, so that emissions of air pollutants are kept to a practicable minimum. The permittee shall be responsible for ensuring that any emissions of air pollutants from abnormal or unexpected events, do not cause air pollution in the surrounding air environment or have adverse effects on persons in that environment.
- 8. Without limiting the generality of the previous condition, the permittee shall ensure that the emissions from the permitted installations or processes comply with:
 - the National Emission Standards for Source Specific Air Pollutants as specified in Rule XXV of the IRR of RA 8749; and
 - the National Ambient Air Quality Standards for Source Specific Air Pollutants from Industrial Sources/Operations as specified in Rule XXVI of the IRR of RA 8749.
- The permittee shall submit Self-Monitoring Reports to the Bureau on a quarterly basis in accordance with DENR Administrative Order No. 27 (Series of 2003) and any written instructions by the Bureau based on the following schedule:

Quarter	Coverage	Submission	Quarter	Coverage	Submission
First	Jan Mar.	1-15 Apr.	Third	Jul Sep.	1-15 Oct,
Second	Apr Jun.	1-15 Jul.	Fourth	Oct Dec.	1-15 Jan.

- 10. The permittee shall at all times has an accredited Pollution Control Officer (PCO) who shall be the day-by-day contact person between the Bureau and the establishment. The permittee shall ensure that the PCO is familiar with the operations and activities undertaken at the establishment, and the relevant emission sources and air pollution control devices and equipment. The permittee shall give the PCO the necessary authority to take or to direct corrective action in the event of a malfunction, accident, breakdown or other abnormal event that results in excessive emissions or emissions that do not comply with relevant Permit conditions, emission standards or ambient air quality standards.
- 11. The Permittee shall seek accreditation of his/her appointed/designated PCO pursuant to Section 8 of DAO 2014-02 (Revised Guidelines for Pollution Control Officer Accreditation).
- 12. In case of the resignation or termination of the services of the PCO, the Managing Head shall appoint/designate a new PCO. He/she shall inform, in writing, the concerned EMB Regional Office within fifteen (15) days and seek accreditation for the new PCO within thirty (30) days from the date of resignation or termination.
- 13. The permittee shall report in writing to the Bureau any malfunction, accident, breakdown, leak, spill or other abnormal or unexpected event which results in emissions to atmosphere that do not comply with relevant Permit conditions, emission standards or ambient quality standards, or in any other abnormal or unexpected releases of air pollutants. The report shall indicate the nature of the incident or event, its impact on emissions, the time period involved, and any actions or measures taken to control the emissions or releases, remedy any air pollution problems that may have occurred, and minimize the probability of reoccurrence of the event or the release.
- 14. The permittee shall at all times allow authorized or accredited officers of the Department or the Bureau entry to the establishment and access to any part of the establishment to conduct inspections, gather information, test emissions or take samples. The permittee and its personnel shall not obstruct such officers in the performance of these functions, and shall furnish any information or materials requested by them that is reasonable for them to have. The permittee shall obey any lawful instruction or direction given by the Department or the Bureau at all times.

Filing Fee : Php 600.00 O.R. No.: 1809914 & 1810468 Date: Oct. 11, 2021 : Php 47300.00 O.R. No.: 1809914 & 1810468 Date: Oct. 11, 2021 Permit Fee O.R. No.: 1809914 & 1810468 Date : Oct. 11, 2021 PD1856 : Pho 10.00 Documentary Stamp Tax : Php 30.00 O.R. No.: 1809914 & 1810468 Date : Oct, 11, 2021

This is a computer generated certificate. To verify the authenticity of this file, 'dndly scan the generated QR Code using your QR Code scanner/reader or visit the OPMS website for details,

15. The permittee shall not make or allow any alterations or modifications to operations, activities, installations, processes, plant or equipment at the establishment that might substantially change the nature or quantity of the associated emissions without obtaining the approval of the Bureau, including the obtaining of any necessary Permit to Operate.

SPECIFIC CONDITION

16. The permittee shall <u>conduct emission testing</u> for the three (3) units Vertical Shaft Kilns through a DENR accredited third party Source Emission Testing Firm <u>twice each year for each year of operation</u> with three (3) sampling runs to verify its compliance pursuant to Memorandum Circular No. 2007-003 (Policy on Compliance and Permitting for Industrial Facilities Relating to Air Quality). However, considering that each kiln is operated in a period of six (6) to eight (8) months, <u>each kiln shall be subjected to two (2) emission testing within that period</u>. The Test Reports will be a part of the requirements for the renewal of this Permit.

Recommended by:

Approved by:

ENGR. MARIE/PINA L. RODAS OIC-Chief, Clearance & Permitting Division MA. VICTORIA V. ABRERA Regional Director

Filing Fee Permit Fee PD1856 Documentary Stamp Tax : Php 600.00 : Php 47300.00

: Php 10.00

: Php 30.00

O.R. No.: 1809914 & 1810468 O.R. No.: 1809914 & 1810468 O.R. No.: 1809914 & 1810468 O.R. No.: 1809914 & 1810468

Date : Oct. 11, 2021 Date : Oct. 11, 2021 Date : Oct. 11, 2021

Date : Oct. 11, 2021

This is a computer generated certificate. To verify the authenticity of this file, kindly acan the generated QR Code using your QR Code scanner/reader or visit the OPMS wabsite for details.

Annex

	Fuel Burning								
ID	APSI	Capacity	Brand name	Type of Fuel	APCD				
130795	Vertical Shaft Kiln No. 1	1.08 MT/hr/equipment	N/A	Regular Fuel Oil	Gas Scrubber No. 1 (66.0 m³/min)				
130797	Vertical Shaft Kiln No. 2	1.08 MT/hr/equipment	N/A	Regular Fuel Oll	Gas Scrubber No. 2 (66.0 m³/min)				
130799	Vertical Shaft Kiln No. 3	1.08 MT/hr/equipment	N/A	Regular Fuel Oll	Gas Scrubber No. 3 (66.0 m³/mln)				
140793	Standby Generator Set	250,0 kVA	DCA/CUMMINS	Diesel					
140794	Standby Generator Set	200.0 kW	SEALEY/Cummins	Diesel					
140795	Standby Generator Set	75.0 kW	Caterpillar/Isuzu	Diesel					

	Non Fuel Burning								
iD	APSI	Capacity	Brand name	Material	APCD				
130801	Jaw Crusher	1.0 MT/hr/equipment	N/A		Dust Collector Collector System (505.84 m ³ /min)				
140796	Lime Storage Silo	90.0 MT	N/A						
140797	Aboveground/Overhead Fuel Storage Tank	60000.0 Liters	N/A	· · · · · · · · · · · · · · · · · · ·					
140800	Fuel Storage Lank	15000.0 Liters	N/A						
1	Aboveground/Overhead Fuel Storage Tank	1	N/A						
	Aboveground/Overhead Fuel Storage Tank		N/A						
140803	Aboveground/Overhead Fuel Storage Tank	15000.0 liters	N/A		_				
140804	Aboveground/Overhead Fuel Storage Tank	15000.0 liters	N/A						
ŀ	Aboveground/Overhead Fuel Storage Tank		N/A						
140806	Aboveground/Overhead Fuel Storage Tank	15000.0 liters	N/A						

	APCD-APSI Mapping								
ID	APCD	Connected APSIs (<name> (id))</name>	Connected APCDs (<name> (fd))</name>						
19030	Gas Scrubber No. 1 (1)	Vertical Shaft Kiln No. 1 (4)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
19907	Gas Scrubber No. 2 (8)	Vertical Shaft Kiln No. 2 (5)							
19908	Gas Scrubber No. 3 (9)	Vertical Shaft Kiln No. 3 (6)	,444 =						
19909	Dust Collector Collector System (10)	Jaw Crusher (7)							

O.R. No. : 1809914 & 1810468 Filing Fee : Php 600.00 Date: Oct. 11, 2021 Permit Fee : Php 47300.00 O.R. No.: 1809914 & 1810468 Date : Oct. 11, 2021 : Php 10.00 O.R. No. : 1809914 & 1810468 Date : Oct. 11, 2021 PQ1856 O.R. No. : 1809914 & 1810468 Date : Oct. 11, 2021 Documentary Stamp Tax : Php 30.00

This is a computer generated certificate. To verify the authenticity of this file, kindly scan the generated QR Code using your QR Code scanner/reader or visit the OPMS website for details.

April 13, 2024

ENGR. JEAN C. BORROMEO
OIC, Regional Director
DENR – Environmental Management Bureau
Cordillera Administrative Region (CAR)
DENR Compound, Gibraltar Road, Baguio City

Dear Director Borromeo:

We are pleased to submit the BMC Forestry Corporation – Irisan Lime Project's CY 2024 First Quarter Self-Monitoring Report (SMR).

For your information and perusal.

Thank you.

Respectfully yours,

BMC FORESTRY CORPORATION By:

NARHY C. POMILBAN Pollution Control Officer

Approved by:

FRANCISCO O. FLAVIER

Resident Manager/Managing Head

MODULE 1: GENERAL INFORMATION

Reference No.: 26831

Year: 2024 Quarter: 1

Name of Plant: BMC FORESTRY CORPORATION - IRISAN LIME PROJECT

Notes:

The Plant/Project has a land area of 18,541 square meters covered by MPP No. 01C-2022-CAR issued by MGB-CAR on March 22, 2022, renewable for five years. The Company maintains its stockyard of about 12,000 metric tons of raw feed for a year of processing. The Plant's projected production is 19,420 MT per year as per the Company's ECC-OL-CAR-2016-0058 issued by EMB-CAR on September 15, 2016. Total production for the first quarter of CY 2024 is 1,620.475 MT. The Plant has three (3) kilns; each kiln is designed to produce 20 metric tons per day. Stack#1 is in operation for the first quarter of CY 2024. Discharge Permit for the Settling Tank with DP No. DP-CAR-23-01505 which is valid until February 13, 2024 was renewed and was issued with DP No. DP-CAR-24-02323 valid until February 13, 2023.

DENR Permits/Licenses/Clearances

Environmental Laws	Permits	Date Issued	Expiry Date
RA 9275			
DP No. 0	DP-CAR-22-06621	2022-09-10	2024-09-10
DP No. 1	DP-CAR-23-05923	2023-06-09	2024-06-09
DP No. 2	DP-CAR-23-05924	2023-06-09	2024-06-09
DP No. 3	DP-CAR-23-05925	2023-06-09	2024-06-09
DP No. 4	DP-CAR-24-02323	2024-02-13	2026-02-13
PD 1586			
ECC/CNC No	ECC-OL-CAR-2016-0058	2016-09-15	
RA 6969			
DENR Registry ID	0L-GR-CAR-11-008852	2021-04-13	2000-01-01
Transporter Registration	N/A	2000-01-01	2000-01-01
TSD Registration	N/A	2000-01-01	2000-01-01
CCO Registry	N/A	2000-01-01	2000-01-01
Importation Clearance No.	N/A	2000-01-01	2000-01-01
Permit to Transport	N/A	2000-01-01	2000-01-01
Small Quantity Importation	N/A	2000-01-01	2000-01-01
Priority Chemical List	N/A	2000-01-01	2000-01-01
PMPIN	N/A	2000-01-01	2000-01-01
RA 8749			
PO No	PTO-OL-CAR-2021-09103-R	2021-10-30	2023-10-30
PO No	PTO-OL-CAR-2022-02437-R	2022-03-25	2027-03-25

Operation

	Operating hours/day	Operating days/week	# of shift/day
Average	24 hours/day	7 days/week	3 shifts/day
Maximum	24 hours/day	7 days/week	3 shifts/day

Operation/Production/Quality

Average Daily Production Output	17.807
Total Water Consumption this Quarter cm3	181
Total Output this Quarter	1,620.475
Total Electric Consumption	53466

MODULE 2: RA 6969

A. CCO Report

CCO Item No.	CCO Substance	Common	CAS No.	Trade Name	Intended Use	Quantity Issued (in
		Name/IUPAC/CAS				CCO)
		Index Name				·
No records found						

For importers only

CCO Item	Importation	Quantity	Quantity	Date of	Port of Entry	Country of	Country of	Total	Total
No.	Clearance	Issued (in IC)	Imported	Arrival	Ĭ		Manufacture		Quantity
Ī	No.							Requested	Received
								(annual)	(annual)
No records									,
found									

For Distributors (importers/non-importers)

CCO Item No.	Name of Client	License No.	Quantity	Date of Distribution	Country of Origin	Country of Manufacture	Total Quantity Distributed
No records found							

For non-importer users

CCO Item No	. Name of Distributor	Quantity	Date of Purchase	Total Quantity Purchased from Distributor
No records fou	nd			

For Producers

CCO Item No.	Average Daily Production	Total Output this Quarter	Quantity of Stock	Quantity of Stock
	Output		Inventory (Start of Quarter)	Inventory (End of Quarter
No records found				
			<u>. </u>	
CCO Harra Na	Name of Occurs		I 6	
CCO Item No.	Name of Buyer	Quantity	Date of Purchase	Total Quantity Sold

Used in Production (please fill up only if chemical/substance is not main product)

CCO Item No.	Average Daily Production	Total Output this Quarter	Average Quantity Used	Total Quantity Used this
	Output		per month	Quarter
No records found				
				<u> </u>

Describe any changes in Production/Process/Operations

CCO Item No.	Average Quantity of Waste	Total Quantity of Waste	Quantity of Stock	Quantity of Stock
	Chemical Generated per	Chemical Generated this	Inventory(Start of quarter)	Inventory(End of quarter)
1	month	Quarter		
No records found				

Other Information

Manner of Handling Hazardous Wastes	Changes in Safety Management System	Chemical Substitute Plan
	·	

B. Hazardous Wastes Generator

HW Generation

HW No.	HW Class	HW Nature	HW Cataloguing	Quantity	Unit	Quantity	Unit
D407	Mercury and mercury	Solid	Toxic (T)	0.00025		0.008	
	compounds						
1104	oil-contaminated materials	Solid	T/F	0.059		0.023	
J201	Containers previously containing toxic chemical substances	Solid	Toxic (T)	0.0014		0.008	
M506	waste electrical and electronic equipment	Solid	Toxic (T)	0.001		0.0035	
1101	Used industrial oil	Liquid	T/F	0		0.017	

Waste Storage, Treatment and Disposal(please fill-up one table per HW)				
HW Details	HW No.: D407	Qty of HW Treated :0.00	Unit :	
Storage Name : ILF	P Hazardous Waste Storage Facility	Method :Provided with secondary containment (drums) to prevent breakage with proper label and placard.		
Transporter	Name . :	Date :		
Treater	Name . :	Method :	Date :	
Disposal	ID .:	Name:	Method:	
HW Details	HW No.: I104	Qty of HW Treated :0.00	Unit :	

Method: Provided with secondary containment (drums) to prevent leakage with proper label and placard.

Transporter

Name : ILP Hazardous Waste Storage

Facility

Storage

Treater	Name . :	Date :			
	Name . :	Method ;	Date :		
Disposal	ID .:	Name:	Method:		
HW Details	HW No.: J201	Qty of HW Treated :0.00	Unit :		
	P Hazardous Waste Storage Facility	Method :Provided with secondary containment (drums) to prevent leakage with proper label and placard.			
Transporter	Name . :	Date :			
Treater	Name . :	Method :	Date :		
Disposal	ID .:	Name:	Method:		
HW Details	HW No.: M506	Qty of HW Treated :0.00	Unit :		
	P Hazardous Waste Storage Facility	Method:Provided with secondary containment (drums) to prevent breakage with proper label and placard.			
Transporter	Name . :	Date :			
Treater	Name . :	Method :	Date :		
Disposal	ID .:	Name:	Method:		
HW Details	HW No.: I101	Qty of HW Treated :	Unit :		
Storage	Name :	Method:Immediately mixed with RFO in the RFO tank for calcination.			
Transporter	Name . :	Date :			
Treater	Name . :	Method :	Date :		
Disposal	ID .:	Name:	Method:		

On-site self Inspection of Storage Area

Date Conducted	Premises/Area Inspected	Findings and Observations	Corrective Action Taken
2024-02-03	ILP Hazardous Wastes Storage	Storage Facility Wastes are	
	Facility	properly stored with proper label	
		and placard	

2024-02-03	ILP Hazardous Wastes Storage	Storage Facility Wastes are	
	Facility	properly stored with proper label	
	<u> </u>	and placard	
2024-03-23	ILP Hazardous Wastes Storage	Storage Facility Wastes are	
	Facility	properly stored with proper label	
		and placard	
~~			

C. Hazardous Wastes Treater/Recycler

HW Stored and/Untreated as of End of Quarter

Type of Waste	HW Number	Wastes	Date of	Transport	Quantity	Type of Storage	Time Table for
		Generator	Transport	Permit/Date of		Container/# of	Treatment
				Issue		Containers	

HW Treated and/or Recycled as of End of Quarter

Type of Waste	HW Number	Wastes	Date of	Transport	Quantity	Type of	Quantity of
		Generator	Transport	Permit/Date of		Treatment of	Recycled or
				Issue		Recycling	Treated Product
						Process	

Residual Wastes Generated from the Treatment and/or Recycling Operation

Type of Waste	HW Number	Process by which	Quantity	Type of Storage	Disposal Option	Time Table for
		the Waste is		Containers/#		Disposal
		Generated		Number of		
				Containers		

MODULE 3: RA 9275

Water Pollution Data

Domestic wastewater (cubic meters/day) :	0.892	Process wastewater (cubic meters/day) :	<u>1.064</u>
Cooling water (cubic meters/day)	0.0065	Others :	
Wash water, equipment (cubic meters/day) :	0.0264	Wash water, floor (cubic meters/day) :	

Record Cost of Treatment

	Month 1	Month 2	Month 3
Person employed, (# of	1	1	1
employess)			
Person employed, (cost)	900.00	731.25	787.50
Cost of Chemicals used by WTP	N/A	N/A	N/A
Utility Costs of WTP(electricity &	N/A	N/A	N/A
water)			
Administrative and Overhead	4,196.70	N/A	N/A
Costs			
Cost of operating in-house	N/A	N/A	N/A
laboratory			
New/Additional investment in	N/A	N/A	N/A
WTP (description)			
Costs of New/Add Investments	N/A	N/A	N/A

WTP Discharge Location

Outlet Number	Location of the Outlet	Name of Receiving water body
1	Oil-water separator system	Asin-Gallano River
2	Dust settling tank discharge compartment	Asin-Gallano River

Detailed Report of Wastewater Characteristics for Conventional Pollutants

Outlet No.	DATE	Effluent Flow Rate	BOD (mg/L)	TSS (mg/L)	Color	Ph	Oil & Grease (mg/L)	Temp Rise (C)	Unit
		(m3/day)					` ` ′	ι-,	
1	2024-02-26			0.00		7.95	0.41		
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01								

Detailed Report of Wastewater Characteristics for Other Pollutants

Outlet No.	DATE	Effluent Flow				
1		Rate	ļ			

	(m3/day)		1			1	1	1
		1	1	1	1	1	1	1
2000-01-01	i i							
2000-01-01							1	1
2000-01-01								
2000-01-01								
2000-01-01		-					[<u></u>	
2000-01-01								

MODULE 4: R.A. 8749 (Air Pollution)

Summary of APSE/APCF

_	Process Continued	T	
	Process Equipment.	Location	# of house of anaration for the
	hawk burner		# of hours of operation for the quarter
	TIAWK DUITIEI	Kiln Plant	2,208 HOURS
			2,200110013

Fuel Burning Equipment	Location	Fuel Used (indicate % if	Quantity Consumed for the	# of hours of operations for
hawk burner	IZ I	mixed composition)	quarter	the quarter
	Kiln No. 1	RFO	301.1736	2,208 HOURS
One (1) unit SEALEY/CUMMINS"	Power house	Diesel	0.1405	8.30

Dalluting Control Control		
Pollution Control Facility	Location	# of hours of operation for the quarter
Wet gas scrubber	Kiln Vortical Chaff in the ICL Dt	
	Kiln Vertical Shaft in the Kiln Plant	2.208 HOURS
Dust Collector and Scrubber System	Kiln Plant	
	Tanti igni	2,208 HOURS

Record Cost of Treatment

 Month 1	Month 2	Month 3

Detailed Report of Air Emission Characteristics

FBE No.	DATE	Flow Rate (Ncm/day)	CO (mg/Nom)	NOx	Particulates				T
-1	2022 44 20	(Nonway)	(mg/Ncm)	(mg/Ncm)	(mg/Ncm)		1		
	2023-11-29		105.4	82.20	49.7				
	2000-01-01						 		
	2000-01-01				 				-
	2000-01-01						 	- 	<u> </u>
	2000-01-01				 		 	 -	
	2000-01-01						-		
	2000-01-01					_	 		
	2000-01-01						 	 -	
	2000-01-01						+	<u></u> _	<u> </u>

Ambient Air Quality Monitoring (if required as part of ECC conditions)

Station	DATE	Noise Level	CO	NOx	Particulates	(mg/Ncm)	(mg/Ncm)	(mg/Ncm)	(mg/Ncm)
Description		(dB)	(mg/Ncm)	(ng/Ncm)	(mg/Ncm)				
N/A	2000-01-01								
	2000-01-01		·						
	2000-01-01			,					
	2000-01-01								
	2000-01-01								
	2000-01-01				ļ				
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01	T							
	2000-01-01						<u> </u>		

Ambient Water Quality Monitoring (if required as part of ECC conditions)

Station Description	DATE	1	1	1	/	/	1	7	1
N/A	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01				_		<u>.</u>		
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01							<u> </u>	

Other ECC Conditions

ECC Condition/s	Status of Compliance	Actions Taken
Voluntary cease its operation in the event of any malfunction in any of the appurtenant facilities until the time that said damages are rehabilitated or restored. Further, the proponent shall immediately inform the EMBCAR of said damages and of remedial measures undertaken.	No	No malfunctioning of operation facilities during the monitoring period in review.
Uncalcined limestone/discards shall be prevented from deposition to and along drainage/natural waterways and water bodies, and shall be disposed – off properly in an appropriate/designated disposal site(s) which shall be maintained in a stable and non-polluting condition.	Yes	Uncalcined limestone is maintained in a stable condition located at the Kiln stockpile area far from the drainage canal. 35.730 MT was donated to a constituent of Purok 12, Irisan for the backfill of their vacant lot and to Nurich Vitameal Corporation in Calasiao, Pangasinan for manufacturing organic fertilizers for the first quarter.
Timely construction of adequate engineered earth retaining structures along affected and	No	Ripraps were already established along the slopy/unstable areas in the kiln feed

geologically unotable areas associated at		
geologically unstable areas, especially in the stockyard of limestone, to protect adjacent		stockpile area. There is no additional
properties/environment.		construction of retaining structures this firs
The proponent shall plant at least 50		quarter of CY 2024.
indigenous tree species along the periphery	Yes	The Company established four (4) packets
of the project site to serve as buffer for dust		of Plantation Areas with an area of 3,711
and noise and improvement of aesthetics		square meters that serves as a buffer zone
and in the support of the National Greening		and carbon being enhanced and
Program and climate change initiatives of		maintained yearly. These four packets of
the government.		plantation areas were planted with Bengue
The legal requirements pursuant to RA 6969		coffees and Benguet Pine trees.
or the Toxic Substances and Hazardous and	Yes	Discharge Permit for the Settling Tank with
Nuclear Wastes Control Act of 1990, RA		DP No. DP-CAR-23-01505 which is valid
8749 or the Philippine Clean Air Act of 1999,		until February 13, 2024 was renewed and
RA 9003 or the Ecological Solid Waste		was issued with DP No. DP-CAR-24-02323
Management Act of 2000 and RA 9275 or		valid until February 13, 2023.
the Philippine Clean Water Act of 2004 shall		
he secured wherever and it roll.		
be secured whenever applicable.		
Compliance with said requirements shall be		
coordinated with the Clearance and		
Permitting Division (CPD) of EMB-CAR,		
DENR.	<u> </u>	
The proponent shall secure regularly	Yes	A business permit for the operation covering
necessary permit(s)/clearances/authority		CY 2024 was secured at the Mayor's Office
from concerned national and local offices		on on January 29, 2024 valid until Decembe
relative to project implementation.		31, 2024.
The proponent shall allow entry of EMB-CAR	Yes	EMB Personnel visited the site in 2024 first
personnel into the project site at all times to		quarter MMT monitoring on February 27,
conduct monitoring and to validate project's		2024.
compliance with the ECC conditions		
stipulated therein and EMP Mitigating		
Measures.		
The proponent shall submit to EMB-CAR	Yes	Religiously submitting reports. The Company
within fifteen (15) days after every quarter a		submitted the 2023 fourth quarter SMR on
Self-Monitoring Report (SMR) and a		January 15, 2024 and 2023 second
Compliance Monitoring Report (CMR)		semester CMR on January 23, 2024.
semiannually.		20, 2024.
The proponent shall cause the	No	No technical conference during the
implementation of any undertaking which		monitoring period in review.
may be imposed by EMB-CAR as a result of		potroz in torion,
Technical Conference/s called relative to		
environmental issues arising from the		
implementation of the project.		
Limestone feed materials shall be sourced	Yes	A supply agreement between the Company
out from the Company's permitted quarry		and Timber & Lime Multi-Purpose
areas and/or other sources sanctioned by		Cooperative (TLMC), as a supplier of the
government authorities. Violation of this		feed materials was signed on October 17,
condition shall automatically cause the		2022 valid for two (2) years for the delivery
cancellation/revocation of this ECC or		of limestone feed materials. This agreement
imposition of fine.		is registered at MGB-CAR with Certificate of
		Posistration 400500 OAR 44000
		Tedisiration (11747)-CAD 44600
Project development shall be in accordance	No	Registration 102522-CAR-44622.
with the submitted documents. Major	No	No modification or expansion, to date.
with the submitted documents. Major modifications and/or expansion shall be	No	No modification or expansion, to date.
with the submitted documents. Major	No	No modification or expansion, to date.
with the submitted documents. Major modifications and/or expansion shall be subject to a new Environmental Impact Assessment (EIA) requirement.	No	No modification or expansion, to date.
with the submitted documents. Major modifications and/or expansion shall be subject to a new Environmental Impact Assessment (EIA) requirement. Any transfer of project ownership carries the	No No	No modification or expansion, to date.
with the submitted documents. Major modifications and/or expansion shall be subject to a new Environmental Impact Assessment (EIA) requirement. Any transfer of project ownership carries the same conditions and restriction in this ECC		No modification or expansion, to date. No transfer of ownership, to date.
with the submitted documents. Major modifications and/or expansion shall be subject to a new Environmental Impact Assessment (EIA) requirement. Any transfer of project ownership carries the same conditions and restriction in this ECC for which a written notification to the		No modification or expansion, to date.
with the submitted documents. Major modifications and/or expansion shall be subject to a new Environmental Impact Assessment (EIA) requirement. Any transfer of project ownership carries the same conditions and restriction in this ECC for which a written notification to the EMBCAR shall be made by the		No modification or expansion, to date.
with the submitted documents. Major modifications and/or expansion shall be subject to a new Environmental Impact Assessment (EIA) requirement. Any transfer of project ownership carries the same conditions and restriction in this ECC for which a written notification to the		No modification or expansion, to date.
with the submitted documents. Major modifications and/or expansion shall be subject to a new Environmental Impact Assessment (EIA) requirement. Any transfer of project ownership carries the same conditions and restriction in this ECC for which a written notification to the EMBCAR shall be made by the ransferee/transferor within fifteen (15) days from such transfer.		No modification or expansion, to date.
with the submitted documents. Major modifications and/or expansion shall be subject to a new Environmental Impact Assessment (EIA) requirement. Any transfer of project ownership carries the same conditions and restriction in this ECC for which a written notification to the EMBCAR shall be made by the ransferee/transferor within fifteen (15) days from such transfer.	No	No modification or expansion, to date. No transfer of ownership, to date.
with the submitted documents. Major modifications and/or expansion shall be subject to a new Environmental Impact Assessment (EIA) requirement. Any transfer of project ownership carries the same conditions and restriction in this ECC for which a written notification to the EMBCAR shall be made by the ransferee/transferor within fifteen (15) days from such transfer. The project shall undergo the requirements specified in the implementing guidelines of		No modification or expansion, to date. No transfer of ownership, to date. The project operation has not stopped, to
with the submitted documents. Major modifications and/or expansion shall be subject to a new Environmental Impact Assessment (EIA) requirement. Any transfer of project ownership carries the same conditions and restriction in this ECC for which a written notification to the EMBCAR shall be made by the ransferee/transferor within fifteen (15) days from such transfer. The project shall undergo the requirements specified in the implementing guidelines of the Department Administrative Order No.	No	No modification or expansion, to date. No transfer of ownership, to date.
with the submitted documents. Major modifications and/or expansion shall be subject to a new Environmental Impact Assessment (EIA) requirement. Any transfer of project ownership carries the same conditions and restriction in this ECC for which a written notification to the EMBCAR shall be made by the ransferee/transferor within fifteen (15) days from such transfer.	No	No modification or expansion, to date. No transfer of ownership, to date. The project operation has not stopped, to

Enhancement/Mitigation Measures/s	Status of Compliance	Actions Taken
Enhance planting at the vacant spaces	Yes	Continuous enrichment and maintenance of
within the project area boundaries where		the four (4) packets onsite Company's
applicable.		plantation areas with a total area of 0.3711
		hectares with planted Benguet Pine trees,
		Benguet coffees and lemon.
nhance the implementation of solid waste	Yes	Maintained sorting waste bins (for
nanagement at source (e.g. segregation,		recyclables, residuals, and biodegradables) placed in the different areas of the Plant site.
reuse, recycling or composting).		I Comment of the comm
		A composting area also is being maintained
		for the generated biodegradable waste.
Enhance and maintain the Materials	Yes	Recyclables/reusable materials were stored
Recovery Facility (MRF).		neatly in their respective storage
		compartment. Collected materials are being
		brought to private junk shops at every end of
		the quarter.
Coordinate with the City/Barangay for	Yes	The Company complies with the schedule
gular collection of solid waste generation.		set by the Barangay for the waste collection
		which is scheduled every Friday of the week
·		at 5:00 AM. The residual wastes were sorted
		at source.
egular maintenance of the concrete bund	Yes	1. Increased the height of the 16 linear
within the perimeter of the Fuel tanks		meters (circular) bund wall from 0.50 meters
ocation, Oil-water separator and storage		high to 1 meter high. A catchment in case of
room for hazardous materials.		an oil spill from the RFO tank pipe was
1		constructed with a bund wall leading to the
		oil-water separator system. The bund wall
		near the OWS was also improved. 2.
1		Provided ventilation and safety signages for
		the hazardous waste storage facility. The
!		hazardous waste drums compartment was
		lifted.
Disposal of Hazardous wastes through	No	No hauling of HW this quarter in review.
accredited transporter and treater.		
Reuse of changed oils from the standby	No	No changed oil this quarter in review.
generator sets.		
egular inspection and maintenance of the	Yes	Regular inspections were being done. A
eptic tanks and the wastewater settling		small volume of accumulated dust settled in
basins.		the bottom of the tank, hence, no removal of
		the suspended solids for the first quarter. 2.
i		Regular maintenance of the OWS.
Effluent Monitoring	Yes	1. No discharge from the septic tanks during
		the monitoring period, 2. No discharge from
		the dust-settling tanks during the first quarter
		of CY 2024. 3. Regular maintenance of the
		OWS. Removed oil was stored in the I104
		drum container in the hazardous waste
		storage facility. A discharge of 2 cubic
		meters from the OWS was recorded for the
		first quarter. Conducted a water sampling for
		the effluent on February 26, 2024 and
		results of analyses were within the DENR
		Standards.
Degular inaportion and maintaness of	Yes	Removal of the leaves/materials and regular
Regular inspection and maintenance of	169	cleaning of the sump in the drainage canal.
risting canal that traverse the project area		The sump was constructed to catch debris
hat includes removal of debris and other		before traversing into the Barangay drainage
materials that may obstruct water flow.		
	Yes	canal to prevent clogging. The wet gas scrubber within the vertical
Properly operate and maintain all emission	162	
sources.	No	shaft is being regularly maintained. No installed air pollution control device/s this
Install, when applicable, appropriate air	INU	•
pollution control device/s.	Yes	quarter. Limestone delivery trucks and RFO delivery
ontrol vehicle speed to lessen suspension	165	trucks' speeds were in control at all times.
of road dust.	Yes	Implemented sprinkling seven (7) times for
Conduct water spraying during dry days.	165	January, six (6) times for February, and
		three (3) times for March.
One of deliver the other architecture the state	Yes	Open trucks of the customers were always
Cover delivery/hauling vehicles that may	1 65	equipped with cover (canvas/tolda) to
generate dust.		prevent suspension of dust in the
		atmosphere.
	No	No conducted test this quarter.
- itaring of ambient air quality and source	INU	ino conqueren rear tilla quarter.
- · · · · · · · · · · · · · · · · · · ·		
lonitoring of ambient air quality and source emission. roperly operate and maintain all sources of	Yes	Regular maintenance of power house as one

noises.		source of noise pollution.
Install, when applicable, appropriate noise	Yes	The roots blower in the power house was
control device/s.		enclosed to lessen the generation of noise.
Monitoring of ambient noise level.	Yes	No conducted test this quarter.
Prioritize hiring of qualified local residents.	No	No hiring this quarter.
Regular coordination with LGU.	Yes	Regularly coordination with the LGU by the
		Community Relations Officer for issues and
		concerns concerning the Operation and the
		Social Development and Management
		Program of the Company, Also, Irisan LGU
		is a member of the BF-ILP MMT and was
		present during the 2024 first quarter MMT
		monitoring on February 27, 2024.
Promptly payment of local taxes.	Yes	Payment of taxes to BIR monthly and City
		for the Business Permit.
Provide appropriate traffic/warning signs.	No	
Maintain parking spaces within the project	Yes	Parking space in front of the admin building
area.		is always available.

Solid Waste Characterization/Information

	Recyclable	Biodegradable	Residual
Average Quantity Generated (tons/ month)	0.113		0.08
Total Quantity Generated (tons/ quarter)	0.339		0.240
Average Quantity Collected (tons/ month)	0.113		0.08
Total Quantity Collected (tons/quarter)	0.339		0.240
Entity in charge of collection			Baguio City garbage collection truck

Brief Description of Solid Waste Management Plan (e.g., waste reduction, segregation, recycling)

Segregation is initially done at the garbage bins at the admin office, bunkhouse/staff house, and kiln plant wherein biodegradable is segregated from non-biodegradable. Recyclable materials (pet bottles and cans) and reusable materials (paper and cartoon) were stored at the MRF of the Company and were bought by private junk shops. Residuals (non-bio) are disposed of in line with the Barangay ordinance. Wastes were being brought out to the designated collecting area in the Purok as per schedule being collected by the City truck waste every Friday. There is also a designated area for composting the biodegradable waste in the Campsite. The composted materials will be used in fertilizing the coffees/lemon in the Plantation Areas.

MODULE 6: OTHERS

Accidents & Emergency Records

Date	Area/Location	Findings & Observation	Actions Taken	Remarks
2000-01-01				The state of the s
2000-01-01				TO A CAMPAGE AND
2000-01-01				TOWNS A THE OWNER AND A
				anna anna ann ann ann ann ann ann ann a
				and plants
				2000

				90.00
				900 Ann Ann Ann Ann Ann Ann Ann Ann Ann A

Personnel/Staff Training

Date Conducted	Course/Training Description	# of Personnel Trained
2024-03-7	Fire Safety Orientation	30
2000-01-01		
2000-01-01		
		9
		:
		!

I hereby certify that the above information are true and correct.

BAGUIO CITY,

Name/Signature of PCO COA No. 2023-CAR-14263 New

Francisco\O. Flavier Name/Signature of Managing Head

SUBSCRIBED AND SWORN before me, a Notary Public, this day of

, affiants exhibiting to me their PTR:

Name

CTR No.

Issued at

issued on

FRANCISCO O. FLAVIER

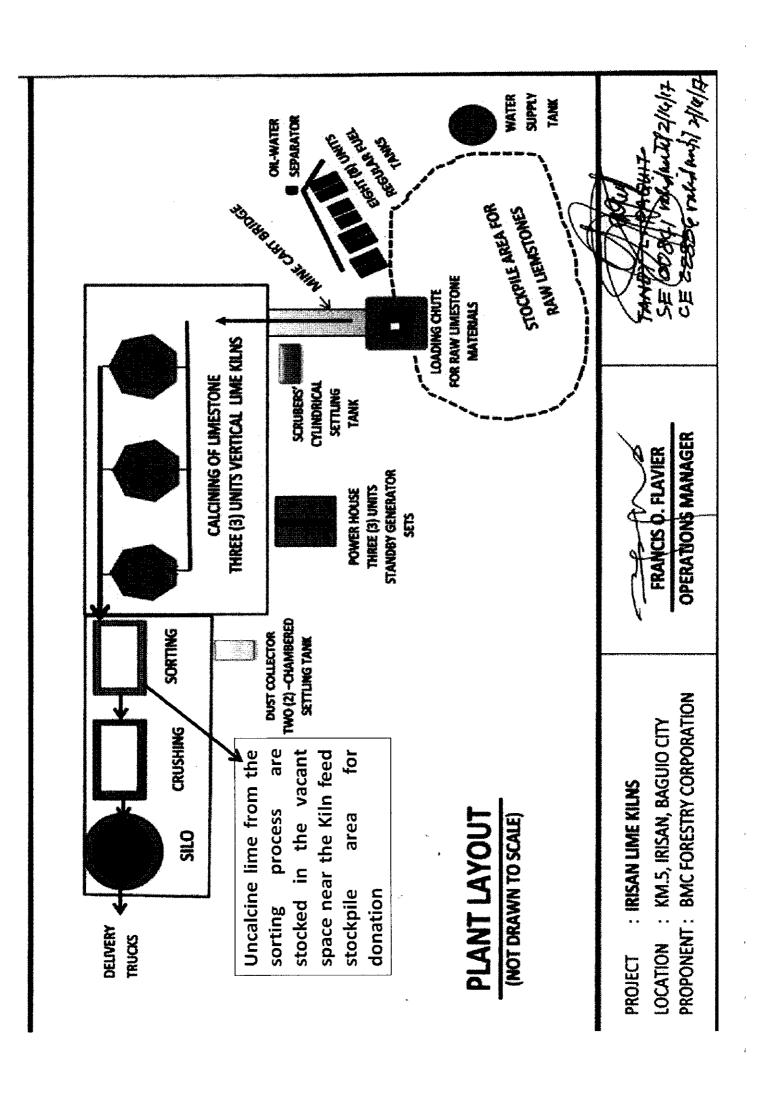
TIN 103-481-016

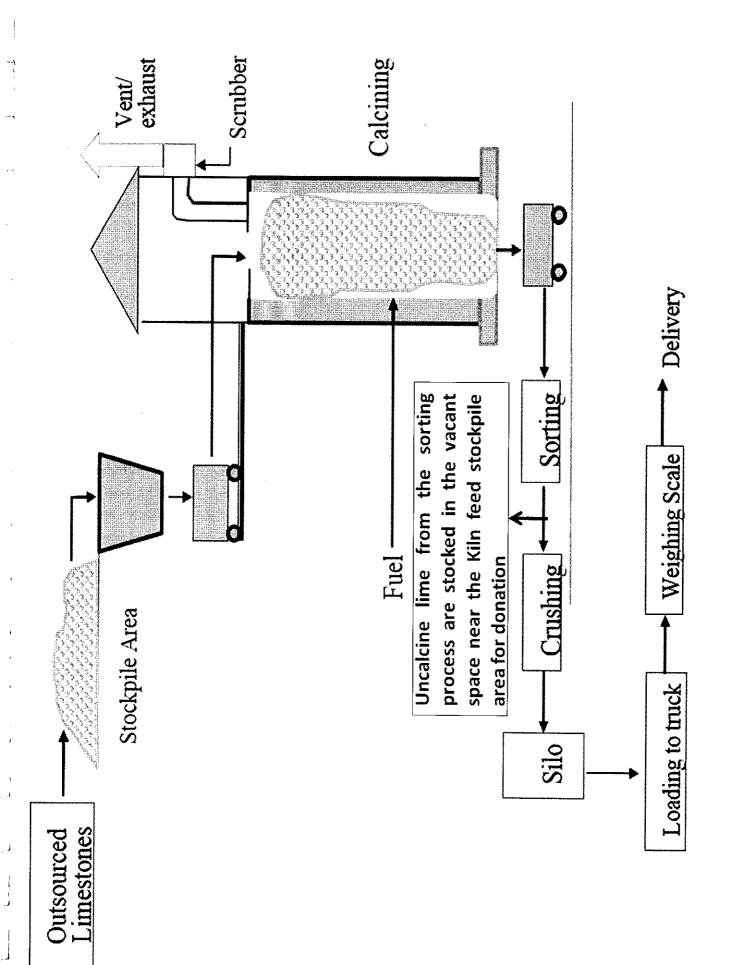
Baguio City

NARHY C. POMILBAN

TIN 314-977-920

Baguio City


SUBSCRIBED AND SWORN to before me this APR 1 2 2024 the City of Baguio, Philippines.


Notary Public in Bhoulo City Until Necember 31, 2024 NA-135-60-22-0

.PTR O.R. No. 6822400; December 19, 2073: Pagulo City IBP OR No. 331199; Lieucember 15, 2025, Manila Roll No. 61811; Norii 25, 2023; Wuniia

MCLE Compliance Carmicine No. 191-00/21828 Until 04-14-2025

Rm. 28, Sacred Heart Building, Diego Silang St., Bagulo City

Pausioum Froducts and laacking saryicas Provider

CERTIFICATE OF ANALYSIS (Special Low Suffer Firet Oll)

MINHOD (ASSM)	RESULT
D 1298	0.81 kg/l
D 445	5.261
D 918	40.0%
D 97	27%
D 482	0.003 %(m/m)
D 4294	0.107 % (m/m)
D 1706 (Modified)	0.20.% (v/v)
D 473	0.03.% (m/m)
D 4868	19558
D 4868	18359
1) 6863 (Method A)	ջ Օրրոչ (ումա)
D 5863 (Method B)	(1 ppm (m/m)
D 4530 (Method A)	0.64% (m/m)
D 96	-0.1% (y/m)
	D 445 13 93 B 13 93 B 13 93 B 13 93 B 13 48 B 13 48 68 13 48 68 13 48 68 13 48 68 13 48 68 13 48 68 13 48 68 13 48 68 13 48 68 13 48 68 13 48 68 13 48 68 13 48 68 13 48 68 13 48 68 13 48 68 13 48 68 14 53 68 68 68 68 68 68 68 68 68 68 68 68 68

For your relegance.

Certificate of Analysis: MK22-00020.002

Date: 12/05/2023 MAXFUEL PETROLEUM PRODUCTS TRADING Sitlo Maglanque, Concecpcion, San Simon Pampanga

CUSTOMER ORDER NUMBER	PU No. 05		SGS ORDER NO.:	2002943	
CUSTOMER ID :	Requested by Ms.	Maxine Lly			
LOCATION:	Not indicated		PRODUCT DESCRIPTION	l: IFO-100	
SAMPLE SOURCE :	As Supplied		***************************************	,, = ,,,,	
SAMPLE TYPE:	As submitted		SAMPLED BY :	Client	
SAMPLED:	-		RECEIVED:	11/05/2023	
ANALYSED:	12/05/2022		COMPLETED:	12/05/2023	
ROPERTY	····	METHOD	RESI	JLT UNIT	
Relative Density (SG) at 15.0/1	5.0 °C	ASTM D1298	0.89)54	
Cinematic Viscosity at 40 °C (1	04 'F)	ASTM D445	46	.43 mm²/s	
Flash Point by PMCC		ASTM D93B	17	5.0 °C	
igh Heating Value (HHV)		ASTM D4868	191	76 Btu/fb	
ower Heating Value (LHV)		ASTM D4868	180		
Ash from Petroleum Products		ASTM D482			
Ash			3.0	360 % (m/m)	#
Fotal Sulfur Content *		ASTM D4294	0.3	i00 % (m/m)	
Vater Content		ASTM D95	().2 % (v/m)	
		** End of An	elytical Results **		
his document is only valid in its e EPORTED BY:		tention is drawn to the	Terms and Conditions on Page	1 of this report.	
18	Κ.				
nors forth long. Have IMPROVED Engine 6/15/25 TR No. 9050395, Housel (16/20/2072, Mobiles		Bay No. 00075-16, Espera 03/3 955-3765, Housel DE/27/2022, L			
IANA GEE T. ELIMEN		AANINGO			
sh Analysi i	Labora	story Manager			
02202215500000006138	3/1	Alegria Building, 2229	Chino Roces Avenue, Makati Cay	1231, Philippines web: www.sgs.com	1

OGC-En_report-2014-10-10_v59K

Page 1 of 1 ow of the 808 Climp (Société Générale de Surveillance) SGS Philippines, Inc.

MONITORING LOGSHEET

Facility Information Facility Name Facility Address Name of Pollution Control Officer Maintenance Supervisor / Engineer **Telephone and Fax Number Source Description Source Type** Source ID Manufacturer / Brand of Equipment / Serial No. Equipment Capacity (BHp,MW,MT/hr) Date of Installation (month/year) Date of Modification (that may increase emissions) 1)। वः Operational Hours per Year (hrs/year) Operating rate (%) **Air Pollution Control Device** Is there an Air Pollution Control Device (APCD) attached to the source? YES Type of APCD Date of Installation APCD parameters (flowrate,gpm,delta P,etc) Is the APCD operating during emission sampling **Fuel Analysis / Information** al Firel Oil Type of Fuel used during emission sampling (%S) Original Fuel used Date of Fuel change Daily Fuel Consumption (Liters/day) Is the Fuel Analysis Available? NO Will the company provide the Fuel Analysis YES NO Please attach the following -Fuel Analysis -Permit to Operate -APCD Process Logsheet

-Source Process Logsheet

ANNEX D ANALYTICAL DATA

Unit 201-204 & 406 Rizalina Annex Bldg. 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 Fax No. 8929-4824 Email: info@elarsi.com

CLIENT

BSI

ADDRESS

2nd Flr., VAG Bldg Ortigas Ave. Greenhills

San Juan, Metro Manila

Contact Number

Nature of Sample/s

8863-6129 Stationary Source Emission

No. of Sample/s Submitted : Three (3) Lab. Report No.

Date Analyzed

Date Reported

Date/Time Sampled

241930-SA 05-28-24 1800H Date Received

05-31-24

05-31-24 to 06-10-24

06-10-24

[REPORT OF ANALYSES]

Sample No.	Sample ID	PM (with acetone rinse), mg ^a	Analysis Date/Time
ES-2408629	PJ 24 241 S1R1	43.6	06-07-24 0850H
ES-2408630	PJ 24 241 S1R2	34.8	06-07-24 0850H
ES-2408631	PJ 24 241 S1R3	26.5	06-07-24 0850H

Reference

CFR 40 Part 60 Revised as of July 1, 2000

Analyzed By:

JOCELYN T. PAMITTAN, RChT Laboratory Chemical Technician PRC Lic. No. 0005410

Checked By:

JEMMA D. JACINTO, RCh Laboratory Supervisor PRC Lic. No. 0010872

Certified Correct By:

RENATOM. GOFREDO, JR., RCh

Laboratory Manager PRC Lic. No. 0009824

RECOGNIZED LABORATORY C.R. No. 005/2021

PAS ACCREDITED
TESTING LABORATORY PNS ISO/IEC 17025:2017 LA-2023-436A Test results reflect the quality of the samples as received.

No portion of this report may be reproduced in any form, without written authorization of ELARSI, Inc. This report is not valid without the official dry seal and watermarks of the laboratory.

Page 1 of 1 Page/s

E)_HRAFORM_10

ELARSI, INC. Particulate Matter (PM) (METHOD 5) ANALYTICAL DATA SHEET (EI-APA-15)

Project No. : Nature of Sample :	924 241 SSE			Lab Report No. Date Received:	·	42 - 16.50 10.50		
Analytical Balance:		TREC- A	<u> </u>	Date Analysis Str	arted:	HORES NE - 60-40		
Sensitivity:		mg			u ta fa mat.	04-10-24 BHUSH		
Detection Limit:	0.1	mg		Date Analysis Fit	rature (°C)			
					Humidity(%)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
4	[Units						
Sample ID		7	na zui siki	Plan any Clas		Blank		
Sample No.		1	-2406629	\$ 3408 V 30	\$5-3408651			
	-							
Fliter Analysis			[6 a d 1 a a a	l for -29	805 042			
Filter ID			for oge	१६० २०४				
Filter Appearance		·	brown	phens.	pylanu			
Initial Weight		g	0.4.10	0.3610	D .3388			
Final Weight	~	g	PURG. o	0.3491	0.3779			
Particulate Mass Filte	er, m _t	mg	36.4	48.1	19.1			
Andrea Dines Angle								
Acetone Rinse Analystopee Dried PM Rinse Appea			openy	erranx	yray	clean		
Acetone Rince Volume		mi			3-1	100		
	· · · · · · · · · · · · · · · · · · ·	- ""	11.5 11.5	92 PM20	· L	PHOS		
Beaker ID		g	110.0628	109.4534	113.6054	MAURAY	Sd.	
Initial Weight, Beaker	·····		110. 0710	109 4621	113.4128		Stillo	
Final Weight, Beaker	and Diagonal	9	40.0410	6.7	1.4	40.1		
Particulate Mass, Acet	one rinse, m _{st}	mg	1					
Acetone Reagent Bla	enk							
Acetone Blank Volume	a, V _a	ml	100	100	(00	(00		
Beaker ID			pero	* PMOY	PMox	PMos		
Initial Weight, Beaker		g	111, 9458	111,9458	111.9438	111.4438		
Final Weight, Beaker		<u> </u>	111.9434	111.9434	111.9434	111.0034		
Blank Residue Mass	, m <u>.</u>	mg	0.000	0.0000	0.0000	0.6000		
$C_a = m_e/V_a$		mg/ml	0.0000	D - 0000	0-0000	0.0000		
Acetone Blank, W. =	C _a ×V _{er}	mg	0.000	0.0000	0.0000	0.0000	ļ	
Max Blank Com. Allow	ved, W _m *	mg	3.6400	F242.0	6.5378	0.7657		
Acetone Blank Value	e Used **	mg	0:0000	0.0000	0.0000	0.000.0)	
* Maximum Acetone Blank ** Maximum Mass of Aceto	is 0.001% A, mass.	. W _m ≃ Var should be	x 0.7857x 0.000x less than 0.001%	01 (where 0.7857 g/ of the Ar mass, oth	imi is acetone dens erwise use, W _m .	sity @ 25°C)	- -	
Total PM = m _f + m _{ar}	- W.	mg	43.6	34.46	20.5	۷٥.١]	
or Total PM = m, + n				ND (Not Detected)]	
Analyzed by 100	16		Checked by Date&Time		in t			
Date&Time	olo zu 6 Pm	-				Page 1 of 1	1	

EL_LABAIRFORM_15

Unit 201-204 & 406 Rizalina Annex Bldg. 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 Fax No. 8929-4824 Email: info@elarsi.com

CLIENT **ADDRESS**

2nd Flr., VAG Bldg Ortigas Ave. Greenhills

Lab. Report No. Date/Time Sampled

241931-SA

San Juan, Metro Manila

05-28-24 1800H 05-31-24

Contact Number

: 8863-6129

Date Received

Nature of Sample/s

Date Analyzed

06-11-24

Stationary Source Emission

Date Reported

: 06-12-24

No. of Sample/s Submitted : Three (3)

[REPORT OF ANALYSES]

Sample No.	Sample ID	SO ₂ , mg ^a	Analysis Date/Time
ES-2408632	PJ 24 241 S1R1	32.78	06-11-24 1300H
ES-2408633	PJ 24 241 S1R2	21.22	06-11-24 1300H
ES-2408634	PJ 24 241 S1R3	18.57	06-11-24 1300H

a - Method 6 / Barium - Thorin Titration

Reference.

CFR 40 Part 60 Revised as of August 3, 2017

Analyzed By:

CHYLA DREXIE C. MORADA, RChT Laboratory Ghemical Technician

PRC Lic. No. 0009323

Checked By:

JACINTO, RCh

Laberatory Supervisor PRC Lic. No. 0010872

Certified Correct By:

GOFREDO, JR., RCh

Laboratory Manager

PRC Lic. No. 0009824

Test results reflect the quality of the samples as received.

No portion of this report may be reproduced in any form without written authorization of ELARSI, the

This report is not valid without the official dry seal and watermarks of the laboratory

LABORATORY C.R. No. 005/2021

Page 1 of 1 Page/s

ELARSI, INC.

SOX (METHOD 6/METHOD 8) ANALYTICAL DATA SHEET (EI-APA-14)

roject No. : ature of Sampi BaC12 used : A (used for itraitor atection Limit/	le:	4 <u>141</u> 385			Lab Repor	rt No. :		24]	131 - 51	A	
BaC12 used : A (used for titration	0.01010				Date Rece			31	MAY 2024		
A (used for titration	191	8788				sis Started:			JUN	2024	180011
	17	5400			Date Final						
EBGROII LITTIU	ia)2 (2.70 mg)			Deta Analy	sis Finished:		11	JaN	2024	[800H
		mg) ; H2804	/4 00 m		Data wilali	Sia Philipilou.		·	y		14-4-1
omputations:											
Check (Abs @		IPA LOT No.	d12300	Mass	12804 (mg)	=[49.04] (N _{84C2}) (H		
Blank 0	CO IPA	0.004				<u> </u>	V.	,			
asa 802 (mg)	Į.	(V _{EVS} - V(DANNER) V	}			Mass 803 (mg)	= mass l	12804	(mg) xı		(80.061) O4 (96.076)
where: V	soh 'semple volume		Veve	avarage volume of litraril use	ed for sample						
	V ₄ volume aliquot										
V _s	Pablish volume of litrars	used for IPA blank				•					
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		21,,	ن و تدسیر میشند.				ND (Not Detected)	
	Canada IO	, ·	V.		Titrant Volume (ml) Buret Reading					Sh.	
imple No	Sample ID	V _{aoin}	\ ` '	(Final - Initial)	Trial 1	(Final - Initial)	Triel 2	V	ave		ass (mg)
	IPA Blank	160	_ (0	0100 - 0.00	0.00	6.00 - 6.66	0.00		ec		2. 70
z-240 8632PJ 2		1 490		2-20 - 0.00	2-20	2.30 - 0.00	2.30	2	. 25	3	12.78 /
33	\	2 5 1 0	1	No - 0.00	1-10	1.26 - 0.00	1.20	,	15	. /	21-22
ᄽ		3 370		1:50 - 0.00	1.50	1-60 - 6-66	1-60	14	35		18 - 5-7
		_						1			
		1	-	<u> </u>	 			1-		·	
				1	 			+			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	-		 	†				-			
		 	+			-		╫			
						 		+-			
		<u> </u>									
			<u> </u>								
	•	<u>.</u>					L			<u> </u>	
			T								

🕳 ELARSI, INC.

REAGENTS STANDARDIZATION for SOx ANALYSIS (EI-APA-14)

Project No		2) 24 24	er i de la companya da					
Lab Repo	t No.	14 93 sa		Date Recei		9) MA	2024	
	136.75			Date & Time	Analysia Started	I JUN	2024 13	00 A
100 mg/mg/ 100 mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/m	Water Control		126	W	National States and agency of all of		ضا باستين	andi)

Computations:

11	PARTIES AND THE PROPERTY OF THE PARTIES.				
- 7	Standen Pallonia				
À	Trial ve	Volume (mi)	Nomalty (N)	Volume (ml)	Normality (N)
		H ₂ 80,	H ₂ SO ₄	BaCl2	& BaCk
3	\mathbf{s}_{i} , \mathbf{j}	15	० ७०वाम् । ।	24.7	&FE02720001010
4	2	' 8	9100 1 31448N*??93		0.01014777199
					8818340101010

Neece = Neece Verson

	Standardizationson	0.0100 ± 0.000	2 N H2804:		
2,8	Tral Vo.	Volume (mi)	Nomality (N)	Volume (mi)	Normality (N)
		NaOH	NeOH	H₂SO₄	H ₂ SO ₄
,	1	25.2	EFEIRI CHIPPE	26	० ०० १८६ मा। १६४
.,	?	25.5	हेन्द्रप्रहाउद्देशक व	25	0.0000.36G16
. 4				average	852) हो भूम कि क

N_{H2SO4} = N_{H2SO4} V_{H2SO4}

Trial No:	Weight (g)	Weight (g)	Volume (ml)	Nomality (N)
	NaOH	KHP	NaOH	NaOH
1	40	o lett	50.2	0.00980863444
, 2	40	0.1006	50.2	0.009812388380
				6,0019C7S137.8

N_{NeOH} = Weight of KHP 0.20423 x V_{NeOH}

Analyzed by	eem ,	Checked by	la t		Ο,
Date & Time	11 JUN 2024 1800H	Date & Time		٠,	Approved by KWG
Sarata IIII	n day west took	Date of Little	- Child Brit		Date&Time Gury 6 Pm

Unit 201-204 & 466 Rizalina Annex Bldg. 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 Fax No. 8929-4824 Email: info@elarsi.com

CLIENT

BSI

ADDRESS

2nd Flr., VAG Bldg Ortigas Ave. Greenhills

San Juan, Metro Manila

Contact Number

: 8863-6129

Nature of Sample/s No. of Sample/s Submitted Stationary Source Emission

: Ten (10)

Lab. Report No.

241932-SA

Date/Time Sampled

05-28-24 1800H 05-31-24

Date Received Date Analyzed

Date Reported

06-10-24

06-11-24

[REPORT OF ANALYSES]

Sample No.	Sample ID	NO _x (as NO₂) _, mg ^a	Analysis Date/Time
ES-2408635	PJ 24 241 S1R1T1	< 0.0404	06-10-24 0900H
ES-2408636	PJ 24 241 S1R1T1	< 0.0404	06-10-24 0900H
ES-2408637	PJ 24 241 S1R1T1	< 0.0404	06-10-24 0900H
ES-2408638	PJ 24 241 S1R2T1	< 0.0404	06-10-24 0900H
ES-2408639	PJ 24 241 S1R2T1	< 0.0404	06-10-24 0900H
ES-2408640	PJ 24 241 S1R2T1	< 0.0404	06-10-24 0900H
ES-2408641	PJ 24 241 S1R3T1	< 0.0404	06-10-24 0900H
ES-2408642	PJ 24 241 S1R3T1	< 0.0404	06-10-24 0900H
ES-2408643	PJ 24 241 S1R3T1	< 0.0404	06-10-24 0900H
ES-2408644	PJ 24 241 S1 Blank	< 0.0404	06-10-24 0900H

a - Method 7 / Phenoldisulfonic Acid

Reference

CFR 40 Appendix A-4 Part 50 as of May 31, 2023

Analyzed By:

CHYLA DREXIE/C. MORADA, RChT Laboratory Chemical Technician

PRC Lic. No. 0009323

Checked By:

PRC Lic. No. 0010872

Laborátory Supervisor

Certified Correct By:

Łaboratory Manager

GOFREDO, JR., RCh

PRC Lic. No. 0009824

Test results reflect the quality of the samples as received.

No portion of this report may be reproduced in any form, without written authorization of ELARSI, Inc. This report is not valid without the offic all dry seal and watermarks of the laboratory

Page 1 of 1 Page/s

EI_HRAFORM_10

STANDARD CALIBRATION for NOx ANALYSIS (El-APA-10)

	24932-54		Data Malike	s Started:	0 JUN 2024 AG
pectrophotometer : avelength (nm) :	E-EQPTR		Date Analysi	s Finished:	o jun 2024 160
ote: Wavelength is varie	s based on the optimum v	vavelength determin	ation every 6 months		
			•	i e	
	Standard		Corrected	Calculated	Concentration
Calibration Number	Actual	Measured Absorbance	Absorbance	Concentration (µg)	(% difference)
	Concentration (µg)	A.D. O. I. M. I. G. W.	: a	b	C
Blank	0	e ಯ\			
1	100	.6451	0.127	48-83	147
2	200	6.279	٥·25 <i>٤</i>	198-44	ø-₹g .
3	300	०.५० -	6-39ke	3c 38	- C-\3
4 .	400	¢.53¶	\$-515	400-77	- 0.19
Q¢	200	o-268	6:244	180.88	· 5.00
a = Corrected absorbs b = Corrected absorbs	arice for A1 through A4 is ance x Kc difference abould be less	•		1 REC = 94.94	
a = Corrected absorbs b = Corrected absorbs c = Concentration, %	ance \times Kc difference should be less $a_1 + 2 a_2 + 3 a_3 +$	than 7%	*100 ≖	778, 10,23 3459 5004	
a = Corrected absorbs b = Corrected absorbs c = Concentration, %	ance x Ko difference should be less	than 7%	² 100 ≈		
a = Corrected absorbs b = Corrected absorbs c = Concentration, % calibration Factor (K _c) =	ance \times Kc difference should be less $\frac{a_1 + 2 a_2 + 3 a_3 + 4}{a_1^2 + a_2^2 + a_3}$	than 7% +4 a ₄ 2 + a ₄ 2		778, 1083 3459 5004	
a = Corrected absorbs b = Corrected absorbs c = Concentration, %	ance \times Kc difference should be less $a_1 + 2 a_2 + 3 a_3 +$	than 7% 4 a ₄ 2 + a ₄ calculated conce			
a = Corrected absorbs b = Corrected absorbs c = Concentration, % calibration Factor (K _c) = % difference =	ance \times Kc difference should be less $\frac{a_1 + 2a_2 + 3a_3 + a_1^2 + a_2^2 + a_3}{a_1 + a_2^2 + a_3}$	than 7% 4 a ₄ 2 + a ₄ calculated conce		778, 1083 3459 5004	
b = Corrected absorbs c = Concentration, % Calibration Factor (K _c) =	ance \times Kc difference should be less $\frac{a_1 + 2a_2 + 3a_3 + a_1^2 + a_2^2 + a_3}{a_1 + a_2^2 + a_3}$	than 7% 4 a ₄ 2 + a ₄ calculated conce		778, 1083 3459 5004	
a = Corrected absorbs b = Corrected absorbs c = Concentration, % alibration Factor (K _c) = % difference = EMARKS: leagent & Standard Code/s:	ance x Kc difference should be less $\frac{a_1 + 2 a_2 + 3 a_3 + a_1^2 + a_2^2 + a_3}{a_1 + a_2^2 + a_3}$ actual concentration - actual conce	then 7% 4 a ₄ 2 + a ₄ calculated conce	ntration x	778. 10:83 9459 5:004 _100	
a = Corrected absorbs b = Corrected absorbs c = Concentration, % alibration Factor (K _c) = % difference = EMARKS: leagent & Standard Code/s: N NaGH thenoldisulfonic Acid Reagent	ance \times Kc difference should be less $\frac{a_1 + 2a_2 + 3a_3 + a_1^2 + a_2^2 + a_3}{a_1 + a_2^2 + a_3}$	than 7% 4 a ₄ 2 + a ₄ calculated conce	ntration x	778. 1023 3459.5004 _100	
a = Corrected absorbs b = Corrected absorbs c = Concentration, % alibration Factor (K _c) = % difference = EMARKS: leagent & Standard Code/s: N NaGH thenoldisulfonic Acid Reagent	ance x Kc difference should be less $\frac{a_1 + 2a_2 + 3a_3 + 4a_1^2 + a_2^2 + a_3}{a_1 + a_2^2 + a_3}$ actual concentration - actual conce	than 7% 4 a ₄ 2 + a ₄ calculated conceintration Ammonium Hydrox	ntration x	778. 10:83 9459 5:004 _100	
a = Corrected absorbs b = Corrected absorbs c = Concentration, % calibration Factor (K _c) = % difference = **EMARKS: Reagent & Standard Code/s: N NaGH Phenoldisulfonic Acid Reagent	ance x Kc difference should be less $\frac{a_1 + 2a_2 + 3a_3 + 4a_1^2 + a_2^2 + a_3}{a_1 + a_2^2 + a_3}$ actual concentration - actual conce	than 7% 4 a ₄ 2 + a ₄ calculated concentration Ammonium Hydrox Std. KNO3 Solution	ntration x	178. 1083 3457 5704 100	
a = Corrected absorbs b = Corrected absorbs c = Concentration, % calibration Factor (K _c) = % difference = REMARKS: Reagent & Standard Code/s: N NaGH Phenoldisulfonic Acid Reagent	ance x Kc difference should be less $\frac{a_1 + 2a_2 + 3a_3 + 4a_1^2 + a_2^2 + a_3}{a_1 + a_2^2 + a_3}$ actual concentration - actual conce	than 7% 4 a ₄ 2 + a ₄ calculated concentration Ammonium Hydrox Std. KNO3 Solution	ntration x	178. 1083 3457 5704 100	
a = Corrected absorbs b = Corrected absorbs c = Concentration, % of the concentration of the	ance x Kc difference should be less $\frac{a_1 + 2a_2 + 3a_3 + 4a_1^2 + a_2^2 + a_3}{a_1 + a_2^2 + a_3}$ actual concentration - actual conce	than 7% 4 a ₄ 2 + a ₄ calculated concentration Ammonium Hydrox Std. KNO3 Solution Working Std. KNO	ntration x	100 100 1/// cuts 1/// cuts 1/// cuts 1/// cuts 1/// cuts	
a = Corrected absorbs b = Corrected absorbs c = Concentration, % calibration Factor (K _c) = % difference = REMARKS: Reagent & Standard Code/s: N NaOH Phenoidisulfonic Acid Reagent Conc. H ₂ SO ₄	ance x Kc difference should be less $\frac{a_1 + 2a_2 + 3a_3 + 4a_1^2 + a_2^2 + a_3}{a_1 + a_2^2 + a_3}$ actual concentration - actual conce	than 7% 4 a ₄ 2 + a ₄ calculated concentration Ammonium Hydrox Std. KNO3 Solution Working Std. KNO	ntration x	100 100 1/// cuts 1/// cuts 1/// cuts 1/// cuts 1/// cuts	

NOx (METHOD 7) ANALYTICAL DATA SHEET (EI-APA-10)

Project No.:

P1 94 941

Nature of Sample :

SSE

Aliquot Factor:

2

Calibration Factor (Kc):

718 M384595U4

Detection Limit:

0.0404 mg

ND (Not Detected)

Sample No.	Sample ID	Sample Absorbance	Blank Adjusted Absorbance (A¹)	Dilution Factor (F)	Total Mas	Not Detecte s of Nox as ample (mg) m	
	BLANK	0.025	♦	ĺ	7	ac 6464	
ES-2408635	(C41) J. 14	5- 63 8	\$-0 3 C			1	
36	1/1/1	a-02g	5-KC				
37	1 W 1 3	o 65 <u>2</u>	5/03/4				
-38		5-04C	6.CI2	J			
37	$\sqrt{ \chi / 2}$	0-(3)	ઇ-લ્લ્લ	1			
ųс) // [3	6-630	e-en		10		
9		0 0 2\$:	-t-ø3				
42.	N 117 1 1	254 0	prect.				
梅	11/13	ठ छ <u>ा</u>	- 0-ecd			ì	
#		6,628	° .		J		
					Mass, µg	%Recovery	%Diff.
	QC (200μg)	5.249,	ड १५५	1	184 48	94.94	5.64
				<u> </u>			"
						T	
	QC (200µg)		 		Mass, µg	%Recovery	%Oiff.

(A')	==	Sar	nple	Abs	orb:	ance

Blank Absorbance

 $m = 2 K_c A^1 F / 10^3$

Note: If other than a 25 mL aliquot is used for analysis, the factor 2 must be replaced by a corresponding factor, i.e., volume solution divided by the volume aliquot evaporated

Analyzed by	্ রপী	Checked by		
	10 10th 2024 14 coll	Date&Time	<u>Upoto</u>	Idfl
Approved by Date&Time	Range Clothy 6Pm			

Tel. No. Company:	8927-77-15, 8994-3443 S.S.1	Tel. No. 8927-77-15, 8994-3443 * Fax No. 8929-48-24 * E-mail; info@elarsi.com any: [\$\infty\$] \$\$ 5:	nfo@elarsi.com	!	Submitted by:	H 2:00 m		Date/Time:	be-42-5
Contact Person :		HALCY LEMON GRAMINA	Contact No./s to SV-774-0/L/4	4770-625	Reviewed by:			Date/Time: 3/10/10/10	ng rang
Method of Transport	ort .Couner Pick-up _	Others	Nature of Sample (PLEASE CHECK) Water Metals	E CHECK) Metals	Approved by:	(Printed Name/Signature)	文章	Date/Time:	Spilvy Pry
Sample Condition Upon Receipt Sealed / Container Intact AphiliadiFrozen Room Temp Preserved	pon Receipt ir inlact	Container Type 1 Plastic Bottle Aclass/Storile Glass TEDIAR Bag	Drinking Water Wastewater Cthers	13)		
Turn Around Time Urgent/Rush (3-5 Working Days)	Vorking Days)	Acoutine (7-12 Working Days)	Ambient Air Sample Work Env. Measurement Others	Soil Sludge 1 Sedment Others					
FOR LAB. USE ONLY								FOR LACK, USE ONLY	<u>.</u>
Sample No.	Sample Identification	on Analyses Requested	Method Of Analysis	Sampling/Time	No. of Samples	Remarks	Certificate	DATE OF THE FOLLOWING	WING Sample
ďm	P324-241						perodevines		Disposed
tf 1418 1818 - 31	U'R'		r organimeting		3				
	4	Action & UCSC		1	3				
AGS	2 4	305	- Barrum thofar himal K	KHW 87	90				
Et. his at a th	53			. (16				
40 x410				17607	(3)	W/ Black			
701	1 1	*****				ا احاصان			
× 2	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1				7.			
U-2408/42 - 114	Kr Ti-Tr	DI Una	Memich Juntum /		(6)				
	R3 T-13	3/2	### /						
	1 4		5						
	.11.10.2								
						7			
				774000000000000000000000000000000000000					
						, , , , , , , , , , , , , , , , , , ,			-
		www					_		

CO MEASUREMENT DATA

Tedlar Bag Samples

Facility:	BMC FORESTRY CORPORATION	Analysis Date:	May 31, 2024
Sample Date:	May 28, 2024	Analyzed By:	JOSE ARJAY M, SANTIAGO
Collected By:	ECF, HPO, RME, MSL, JBT	Signature:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			

CO Analyzer Manufacturer	FUJI ELECTRIC CO., LTD.	
Analyzer Model Serial Number	ZPAABBY2 / N2C0833	
Analyzer Range Setting, ppm	0 - 1000	
Analyzer Span Value, ppm	800	

		Pre-Measurer	nent Calibration		
Time 0800H	Cylinder No.	Gas Value (ppm)	CO response (ppm)	% Difference* (% span)	Status (≤2% span)
Zero Gas	N2 240403	0	0	0.0000	Passed
Certified Gas 1	D962229	200	201	-0.1250	Passed
Certified Gas 2	D962122	500	499	0.1250	Passed
Certified Gas 3	D962087	800	800	0.0000	Passed

*((Gas Value- CO Response) /Span Value))x 100%

Time	Tedlar Bag ID No.	CO (ppm)	Time	Tedlar Bag ID No.	CO (ppm)
0900H	PJ24-241 S1R1	106			<u> </u>
0910H	PJ24-241 S1R2	99			<u> </u>
0920H	PJ24-241 S1R3	112			
					

		Post-Measurement Callbration Drift Check									
Time	Gas Value (ppm)	Pre-Meas CO Response	Post-Meas CO Response	% Drift** (% span)	Status¹ (≤ 10 % span)						
1800H		(ppm)	(ppm								
Zero Gas	0	0	0	0.0000	Passed						
Certified Gas 1	200	201	198	0.3750	Passed						
Certified Gas 2	500	499	495	0.5000	Passed						
Certified Gas 3	800	800	797	0.3750	Passed						

**((CO Resp from the Pre-Meas Cal-Co Resp for the Post-Meas)/Span Value)) x 100%

QA/QC Check: Completeness ____ Legibility ___ Accuracy ___ Specifications ____ Reasonableness ___ Over 8 hours ____

Checked By

JANS CHOLO E. CHUA Signature Over Printed Name QA/QC/Date:

EDINDO C. FERNANDO

Signature Over Printed Name

ANNEX E

EQUIPMENT CALIBRATION CERTIFICATES

METER BOX POST-TEST CALIBRATION CHECK

USEPA Approved Alternative Method ALT-009

BMC FORESTRY CORP. ILP IRISAN, BAGUIO CITY VERTICAL SHAFT KILN NO. 2

Meter Box #: 2

Υ

Calibration Date ΔH_{00} 5-point orifice calibration 18-Jan-24 43.1764 0.9884

Calculate Y_{qa} for each test run using the following equation:

$$Y_{qa} = \frac{\theta}{V_m} \sqrt{\frac{0.0011503T_m}{\Delta H_{@} \left(P_b + \frac{\Delta H_{avg}}{13.6}\right)}} \times \frac{29}{M_d} \times \left(\sqrt{\Delta H}\right)_{avg}$$

where:

 Y_{qa} dry gas meter calibration check, value dimensionless. 0 total run time, min. total sample volume measured by dry gas meter, m³. absolute average dry gas meter temp., %. barometric pressure, mm Hg. =(760/298) (0.75 x 0.0238)² (mm Hg/°K) (m³/min)² 0.0011503 ΔH_{avg} average orifice meter differential, mm H2O. $\Delta H_{@}$ orifice meter calibration coefficient, mm H₂O. dry molecular weight of stack gas, gm/gm mole. Μđ 29 dry molecular weight of air, gm/gm mole. 13.6 specific gravity of mercury.

After each test run series, do the following:

Average the three or more values of Y_{qa} obtained from the test run series and compare this average with the dry gas meter calibration factor, Y. The average Y_{qa} must be within $\pm 5\%$ of Y.

If the average Yqa does not meet the ±5% criterion, recalibrate the meter over the run full range of onfice settings, as detailed in Method 5. Then follow the subsequent procedure in Method 5.

METER	BOX POST-TEST CALIBRATION	ON CHECK					
	Run 1	Run 2	Run 3				
Meter Box	Meter Box #: 2	Meter Box #: 2	Meter Box #: 2				
Tíme, min θ	60.0	60.0	60.0				
Total volume, dry m³ V _m	1.6272	1.5420	1.5294				
Average meter temp, ^O C	29.79	30.54	29.88				
Average meter temp, ^O K T _m	302.94	303.69	303.03				
Barometric pressure, mm Hg P _b	652.70	651.50	650.50				
ΔH _{avg} , mm H ₂ O	63.500	58.000	52.250				
∆H _@ , mm H₂O		43.1764					
Mol. wt. of stack gas, g/g-mole M _d	29.84	29.84	29.84				
QA gamma Y _{qa}	1.0147	1.0261	0.9819				
Average Yqa		1.0076					
Meter box gamma Y		0.9884					
Difference to be within 5%		1.9% - PASS					

TEAM NO.2: HPO - CRITICAL ORIFICE

DETERMINATION OF ORIFICE COEFFICIENT K

Consc	ole Model N	umber	XC572- QC6V	Date	18-	Jan-24	Time	084	5H	Std Temp	298,15	°K	
Consc	Console Serial Number 1404036		1404036	Barometric	Pressure			755.9	mm Hg	Std Press	760	mm Hg	
DGM	Model Num	ber	G1.6	Theoretical Vacuum	Critical		357mm Hg or 14in Hg			K ₁	0.3858		
DGM	Serial Num	ber	2012- 014438	Calibration	Technicia	an	upo liii			Previous calibration	7 18 18 19		
		N	letering Cons	ole			ALL MARKET STREET, STR			Critical O	rifice	· 	
	Elapsed	DGM	Vol	ume Outlet Temp			Ambient Temp		Critical	Actual Critical Vacuum		Diff	
Run	Time	Orifice	Initial	Final	Initial	Final	Orifice	Initial	Final	Vacuum	1-2in or	x10 ⁴	%
#	θ	P _m mm	V _{nn}	V _{ed}	t _{iii}	t _m r °C	ID	l _{amb} °C	t _{amb}	in Hg or	25- 50mm >	Κ'	+0.5
	min	H₂O	m³	m,						mm Hg	Critical		10.5
11	5	10	0.3140	0.3616	24.0	24.0	40	27.3	27.2	15	17	2.14490	0.21
2	5	10	0.3616	0.4090	24.0	24.0	40	27.2	27.2	15	17	2,13571	0.21
											Average	2.14030	
1	5	20	0.4150	0.4847	24.0	24.0	48	27.2	27.5	15	17	3,14432	0.02
2	5	20	0.4847	0.5544	24.0	24.0	48	27.5	27.6	15	17	3.14536	0.02
											Average	3.14484	
1	5	32	0.5620	0.6528	24.0	24.0	55	27.6	27.5	15	17	4.10232	0.02
2	5	32	0.6528	0.7438	24.0	25.0	55	27.5	27.5	15	17	4.10411	0.02
		L		<u> </u>	1	1	<u>L </u>	· L	Allen and the State of the Stat	·	Average	4.10321	
	5	54	0.7550	0.8722	25.0	25.0	63	27.5	27.5	15	17	5.28812	0.09
2	5	54	0.8722	0.9892	25.0	25.0	63	27.4	27.4	15	17	5.27821	0.09
Z	<u> </u>	<u> </u>		<u> </u>	1						Average	5.28317	1
	5	94	0.9980	1.1577	25.0	25.0	73	27.2	27.2	15	16	7,23002	0.08
1	5	94	1.1577	1.3174	25.0	24.0	73	27.2	27.2	15	16	7.24217	0.08
2					.1				<u> </u>		Average	7.23609	0.00

Calibrated By:

Haley Lemon P. Orguina

Signature over Printed Name

Checked By:

Jans-Cholo E. Chua

Signature over Printed Name

QA/QC:

Edindo C Fernando Signature over Printed Name

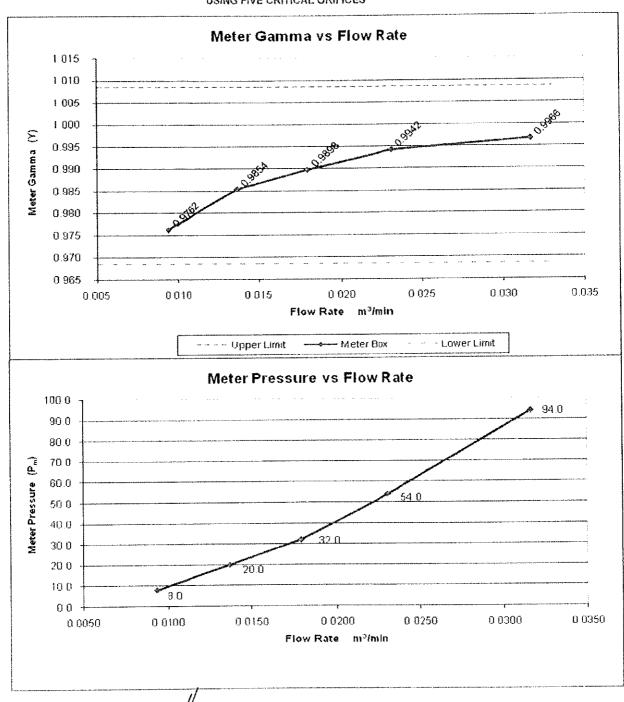
Date:

18 January 2024

2rd Floor, VAG Bldg, Ortiges Ave., Greenfulls San Juan City, Metro Manila, Philippine Tels (632) 863-6129¹ Fax (632) 727-9831 Email: <u>alsocitation</u> compt

TEAM NO.2: HPO - CRITICAL ORIFICE

USING FIVE CRITICAL ORIFICES


Console N Number	lodel	XC572-QC6V	Date	18-Ja	ın-24	Time	1	005H	Std Ten	n p	298	^K
Console S Number	erial	1404036		Barometric	Pressure		755.9	755.9 mm Hg Std Press		ss	760	mm Hg
DGM Mod	el Number	G1.6	Theoretic	al Critical V	/acuum		357mm Hg or 14in Hg K ₁			K ₁	0.3858	
DGM Seria	l Number	2012-014438	38 Calibration Technician				нРО	Previou calibrati		1.0	1.0000	
		Meterir	g Console						Critic	al Orifice		
Elapsed Time	DGM Orifice	,	Volume		Outlet	Temp.		Coef.	Ambien	it Temp.	Critical	Actual Vacuun
	ΔH	Initial	Final	Dif	Initial	Final	Serial	x10 ⁴	Initial	Final	Vacuum	1-2in
θ	P _m	$V_{\rm rsi}$	V _m	V _m	Ļ _m	l _{ed}	#	K'	tamb	t _{ent}	in Hg	or 25-
min	mm H₂O	m³	m³	>0.14m³	°C	°C		metric units	°C	°C	or mm Hg	50mm > Critica
17.0	8.0	1.3380	1.5040	0.166	25.0	25.0	40	2.14030	27 1	27.6	15.0	17.0
11.0	20.0	1.5170	1.6732	0.156	25.0	25.0	48	3.14484	27.6	26.8	15.0	17.0
9.0	32,0	1.6824	1.8484	0.166	25.0	25.0	55	4.10321	26.8	26.3	15.0	17.0
7.0	54.0	1.8560	2.0212	0.165	25.0	25.0	63	5.28317	26.3	26.4	15.0	17.0
5.0	94.0	2.0410	2.2016	0.161	25.0	25.0	73	7.23609	26.4	26.4	15.0	16.0
Filed At Commission Co	Standa	rdized Data				- 1000000	-	Dry Gas M	oter		•	
				Calib	Calibration Factor Flowrate						 ΔΗ _€	
Dry Gas	Meter	Critical O	rifice	Valu	ne	Var'n	Std & Corr 0.0212 m ³ and min			Variation		
Variator	$\mathbf{Q}_{\pi \xi s id}$	V _{er(ses)}	Q _{c:(s:d)}			άY	ļ	(stch(cox)	İ			
m³	m³/min	m³	m³/min	Y		±2%	m	³/min			3.3H _⊕ ±5.1mm Hg	
0.1626	0.0096	0.1587	0.0093	0.97	62	-1.24	0.1	0093	39.9	299	-3	.2
0.1532	0.0139	0.1509	0.0137	0.98	54	-0.30	0.0	0137	46.3	219	3.	1
0.1630	0.0181	0.1613	0 0179	0.98	98	0.14	0.0	0179	43,5	437	0.	4
0.1625	0.0232	0.1616	0.0231	0.99	42	0.58	0.0)2 31	44.4	826	1.	3
0.1586	0.0317	0.1581	0.0316	0 99	56	0.82	0 (D316	41.6	038	-1	6
	11 11 11 11 11 11 11 11 11 11 11 11 11	,	/ Average	0.98	84	***************************************	ΔН	e Average_	43.1	764		
	, h				<u>_</u>			7			0 : 3 · : 1 · · · · · · · · · · · · · · · · ·	
		I certify that	at the above	Dry Gas Me	eter was ca	alibrated in	Y accordar	ce with USI	PA Me ho	d 5.		
lignature:		LEMON P. ORG		and the second s				1)				

2nd Floor, VAG Bidg, Orligas Ave., Oreenhills San Juan City, Metre Mania, Philippine Tels. (632) 863-6129; Fax (632) 727-9831 Email, pro@service sourch

TEAM NO. 2 - CRITICAL ORIFICE USING FIVE CRITICAL ORIFICES

Calibrated By:

Haley Lemon P. Orquina Signature over Printed Name

Date:

Checked By:

18 January 2024

Jans Cholo E. Chua

Signature over Printed Name

QA/QC:

Edindo C. Fernando Signature over Printed Name

2rd Floor, VAG Bldg, Ortigas Ave., Greenhills San Juan City, Metro Mania, Philippine Tels (632) 863-8129• Fax (632) 727-9831 Email: http://doi.org/10.1006/j.com/

Department of Environment and Natural Resources (DENR)
ENVIRONMENTAL MANAGEMENT BURGAU
ACCREDITED THIRD PARTY TESTER
Certificate No: SAT NO. 2022-72

TEMPERATURE DISPLAY CALIBRATION

Meter Console No.	DCI OSA		
	BSI - T2	Personnel	HPO, RCG
Reference Calibration Maker	PIE	Pretest	OK
Model	520B	Postrest	
Serial No.		FUSILESI	OK
Serial IV.	223734	Date	18 January2024

TC CHANNEL ID	Reference Temp. 1, °C	Temp. Reading 1, °C	Criteria	Criteria Met	Reference Temp. 2, °C	Temp. Reading 1, °C	Criteria	Criteria Met
PROBE	0	0	0	Υ	50	49	0.310	
FILTER	0	0	0	Ÿ	50			· Y
EXIT	0	0	<u> </u>	V	50	49	0.310	Y
AUX	n	<u> </u>			~~~~	49	0.310	Y
STACK			<u> </u>	Y	50	49	0.310	Υ
	U	U	0	Υ	50	48	0.619	V
STACK	0	0	0	Υ	250	247	0.574	Ÿ

TC CHANNEL ID	Reference Temp. 3, °C	Temp. Reading 1, °C	Criteria	Criteria Met	Reference Temp. 4, °C	Temp. Reading 1, °C	Criteria	Criteria Met
PROBE	100	99	0.268	Y	150	148	0.473	
FILTER	100	99	0.268	Y	150	148	0.473	
EXIT	100	99	0.268	Y	150	149	0.473	<u> </u>
AUX	100	99	0.268	Υ	150	149	0.236	
STACK	100	99	0.268	V	150			<u> </u>
STACK	350	349	0.161	Y	450	149 447	0.236 0.415	<u>Y</u>

CRITERIA: Percent difference between the Reference Temperature and the average Temperature can be only ± 1.5%°K.

EQUATION: [(Ref. Temp. + 273)- (Temp. Reading + 273)] x 100 (Ref.Temp. +273)

Calibrated By:

Halcy Lemon P. Orquina

Signature over Printed Mame

Checked By:

Jans Cholo E. Chua

Signature over Printed Name

QA/QC:

Edmdo/C. Fernando Signature over Printed Name

Date:

18 January 2024

TEMPERATURE SENSOR CALIBRATION DATA SHEET

Date	18 January 2024	Thermocouple No.	TMC - T2
Personnel	HPO, MSL	Reference	Alcohol Thermometer

					, <u></u>
Date	Reference Point Number	Source (Specify)	Reference Thermometer Temp., °C	Thermocouple Display Temp., °C	Absolute Temperature Difference, %
	1	HOT WATER	99.8	100	0.2
18 Jan 2024	2	AMBIENT	28.1	28	0.1
	3	ICE WATER	2.2	2	0.2
	1	HOT WATER	99.2	99	0.2
30 Jun 2023	2	AMBIENT	28.1	28	0.1
	3	ICE WATER	2.2	2	0.2
	1	HOT WATER	99.2	99	0.2
11 Jan 2023	2	AMBIENT	28.1	28	0.1
	3	ICE WATER	2.2	2	0.2

Calibrated By:

Haley Lemon P. Orquina
Signature over Printed Name

Checked By:

Fans Cholo E. Chua Signature over Printed Name

QA/QC:

Edindo C. Fernando Signature over Printed Name

Date:

18 January 2024

POST TEST THERMOCOUPLE CALIBRATION CHECK

EPA Approved Alternative Method (Alt-011) Single Point Calibration

Thermocouple ID	TMC-T2	Probe / Pitot Tube ID	SPA-6FT-2 / PT-6FT-2
Personnel	HPO, RCG	Date	18January 2024

Sensor	Calibrated By:	Reference Temp. °C ¹	Thermocouple Temp. °C	Difference ² (within ± 1°C)	Continuity Check ³	PASS / FAIL
PROBE	НРО	30.2	30	0.2	ок	PASSED
FILTER	НРО	30.1	30	0.1	ок	PASSED
STACK	НРО	30.1	30	0.1	ок	PASSED
EXIT	НРО	30.1	30	0.1	ок	PASSED
OVEN	НРО	30.2	30	0.2	ок	PASSED
AUX.	НРО	30.2	30	0.2	ок	PASSED

¹ Reference Thermometer is mercury-in-glass and ASTM certified, unless otherwise noted.

Calibrated By:

Haley Lemon P. Orquina

Signature over Printed Name

Checked By:

Jans Choto E. Chua Signature over Printed Name

QA/QC:

Edin**d**d C /Fernando Signature over Printed Name

Date:

18 January 2024

²After each test run series, check the accuracy (and, hence, the calibration) of each thermocouple system at ambient temperature. The temperature of the thermocouple and reference thermometers shall agree with ± 1 °C.

³The continuity check involves subjecting the tip of the thermocouple to a change in temperature to check the crimps, loose connections. Thermocouples with crimps and loose connections will not immediately respond to temperature changes, and those with wrong connections will show an opposite change in temperature.

TYPE-S PITOT TUBE CALIBRATION

PITOT TUBE ID	PT-6FT-2	Probe Assembly ID	SPA-6FT-2
Calibrated by:	HPO, RCG	Date Calibrated	18 January 2024

PARAMETER	VALUE	ALLOWABLE RANGE
Assembly Level	YES	YES
Holes Damaged	NO	NO
Obstructed	NO	NO
αΙ	0	-10°<α1<+10°
α2	0	-10°<α2<+10°
β1	1	-5°<β1<+5°
β 2	0	-5°<β2<+5°
Y		
θ	1	
Α	0.935	For ¼" OD, 0.526 to 0.750" For ³ / ₈ " OD, 0.788 to 1.125"
Z =A sin Y	0.016	Z = ≤ 0.125"
W = A sin θ	0.016	W = ≦ 0.031"
PA	0.418	For 1/4" OD, 0.263 to 0.375" For 3/8" OD, 0.394 to 0.563"
₽ _B	0.433	For ¼" OD, 0.263 to 0.375" For ³ / ₈ " OD, 0.394 to 0.563"
Pa-PB	-0.015	-0.063 to 0.063"
От	0.320	0.188 to 0.375"

Where: $\alpha 1 \& \alpha 2$ = angles between the pitot tube opening and the horizontal plane when viewed from the end $\beta 1 \& \beta 2$ = angles between the pitot tube opening and the horizontal plane when viewed from the side

Y= the angle measured when calculating the difference in length between the two pitot tube legs

0 = the angle measured when calculating the distance that the pitot tubes are rotated

A =the distance between the tips of the pitot tube opening

Z =The difference in length between the two pitot tube legs

W= the distance that the pitot tube legs are rotated

 $P_A\&P_{B=}$ vertical distance between each pitot tube opening plane & the center line of the pitot tube D_T = the tube external diameter

Certification

I certify that the Type S pitot tube meets or exceeds all specifications, criteria and / or applicable design features and is hereby assigned a pitot tube calibration factor (Cp) of 0.84.

Calibrated By:	Halcy Lemon P. Orquina	Checked By:	Jans Cholo E. Chua
	Signature over Printed Name	A San Constitution of the	Signature over Printed Name
QA/QC:	Edindo C. Fernando Signature over Printed Name	Date:	18 January 2024

NOZZLE CALIBRATION SHEET

Date	18 January 2024	Personnel	HPO, RCG
Nozzle Box ID	NS-T2	Nozzle Type	Stainless Steel

ID	D₁(mm)	D₂ (mm)	D₃(mm)	D (mm)	Average (mm)
T2 NS-1	3.04	3.06	3.02	0.04	3.04
T2 NS-2	4.09	4.09	4.09	0.00	4.09
T2 NS-3	5.90	5.90	5.87	0.02	5.89
T2 NS-4	7.90	7.88	7.90	0.01	7.89
T2 NS-5	9.36	9.37	9.36	0.01	9.36
T2 NS-6	10.86	10.90	10.90	0.04	10.89
T2 NS-7	12.50	12.50	12.50	0.00	12.50

D = Maximum difference in any two measurements. Tolerance = 0.1 mm; Average = Average of D_{1,2,3}

Calibrated By:

Haley Lemon P. Orquina

Signature over Printed Name

Checked By:

Jans Cholo E. Chua

Signature over Printed Name

QA/QC:

Edindo 9 Fernando Signature aver Printed Name

Date:

18 January 2024

FLASK CALIBRATION SHEET

Date	18 January 2024	Personnel	HPO, RCG
FLASK BOX ID	T2- M7 Flask-C	Flask Type	Glass

FLASK ID	1 st Volume(mL)	2 nd Volume(mL)	3 rd Volume(mL)	Average Volume (mL)
BSI T2 - F19	2315	2310	2320	2315
BSI T2 - F20	2250	2250	2250	2250
BSI T2 – F21	2308	2310	2312	2310
BSI T2 - F22	2247	2253	2250	2250
BSI T2 – F23	2235	2230	2240	2235
BSI T2 – F24	2286	2286	2283	2285
BSI T2 – F25	2250	2250	2250	2250
BSI T2 – F26	2228	2232	2230	2230
BSI T2 - F27	2280	2280	2280	2280

*Note: The flask volumes are measured within +/- 10mL. All calibrations are at room temperature.

Calibrated By:

Haley Lemon P. Orquina Signature over Printed Name

Checked By:

Jans Choło E. Chua Signature over Printed Name

QA/QC:

Edindo C Fernando Signoture over Printed Name

Date:

18 January 2024

DIGITAL BALANCE CALIBRATION

Digital Balance ID	DB - T2	Personnel	HPO, MSL
Manufacturer	AND CO. LTD.	Date	18 January 2024
Model	EJ-1500	Calibration Standard	1000g
Serial Number	BA2826513	Туре	Weights (1500g max)

Eccentricity Test		Repeatability Test	
Test Load	1000g	When Loaded up to 1500g (Using 1000g& 500g standard we	
Position	Balance Indication		
1	1000.0	1	1549.9
2	1000.0	2	1549.9
3	1000.0	3	1549.9
4	999.9	4	1549.9
5	1000.0	5	1549.9
Test Results	0.1	Standard Deviation	0

	Linearity Test					
Nominal Load	Unit under Test Reading	Deviation from Nominal	Coverage Factor	UE at 95% C.L		
Weights	g	g	k	ø		
0	0	0	2	<u>8</u>		
200g	199.9	0.1	2	0.16		
500g	500	Û	2	0.10		
1000g	1000	0	3	U O		
1500g	1499.9	0.1	2	0.16		

¹Acceptable EPA Method 4 tolerance must be less than 0.5 gram.

²Acceptable EPA Method 5 tolerance must less than 0.5 gram.

Equipment Description	Equipment ID	Traceability Reference
Standard Weight	1254	08-09-2022-BSI-T2

Calibrated By:

Haley Lembh P Orquina Signature over Printed Name Checked By:

Jans Cholo E. Chua Signature over Printed Name

QA/QC:

Edindo C. Fernando Signaturo over Printed Name

Date:

18 January 2024

2^{-st}Floor, VAG Bldg, Ortigas Ave., Greenhills San Juan City, Metro Manila, Philippines Tels. (532) 863-8129 • Fax (632) 727-9831 Email <u>info@bsienv.com</u>

Department of Environment and Natural Resources (DENR)
ENVIRONMENTAL MANAGEMENT SUREAU
ACCREDITED THIRD PARTY TESTER
Certificate No: SAT NO. 2022-72

Switchtek Measurement Systems

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph

www.switchtek.com.ph

Certificate No.: Identification:

4000.23-8979-4.23

BERKMAN SYSTEMS INCORPORATED

Calibration of

3 INI (Anemometer, Barometer, XRH)

Job:

PI 32

Test and Verification

Certificate of Calibration

Fin.acc: Done....

December 5, 2023 Calibration

Initials...: Men

Total cost

Type

Calegories Cal Officer

2

Hours 1.00

Certificate

CERTIFICATE OF CALIBRATION - 3 IN 1 (ANEMOMETER, BAROMETER, % RH)

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

issued to:

BERKMAN SYSTEMS INCORPORATED

Address:

Suite 208 VAG Bidg., Ortigas Avenue, Greenhills, San Juan, Metro Manila, Philippines

UNIT UNDER TEST (UUT):

Instrument

3 IN1 (Anemometer, Barometer, XRH)

Brand Model No.:

LUTRON ABH-4225 A179434

Serial No.: Range:

Velocity (0-30.0 m/s)

Temp. (0-50 Deg. C) Humidity (10 to 95%)

Dewpoint (-25.3 to 48.9 Deg. C) 10.0 to 999.9 hPa

Resolution:

Velocity (0-30.0 m/s)/0.1 m/s

Temp, (0-50 Deg. C)/0.1 Deg. C

Humidity (10 to 95%)/0.1 %RH

Dewpoint (-25.3 to 48.9 Deg. C)/0.01 Deg. C Barometeric (10.0 to 999.9 hPa) /0.1

CALIBRATOR INFORMATION:

instrument: Model No.:

Temperature and Humidity chamber XB-OTS-34

Serial No.:

20130803 CNAS

Traceability: Instrument:

Rotating Vane Anemometer

Manufacturer: **Model No:**

LUTRON AM-4206M

Serial No: Range:

O 632204 0 to 30.0 m/s

0 to 50.0 °C

Colibrated Against:

UKAS, thru Laser Doppler Anemometer

Instrument Catibrated Against: NIST

Barigo, Precision Barometer

Calibration Due: December 3, 2024

Calibration Date: December 4, 2023

Environmental Condition:

Condition:

DRY/BASIC/NEUTRAL

Relative Humidity: 52.2 ±5%, 1010 hPa

Ambient Temp. (Deg C): 23 +2

Calibration Method:

By comparison technique, unit under test was tested in reference with a Rotating vane anemometer, precision barometer, Standard Temperature and Humidity calibrator. Procedures of calibration and test conform to the requirements of NPL, NIST and ISO/IEC Guide 17025. Data were gathered and plotted against an ideal curve. Standard error and uncertainty of measurement are written on the attached sheet.

All data pertain only to the unit described obtained at the time of test. This certificate is not valid w/out seal and signature. Unauthorized reproduction is prohibited.

Calibrated 8v:

Date:

Certified By:

Exaperment Fusion Schund that Constollmaken than Phanet Weight dat dat Followin von Process (Conductive) Weisege Americ Demonstrative that the Procedure Besselve Besselve Berger Weiser (Doborder (Labye) Morameter Bassenier Petralend Designations of the General Basselve (Das Berger Grage) (Berger About Procedure) the Constant Designably Buret Jednesteit (1906-1960) providi veroness Tell Portstort (1906-1960) providi (1969-1900)

Switchtek Measurement Systems

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph

www.switchtek.com.ph

Certificate No.:

4000.23-8979-4.23

Calibration of

3 INI (Anemometer, Barometer, %RH)

Calibration Date: December 4, 2023

December 3, 2024

C.A. CASADO

Calibration Due:

Calibrated By:

identification:

BERKMAN SYSTEMS INCORPORATED

Address:

Suite 208 YAG Bldg., Ortiges Avenue, Greenhills, San Juan, Metro Manila, Philippines

CERTIFICATE OF CALIBRATION - 3 IN 1 (ANEMOMETER, % RH)

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

UNIT UNDER TEST (UUT):

Instrument

3 INI (Anemometer, Barometer, XRH)

Brand

LUTRON

Madel No.: Serial No.: ABH-4225

Range:

AJ.79434 Velocity (0-30.0 m/s)

Temp. (0-50 Deg. C)

Humidity (10 to 95%) Dewpoint (-25.3 to 48.9 Deg. C)

10.0 to 999.9 hPa

Resolution:

Velocity (0-30.0 m/s)/0.1 m/s

Temp. (0-50 Deg. C)/0.1 Deg. C Humidity (10 to 95%)/0.1 %RH

Dewpoint (-25.3 to 48.9 Deg. C)/0.01 Deg. C Barometeric (10.0 to 999.9 hPa) /0.1

MODE: THERMOHYGROMETER

Results:

Tamparatura.

REFERENCE READING (°C)	UNIT UNDER TEST READING (°C)	ERROR IN READING (°C)	STANDARD DEVIATION	REMARKS
9.6	9.9	-0.30	0.2121	The user should determine
20.0	21.3	-1.30	0.9192	the suitability of the
23.9	24.8	-0.90	0.6364	instrument of its intende
40.4	39.8	0.60	0.4243	use.

Uncertainty: *

1.22 °C

Relative Humidity:

REFERENCE READING (% RH)	and the same of th		STANDARD DEVIATION	REMARKS	
73.7	58.0	15.70	11.1016		
64.2	50.6	13.60	9,6167		
55.0	42.0	13.00	9.1924	DO NOT USE THIS MODE	
47.0	35.0	12.00	8.4853		

12.01 % RH

Uncertainty: ±

Switchtek Measurement Systems

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph

www.switchtek.com.ph

Certificate No.:

4000.23-8979-4.23

Calibration of

3 IN (Anemometer, Barometer, XRH)

Calibration Date: December 4, 2023

December 3, 2024

C.A. CASADO

Calibration Due:

Calibrated By:

(dentification:

BERKMAN SYSTEMS INCORPORATED

Address:

Suite 208 VAG Bldg., Ortigas Avenue, Greenhills, San Juan, Metro Manila, Philippines

CERTIFICATE OF CALIBRATION - 3 IN 1 (ANEMOMETER, BAROMETER, % RH)

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

UNIT UNDER TEST (UUT):

instrument:

3 INI (Anemometer, Barometer, KRH)

Brand: Model No.: LUTRON ABH-4225

Serial No.:

AJ.79434

Range:

Velocity (0-30.0 m/s)

Temp. (0-50 Deg. C) Humidity (10 to 95%)

Dewpoint (-25.3 to 48.9 Deg. C)

10.0 to 999.9 hPa

Resolution:

Velocity (0-30.0 m/s)/0.1 m/s Temp. (0-50 Deg. C)/0.1 Deg. C

Humidity (10 to 95%)/0.1 %RH

Dewpoint (-25.3 to 48.9 Deg. C)/0.01 Deg. C Barometeric (10.0 to 999.9 hPa) /0.1

MODE:

THERMOHYGROMETER

Results:

Sarametric

REFERENCE READING UNIT UNDER TEST (hPa) READING (hPa)				REMARKS	
1015	1007	8.00	5.6569	The user should determine	
1010	1004	6.00	4.2426	the suitablity of the instrument for its intended	
1000	993	7.00	4.9497	use	

Standard error:

8.57 hPa

Uncertainty: *

7.87 hPa

Valority

REFERENCE READING (m/s)			STANDARD DEVIATION	REMARKS
0.00	0.00	0.00	0.0000	The user should determine
5.20	5.10	0.10	0.0707	the suitablity of the
9,55	9.40	0.15	0.1061	instrument for its intended
15.10	14.90	0.20	0.1414	บระ

Standard error: *

0.16 m/s

Uncertainty: 4

0.59 m/s

Making our world more productive

CERTIFICATE NUMBER : 90168754/D962229 REVISION NUMBER REVISION DATE

Certificate of Analysis

Material Number: S802100-AE-C6

Customer Tag:

Customer Job Card : LINDE PHILIPPINES INC.

PO Number

9300463129

Certification Date: 29-Nov-2021

90168754

Order Date SO Number

08-Nov-2021 128002321

CYLINDER NUMBER

Vcode

GM34242/10A/S BS4

D962229

SPECIFICATION

Component	Requested Concentration	Certified Concentration	Unit	Certified Uncertainty	(% +/-)
NITROGEN					
			Balance		
CARBON MONOXIDE	200	200	ppm	2	

The Certified uncertainty is relative unless specified "abs" as absolute with a confidence level of 95% (coverage factor K=2).

CYLINDER VALVE

10L ALUM **BS4 BRASS**

Content

1,494 M3

Shelf Life 36 Month

Pressure **UN Number** 150 Bar(a) 1956

Reference Temperature Min. Usage Pressure

5 BAR G

Recommended Storage and Usage Temperature

10 to 40'C

TRACEBILITY

Category PROCESS

Traceabiltiy Type WEIGHT

Traceable To

Reference Procedure National Metrology Centre(NMC) ISO6142:2001

METHOD OF CERTIFICATION

Method

Gravimetric

INSTRUMENTATION Method of Analysis

LS71704

REMARKS

Certified By

Checked By

Product filled gravimetrically using high-load high-accuracy, weight traceable to National Metrology Centre (NMC) standards. Linde Gas Singapore has obtained a corporate License complying to ISO 9001 standard.

Making our world more productive

CERTIFICATE NUMBER : 90168756/D962122

REVISION NUMBER REVISION DATE

Certificate of Analysis

Material Number: S823400-AE-C6

Customer Tag:

: 9300463129

Customer Job Card : LINDE PHILIPPINES INC. : 90168756

PO Number

Order Date SO Number

: 08-Nov-2021 : 128002321

Certification Date: 22-Nov-2021

Vcode

: GM34553/10A/S BS4

CYLINDER NUMBER

D962122

SPECIFICATION

Component	Requested Concentration	Certified Concentration	Unit	Certified Uncertainty (% +/-)
NITROGEN CARBON MONOXIDE	500	500	Balance ppm	2

The Certified uncertainty is relative unless specified "abs" as absolute with a confidence level of 95% (coverage factor K=2).

CYLINDER

VALVE

10L ALUM BS4 BRASS

Content

1.470 M3 Shelf Life 36 Month

Pressure **UN** Number 150 Bar(a) 1956

Reference Temperature Min. Usage Pressure

20'C

Recommended Storage and Usage Temperature

10 to 40'C

5 BAR G

TRACEBILITY

Category

PROČEŠS

Traceabiltiy Type WEIGHT

Traceable To

Reference Procedure

National Metrology Centre(NMC) ISO6142:2001

METHOD OF CERTIFICATION

Method

Gravimetric

INSTRUMENTATION Method of Analysis

REMARKS

Product filled gravimetrically using high-load high-accuracy, weight traceable to National Metrology Centre (NMC) standards. Linde Gas Singapore has obtained a corporate License complying to ISO 9001 standard.

Making our world more productive CERTIFICATE NUMBER: 90168755/D962087

REVISION NUMBER REVISION DATE

Certificate of Analysis

Material Number: S803400-AE-C6

Customer Tag:

Customer

D962087

LINDE PHILIPPINES INC.

PO Number Order Date

9300463129

Job Card

90168755

SO Number

08-Nov-2021 128002321

Certification Date: 22-Nov-2021

Vcode

GM23712

CYLINDER NUMBER

SPECIFICATION

Certified Unit

Certified

Uncertainty (% +/-)

NITROGEN

Component

CARBON MONOXIDE

800

Requested

Concentration

800

Concentration

Balance

ppm

2

The Certified uncertainty is relative unless specified "abs" as absolute with a confidence level of 95% (coverage factor K=2).

CYLINDER VALVE

10L AL BS4 BRASS

Content

1.494 M3

Pressure **UN Number** 150 Bar(a)

Reference Temperature

20'C

Shelf Life 36 Month

Recommended Storage and Usage Temperature

1956 10 to 40'C Min. Usage Pressure 5 BAR G

TRACEBILITY

Category PROCESS

Traceabiltiy Type

WEIGHT

Traceable To

Reference Procedure National Metrology Centre(NMC) ISO6142:2001

METHOD OF CERTIFICATION

Method

Gravimetric

INSTRUMENTATION Method of Analysis

REMARKS

Certified By

Checked By

Product filled gravimetrically using high-load high-accuracy, weight traceable to National Metrology Centre (NMC) standards. Linde Gas Singapore has obtained a corporate License complying to ISO 9001 standard.

ANNEX F DENR ACCREDITATION

Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU Visayas Avenue, Diliman, Quezon City

SAT No. 2022-72

CERTIFICATE OF ACCREDITATION

Pursuant to DENR Administrative Order No. 26 Series of 2013 of the Department of Environment and Natural Resources having substantially met all the requirements prescribed therein,

BERKMAN SYSTEMS INCORPORATED (BSI)

208 VAG Building, Ortigas Ave., Greenhills, San Juan City, Metro Manila

is hereby duly accredited as

SOURCE EMISSION TESTING FIRM

As such, the following are authorized as:

QA/QC Manager Edindo C. Fernando

Team Leader Halcey Lemon P. Orquina

This certification shall allow the above firm and personnel to conduct stack testing limited to the following methods and parameters:

- 1. US-EPA Method 1 to 5 PM
- 2. US-EPA Method 6/8 SO₂
- 3. US-EPA Method 7 NO_x
- 4. US-EPA Method 10 CO

Granted this 14th day of July 2022 and valid until July 14, 2025

Digitally signed by Cuñado William Purgatoric DN: cn=Cuñado William Purgatorio, serialNumber=001006000462A,

P. CUÑA-Datment of the Natural Resources, c=

ANNEX G TEST PARTICIPANTS

TEST PARTICIPANTS

BMC FORESTRY CORPORATION

Mr. Jovelino C. Catacutan

Pollution Control Officer

BSI

Mr. Halcy Lemon P. Orquina

DENR Accredited Team Leader / Field Engineer

Mr. Romeo M. Elsisura

- Field Technician

Mr. Marvin S. Llarena

- Field Technician

Mr. Christian A. Soleta

Outsource Technician

Mr. Jimuel B. Torellino

Sampling Aide/Driver

Mr. Edindo C. Fernando

DENR Accredited QA/QC Manager

ANNEX H

TEST PLAN

May 6, 2024

ENGR. JEAN C. BORROMEO

OIC, Regional Director DENR - Environmental Management Bureau Cordillera Administrative Region (CAR) DENR Compound, Gibraltar Road, Baguio City

CC : ENGR. RAUL G. CUBANGAY

OIC Chief, Environmental Monitoring and Enforcement Division

Subject: Test Plan for BMC Forestry Corporation - Irisan Lime Project

Dear Director Borromeo:

We are pleased to submit the test plan for our proposed Source Emission Test to be conducted by Berkman Systems, Inc., an accredited third-party tester at BMC Forestry Corporation - Irisan Lime Project located at Km.5, Naguilian Road, Irisan, Bagulo City.

We hope this addresses your requirements.

Thank you.

Very truly yours,

BMC FORESTRY CORPORATION

Rollution Control Officer

Noted by:

Resident Manager

PO Box 105 Irisan, Baguio City *Tel No. (074) 445 - 7180 *Telfax: (074) 446 - 2555 email:toflavier@yahoo.com, npomilban@benquet.com

May 9, 2024

ENGR. JEAN C. BORROMEO

OIC, Regional Director

CC: ENGR. RAUL G. CUBANGAY

Chief, Environmental Monitoring and Enforcement Division

ENVIRONMENTAL MANAGEMENT BUREAU

CORDILLERA ADMINISTRATIVE REGION (CAR)

DENR Forestry Compound, Pacdal District

Baguio City, Benguet

1.78

Subject: Test Plan for BMC Forestry Corporation - Irisan Lime Project

Dear Dir. Borromeo:

We are pleased to submit the test plan for our proposed Source Emission Monitoring to be conducted at BMC Forestry Corporation - Irisan Lime Project located at Km.5, Naguilian Road, Irisan, Baguio City.

We hope that this addresses your requirements.

Very truly yours,

BSI

EDINOCCI FERNANDO Field Operations Manager

DENR Accredited QA/QC Manager

SAT No./2022-72

2nd Ftoor, VAG Bildg, Orligas Ave., Greenhilfs San Juan City, Metro Ma^ldla, Philippines Tela. (632) 863-6129 • Fax (632) 727-9831 Emeil: <u>info@bsienv.com.ph</u>

SOURCE SPECIFIC TEST PLAN

This document is the Source Specific Test Plan of **BSI** (Formerly **Berkman Systems**, **Inc.**) that describes the emission testing that will be completed at BMC Forestry Corporation - Irisan Lime Project located at Km.5, Naguilian Road, Irisan, Baguio City.

Section A: FACILITY INFORMATION

BMC Forestry Corporation - Irisan Lime Project

Irisan, Baguio City

Contact Person: Narhy C. Pomilban

Pollution Control Officer

Telephone:

(074) 445-7180

Section B: PRODUCTION INFORMATION AND FACILITY REQUIREMENTS

The plant should operate the **one (1) unit of 1.08 MT/hr Vertical Shaft Kiln** set for at 90% or greater of permitted capacity during testing. The Implementing Rules and Regulations of the Philippine Clean Air Act specify that the operating capacity during emission testing shall be the basis for setting the maximum allowable operating capacity during permit application.

The facility must provide the following items:

- The client shall provide an on-site single phase 220VAC/60Hz-power supply.
- The client shall provide at least two (2) sampling portholes based on the existing stack
 diameter and pipe length. Sampling platforms should be installed or constructed
 properly for the safety of the sampling personnel.
- Copy of latest Permit to Operate (PTO)
- Schematic diagram of the process
- Copy of the latest certificate of fuel analysis and delivery receipt.
- Copy of engine log sheet during sampling
- Photo documentation and Video coverage will be taken by the accredited sampling personnel during sampling activity.

Section C: SOURCE INFORMATION

The test will be at one (1) unit of 1.08 MT/hr Vertical Shaft Kiln set for 3 sampling runs and 3 stations of 24 hours Ambient air with parameters PM₁₀, SO₂, NO₂ and noise to be conducted on May 27 to 31, 2024.

Parameters to be tested and duration - see Table 1.

TABLE 1 - TEST METHODOLOGY

Particulars	Parameter	Sampling Methodology	No. of Test runs/Duration	Notes
	Volumetric Flow Rate (VFR)	EPA Method 1-4	3 one-hour run/ exhaust	Performed concurrent with PM test
	Oxygen / Carbon Dioxide	EPA Method 3 By Fyrite Method	3 runs / exhaust	Integrated Tedlar bag sample during M5 test
one (1) unit of 1.08 MT/hr	Particulate Matter (PM)	EPA Method 5	3 one-hour run/ exhaust	Performed with Method 5 set-up
Vertical Shaft Kiln	Sulfur Oxides (SOx)	EPA Method 6 modified	3 one-hour run/ exhaust	Simultaneous with Method 5
	Nitrogen Oxide (NOx)	EPA Method 7	3 runs / exhaust	Three grab sample flasks collected per run
	Carbon Monoxide (CO)	EPA Method 10 By NDIR	3 runs / exhaust	Integrated Tedlar bag sample during M5 test

Section D: QUALITY ASSURANCE / QUALITY CONTROL PROCEDURES

Normal QA/QC procedures described in the Methods will be strictly followed.

Section E: SAMPLING DATE

May 28 to 29, 2024

The sampling team leader will coordinate the specific run plans with the abovementioned Plant representative. The sampling team will be at the Plant on or before 9:00 AM of the sampling date.

Section F: <u>SAMPLING PERSONNEL</u>

The proposed sampling team shall consist of the following personnel:

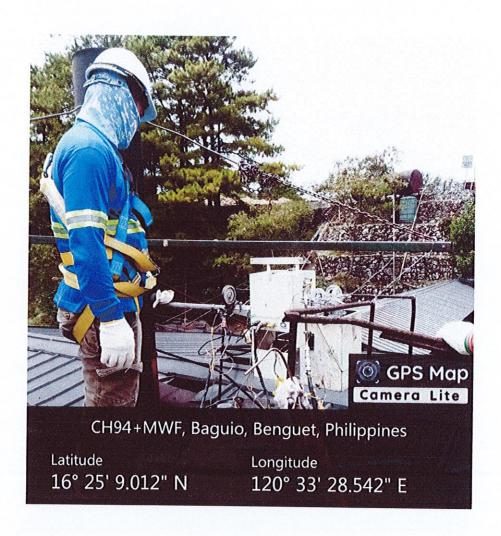
Team:

eam	•		
· 1.	Halcy Lemon P. Orquina		Accredited Team Leader
2.	Edindo C. Fernando	~	QA/QC Manager
3.	Ruel P. Abando	-	Accredited Team Leader (back up)
4.	Jose Arjay M. Santiago	-	QA/QC Manager (back up)
5.	Romeo M. Elsisura	-	Field Technician
6.	Marvin S. Llarena	-	Field Technician
7.	Kariel G. Cabel	-	Field Technician
8.	Christian A. Soleta	-	Field Technician
9.	Jimuel B. Torrelino	•	Driver / Technician
10	Joseph Dandy A. Quilet	_	Driver / Technician

Signed:

EDINDO C. FERNANDO Field Operations Manager

DENR Accredited QA/QC Manager


SAT No. 2022-7/2

ANNEX I

PHOTO DOCUMENTATION

PHOTO DOCUMENTATION

Vertical Shaft Kiln No. 2

Source Emission Monitoring BMC FORESTRY CORPORATION

Irisan, Baguio City May 28, 2024

22 January 2025

Ref. No.: LT-24-566-1-72

MR. NARHY C. POMILBAN Pollution Control Officer **BMC FORESTRY CORPORATION** Km. 5, Naguilian Rd., Irisan, Baguio City

Subject: Source Emission Monitoring Report

Dear Mr. Pomilban:

We are pleased to submit the final report of the source emission monitoring as a result of our visit to your facility in Irisan, Baguio City on December 13, 2024.

We hope that this report addresses your requirements.

Very truly yours,

MEMMANUEL R. ALTAREJOS

Executive Vide President

ERA/jdm

SOURCE EMISSION MONITORING REPORT

One (1) Unit 1.08 MT/hr Vertical Shaft Kiln

BMC FORESTRY CORPORATION

Irisan, Baguio City

DENR SOURCE EMISSION TESTING FIRM ACCREDITATION NO: SAT NO. 2022-72

2nd Floor, VAG Building Ortigas Avenue, Greenhills, San Juan, Metro Manila, Philippines

7 . 1 ٠, ٠, ٠, ٠, La ij أ

SOURCE EMISSION MONITORING REPORT

(December 13, 2024)

BMC FORESTRY CORPORATION

Irisan, Baguio City

Prepared for:

BMC Forestry Corporation Km. 5, Naguilian Rd., Irisan, Baguio City Tel. No.: (074) 445-7180

Prepared by:

BSI 2nd Floor VAG Building, Ortigas Avenue Greenhills, San Juan, Metro Manila

Tel. No.: (02) 863 6129; Fax. No.: (02) 727 9831

TABLE OF CONTENTS

COI	NTEN	TS PAGE
1.	INTR	RODUCTION1
1.	ı f	PROCESS DESCRIPTION AND OPERATION
1.		REASON FOR TESTING1
1.		FACILITY OPERATING CONDITIONS DURING THE TEST
2.		MARY OF RESULTS2
2.	1 (CONCLUSIONS
3.	SAM	PLING AND ANALYTICAL PROCEDURES4
3.		METHODS 1 AND 2 – TRAVERSE POINT AND STACK VELOCITY
	3.1.1	
		Cyclonic Flow Check
3.		Flue Gas Velocity METHOD 3 – FLUE GAS COMPOSITION
3. 3.		METHOD 3 – FLUE GAS COMPOSITION
3. 3.		METHOD 5/6 (MODIFIED) – PARTICULATE MATTER AND SULFUR OXIDES
3.		Sample Collection
		Sample Recovery
	3.4.3	· · · · · · · · · · · · · · · · · · ·
3.		METHOD 7 – NITROGEN OXIDES
٠.	3.5.1	
		Sample Recovery
		Sample Analysis
3.		METHOD 10 – CARBON MONOXIDE
	3.6.1	
	3.6.2	• .
	3.6.3	Sample Analysis
4.	QA P	PROCEDURES
4.	1 1	PARTICULATE MATTER AND SULFUR OXIDES (AS SO ₂)
	4.1.1	
		Sampling Equipment
		Analysis
4.		NITROGEN OXIDES (AS NO ₂)10
4.		CARBON MONOXIDE
LIS	T OF	TABLES
	LE 1.	EQUIPMENT INFORMATION
	LE 2.	OPERATING CONDITIONS
TAB	LE 3.	VERTICAL SHAFT KILN NO. 2 EMISSION TEST RESULTS
Lis	T OF	ANNEXES
ΔNIN	IEX A	SOURCE EMISSION MONITORING SUMMARY OF RESULTS
	IEX A	SOURCE EMISSION MONITORING SUMMARY OF RESULTS SOURCE EMISSION MONITORING FIELD DATA
	IEX C	PERMIT TO OPERATE AND FACILITY PROCESS DATA
	IEX D	ANALYTICAL DATA
	IEX D	EQUIPMENT CALIBRATION CERTIFICATES
	NEX F	DENR ACCREDITATION
	EX G	TEST PARTICIPANTS
	EX H	TEST PLAN
	iex I	PHOTO DOCUMENTATION

Emission Test Report Certification

The emission sampling reported herein was performed under the direction and supervision of Mr. Edindo C. Fernando of BSI. The analyses of samples were conducted under the direction and supervision of Mr. Renato M. Gofredo, Jr. of ELARSI, Inc., a DENR-recognized Environmental Laboratory

I certify that the information contained in this report is authentic and accurate to the best of my knowledge.

Signed:.

Edindo C. Fernando

BSI

DENR Accredited QA/QC Manager

Date: 24 January 2025

1. INTRODUCTION

This report presents the procedures and results of the source emission monitoring conducted on December 13, 2024 at BMC Forestry Corporation situated in Irisan, Baguio City. BSI was commissioned to conduct the monitoring wherein Mr. Halcy Lemon P. Orquina led the team that administered the source emission sampling with Mr. Edindo C. Fernando as QA/QC Manager. Meanwhile, Mr. Narhy C. Pomilban, Pollution Control Officer of BMC Forestry Corporation, served as site contact person during sampling.

The pollutants considered for the source emission monitoring were: particulate matter (PM), sulfur oxides (as SO₂), nitrogen oxides (as NO₂) and carbon monoxide (CO) at one (1) unit 1.08 MT/hr vertical shaft kiln exhaust stack. The source was tested for three runs.

1.1 Process Description and Operation

BMC Forestry Corporation – BC ILP is an enterprise in the Philippines, with the main office in Baguio City. It operates in the Crop Production Industry (https://www.emis.com/php/company-profile/PH/Bmc_Forestry_Corporation_en_3256166.html) and a producer and supplier of burnt lime. Its Kiln plant located at Km. 5 Naguilian Road, Irisan, Baguio City operates three (3) vertical shaft kilns, three (3) gas scrubbers, two (2) cyclone dust collectors and one (1) jaw crusher.

One (1) unit of 1.08 MT/hr *Vertical Shaft Kiln No. 2* was operated at a minimum of 95% operating rate was tested during sampling, and used low sulfur fuel oil/regular fuel oil as fuel source.

This report covers the source emission monitoring of the vertical shaft kiln no. 2 only.

1.2 Reason for Testing

The purpose of the monitoring was to verify the company's compliance with the source emission standards of the Department of Environment and Natural Resources (DENR) Administrative Order No. 81 Series of 2000 (Implementing Rules and Regulations of the Philippine Clean Air Act of 1999).

1.3 Facility Operating Conditions during the Test

The equipment information and operating conditions of the facility monitored were summarized in *Tables 1* and 2, respectively.

BS/

Table 1.	Equipment	Information
I abic I.	Equipment	Intoi mation

Stationary Source Information		Vertical Shaft Kiln No. 2
Bran	d Name	N/A
Rated	Capacity	1.08 MT/hr
Year I	nstalled*	August 1940
	Diameter	36 cm
Exhaust Stack	Height**	8.5 m
	Orientation	Vertical
Air Pollution	Control Device*	Wet Gas Scrubber
GPS Co	ordinates	16° 25 ' 9.11"N; 120° 33' 28.52"E

^{*}Based from previous sampling records

Table 2. Operating Conditions

Stationary Source Information	Vertical Shaft Kiln No. 2
Minimum Load During Sampling	95%
Fuel Used	LSFO/Regular Fuel Oil
Fuel Sulfur Content	No Fuel Analysis Provided
Fuel Consumption	No Information Provided
Annual Operating Hours	No Information Provided

2. SUMMARY OF RESULTS

Table 3 presents the summary of test results of the vertical shaft kiln no. 2 exhaust stack. The test results were compared with the National Emission Standards identified in IRR Part VII Rule XXV Table 2. A detailed description of the test run information and sample calculations used to derive the values in the tabular summary were attached in *Annex A*.

Three test runs were performed to collect: PM, SOx (as SO₂), NOx (as NO₂) and CO at vertical shaft kiln no. 2 exhaust stack. Three trial tests per run were conducted to collect samples of nitrogen oxides (as NO₂). The raw field data used to prepare the summary reports in *Annex A* was included in *Annex B*. Emissions have been corrected to the standard conditions of 25°C and 760 mmHg on dry basis (unless otherwise indicated). Moreover, the emissions are not applicable for the corrected oxygen factor since the source is not included in the list of equipment under DENR EMB Memorandum Circular No. 2021-15.

^{**}Measured from the ground to the tip of the stack

Table 3. Vertical Shaft Kiln No. 2 Emission Test Results

		Run 1	Run 2"	Run 3		
Sampling date		13-Dec-24	13-Dec-24	13-Dec-24		
Begin sampling time		1010H	1145H	1330H		
End sampling time		1115H	1250H	1435H		
Parameter	Units				Average	DENR Standard
Average stack temperature	°C	292.5	292.9	297.5	294.3	
CO ₂ measured in stack gas	%	6.8	6.7	6.8	6.8	
Oxygen measured in stack gas	%	13.7	14.3	13.7	13.9	
Stack gas moisture content	%	6.86	6.66	6.43	6.65	
Flue gas velocity	m/s	17.25	17.24	17.42	17.30	
Actual volumetric flow	m³/min	105.3	105.3	106.4	105.7	
Dry volumetric flow at STP	dsm³/min	44.5	44.6	44.8	44.6	
Isokinetic flow rate	%	102.0	99.9	100.1		
Particulate matter data						
Concentration	mg/Nm³	16.9	18.6	30.8	22.1	150
Annual emission rate	tons/yr	0.4	0.4	0.7	0.5	
Sulfur oxides data						
Concentration (as SO ₂)	mg/Nm³	2.3	1.5	< 1.5	1.9*	1500
Annual emission rate	tons/yr	0.1	0.04	< 0.03	0.04*	
Nitrogen oxides data						
Concentration (as NO ₂) **	mg/Nm³	13.5	13.0	14.0	13.5	1000
Annual emission rate	tons/yr	0.3	0.3	0.3	0.3	
Carbon monoxide data						
Concentration	mg/Nm³	28.6	29.8	17.2	25.2	500
Annual emission rate	tons/yr	0.7	0.7	0.4	0.6	

Annual emission rates were based on one (1) year continuous operation.

Emissions are not applicable for the corrected oxygen factor since the source is not included in the list of equipment under DENR EMB Memorandum Circular No. 2021-15.

st Average of detected values.

^{**}Average of three (3) trial tests

2.1 Conclusions

A description of any method deviations and quality assurance assessment was included in *Sections 3* and 4 of this report. Based on a review of the sampling data, facility operating information, test method description and quality assurance results, the concentration values presented in *Table 3* have passed the criteria to be considered as representative emission test results of the source and are suitable for comparison with the regulatory limits.

Under the Implementing Rules and Regulations of the Clean Air Act (CAA), the standards applicable to vertical shaft kiln no. 2 are as "existing fuel-burning equipment; other stationary source".

In conclusion, the test results indicate that the average emissions from vertical shaft kiln no. 2 exhaust stack:

- comply with the applicable standard for PM emissions;
- comply with the applicable standard for SOx (as SO₂) emissions;
- comply with the applicable standard for NO_X (as NO₂) emissions; and
- comply with the applicable standard for CO emissions.

3. SAMPLING AND ANALYTICAL PROCEDURES

All sampling were undertaken in accordance with US EPA standard methods, viz:

Method 1	Sample and Velocity Traverse Point Locations
Method 2	Stack Gas Velocity and Volumetric Flow Rate (S-type Pitot Tube)
Method 3	Gas Analysis for Determination of Dry Molecular Weight
Method 4	Determination of Moisture Content in Stack Gases
Method 5	Determination of Particulate Matter Emissions from Stationary Sources
Method 6	Determination of Sulfur Dioxide Emissions from Stationary Sources
Method 7	Determination of Nitrogen Oxide Emissions from Stationary Sources
Method 10	Determination of Carbon Monoxide Emissions from Stationary Sources

3.1 Methods 1 and 2 – Traverse Point and Stack Velocity

3.1.1 Sampling points

For the vertical shaft kiln no. 2 exhaust stack, the number and location of the sampling points were determined using the procedures of US EPA Method 1 since the equivalent stack diameter was measured to be greater than 30 cm.

The vertical shaft kiln no. 2 was sampled at a total of twenty-four (24) traverse points. Having two (2) available portholes that are 90° apart, twelve (12) traverse points were sampled for each.

Some of the traverse points of the exhaust stack were less than the criterion of Method 1 for allowable distance from the stack wall of stacks with diameter less than 0.61 meters. These points were relocated 1.3 cm (0.5 in) away from the stack wall.

3.1.2 Cyclonic Flow Check

For each sampling point, the rotation angle was determined using an "S-type" pitot tube assembly, liquid manometer and angle finder in accordance with section 2.4 of US EPA Method 1.

For each test point, the average absolute value of the rotation angle was less than the 20 degrees criterion of Method 1.

3.1.3 Flue Gas Velocity

The procedures of US EPA Method 2 were employed to determine the flue gas velocity and volumetric flow rate using an "S-type" pitot tube in making velocity head measurements (Δp). The "S-type" pitot tube conforms to the geometric specifications of Method 2 and has therefore been assigned a coefficient of 0.84. An inclined manometer built onto the meter console box was used to measure the differential pressures, while flue gas temperatures were measured with chromel-alumel thermocouples equipped with digital readouts.

3.2 Method 3 – Flue Gas Composition

US EPA Method 3 procedures were used to determine the flue gas composition and molecular weight. An "Orsat" sample pump was operated continuously at a constant rate during each Method 5/6 (Modified) sampling run to collect an integrated flue gas sample into a tedlar bag through a separate sample line attached to the probe. Moisture was removed from the sample by passing it through a small impinger charged with silica gel.

The content of each tedlar bag was analyzed using a Fyrite analyzer to determine the concentration of oxygen and carbon dioxide in the sample.

The same bag samples were also used for the carbon monoxide analysis by Method 10.

3.3 Method 4 - Flue Gas Moisture Content

The moisture content of the flue gas was determined using the US EPA Method 4 procedures in conjunction with Method 5/6 (Modified).

3.4 Method 5/6 (Modified) – Particulate Matter and Sulfur Oxides

3.4.1 Sample Collection

A US EPA Method 5/6 (Modified) sampling train was used to extract samples isokinetically from the stack which comprised the following elements:

- a stainless steel nozzle;
- a heated stainless steel probe with "S-type" pitot tube;
- a glass fibre filter maintained at 120°C ± 14 °C;
- four chilled impingers:
 - 1st and 2nd containing 100 mL 3% H₂O₂;
 - 3rd left empty; and
 - 4th containing 200 to 300 grams of silica gel; and
- a metering console.

Each of the impingers was labeled and weighed.

Three test runs were conducted at the available sampling ports. The actual sampling time was 60 minutes per run.

3.4.2 Sample Recovery

Sample recovery was undertaken at the sheltered area near the source of emission. The filter was removed from the filter holder and placed on a petri dish. The volume of water vapor condensed in the impingers was measured to determine the volume of water vapor collected.

The nozzle, probe and front half of the filter holder were rinsed with acetone, and the interior of the probe and nozzle were rinsed and brushed repeatedly to remove any adhering PM from the inside surfaces. All rinses were collected into a 250 mL glass bottle.

The contents of the impingers 1, 2 and 3 were transferred to a 1000 mL polyethylene sample bottle. The glass sample line between the heated filter holder and the first impinger, the first three impingers and connecting glasswares were all rinsed with distilled deionized water and the rinse was added into the sample bottle.

3.4.3 Sample Analysis

The filter and sample bottles, together with the blank samples of acetone and H_2O_2 , were submitted to a DENR-recognized laboratory.

The mass of filterable particulate matter collected on the filter and in the acetone rinse was determined in accordance with US EPA Method 5 analytical procedures.

The mass of sulfur oxides in the impinger contents and rinse water was determined in accordance with US EPA Method 6 analytical procedures.

3.5 Method 7 - Nitrogen Oxides

3.5.1 Sample Collection

The sampling of the flue gas to determine the concentration of nitrogen oxides was undertaken in accordance with US EPA Method 7 using a nominal 2 L glass collection flask containing 25 mL of NO_X absorbing reagent (Sulfuric Acid-Hydrogen Peroxide) connected to a Borosilicate glass probe sufficiently heated to avoid condensation and equipped with a glass wool filter at the end for particulate matter screening.

During the Method 7 testing, a flask was evacuated to an absolute pressure of 76 mmHg (3 inHg) at most less than the barometric pressure, and the initial flask temperature and pressure were recorded. The sampling train was then checked for leakage not exceeding 10 mmHg (0.4 inHg) in 1 min. The probe was inserted into the stack, connected to the flask and after purging the probe, a sample was drawn into the flask. The flask was then shaken for five minutes. This procedure was carried out thrice for three test runs resulting in the collection of nine samples for the exhaust stack.

3.5.2 Sample Recovery

The NO_x flasks were set at least 16 hours, shaken for two minutes and then the final flask temperature and pressure were measured. The contents of each flask were transferred to a leak-free polyethylene bottle and rinsed twice with 5 mL portions of deionized distilled water, and the rinse water was added into the bottle. Prior to analysis, the pH was adjusted to a value within 9 to 12 by adding 1N NaOH.

3.5.3 Sample Analysis

The sample preparation procedures of US EPA Method 7 were applied and each sample was then subjected to colorimetric analysis.

Source Emission Monitoring Report

3.6 Method 10 - Carbon Monoxide

3.6.1 Sample Collection

The integrated samples that were collected into tedlar bags were used for the determination of CO in accordance with US EPA Method 10.

3.6.2 Sample Recovery

The tedlar bags were sealed and transported for analysis.

3.6.3 Sample Analysis

The sample was analyzed using a non-dispersive infrared (NDIR) analyzer. The analyzer was flushed with nitrogen and zero setting confirmed. The tedlar bag was attached to the sample input and the gas sample was introduced at a flow rate of about 0.5 L/min by applying gentle pressure to the tedlar bag. The concentration was recorded when the value indicated on the display stabilized.

4. QA PROCEDURES

The US EPA "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III Stationary Source-Specific Methods" was used as a guide to achieve the quality assurance objectives of producing data that are complete, representative and of known precision and accuracy.

4.1 Particulate Matter and Sulfur Oxides (as SO₂)

4.1.1 Sampling Procedure

US EPA Method 5/6 (Modified) was employed to determine the concentration of particulate matter in the gas stream. This method requires the use of Methods I to 4 to determine sampling port locations, sample traverse points within the stack, as well as the flow rate, molecular weight and moisture content of the flue gas.

The quality of the emission test was assured by:

- Ensuring that the test port is located sufficiently distant from both upstream and downstream flow disturbances (such as bends and changes in stack diameter).
- Ensuring that stack gas flow is essentially parallel to the stack walls by conducting a cyclonic flow check.

Source Emission Monitoring Report

- Determination of a representative stack gas velocity by the selection of sampling test points appropriate to the stack diameter in accordance with the method.
- Leak testing of the sampling train before and after each sampling run.
- Testing and calibration of the dry gas meter, thermocouples and temperature displays, pitot tubes, nozzles, and manometer assembly.
- Ensuring that the temperature of the impinger system is maintained below 20°C.
- Maintaining the filter and sampling probe temperature at 120°C (±14°C).
- Sampling at between 90 110% of the actual gas stream velocity (isokinetic sampling).

The procedure for sampling SOx (as SO₂) was combined with US EPA Method 5 as described in Section 3.4. The quality of the test was assured by:

- The use of freshly-prepared chemical solutions;
- Care in the recovery of the sample;
- Attention to detail in the analysis of samples in accordance with the US EPA Method 6;
- The collection and analysis of representative "blank" samples; and
- Proper calibration and QA/QC checks of all elements of the sampling system.

4.1.2 Sampling Equipment

Copies of various calibration and test certificates were included in *Annex E*.

Barometer

A calibrated digital barometer was used to measure atmospheric pressure at the platform level.

Probe Nozzle

The probe nozzles were calibrated by the manufacturer and were inspected and checked for roundness before use to ensure that they met the specifications of the method.

Pitot Tube

The pitot tube meets the EPA Method 2 design specifications for "S-type" pitot tubes and was therefore assigned a baseline coefficient of 0.84. After each test, the pitot tube was visually inspected for damage.

Metering System

The meter box was leak checked and a calibration was carried out using five (5)-point calibrating orifices in accordance with EPA Method 5.

BSI 9

Source Emission Monitoring Report

Post-Test Meter Calibration

A post-test meter calibration was made using the data collected for each of the test runs in accordance with the procedure set out in EPA ALT-009.

Temperature Sensors

An ethanol-filled thermometer with NIST traceable calibration was used to calibrate thermocouples at approximately 0°C in iced water, ambient temperature and approximately 100°C in boiling water. At the completion of each test, the thermocouples were compared to the ethanol-in-glass thermometer at ambient temperature and a continuity check was performed to ensure that the thermocouple read-out trended in the correct direction when subjected to a temperature change.

4.1.3 Analysis

Filters and acetone used in the emission test met the required specifications and Method 5 analytical procedures were employed using a properly calibrated analytical balance.

The mass of sulfur oxides in the impinger contents and rinse water were determined in accordance with US EPA Method 6 analytical procedures.

4.2 Nitrogen Oxides (as NO₂)

The procedure for sampling NO_X (as NO_2) was described in Section 3.5. The quality of the test was assured by:

- The use of freshly-prepared chemicals;
- Care in the recovery of the sample;
- Attention to detail in the analysis of samples in accordance with the US EPA Method 7;
- Calibration and verification of linearity of the spectrophotometer; and
- Proper calibration and QA/QC checks of all elements of the sampling system.

4.3 Carbon Monoxide

The procedure for sampling CO was described in *Section 3.6*. The quality of the test was assured by:

- Care in the collection of the gas samples to ensure that they are representative of the emission;
- Maintenance of a leak-free bag at all stages of sampling and analysis;
- Calibration of the analytical instrument prior to analysis; and
- Attention to detail in the analysis of samples in accordance with the US EPA Method 10.

ANNEX A

SOURCE EMISSION MONITORING SUMMARY OF RESULTS

EMISSION TEST RESULTS SUMMARY

BMC FORESTRY CORP. ILP IRISAN, BAGUIO CITY VERTICAL SHAFT KILN NO. 2

	, <u></u> :	-	Run 1	Run 2	Run 3	
	Sampling date		13-Dec-24	13-Dec-24	13-Dec-24	
	Begin sampling time		1010H	1145H	1330H	
	End sampling time		1115H	1250H	1435H	
Symbol	Parameter	Units	•			Average
Υ	Meter box gamma	none	0.9754	0.9754	0.9754	
ΔН	Average ΔH	mm H ₂ O	59.9	57.2	58.7	
P _{bar}	Barometric pressure	mm Hg	654.3	654.7	654.3	
V _m	Metered sample gas volume	m³	1.5500	1.5208	1.5350	
T _m	Average meter temperature	°C	24.8	25.0	25.8	
P_{g}	Static pressure	mm H ₂ O	8.6	8.6	8.6	
T _s	Average stack temperature	°C ¯	292.5	292.9	297.5	294.3
Ds	Stack diameter	cm	36	36	36	
V _{Ic}	Volume of water collected	mL	71.3	67.7	65.6	
%CO₂	CO ₂ measured in stack gas	%	6.8	6.7	6.8	6.8
%O ₂	Oxygen measured in stack gas	%	13.7	14.3	13.7	13.9
C _p ¯	Pitot tube coefficient	none	0.84	0.84	0.84	10.0
√ΔP	Average of square roots of ΔP	(mm H ₂ O) ^½	3.393	3.392	3.415	
θ	Sampling run time	min	60	60	60	
Ď,	Nozzle diameter	mm	7.89	7.89	7.89	
A _n	Nozzle area	m²	4.89E-05	4.89E-05	4.89E-05	
V _{m(std)}	Metered gas volume at STP	Nm³	1.3104	1.2854	1.2936	
P _s ·	Stack pressure	mm Hg	654.93	655.33	654.93	
B _{ws}	Stack gas moisture content	%	6.86	6.66	6.43	6.65
V _{w(std)}	Water vapour volume at STP	Nm³,	0.097	0.092	0.43	0.05
M _{fd}	Dry mole fraction of flue gas :					
	,		- 0.931		0.936 ~	
M _d	Dry molecular weight	g/g-mole	29.64	29.64 _.		E Lorent Co.
Ms	Wet molecular weight	g/g-mole	28.84	28.87	28.89	
v _s	Flue gas velocity	m/s	17.25	17.24	17.42	17.30
As	Stack area	m²	0.102	0.102	0.102	
Q _{a(act)}	Actual volumetric flow	m³/min	105.3	105.3	106.4	105.7
$Q_{s(std)}$	Dry volumetric flow at STP	dsm³/min	44.5	<i>44.</i> 6	44.8	44.6
I	Isokinetic flow rate	%	102.0	99.9	100.1	
AOH	Annual operating hours	hrs/yr	8,760	8,760	8,760	
	Particulate matter data					
M_{part}	Measured mass	mg	22.1	23.9	39.8	
C_{part}	Concentration	mg/Nm³	16.9	18.6	30.8	22.1
	Mass emission rate	kg/hr	0.05	0.05	0.08	0.06
	Annual emission rate	tons/yr	0.4	0.4	0.7	0.5
	Sulphur oxides data	.,			<u>-</u>	
M_{SOx}	Measured mass	mg	3.02	1.95	< 1.9	
C_{SOx}	Concentration	mg/Nm ³	2.3	1.5	< 1.5	1.9*
	Mass emission rate	kg/hr	0.01	0.004	< 0.004	0.01*
	Annual emission rate	tons/yr	0.1	0.04	< 0.03	0.04*
	Nitrogen oxides data					
C _{NOx}	Concentration	mg/Nm³	13.5	13.0	14.0	13.5
	Mass emission rate	kg/hr	0.04	0.03	0.04	0.04
	Annual emission rate	tons/yr	0.3	0.3	0.3	0.3
<u> </u>	Carbon monoxide data					
C_{COppm}	Concentration	ppm	25.0	26.0	15.0	
C _{COmg}	Concentration	mg/Nm ³	28.6	29.8	17.2	25.2
- Jing	Mass emission rate	kg/hr	0.08	0.08	0.05	0.07
	Annual emission rate	tons/yr	0.7	0.7	0.03	0.6
		-		0.1	0.4	0.0

Notes: Italics indicates calculated value

Annual emission rates were based on one (1) year continuous operation.

^{*}Average of detected values only.

71
=
_
7
_

13.0	Average				2024	14-December-2024		Date Recovered					r-2024	13-December-2024	ted	Date Collected
9.5	16.9	1784.8	298.45	25.3	25.30	0.60	BSI T2-F6	S1R2T3	1220H	302.75	29.6	1.28	24.50	2250	BSI T2-F6	S1R2T3
12.0	21.1	1760.8	298.55	25.4	25.40	0.50	BSI T2-F5	S1R2T2	1210H	302.35	29.2	1.48	24.30	2230	BSIT2-F5	S1R2T2
17.7	31.0	1753.0	298.65	25.5	25.50	0.40	BSI T2-F4	S1R2T1	1200H	302.35	29.2	1.68	24.10	2230	BSI T2-F4	S1R2T1
mg/Nm³	Æ	: : : :	ゟ゚ 	റ്	in Hg	H.				<u>ಸೆ</u>	റ്	(in Hg)	л Н	2		
CNOZ	M _{NO2}	< **	7	Temp	סָ	Ę, P				. 		ס	٦	· <		
NO, Conc.	Mass Catch	Volume at STP	Flask Temp	Flask Temp	Final Absolute Pressure	Final Pressure	Flask ID	Sample ID	Collection Time	Flask Temp	Flask Temp	Initial Absolute Pressure	Evacuated Pressure	Flask Volume	Flask ID	Sample ID
:					25.90	(in Hg):	Barometric Pressure, Phanth (in Hg)	Barometric				25.78		er() (in Hg):	Barometric Pressure, Pbur() (in Hg)	Barometric
	Concentration Calculation	Concentratio					covery	Sample Recovery		A 100			######################################		illection	Sample Collection
13.5	Average				2024	14-December-2024		Date Recovered					r-2024	13-December-2024	ded	Date Collected
10.3	18.3	1777.7	298.65	25.5	25.50	0.40	BSI T2-F3	S1R1T3	1050H	302.15	29.0	1.56	24.20	2250	S1R1T3 BSIT2-F3	S1R1T3
15.2	26.8	1762.1	298.55	25.4	25.40	0.50	BSI T2-F2	S1R1T2	1040H	301.75	28.6	1.46	24.30	2230	BSI T2-F2	S1R1T2
15.1	26.8	1775.4	298.75	25.6	25.60	0.30	BSI T2-F1	SIRITI	1030H	301.45	28.3	1.46	24.30	2230	BSI T2-F1	S1R1T1
mg/Nm³	ьg	゙゚゙゙゙゚゚゙	റ്	пнg	in Hg	: 			゙゙゙゙゙゚	റ്	(in Hg)	in Hg	<u> </u>		
C _{NO2}	M _{NO2}	V 86	1.	Temp	70	Pgr			:	_ _ _	:	P	្វិច	<		
NO _x Canc	! 을	Volume at STP	Flask Temp	Flask Temp	Final Absolute Pressure	Final	Flask	Sample 1D	Collection Time	Flask Temp	Flask Temp	Initial Absolute Pressure	Evacuated Pressure	Flask Volume	Flask	Sample 10
		-		_	25.90	in Hg)	Barometric Pressure, Pharth (in Hg)	Barometric		:		25.76		_{ar(i)} (in Hg):	Barometric Pressure, P _{bar()} (in Hg)	Barometric
	Concentration Calculation	Concentratio					covery:	Sample Recovery:							illection	Sample Collection
	Section Statement of the Section of	Company of the Compan	A NAME OF TAXABLE WASHINGTON	The second section of the	* Chron Chron Chron	Walter Commence	A SHAND WENT WITH THE PARTY	200	200	the way while the hand a service of	A COLUMN TO A COLU					

RUN 3

Barometric Pressul	Barometric Pressure, P (in Hg)	(in Ha)	A CAR CAR CARE	25.75		Tree transferrence	**************************************	Barometric Pressure, I	Barometric Pressure, Pharm (in Hg)	P _{ram} (in Hg)	25 90	MANAGE OF CAMPAGE	25.90		Control of the Contro	
Sample ID	Flask	Flask	Evacuated Pressure	Initial Absolute Pressure	Flask Temp Flask Temp	Flask Temp	Collection	Sample ID	Flask	Final Pressure	Final Absolute Pressure	Flask Temp Flask Temp	Flask Temp	Volume at STP	Mass Catch NO _x Conc.	NO, Conc.
		<u><</u>	å,	ַם	!					g, D	P,	Temp	т,	× 8	M _{NO2}	C _{NO2}
		₽.	gH ni	(in Hg)	റ്	<u>ಸೆ</u>				ън	in Hg	റ്	ಸೆ	mL.	FG.	mg/Nm³
_	BSI T2-F7	2230	24.40	1.35	29.0	5	1350H	S1R3T1	S1R3T1 BSI T2-F7	0.60	25.30	25.3	298.45	1763.5	21.1	12.0
S1R3T2	S1R3T2 BSI T2-F8	2240	24.40	1.35	28.7	301.85	1400H	\$1R3T2	S1R3T2 BSI T2-F8	0.50	25.40	25.4	298.55	1778.2	35.2	19.8
S1R3T3	S1R3T3 BSI T2-F9	2250	24.50	1.25	28.7	301.85	1410H	S1R3Ţ3	S1R3Ţ3 BSI T2-F9	0.40	25.50	25.5	298.65	1800.3	18.3	10.2
Date Collected		13-December-2024	r-2024					Date Recovered		14-December-202	2024			į	Average	14.0

SAMPLE CALCULATIONS

BMC FORESTRY CORP. ILP

IRISAN, BAGUIO CITY

VERTICAL SHAFT KILN NO. 2

VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS

$$V_{m(std)} = Y x 0.3921 x V_m x \frac{P_{bar} + (\Delta H \div 13.6)}{(273 + T_m)}$$

$$V_{m(std)} = 0.9754$$
 x 0.3921 x 1.55 x $\frac{654.3 + (59.9 + 13.6)}{(273 + 24.8)} = 1.3104 \text{ Nm}^3$

VOLUME OF WATER VAPOUR AT STANDARD CONDITIONS

$$V_{w(std)} = 0.001356 x V_{lc}$$

$$V_{w(std)} = 0.001356 \text{ x} 71.3 = 0.097 \text{ Nm}^3$$

PERCENT MOISTURE IN FLUE GAS

$$B_{ws} = \frac{V_{w(std)}}{(V_{w(std)} + V_{m(std)})}$$

$$B_{ws} = \frac{0.097}{(0.097 + 1.3104)} = 6.86 \%$$

ABSOLUTE FLUE GAS PRESSURE

$$P_s = P_{bar} + \frac{P_g}{13.6}$$

$$P_s = 654.3 + \frac{8.6}{13.6} = 654.93 \text{ mm Hg}$$

DRY MOLECULAR WEIGHT OF FLUE GAS

$$M_d$$
 = (%CO₂ x 0.44) + (%O₂ x 0.32) + [{ 100 - (%CO₂ + %O₂)} x 0.28]

$$M_d$$
 = (6.8 x 0.44) + (13.7 x 0.32) + [{ 100 - (6.8 + 13.7)} x 0.28] = 29.64 g/g mole

WET MOLECULAR WEIGHT OF FLUE GAS

$$M_s = M_d \times (1 - B_{ws}) + (\frac{mol.wt.}{H_2O} \times B_{ws})$$

$$M_s$$
 = 29.64 x (1 - 0.0686) + (18 x 0.0686) = 28.84 g/g mole

AVERAGE FLUE GAS VELOCITY

$$\nu_{s} \quad = \quad 34.97 \quad x \quad C_{p} \quad x \quad \sqrt{\Delta}P \quad x \ \sqrt{\left\{ \begin{array}{ccc} T_{s} & + & 273 \\ \hline P_{s} & x & M_{s} \end{array} \right\}} \label{eq:vs}$$

$$v_s$$
 = 34.97 x 0.84 x 3.393 x $\sqrt{\left\{\frac{-292.5 + 273}{654.9 \times 28.84}\right\}}$ = 17.25 m/s

ACTUAL WET FLUE GAS FLOW RATE

$$Q_a$$
 = 60 x v_s x A_s

$$Q_a = 60 \times 17.25 \times 0.102 = 105.3 \text{ m}^3/\text{min}$$

DRY, NORMAL FLUE GAS FLOW RATE

$$Q_s = Q_a \times M_{fd} \times \frac{298}{273 + T_s} \times \frac{P_s}{760}$$

$$Q_s = 105.3 \times 0.931 \times \frac{298}{273 + 292.5} \times \frac{654.9}{760} = 44.5 \text{ dsm}^3/\text{min}$$

SAMPLE CALCULATIONS

BMC FORESTRY CORP. ILP IRISAN, BAGUIO CITY VERTICAL SHAFT KILN NO. 2

ISOKINETIC FLOW RATE

$$I = \frac{P_{std}}{T_{std}} \times \frac{100}{60} \times \frac{T_s + 273}{P_s} \times \frac{V_{m(std)}}{v_s \times M_{fd} \times \theta \times A_n}$$

$$I = \frac{760}{298.15} \times \frac{100}{60} \times \frac{292.5 + 273}{654.93} \times \frac{1.3104}{17.25 \times 0.931 \times 60 \times 4.89E-05} = 102.0\%$$

PARTICULATE MATTER CONCENTRATION

$$C_{part} = \frac{M_{part}}{V_{m(std)}}$$

$$C_{part} = \frac{22.1}{1.3104} = 16.9 \text{ mg/Nm}$$

SULPHUR OXIDES CONCENTRATION

Concentration of SO_x as SO₂

$$C_{SOx} = \frac{M_{SO2}}{V_{m(std)}}$$

$$C_{SOx} = 2.3 mg/Nm3$$

NITROGEN OXIDES CONCENTRATION

Concentration of NO_x as NO₂

$$C_{NOx} = \frac{M_{NO2}}{V_{sc}} \times 1000$$

$$C_{NOx} = 15.1 \text{ mg/Nm}^3$$

CONVERSION OF CO IN ppm TO mg/Nm3

$$C_{CO(mg)} = \frac{C_{CO(ppm)} \times mol. wt. CO}{24.5}$$

$$C_{CO(mg)} = \frac{25.0 \times 28.01}{24.5} = 28.6 \text{ mg/Nm}^3$$

ANNEX B

SOURCE EMISSION MONITORING FIELD DATA

MONITORING LOGSHEET

Facility Information

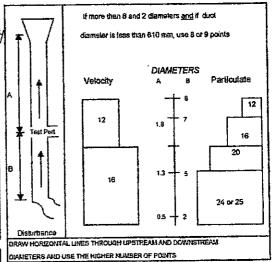
Facility Name Facility Address Name of Pollution Control Officer Maintenance Supervisor / Engineer Telephone and Fax Number	BMC FORESTRY CORP. BC ILP KM.5 NAGVIYAN ROAD, IKISAN. BAGUN CITY MS. NARHY C. POMILBAN 441-7180 / 09306480332 Source Description
Source Type Source ID Manufacturer / Brand of Equipment / Serial No. Equipment Capacity (BHp,MW,MT/hr) Date of Installation (month/year) Date of Modification (that may increase emissions) Operational Hours per Year (hrs/year)	VERTICAL SHAFT KILN BAHAUST STACK NO. PJ24 566 S1 1.08 MT/HR.
Operating rate (%)	95°6
Air Pe	ollution Control Device
Is there an Air Pollution Control Device (APCD) atta source? Type of APCD Date of Installation APCD parameters (flowrate,gpm,delta P,etc) Is the APCD operating during emission sampling	Wef Gas Scrubber
<u>Fuel</u>	Analysis / Information
Type of Fuel used during emission sampling (%S) Original Fuel used Date of Fuel change Daily Fuel Consumption (Liters/day)	v RFO V RFO
Is the Fuel Analysis Available? Will the company provide the Fuel Analysis	YES NO
Please attach the following -Fuel Analysis -Permit to Operate -APCD Process Logsheet	YESNO

-Source Process Logsheet

+

METHOD 1 - TRAVERSE POINT LOCATIONS

Facility Name	IBMC FO	REST	RY COR	P. B(C-ILP	
Address	KM.S.N	AGAIN	IAN PO	au Iris	AN BAGUIO	lir
Source	1.08 MT/h	R. VER	TICAL SI	afi Kii	N NO.	
Personnel / Date	ECF HPO	Msi	CAS J	BY /13	DFC: 1024	
Stack / Ports	Type of Stack		Circular	V	Rectangle	
	No. of Ports Available				1 2	
	No. of Ports Used				•~~	
	Port Inside Diameter,	сл			10]
Dimensions	Far Wall to Cutside o	46				
	Port length, cm (b)	/ ว				
Put diagram of lest	Stack Dlameter or De	56				
location (s) on back	Stack Width (if restan	gle), cm				
	Stack Length (if recta	ngle), cm			<u> </u>	
of this sheet	Equivalent Stack Dias	nster, cm				
	Area of Stack, cm²					


Distance to Flow Disturbances	Distance, cm	Diameters
Upstream (A)	184	3.117
Downstream (B)	90	و (۱۲ کا ۱۲
Downshessur (D)		1

Number of Traverse Points	Mir	imum # Regulred
	Particulate Traverse	20
	Velocity Traverse	ن!
# cf Parts used	7 #Points / Port	12
	Number of Traverse Points Us	ed 34

. 1	Point	Fraction of	Dist. From	Port	Dist. From Edge
	No.	Stack Dia.	Inside Wall	Length	of Part
ļ	1	0.021	0.750	10	10.752
	2	6.067	2412	10	12.412
	3	0.113	4 2618]2	14. 143
	4	מויט י	6.312	ि	16. 37m
	5	6.26	9.0	(2	19.5
	6	030	12.314	حا	22.314
	7	0.649	23.124	10	3 3 1 184
	8_	0.70	27	17	37'.0
	9	७ /हुर३	29.488	10	39 673
	10	1880	31,752	Jo	41.70
	11	6.937	33.535	<u>ن</u>	43 SA
_	12	0.979	35.144	15	45.744
	13			<u></u>	
	14				
	15				
	16				
	17				
	18				
	19				
	20				
	21				
	22				
	23				
	24			<u> </u>	
	25			<u> </u>	

livide: when using 4 ports in a circular duct, the probe is marked with only the points for the first half of the full diameter traverse.

2nd floor, VAG Bids. Ortigas Ave., Greanhills San Jean City, 6-fetro Afenila, Philipphies Tet: 883-6119 • Fax (632) 717-9331

Equivalent Diameter (for rectangular ducts):	
De = 2 * Depth * Width / Depth + Width)	
Ds = 2 '() '()/()+()=	_

LOCATION OF POINTS IN CIRCULAR STACTS OR DUCTS

	(Fraction	of stack d	non rstemsi	n inside well	to traverse	point)	
	2	4	8	8	10	12	7
1	.148	.067	.044	.032	026	.021	7
2	.854	.250	.149	.105	.052	.687	١
3		.750	295	.194	.145	.118	
4	٠.,	933	.704	.323	276	.177	
5			.654	.677	342	250	
6			.956	.886	658	.155	
7				.885	.774	.844	- 1
8				.968	.854	.750	-
9					.918	.623	J
0					974	882	1
11					\	.933	Ĺ
12						.979	

LOCATION OF POINTS IN PECTANGULAR STACKS OR BUCTS

	- 2	3	4	5	6	7	В	9	10	11	12
П	250	.167	125	.100	.083	.071	.033	.056	050	.045	.042
2	.750	500	375	200	250	214	.188	.167	.150	.136	.125
3		.833	.625	.500	.417	.357	.313	.278	220	<i>2</i> 27	288
4			.673	,700	.503	.550	.438	.389	350	.319	.292
5 [.900	.759	.643	.583	.500	.459	.409	.375
ь 1					.917	786	538	.611	.550	.500	458
7						929	.813	.722	650	.591	542
вl							.938	.833	.750	.662	.625
9]								944	.350	.773	.70a
Ιοl									.850	.654	.792
1										,955	.675
2											.959

Notes/Remarks: tadyustic ()?}
Eleventin = 2.5 m

Team Leader / Date: H. P. OROWA 13 DFC: 24

OMOGTDARE E.C. FERNANDO /13 DEC. 24

eperamentof Emissement and History Roschics (CEPR) ETERROMAENTAL MANAGEMENT BUREAU ACCREDITED THIRD PARTY TESTER

EPA METHODS 1 & 2 GAS VELOCITY and CYCLONIC FLOW CHECK

Facility	IBMC FORESTRY COPP. BC-119 Ther	nocouple ID TMC - T2
Town/Province	NAGULLAN RO, IRISAN. BAGUIO GTY Mano	ometer ID M) D - †2
Source	MORMITHE VERTICAL SHAFT KINH P bar	ometer, mm Hg (4C4.)
Personnel	ECF HPA MSL CAS JBT Pitot	1D PT-12-6F1
Date	13 VECEMBER 2014 Pitot	Coefficient 0.04

Pitot Tube Leak Check	100/100
Static Pressure, mm H₂O	9.6
Measured at which Traverse Pt	12 A - 8

Traverse Point	Velocity Pressure (mm H₂O)	Temperature (Degrees C)	Angle Which Yields Null (degrees)
A - 12	110	200	/2
11	11.10	750	7
10	11:4	757	n
Ĵ	//, 6	757	ъ
В	1-2	260	/2
. 7	12	760	.C
<u> </u>	n	W.C	3
Ţ	, <i>P</i>	· 240	3
. 4	/1. 6	257	7
	11.5	247	Ь
2	11,0	200	120
1	//, ≎	200	מן
	6		
B - 12	11.0 ,	200	12
<u></u>	11.0	750	12-
10	11.4	257	6
9	11.4	757	/>
В	12.2	2100	3
η	15.0	no	3
<u> </u>	/7.0	4.0	3
5	17-5	Noc No No No	3
4	. //.4	WY	Ē
3_	11-6	257	<u> </u>
2	11.0	250) γ
1	11.0	250	12 1
Average	1 2700 - 3.329	757. UT	pradautarist

Note: 32 15.0. 32 5.0 32 6.0

Team Leader/Date: H.P. TROWNA 13 DEC. 24 QA/QC / Date: E.C. FRNAUID 13 DEC. 2014

2nd Floor, VACI Bidg, Ortigas Ave., Greenhilds San Juan City, Metro Manita, Philippines Tels 863-6129= Fax (632) 727-9831

Department of Environment and Natural Resources (DERR) ENVIRONMENTAL MANAGEMENT BUTEAU ACCREDITED THERD PARTY TESTER Conflictor No. SAT NO. 2017-02

FYRITE ANALYSIS DATA SHEET

Facility	BMC FORESTRY CORPORATION BC- UP Fuel Type	
Town/Province	KM. S. NAGULLAN ROAD. IRISAN. BAGULD CITY FYRITE ID	FB-T2
Test Location	1.08 MT/hr. VERTICAL SHAFT KILN NO. 2 Analysis Location	Insitu

		% CO 2	%O ₂	% N 2
Run Time	Time of Analysis	Reading (A)	Value (B-A)	Value (100-C)
Start /フログム	1/2014	7.0	13. (
	1/7676	2.0	13,+	
Stop	/a>H	6.5	14.0	
•	Avg	6. 33	13.67	79.5

Run No. 2	Date: 13 DEC. 2014	Bag 10 P124 GGG GR	Operator (Signature)	10-
		% CO 2	% O 2	% N 2
Run Time	Time of Analysis	Reading (A)	Value (B-A)	Value (100-C)
Start 1477	12504	コ,ク	14.0	
	13074	マ。	14.0	
Stop 175°4	12577	6.0	た。	
Leak Check				
	Avg	6.67	14.33	79.0

Run No. 3	Date: 13.DEC, 2024	Bag ID R124 566.51 R3	Operator (Signature)	$\mathcal{A}()$
		% CO 2	%O ₂	√ %N ₂
Run	Time of	Reading	Value	Value
Time	Analysis	(A)	(B-A)	(100-C)
Start /うでレ	מיכעטן	コロ	13,12	•
	14470	6. <	/3.5	
Stop 42.57	14702	7.0	14.0	
Leak Check				
	Avg	6.83	13.67	79.1

Team Leader/Date: H.P. OROVINA 13 DEC 2024 QA/QC / Date: E.C. FERA

Department of Environment and Natural Resources (DEVR) ENVIRONCABITEL NANNAGEMENT SURLAU ACCREDITED THIRD PARTY TESTER

METHOD 4 - MOISTURE ANALYSIS DATA SHEET

Facility	IBMC FORESTRY	CARPORATION BO	7-11p	
Address	KM.5. NAGULUAN		GUID CITY	
Source	1.08 MT/NR, YEAT	TCAL SHAFT KILN 1		
Recovery Loaction	SERVICE VEHICLE	/	·····	
Run Number	% MOISTURE	1 PM -1	PM-2	VM = 3
Test Date	13 DEC. 2024	13 DEC, 2024	13 DEC: 2024	13 DEC. 2024
Recovery Date	DEC, 2024	DEC: 2024	7FG 2014	DEC. 2024
Recovered By	ECEMPO MSL CAS JBT	ECFHPO MSI CASJBT	ESF HPO MSL CASIBT	ECF HOO MSL CASJE
Impinger 1 100 ML	D.I. H20	31/6 H202	3% H1112	3/2 /2/12
Final Weight, g	727.2	7574	752.5	2540
Initial Weight, g	712.4	714.3	733	77/7,0
Net Weight, g	10.6	42.6	73.7	39.0
Impinger 2 1/10 M	D.I. H20	3%H2O2	3% H201	3% 42(22
Final Weight, g	710.5	717.4	622.2	77.6
Initial Weight, g	499.7	7076	499.6	707.6
Net Weight, g	,6.3	143	12.6	/2~0
Impinger3 EMPT Y	EMPTY	EMPTY	ENPTY	EMPTY
Final Weight, g	607.3	6,139	6/3.0	.615.7
Initial Weight, g	605.8	623	606.3	6/4.7
Net Weight, g	20	5.6	6.2	10 10 10 10 10 10 10 10 10 10 10 10 10 1
impinger 4_200-300 g	SILIM GEL	SILICA GEL	SILLON GEL	SIUCA GEL
Final Weight, g	(17	124.0	234.2	. 6.93.8
Initial Weight, g	311.5	875.7	324.0	834.2
Net Weight, g	4.7	3.3	pr	9.6
Impinger 5				
Final Weight, g				
Initial Weight, g				
Net Weight, g				
Impinger 6				
Final Weight, g				
Initial Weight, g				
Net Weight, g				
Impinger 7				
Final Weight, g				
Initial Weight, g				
Net Weight, g				

Total Catch, g	31.1	71.3	17.7/	1,50
Silica Gel Spent, %				->
11 1/1 1/2			5 11 1001	7604
Team Leader / Date: H.P. 4	KALANA 1 13 VEC 24	QA/QC/Date: 1:	C. FERNANIC / 1	3 DEC. 1024

ISOKINETIC FIELD DATA SHEET METHOD(s)

Facility Na	me	RW	e FOREST	ey (ORP	BC.	112		Test Date		13 DEC	imbee 2	1024
Address		KWZ	FORESTI NAGVILLAN I/HR VEKT	I KUAD. IK	<u>nazis</u>	BAGILLOU	LETY			R124 56	6 51	M4
Source		1.08 M	I/hr VERT	CAL SHAF	T KILN	No			Year Installed			
Control de	vice	Cycin	HE DUST L	BULCTOR				Field Perso	onnei	IECF HOU.	MSI CAS	JBT
Contact P	erson	MSI	ARHY C. P.	MULBAN				Operators Signature				
Filter ID	Tat	re(s)	Barometric (mm	Static	70111111111111111111111111111111111111	Meterbox Nozzle			zzle	Pitot Tu	be	Probe
			Hg)	(mm H ₂ O)	ID#	Gamma	DeltaH @	ID#	Dia.	ID#	Ср	ID#
		~~~···	الدري	2.6	PSI-12	0.9864		NS-72-4	7.29	PT-TO-	10.84 SP	
				<u> </u>		rain Leak Ch		1112 12 1		1 12	Fyrites	Jr
Run No.	SI	M4		Initial		Int	terim		Final	Time	%O ₂	%CO ₂
K Factor			Vacuum, mm Hg	150				"	0	59 WH		5.0
Pitot Leak (	Checks		Leak rate, m³/m	9					Φ,	89461	14.0	10
Pretes	st //(	1,45	Start Volume	313.0720		-		31	ده1⊆. د	ORSAT Leak Che		
Post-t		dix	Stop Volume	313.5780		-			i. 7100	Tedlar Bag ID	174 566.	S1 M4
Ports &	Ti	me	1		Delta H	Delta H	Gauge	<u> </u>				
Points	Clock	Test	DGM reading	Pitot Reading	Calc.	Actual	Vacuum	1		Temperature	°C	
	(24-hr)	(min)	(m³)	(mm H₂O)	(mm H ₂ O)		(mm H ₂ O)	Stack	DGM	Probe	Filter	Imp. Exit
F) -2	09/54	0	313-0822	11,0	(	40		257	20	112	10	17
-1	D=11=F1	V		7."	-		15.2	- //		110	# '	17
	Uggels	K	24 .1716	lup		42	7.2	257	20	113	//3	7
	<i>D</i> 17 K 1		1			73	\	,,,	. A	//*	//-\$	. '
	Cejzon	10	3 -1922	h.z		4)	7.2	27	20	ا حدر	12/	76
		<del>- ′V</del>		10.5				1		<del>                                     </del>		7.60
	ogra	15	313 -3964	id.		40	₹.9	257	20	120	m	14
	المِين الم		3 10 1	, , , , , , , , , , , , , , , , , , ,		. , -	·			, ,		/ 4
	ogen	2.0	53.4996	1.0		40	- (:0	257	7¢	. 117	· Mi	12
		-2-V		116-		<del></del>		2.70		7 7	1.7.	1 18
	174481	99	33-6003	11.0		40	1.0	27	20	1/5	1/2	13
			3.0	15	, ;				160		(12)	<del>  /                                   </del>
1	1064	30	33.7018									
	Young	14	70.0							<u> </u>		
	<del></del>										·	
								· · ·				
							*****					
											·	
											·	
	*											
<del></del>										. /	/	<del> </del>
		Run Time	Total Volume	RMS Delta P	1	Delta H	High Vac.	TS Stack	Tmeter		/	
		30	6.6196	3.317		*Ayg	₹~0	Avg 1/57	Avg 2a		<i>f</i>	
	1			. , , ,	i		3-0	. 3/		VZ	$\geq$	
			TROUMA 1						4.00			
Team ! ead	ier / Dale:	H.P.	TROUINA 1	3 DEC 24			0.	A/QC / Date:	TOR	establish	130EC.24	
Julii Codu			11. Min Marin	V40(1/2)			Cir.	rvac i Date:	U V V V V V	<u> </u>	リプレレ・ム	

2nd Floor, VAG Bidg, Onlgas Ave., Greenhills San Iuan City, Metro Mania, Philippines Tels. 853-6129+ Fax (632) 727-9811 Department of Environment and Natural Resources (DENR)
ENVIRONMENTAL MANAGEMENT BUREAU
ACCREDITED THIRD PARTY TESTER



# ISOKINETIC FIELD DATA SHEET METHOD(s) 5/6

acility Na	me	IBMC	THEFSTRY	CORPORA	παu	30- I	LP	Test Date		13 De	CEMBER	0094
ddress		KM. 5	NAGULLIAN	12				Job Numb	er	1324 5	66 BMC	-20/1 -S1 R1
Source		1.08 N	ITThe VERI			$N_0$ , $2$		Year Instal	Year Installed			$\sim 11  \text{KL}$
⊃ontrol de	vice	CYCLON		LECTOR	IN POS	141/1_2		Field Perso		Forthan A	Ici OF	100
loπtact Pe	erson		<del></del>					Operators		ECETTO 1	ASI (AE.	JBT
F75 10	-		WANT / C.	MINICIPAN	·····			Operators	olgnature			
Filter ID	16	are(s)	Barometric (mm	Static		Meterbox		No.	ozzle	Pitot Tu	.ibe	Probe
			Hg)	(mm H ₂ O)	ID#	Gamma	DeltaH @	ID#	Dia.	ID#	Ср	ID#
			443	2-1	BS - T2	0.9754	46.4709	NS = 12 14	-9.39	PT- 72-45	0.81 SP	L-72-4FT
					Sample T	rain Leak Ch	necks		·	1-1-1-1-1	Fyrites	- 12 111
¤un No.	_12	RUN 1		Initial		Int	terim		Final	Time	%O₂	%COz
Factor	<b>Ğ</b> .	204	Vacuum, mm Hg	15,1)				<u> </u>	13	/2/31.	14.0	70
ritot Leak C	hecks		Leak rate, m³/m	0					Ū	110314	14.0	7-0
Pretes	1/16	/1m	Start Volume	3/9 . 71	7 2		i	3	15.776	ORSAT Leak Che		1 7 5
Post-te	est /-	11/19	Stop Volume	310 -713						Tedlar Bag ID		STRICO
Barta 8				7/2 -// 1			<u> </u>	<u> </u>	112 1700	Tegial ped in	14 566	<u>s Idu</u>
Ports &		me .			Delta H	Delta H	Gauge			Temperature	or.	" <u></u> "
Points	Clock	Test	DGM reading	Pitot Reading	Calc.	Actual	Vacuum			. omporedute	· · · · · · · · · · · · · · · · · · ·	
( 1/1	(24-hr)	(min)	(m³)	(mm H₂O)	(mm H₂O)		(mm H ₂ O)	Stack	DGM	Probe	Filter	Imp. Exit
17-17	1016	0_	3/3.7120	11.2.	62%	7.3	6.0	293	24	1/1	17	19
11	,	<del></del>	313 732	11,0	72.17	<b>E</b>	4.0	250	W.	1/2	/20	15
1\( \( \) \( \)	DIT-1-1	9	73 -2440	45. <b>25</b>	T212	ক্ত	6.5	240	de	10	ho	17
9			712 .9114	11.4.	10 37	60	60	25	24.	1/-	14	17
8	270/4	10	773.9718	166	40.4	60	70	291.	25	120	120	17
			3B.037/	/2 ^.	1,2 48	1/2	70	295.	75	117	12%	1/2
6	דרונו	15	374 1008	12.0.	62.43	62	70	29-	25		120.	16
·K	*	,	314.14.20	15:0.	42.47	to	70	29.5+		1/6	Va.	
4	ולכצבן	70 .	14 .1322	11.4.	10091	40	7.2	295.	25.	//R		16 ,
3	. L L	~~~	14.19n	11. 40	50.16	60	70	740	25	120	120	17
7	107 874	25	314 2526		6010	40.	7.0		25	120	./20 :	16
1	1.1	7.3	314.7220	1/1/10				res.	20	120.	120	16
5708	043	.30	314.7872	11.4	60/6	60	7-0	290	25	120	_20_	/>
21111	1-1-1-	1 V	71.7887									
3-10		26	• 10 3	7.								
3-12	124171	30	514.300	11.0.	1.24	-\$3.	6,0	240	25	17	Di	10
$-\frac{1}{\lambda}$		25	314.4550	1, 2.	57.24	-73	6.0	290	25	1/2	120	12
101	19011	35	314 - 5714	11.00	37.2	<del>, 1</del> 92	6.0	797	24	120	120	17
- 71	1		3/4-5782	11:4	100.34	60	70	295	25	170	120	7
_ 81	10JCH	40	314.1.413	1/1.6.	4030	40	7.0	290:	30	/20	120	107
	<i>(</i> ,		314- Jan	17.0.	6747	6	ラベ	290:	32	170	120	1/5
_ 6	1011	49	3/4/ TV14	17.0	62.42	62	7€	797:	25	170	107	11
_ \$1	7:		319.70	17.5	47.47	42	7.0	29-	25	117	1/2	16
4	(317	50	314.7400	12.0	67.47	92	7-0	295	25	1/7	121	15
31			314.9000		20.36	40	7.0	7470	25	1/3	120	1
2	1/10/2	55	319.0842	11.0	52,29	3	7-0	290	25	120	·	1/5
1	11		315,1720	Ilco'	57.W	13	70	290	n	10	14	18
END	11150	60	315 1490	,				- / -			1/6_	18
	111-3:											
		<u> </u>			<u>-</u>	<u> </u>		<del>- `-  </del>			<del>\</del>	
					r	Delta H		TS Stack	Tractor		)	
		Run Time	Total Volume	RMS Delta P	l	*Avg	High Vac.	Avg	Tmeter Avg		/	
		60	1500	3.393	f	\$1.92	7.0	292	700	1		
		<del></del>	4		L	1.1(	120	~151		1		
				<b>-</b> /						-	سسست ا	
am Leade	r / Date:	H.D.1	ORQUNA /1	8 DEC. 10	ļ		01	صحة VQC / Date:	E.C. F	ENNANOS	1/11/12	C 2014
			C SECTION A 1 1	- V J - V - (//	·		QA.	ACTIDATE:	V C I	MANAMAN DI	TA JAF	V 2027
			**						1	1 /		

2nd Floor, VAG Blog. Ortigas Ave., Greenhills Juan City, Metro Manila, Philippines - 863-6129• Fax (632) 727-9831

Department of Environment and Natural Resources (DENR)
ENVIRONMENTAL MANAGEMENT BUREAU
ACCREDITED THIRD PARTY TESTER



# ISOKINETIC FIELD DATA SHEET METHOD(s) <u>\$\sqrt{6}</u>

Facility N	ame	BMC	FORESTRY	CORPORAT	ton!	BC IL	P	Test Date	······································	19 nxr	FMBER.	1014
Address		KMG		ROAD IR	SAN. B	AGUIO (	ITY	Job Numbe	er	RITA C	GG C1	RIN 2
Source		11.08 N	IT INC. VERTI	CAL SHAFT	KIIN			Year Instal	led	12.61	<u> Ψφ (7)</u>	ICHN ZZ
Control de	evice	Cyclor	IE DUST CO	LECTOR_				Field Perso	onnel	ECF HPO	MSL-GATS	JBT
Contact P	Person	Ms. N		OMILBAN				Operators	Signature	The VIII	NA PULL	<u> </u>
Filter ID	Filter ID Tare(s) Barometric (mm Static Meterbox Nozzie Pitot Tues											
	<u> </u>		Hg)	(mm H ₂ O)	1D#		5.5.44.6			Pitot/Fu	<del></del>	Probe
<del></del>	<del> </del> -	<del></del>		3.4	BSF12	Gamma AATT J.	DeltaH @	ID#	Dia.	ID#	Cp	ID#
<b></b>	<del> </del>		45.7	<u> </u>		0.9754	46.4705	11/5-17-9	7.39	PT-72-4		1-12-457
Run No.	(4)	RIN 2		Initial	Salliple I	rain Leak Ch					Fyrites	
K Factor		<del></del>	Vanuum mm He			ini	terim	Τ	Final	Time	%O₂	%CO₂
Pitot Leak		920	Vacuum, mm Hg	150			ļ		1/1/2	1/84		7
Prete		3/118	Leak rate, m³/m	0	0					11726	1/4	フ
Post-	<del></del>	<u> </u>	Start Volume	311.20						ORSAT Leak Che		K
- Fasi-	test / p	4/40	Stop Volume	111 2	50				16. 210	Tediar Bag ID	124 566	S1R2 CO
Ports &	T	ime			Delta H	Delta H	Gauge	7				
Points	Clock	Test	DGM reading	Pitot Reading	Calc.	Actual	Vacuum	1		Temperature	oC .	1
	(24-hr)	(min)	(m³)	(mm H₂O)	(mm⋅H₂O)	(mm H₂O)	(mm H₂O)	Stack	DGM	Probe	Filter	Imp. Exit
A - 12	1/454	0	31- 2912	1100 :	44.12	81	1000	2m	24	1/-	1/7	/,
11	<u> </u>		7/5.3503	110	74.1~	(C)	6.0	740	24	1/8	//0	1 4
10	11to	5	215-4/12	/,, 0	24.12	57	400	240	24	121	12	3
0			315 -47 46	11.6	57.7	(8	10.0	220.	74	M	100	is
8	1/201	_10	31(151/2	12.0	59.04	حرم	6.6	234.	74	120	M	/3
_ 7			315.6012	/2.3	9.05	600	10	200	2	120	171	1 /3 /5
<u></u>	-ועסיר!	15	315.66 18	17.7	(9 09	حريا ن	Va. 6	CAC	2.0	120	14	
5			315-7VM	120	(9.09	60	60	295:	20	no	120	
4	17057	20	310.79.00	11.5	77.57	13	10	A		-//7	1/70	1/2
3			3K-XT 69	11.4	t75	, <b>4</b> 2	7,0	302	5C	1/7		
2	12/01-	25	315.9122	111	74.12	ĬŸ	7.0	رودر	. 26	116	<u>וארן</u> ראו	16
1	1		3K .97 10	11.0	SYIT	34	70	190	2/5	11/4	117	
STOP	1777	30	114.04.18									17
										7		
												1
B-1/2	170/2	-38	216.54.18	1.0 .	Culv	72	7,0	20	~	11/2	1:	+
11			375 10 19	110	14.12	74	70	290	24	1/3		+2
10	1nes	4835	316.16 m	ها ءال	t7.7	76	70	200	2	121	<del></del>	13
9		1	314.7180	11, 4	(77	<del>1</del> 3	70	270	25.		100	
8	173014	40	76-2076	12.0	6.5	60	70	24.	u	10	120	13
7		40	314.3547	120	59.09	60	7.0	250	24	10	120	13
G	mac	458	7/4.9/04	12.0	Gueg	40	3.0	240			120	-3
Š		12	9/4.47 74	17.0	(9,09	60	20	200	2×	no	171	A
4	ماجهرا	.50	7/1 -54 20	10	577	13	312 212	Pat	24	117	<u>50</u>	
3			3/1-1016	1,0	<u> </u>	38	30	296	u.	1/2		1
2	129 74	<b>5</b> 5	711 6682	1/,0	54.12	<u> </u>		Clo			//7_	1-7
7	, , , ,	-60	3/1, June	11.0.	[4,17		70	100	<i>H</i>	1/5	110	177
END	nece	61	314 2176	100	14.	54	4:17			112	117	K
	+	¥	717 3184									
		<u> </u>				<u>, l</u>					·	
					_	5				_		

Run Time Total Volume RMS Delta P 3.200

Delta H *Avg TS Stack Tmeter High Vac. Avg Avg 792.9v

Team Leader / Date: HIP_ORGVINA

QA/QC / Date:

Department of Environment and Natural Resources (DENR)
ENVIRONMENTAL MANAGEMENT BUREAU
ACCREDITED THIRD PARTY TESTER



## ISOKINETIC FIELD DATA SHEET METHOD(s) <u>S/G</u>

Facility Na	ame	PM	FORESTRY	CORME	TIPLE	BC-1	10	Test Date		11/2 1000	(mar) et a	2504
Address	<del>- ,</del>	Kirs		ROAD, IRLSA		GILO CIT	<u>+                                    </u>	Job Numbe	er		EMBER	2014 2011 3
Source		1 02 11	the Vertic			MO. 2	1	Year Install		1924 56	0 0	CVIUS
Control de	evice	01287			KILN	MQ. Z		Field Perso		150-1100	Mr. Cir	. Tu -
Contact P		Mg.	JARHY C	OLLECTOR POMILBAN				Operations		ECF HPO	MUSI CAS	JBT
			MAKH / C	TUMINSAN				Coperacions	oignature		42	
Filter ID	Та	re(s)	Barometric (mm	Static		Meterbox	<del>,</del>	No	2218	Pilot Fub	2	Probe
<u> </u>			Hg)	(mm H ₂ O)	!D#	Gamma	DeltaH @	ID#	Dia.	ID#	Ср	ID#
			643	7.6	BS1-T2	0.9754	46.4705	NS-12-4	1-39	18-12-4FT	0.84 SP	- 72-45
	<u> </u>				Sample T	rain Leak Ch	ecks	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		1	Fyrites	
Run No.	SIK	UN3		Initial		fni	terim		Final	Time	%O ₃	%CO2
K Factor		05	Vacuum, mm Hg	15.0			]		11.0	13424	19	7
Pitot Leak (	Checks		Leak rate, m³/m	6					40	14134	1/4	7
Prete	si //~	1/12	Start Volume	3/2 21	(70)			3/1	7.9392	CRSAT Leak Chec	k	<u> </u>
Post-I	test /2/	1/42	Stop Votume	3/8-83					1398	Tediar Bag ID	2 560	(1K3CO
Ports &	T	ime				5.3		· · · · · · · · · · · · · · · · · · ·		1		
Points	Clock	Test	DGM reading	Pitot Reading	Delta H Calc.	Delta H	Gauge			Temperature o	С	
1 01113	(24-hr)	(min)	(m ₂ )	(mm H₂O)		Actual (man H. O)	Vacuum	Charle 1	00:1	· · · · · · · · · · · · · · · · · · ·		lone Time
H - 10	707	(), ()	<del></del>	<del>                                  </del>	(mm H₂O)	(mm H ₂ O)	(mm H ₂ O)	Stack	DGM	Probe	Filter	Imp. Exit
11 - 17	HATTLE	<del>                                     </del>	316 2448	11.4	\$7.57	7.8	60		20	<del>[_//_</del>		19
10	1222	ظ	7/6 -9550	] ry	1547	<u>CZ</u>	4.0	295	T	//6	1/3	19
4	13+4	ط ا	3/1-9652		23.25	78	40	290	25	7-1	<u> </u>	19
	<u> </u>	10	714 8244	11.6	45× 16	B	600	<i>72</i> 0	25	1/201	<u>_bo</u> _	/3
13	134364	10	3/2.09.6	12.0	60.6	60	612	900	24	1/20	170	/3
7	<u> </u>	7.5-	79.1572	12.0	66.6	60	60	Jao	24	120	"W	7
<u></u>	134170	15	1/2-21.72	170	60.6	(00	70	300	U	n	Mg/	<u> </u>
<u>5</u>		0.6	2/4-2020	17 1	606	60	ラマ	.300	76	m	170	17
4	13104	20	3/4-3492	11.6	NX.B	- 57	70	300	h	hng	no	16
		76-	3/17-4009	11.4	Z3 B	St.	7.0	29-	K	no	17	/5
2	17 m2	25	317.4700		57.77	78	70	295	W	1/7	1/-	1/
1		- 2 4	37 -5318·	1/4	57.17	-7.8	70	795	U	119	'ık-	1/5
STOP	14031	_30 -	377.5918					34		<u> </u>		
	L.,											
B-12	14054	30	317 - 59 12	11.4	C1	<b>1</b> 3	7,0	7/00	21		167	16
			217 643°	11.4	57.57	18 18	21	24	ú,	142	1/3	16
10	14/04		97 7234	11.6	<b>付款</b>	28	20	295	Ú.	12	M	16
9			37.7340	11.6	3.82	77	70	30	ũ	10	170	17
B	14/54			12.0	60.5	60	700	300	W,	120	ho	/7
7			27.915	1.0	606	60	2.0	200	U	ÑI	171-	.17
6	142014		317-97-8	120	66.4	60	14.0	920	n	ha	ΠΥ	P
4	1		3/2-03 (00	12.0	604	40	2.0	700	24	1/2/	120	11
4	14204		312,0972	11.6	0.5	T.	300	30	Ú	117	100	16
3	1		312.1676	11.6	87. RL	92	3/2	291	4	1/7	-17-7	17
2	14350	55	72 . 27 88	11.4	\$757	¥	90	29-	U	110	119	1/2
Ĭ	1 7.122		Trs . 3090	1/4	TAG		200	29.1	u		1/10	17
END	14372	90	313.3749			17	<u> </u>		<u> </u>	16	# <del>*</del>	/-/
	1 . ( 7 ) *		7.0: 7.7.7							<del> </del>		
Landard Control	<u> </u>	<u> </u>								<b>'</b>		
	†	Due Time	Total Values	DAKO DAN- D	1	Delta H	Latin to the second	TS Stack	Tmeter	· / \		
		Run Time	Total Volume	RMS Delta P		Avg	High Vac.	Avg	Avg			

Run Time Total Volume RMS Delta P

Delta H High Vac. TS Stack Treater Avg Avg Avg 75.7

Team Leader / Date: H.P. OLATINA / 13 DEC. 24

QA/QC / Bale:

13DEC 24

2nd Floer, VAG Bldg, Origas Are., Greanhills San Augn City, Metro Manifa, Philippines Tels. 553-5116+ Fax (632) 727-2231 Department of Environment and Natural Resources (DENR)
EINTROUMENTAL ADMINISTRATION BUREAU
ACCREDITED THIRD PARTY TESTER



# METHOD 7 FLASK SAMPLE AND RECOVERY DATA

Facility Personnel Source **Test Date** Address

BMC TORRESTEY DECEMBER (AS C

Absorbing Solution Volume, ml	on Volu	me, n	로		25 ml
Heated Probe? (	check)	Yes .	<	Z	Heated Probe? (check) YesNo*If No, explain in "Remarks"
Filter Used? (c	heck)	Yes _	7	No	Filter Used? (check) YesNo*If No, explain in "Remarks"
Remarks					

1	Ċ									z	1
	\$1	6	6	S	3	4	L	_	P	Run Number	
	72		K3 1	Ĭ	]	R1		_+	<b>K</b> 1 1	Sample ID	] [ 
	3	1	1	3	ĵ.	[1]	Š	9	$1 \beta$		ĺ
	花	77	#,	77	7	ጟ	艿	72	BS 15257	Flask ID Number	
	ga	つれな	2775	316	07110	7212	2210	0110	つるつ	Flask Volume (ml)	
•			\	١	(	١	\	١	)	Leak Check (<0.4"Hg/min)	Sample Collection Information:  Barometric Pressure, Pbar (in Hg) 25.76/25.78/25.75  Date Performed: 13 DECEMBED 2021 By: ECF WED NGLOAS JBT
	24. 12	24 42	St 12	212	Je 12	24-10	24.70	C4.10	24.30	Evacuated Pressure Pgi (in Hg)	Sam ressure, Pt ed: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	~ <b>%</b>	1.33	1.33	- 25	64.	471	۲. کړ	1.46	1.40	Flask abs. Press inflal Pi, Pbar- Pgi (in Hy)	Sample Collection Information e, Pbar (in Hg) ユミテレ/ ら DECENISED 2004 By: ヒケド
	47	28.7	O'ER	74.L	79.V	29.7	79.0	34 m	24.)	Flask Temp	ion Info
•	701 70	10° -3°	31- 402 016R	29.6 752 .7	از، حدد	29.2 702 35	300 ] \	3,7 - J	<b>7</b> 51.Υ	Flask Temp, Ti (°K)	ormation ・ティー ソ: ドCF H
u <b>k</b>	\$ 16104	1700pl 38- 10t	1340's	1270"	· 1204	(00x)	12(D)	1040H	10/2/	Sample Collection Time ² 24hour	1 Information 25-76/25.78/25.75 4 By: ECF YEO MSLEAS JBT
	\	\	\	\	١	١	١	(		Shaken for 5min	18 JBI
		١	١	١	\	\	\	1	\	Shaken for 2min	Baromet Date Per
	173650	Oqual	Chite-	09274	653,01-	09154	091010	74400	09507-	Sample Final Recovered Pressure Time ³ 24hour Pgf (in Hg)	Sample Collection Infor Barometric Pressure, Pbar (in Hg) 25. Sp. Date Performed: 15, 200 By:61
	٥٠4	J-T	0,0	0.6	٥.٢	0.4	6.4	0 کی	6.2	Final Pressure Pgf (in Hg)	Sample Co Pbar (in Hg
	な、タ	77.4	べい	から	N. 4	2.26	2-20	4.22	25.6	Flask abs. Press Initial Pi, Pbar-Pgi (in Hg)	Sample Collection Information Pbar (in Hg) とち・今 ハ・こ な By:どた/ ド
	301	£05	٠ ٢ ٢	ی آ۔	30.3	30.7	3/16	31.2	30.1	Flask Temp °C	mation
	75. Et	30.7 30, .gr	3-4.35	304 - Y	373 -91	33 .85	37.7	754.35	303 Par	Flask Temp Tf	n Information  By:Ect, No. MSL
	(	1	1	1	1	\	١	\	)	Sample pH Adjusted (9 – 12)	A

Source Oxygen Concentration? 24/cr346

Was additional oxygen introduced to the Flask?

Yes

¹Pi = Pbar -- Pgi, Flask must be evacuated to within 3 inches of mercury (Hg) of the absolute pressure (barometric pressure).

²Additional oxygen should be introduced to the flask if the source O₂ is below 3%

³Flask must stand for 16 hours or greater after sampling before recovery can be performed.

Checked By: ..11:1 RODINAL ISE DEC 2014

Department of Environment and Natural Resources (DENR)
ENVIRONMENTAL MANAGEMENT BURGAU
ACCREDITED THIRD PARTY TESTER

# **ANNEX C**

# PERMIT TO OPERATE AND FACILITY PROCESS DATA





# Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU

Cordillera Administrative Region (CAR)

Cordillera Administrative Region DENR Compound, Gibraltar Baguio

City Tel No: (074) 446-64-40

Permit No: PTO-OL-CAR-2021-09103-R

Application Type: Renewal

Date Issued: 30 Oct 2021 Date Expiration: 30 Oct 2026

# PERMIT TO OPERATE Air Pollution Source and Control Installations

Pursuant to Part IV, Rule XIX of the Rules and Regulations of R.A. 8749, authority is hereby granted to:

**BMC Forestry Corporation (Irisan Lime Kiln)** 

Km. 5 Naguilian Road, Irisan, Baguio City, Benguet

subject to the following terms and conditions:

#### **TERMS AND CONDITIONS**

- 1. This Permit is issued for the permittee to operate the following facilities/equipment described below at the permittee's establishment located at the above-mentioned address (geolocation of entrance gate: 16.419336°, 120.557358°):
  - · Air Pollution Source Installations/Equipment:
    - Three (3) units Vertical Shaft Kiln (Cap.: 1.08 MT/hr; Fuel used: Regular Fuel Oil or Bunker Oil) for the purpose of calcinations of limestones (geolocation of kiln plant building 16.419198°, 120.557922°);
    - One (1) unit Jaw Crusher (Cap.: 1 MT/hr; With Conveyors) for the purpose of pulverizing the quicklimes;
      - One (1) unit Lime Storage Silo (Cap.: 90 MT);
    - One (1) unit Aboveground Fuel Storage Tank (Cap.: 60,000 liters; Fuel: Regular Fuel Oil or Bunker Oil; Vertical Cylinder);
    - Seven (7) units Aboveground Fuel Storage Tanks (Cap.: 15,000 liters each; Fuels: Regular Fuel Oil of Bunker Oil; Horizontal Cylinders);
    - One (1) unit Standby Generator Set (Cap.: 200 kW / 250 kVA; Make: SEALEY; Model: SLC250GF; S/N: 151118001; P.F. = 0.8; Silent-type): Alternator/Generator (Make: MBH; Model: XN274G; S/N: 31512006; Cap.: 180 kW / 225 kVA, continuous; P.F. = 0.8) primed by Diesel Engine (Make Chongqing Cummins; Model: NT855-GA; S/N: 41226017; Cap.: 257 kW @ 1800 RPM, max);
    - One (1) unit Standby Generator Set (Cap.: 75 kW; Open-type): Alternator/Generator (Make: Caterpillar) primed by Diesel Engine (Make: Isuzu; Model: E120; S/N: 202587); and
    - One (1) unit Standby Generator Set (Cap.: 200 kW / 250 kVA; Make: DCA; Model: 200DC; S/N: 8221-002; P.F. = 0.8; Open-type): Alternator/Generator (Make: DCA; Model: 200DC; S/N: A73281AC; Cap.: 200 kW / 250 kVA, standby; P.F. = 0.8) primed by Diesel Engine (Make: Cummins; Model: NT-855-G; S/N: 30104629) all generator sets are installed in the Powerhouse with geolocation of 16.419050°, 120.557809°; and
  - Air Pollution Control Facilities:
    - Three (3) units Gas Scrubber Systems (Cap.: 66 m3/min; Wet-type; 1-unit scrubber is exclusively connected to 1-unit shaft kiln); and
    - One (1) unit Dust Collector and Scrubber System (Cap.: 505.84 m3/min; composed of 1-unit 12,850 CFM Cyclone Dust Collector interconnected to 1-unit 5,000 CFM Cyclone Dust Collector with their bottom open and submerged on Water-bed Scrubber) for the purpose of controlling the airborne particulates/dusts from the sorting, crushing and loading areas (geolocation: 16.419132°, 120.557396°).
- 2. This Permit shall be valid until <u>SEPTEMBER 10, 2026</u> (PLEASE DISREGARD THE EXPIRATION DATE INDICATED ABOVE) unless suspended or revoked by the Bureau.
- The Bureau may modify the Permit by amending any existing condition or imposing any new or additional condition from the date of issuance (as indicated above) until its expiration on SEPTEMBER 10, 2026, subject to the provisions of Rule XIX of the Implementing Rules and Regulations (IRR) of the Republic Act No. 8749.

Filing Fee Permit Fee : Php 600.00 : Php 47300.00

O.R. No. : 1809914 & 1810468 O.R. No. : 1809914 & 1810468

Date : Oct. 11, 2021 Date : Oct. 11, 2021

Date: Oct. 11, 2021

Phn 10.00

O.R. No.: 1809914 & 1810468

- 4. An application for renewal of this Permit shall be filed not less than thirty (30) days before the expiry date the explry date SEPTEMBER 10, 2026.
- 5. This Permit shall be posted in a conspicuous location at the premises and shall be adequately framed or otherwise protected against damage.
- 6. The operation of any installation, process activity at this establishment that produces, generates, captures, treats, reduces, controls, emits, releases or disperse air pollutants without a valid Permit to Operate, or in violation of any of the conditions of this Permit, shall be subject to penalties pursuant to Rule LVI of the IRR of RA 8749.
- 7. The installations, processes or activities at this establishment shall be operated, conducted and managed by the permittee, and the associated plant and equipment shall be maintained and operated by the permittee, so that emissions of air pollutants are kept to a practicable minimum. The permittee shall be responsible for ensuring that any emissions of air pollutants from abnormal or unexpected events, do not cause air pollution in the surrounding air environment or have adverse effects on persons in that environment.
- 8. Without limiting the generality of the previous condition, the permittee shall ensure that the emissions from the permitted installations or processes comply with:
  - the National Emission Standards for Source Specific Air Pollutants as specified in Rule XXV of the IRR of RA 8749; and
  - the National Ambient Air Quality Standards for Source Specific Air Pollutants from Industrial Sources/Operations as specified in Rule XXVI of the IRR of RA 8749.
- 9. The permittee shall submit Self-Monitoring Reports to the Bureau on a quarterly basis in accordance with DENR Administrative Order No. 27 (Series of 2003) and any written instructions by the Bureau based on the following schedule:

Quarter	Coverage	Submission	Quarter	Coverage	Submission
First	Jan Mar.	1-15 Apr.	Third	Jul Sep.	1-15 Oct.
Second	Apr Jun.	1-15 Jul.	Fourth	Oct Dec.	1-15 Jan.

- 10. The permittee shall at all times has an accredited Pollution Control Officer (PCO) who shall be the day-by-day contact person between the Bureau and the establishment. The permittee shall ensure that the PCO is familiar with the operations and activities undertaken at the establishment, and the relevant emission sources and air pollution control devices and equipment. The permittee shall give the PCO the necessary authority to take or to direct corrective action in the event of a malfunction, accident, breakdown or other abnormal event that results in excessive emissions or emissions that do not comply with relevant Permit conditions, emission standards or ambient air quality standards.
- 11. The Permittee shall seek accreditation of his/her appointed/designated PCO pursuant to Section 8 of DAO 2014-02 (Revised Guidelines for Pollution Control Officer Accreditation).
- 12. In case of the resignation or termination of the services of the PCO, the Managing Head shall appoint/designate a new PCO. He/she shall inform, in writing, the concerned EMB Regional Office within fifteen (15) days and seek accreditation for the new PCO within thirty (30) days from the date of resignation or termination.
- 13. The permittee shall report in writing to the Bureau any malfunction, accident, breakdown, leak, spill or other abnormal or unexpected event which results in emissions to atmosphere that do not comply with relevant Permit conditions, emission standards or ambient quality standards, or in any other abnormal or unexpected releases of air pollutants. The report shall indicate the nature of the incident or event, its impact on emissions, the time period involved, and any actions or measures taken to control the emissions or releases, remedy any air pollution problems that may have occurred, and minimize the probability of reoccurrence of the event or the release.
- 14. The permittee shall at all times allow authorized or accredited officers of the Department or the Bureau entry to the establishment and access to any part of the establishment to conduct inspections, gather information, test emissions or take samples. The permittee and its personnel shall not obstruct such officers in the performance of these functions, and shall furnish any information or materials requested by them that is reasonable for them to have. The permittee shall obey any lawful instruction or direction given by the Department or the Bureau at all times.

Filing Fee Permit Fee PD1856 : Php 600.00 : Php 47300.00 · Php 10.00 O.R. No.: 1809914 & 1810468 O.R. No.: 1809914 & 1810468 O.R. No.: 1809914 & 1810468 Date : Oct. 11, 2021
Date : Oct. 11, 2021
Date : Oct. 11, 2021

15. The permittee shall not make or allow any alterations or modifications to operations, activities, installations, processes, plant or equipment at the establishment that might substantially change the nature or quantity of the associated emissions without obtaining the approval of the Bureau, including the obtaining of any necessary Permit to Operate.

#### **SPECIFIC CONDITION**

16. The permittee shall conduct emission testing for the three (3) units Vertical Shaft Kilns through a DENR accredited third party Source Emission Testing Firm twice each year for each year of operation with three (3) sampling runs to verify its compliance pursuant to Memorandum Circular No. 2007-003 (Policy on Compliance and Permitting for Industrial Facilities Relating to Air Quality). However, considering that each kiln is operated in a period of six (6) to eight (8) months, each kiln shall be subjected to two (2) emission testing within that period. The Test Reports will be a part of the requirements for the renewal of this Permit.

Recommended by:

Approved by:

ENGR. MARIE/PINA L. RODAS OIC-Chief, Clearance & Permitting Division

ICTORIA V. ABRERA Regional Director

· Phn 10 00

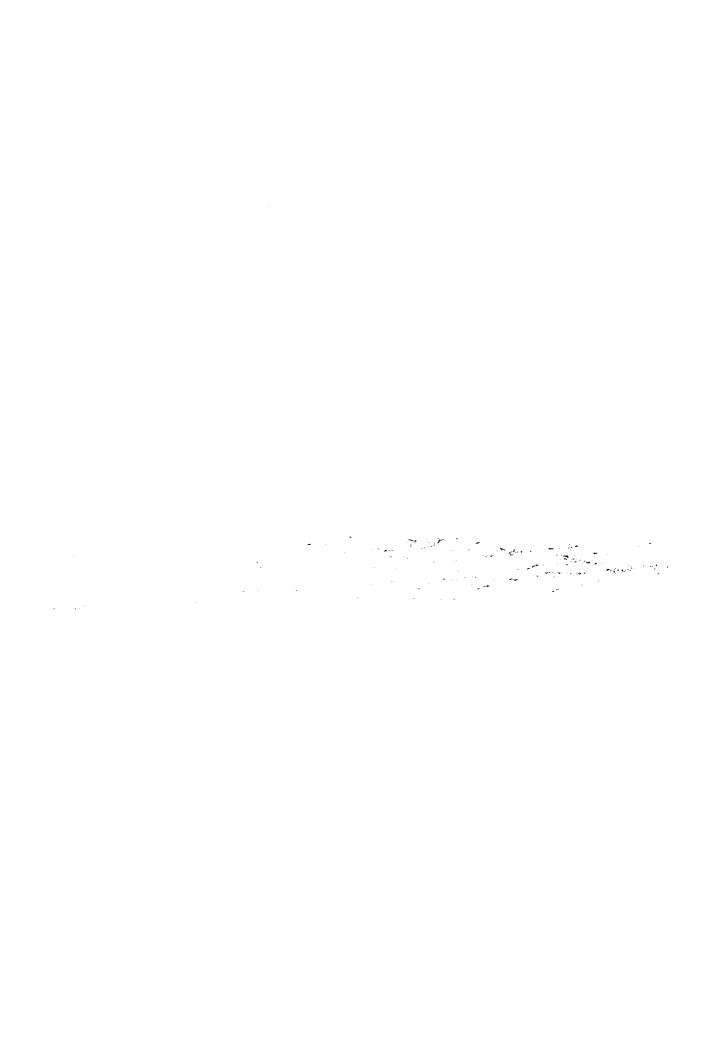
## **Annex**

			Fuel Burning		
ID	APSI	Capacity	Brand name	Type of Fuel	APCD
130795	Vertical Shaft Kiln No. 1	1.08 MT/hr/equipment	N/A	Regular Fuel Oil	Gas Scrubber No. 1 (66.0 m³/min)
130797	Vertical Shaft Kiln No. 2	1.08 MT/hr/equipment	N/A	Regular Fuel Oil	Gas Scrubber No. 2 (66.0 m ³ /min)
130799	Vertical Shaft Kiln No. 3	1.08 MT/hr/equipment	N/A	Regular Fuel Oil	Gas Scrubber No. 3 (66.0 m³/min)
140793	Standby Generator Set	250.0 kVA	DCA/CUMMINS	Diesel	
140794	Standby Generator Set	200.0 kW	SEALEY/Cummins	Diesel	
140795	Standby Generator Set	75.0 kW	Caterpillar/Isuzu	Diesel	

		Nor	r Fuel Burning		
ID	APSI	Capacity	Brand name	Material	APCD
130801	Jaw Crusher	1.0 MT/hr/equipment	N/A		Dust Collector Collector System (505.84 m ³ /min)
140796	Lime Storage Silo	90.0 MT	N/A		
140797	Fuer Storage Tank	60000.0 Liters	N/A		
140800	Aboveground/Overhead Fuel Storage Tank	15000.0 Liters	N/A		***
140801	Aboveground/Overhead Fuel Storage Tank	15000.0 liters	N/A		,
140802	Fuel Storage Tank	15000.0 liters	N/A		
	Aboveground/Overhead Fuel Storage Tank		N/A		_
1	Aboveground/Overhead Fuel Storage Tank		N/A	, , , , , , , , , , , , , , , , , , , ,	
	Aboveground/Overhead Fuel Storage Tank		N/A		
140806	Aboveground/Overhead Fuel Storage Tank	15000.0 liters	N/A		

		APCD-APSI Mapping	
(DI	APCD	Connected APSIs ( <name> (id))</name>	Connected APCDs ( <name> (id))</name>
19030	Gas Scrubber No. 1 (1)	Vertical Shaft Kiln No. 1 (4)	
19907	Gas Scrubber No. 2 (8)	Vertical Shaft Kiln No. 2 (5)	
19908	Gas Scrubber No. 3 (9)	Vertical Shaft Kiln No. 3 (6)	
19909	Dust Collector Collector System (10)	Jaw Crusher (7)	

Filing Fee Permit Fee PD1856 : Php 600.00 : Php 47300.00


· Phn 10 00

O.R. No. : 1809914 & 1810468 O.R. No. : 1809914 & 1810468 O.R. No. : 1809914 & 1810468 Date : Oct. 11, 2021 Date : Oct. 11, 2021 Date : Oct. 11, 2021

# MONITORING LOGSHEET

# **Facility Information**

Facility Name Facility Address Name of Pollution Control Officer Maintenance Supervisor / Engineer Telephone and Fax Number	BMC FORESTRY CORP. BC ILP KM.5 NAGUIYAN ROAD, IKISAN, BAGING CITY MS. NARHY C. POMILBAN \$45-7180 /09306480332
Sou	urce Description
Source Type Source ID Manufacturer / Brand of Equipment / Serial No. Equipment Capacity (BHp,MW,MT/hr) Date of Installation (month/year) Date of Modification (that may increase emissions) Operational Hours per Year (hrs/year) Operating rate (%)	VERTICAL STAFT KILN BAHAUST STACK ND, PUZZ 566 S1  1.00 MT/HR
Air Poll	ution Control Device
Is there an Air Pollution Control Device (APCD) attach source?  Type of APCD  Date of Installation  APCD parameters (flowrate,gpm,delta P,etc)  Is the APCD operating during emission sampling	Wet Gas Scrubber
<u>Fuel An</u>	alysis / Information
Type of Fuel used during emission sampling (%S) Original Fuel used Date of Fuel change Daily Fuel Consumption (Liters/day) Is the Fuel Analysis Available? Will the company provide the Fuel Analysis	V KTO  V KTO  YES NO YES NO
Please attach the following -Fuel Analysis -Permit to Operate -APCD Process Logsheet -Source Process Logsheet	Signature over printed name of Facility Representative  P CO



# **ANNEX D**

# **ANALYTICAL DATA**



Unit 201-204 & 406 Rizatina Annex Bldg. 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 Fax No. 8929-4824 Email: info@elarsi.com

CLIENT

BSI

**ADDRESS** 

2nd Flr., VAG Bldg Ortigas Ave. Greenhills San Juan, Metro Manila

Contact Number Nature of Sample/s

No. of Sample/s Submitted

8863-6129 Stationary Source Emission

Three (3)

Lab. Report No.

244456-SA

Date/Time Sampled

12-13-24 1100H 12-16-24

Date Received

Date Analyzed

12-18-24 to 12-23-24

Date Reported 12-23-24

## [REPORT OF ANALYSES]

Sample No.	Sample ID	PM (with acetone rinse), mg ^a	Analysis Date/Time
ES-2420808	PJ 24 566 S1R1	22.1	12-18-24 0830H
ES-2420809	PJ 24 566 S1R2	23.9	12-18-24 0830H
ES-2420810	PJ 24 566 S1R3	39.8	12-18-24 0830H

a - Method 5 / Gravimetric

Reference

CFR 40 Part 60 Revised as of December 20, 2020

Note: Date and time of sampling for "As Received, samples were provided by plient

Analyzed By

CHYLA DREXIE C. MORADA, RChT

Laboratory Chemical Technician PRC/Lic. No. 0009323

Checked By:

JACINTO, RCh Laboratory Supervisor

PRC Lic. No. 0010872

Certified Correct By:

OM. GOFREDO, JR., RCh

Laboratory Manager PRC Lic. No. 0009824

RECOGNIZED LABORATORY

C.R. No. 005/2024

PAR ACCREDITED TESTING LABORATORY PNS ISO/IEC 17025:2017 LA-2023-436A

Test results reflect the quality of the samples as received.

No portion of this report may be reproduced in any form without written authorization of ELARS: Inc. This report is not valid without the official dry seal and watermarks of the aboratory

Page 1 of 1 Page/s

EI_HRAFORM_10

## **ELARSI, INC.**

#### REAGENTS STANDARDIZATION for SOx ANALYSIS (EI-APA-14)

Project No.:

PJ 24 566

Date Received:

Lab Report No. 244457-54

Date & Time Analysis Started: Date & Time Analysis Finished:

#### Computations:

Standardization (	of 0.0100 ± 0.000	2 N BaCI2:		
Trial No.	Volume (ml)	Normality (N)	Volume (ml)	Normality (N)
	H₂SO₄	H₂SO₄	BaCl ₂	BaCl ₂
1	25	0.0009074085	24.5	0.01909601
2	2.5	0.0099074985	24.3	0.10192807
			Average	o. do151204

 $N_{BaCl2} = \frac{(N_{H2SO4})(V_{H2SO4})}{(N_{H2SO4})}$ 

St	andardization c	f 0.0100 ± 0.000	2 N H28O4:		
	Trial No.	Volume (ml)	Normality (N)	Volume (ml)	Normality (N)
		NaOH	NaOH	H₂SO₄	H ₂ SO ₄
	1	2 k7	0.010027744	25	0.0009074085
	⁻ 2	24-7	0.0100277414	25	0.0094074085
				Average	0.0099074085

andardization o	f NaOH:			
Trial No.	Weight (g)	Weight (g)	Volume (ml)	Normality (N)
·	NaOH	KHP	NaOH -	NaOH
1	40.0012	D-1004	49.1	0.900   12730
2	40.0012	10-1003	48.9	0.0100432098
			Average	0.0100277414

Weight of KHP  $N_{H2SO4} = \frac{1}{(0.20423)(V_{NaOH})}$ 

Analyzed by 366 (CM Date & Time 12/7/24 13004 Approved by Date & Time

Checked by Date & Time

Page 1 of 1

EI_LABAIRFORM_14(8)

## FLARSI, INC.

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

#### SOx (METHOD &/METHOD 8) ANALYTICAL DATA SHEET (EI-APA-14)

Where   Var   Cample values   Var   Average values of Estate used for cample   West    Computations:  PA Check (Abs @ 352nm)						Mass H2804 (mg)= (49.04) (N _{moss} ) (V _m				<u>v. 1</u>			
Sample No.   Sample ID   V.   V.	-		V _{tots} -	volume aliquot		Vec	average volume	ål titrant used fo	l .	) × mess l	-12604 (mg)		
Sample No.   Sample ID   View   View   View   Chinal Final State   Section		Vipaline	· volume of litrari	l used for IP/	4 biank				**		NO Mos Cassonius		
IPA Blank	San	nple No.	8	ample ID	V	٧.							
S24208   0] 14566 S R  310							(Final - initie			THE 2	Y	Mesa (rig)	
S-2420611 D1 24566 S1 R1 3 10		· · · · · · · · · · · · · · · · · · ·	#	'A Blank	100	10	0-0-0.0	0.0	0.0-0.0	0.0	0.00	4190	
No			<del> </del>	· · · · · · · · · · · · · · · · · · ·		<u>                                     </u>				,			
\$13 . R3 350 0.1 -0.0 0.1 0.1-0.0 0.1 0.10 2[.90	5-2	<del></del>	PJ 243	566 S/RI			0.4 -0.0	04	0.2-00	2.1	c-30	3.02	
MARKS:	1	<del></del>	·	122	240	16	0.3-0.0	0.3	6.2-0-0	0.2	6.25	1.95	
MARKS:	-	813		R3	<b>3</b> 50		0.1 -0.0	0-1	3.1-0.0	0.]	0.10	4-90	
MARKS:						.			_			8.73	
MARKS:			•.					• • •				4 2 4 6 5	
MARKS:									1				
										<i>;</i>	-		
									• .		<u> </u>	······································	
									<u> </u>				
								1					
	•											<del></del>	
								_			<del>  </del>		
			<u> </u>										
		·····				<del> </del>						· · · · · · · · · · · · · · · · · · ·	
			<del> </del>				·				╂╌╌┤		
		<del></del>	<del> </del>	· · · · · · · · · · · · · · · · · · ·		<b></b> -					<del>                                     </del>		
		<del></del>					<u> </u>	-	<u>.</u>		<del>                                     </del>		
						<b> </b>		<del></del>			<del>  </del>	<u> </u>	
		······································	<u> </u>								<del>  </del>		
#gent & Standard Code/s:				<u></u>	· · ·	]				·			
100 N Barlum Standard Solution: \$24 Olf		Indicator				=							
100 N Barkum Standard Solution: \$24 6  6  S24 6  6													

EI_LABAIRFORM_14(A)



Unit 201-204 & 406 Rizalina Annex Bldg. 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 Fax No. 8929-4824 Email: info@elarsi.com

CLIENT **ADDRESS**  BSI

2nd Flr., VAG Bldg Ortigas Ave. Greenhills

Lab. Report No.

: 244458-SA

San Juan, Metro Manila

Date/Time Sampled : 12-13-24 1100H Date Received 12-16-24

Contact Number

8863-6129

Date Analyzed

12-21-24 to 12-27-24

Nature of Sample/s

Stationary Source Emission

Date Reported

: 12-27-24

No. of Sample/s Submitted

: Ten (10)

[REPORT OF ANALYSES]

Sample No.	Sample ID	NO _x (as NO ₂ ) mg ^a	Analysis Date/Time
ES-2420814	PJ 24 566 S1R1T1	0.0268	12-21-24 0900H
ES-2420815	PJ 24 566 S1R1T2	0.0268	12-21-24 0900H
ES-2420816	PJ 24 566 S1R1T3	0.0183	12-21-24 0900H
ES-2420817	PJ 24 566 S1R2T1	0 0310	12-21-24 0900H
ES-2420818	PJ 24 566 S1R2T2	0.0211	12-21-24 0900H
ES-2420819	PJ 24 566 S1R2T3	0.0169	12-21-24 0900H
ES-2420820	PJ 24 566 S1R3T1	0.0211	12-21 <b>-24</b> 0900H
ES-2420821	PJ 24 566 S1R3T2	0.0352	12-21-24 0900H
ES-2420822	PJ 24 566 S1R3T3	_ 0.0183°	12 ₋ 21-24 0900H
ES-2420823	PJ 24 566 S1 Blank	< 0.0078	12-21 <b>-2</b> 4 0900H

^a - Method 7 / Phenoldisulfonic Acid

CFR 40 Appendix A-4 Part 60 as of May 31, 2023

Note: Date and time of sampling for "As Received" samples were provided by client.

Analyzed By:

CHYLA DREXIE G. MORADA, RChT

Laboratory Chemical Technician PRC Lic. No. 0009323

Checked By:

Laboratory Supervisor PRC Lic. No. 0010872

Certified Correct By.

RENATOM. GOFREDO, JR., RCh

Laboratory Manager PRC Lic. No. 0009824

Test results reflect the quality of the samples as received.

No portion of this report may be reproduced in any form without written authorization of ELARSI, Inc.

This report is not valid without the official dry seal and watermarks of the laboratory

DENR RECOGNIZED LABORATORY

C.R. No. 005/2024

Page 1 of 1 Page/s

ELHRAFORM_10

REQUEST FOR ANALYSIS / CHAIN OF CUSTODY FORM

Company of the BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTION OF THE BRYTH'S SORVER SECTIO	Unit 201-204 & 406 Rizalina Annex Bidg. 1677 Quezon Avenue, Quezon City	. 1677 Quezon Avenue, (	Quezon City							T
Submitted by Parison of Sample (Parison Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No. 16 Contact No.	Tel. No 8927-77-15 , 8994-3443 * Fax No	lo. 8929-48-24 * E-mail: i	nto@elarsi.com			THE THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF	· ·	_	) : -	
Person: Reviewed by Political No. 14 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15 Contact No. 15		t chota		***************************************	Submitted by:	M.V.CA	2 K	Date/Time	7-10 -3	88
The court of Sample identification Analyses Requested Method of Analyses Page 18	Contact Person :	WASH MINI		音気で	Reviewed by:		1	Date/Time	Mec av 110	
The Union Receipt Section Class Available Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Cont	urier Prok-up	Others	Nature of Sample (PLEASE) Water	CHECK)	Approved by:	(Printed Name/Signature)	- 1	Date/Tinse.	= mymp	₹
Times   Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of	3.1	ner Type itc Bottle sts/Sterile Glass	1 1 1	Water Air Others						<u> </u>
ONNE SIMPLE Identification Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheory of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Requested Matheor of Analyses Reputation Matheory of Analyses Requested Matheory of Analy	Working Days)	7.24K Bag ars ne (7.12 Working Days)	Alfack Source Emission Ambient Air Sample Work Env Measurement	তু						M-1
Sample identification Analyses Requested Method of Analyses Sample of Samples Samples Samples of Samples Samples of Samples Samples of Samples Samples of Samples Samples of Samples Samples of Samples Samples of Samples Samples of Samples Samples of Samples Samples of Samples Samples of Samples Samples of Samples Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Samples of Sampl	1.14B. USE ONLY		Olhers	Others			1	R LAB USE O	17 kg	T
8-10 SIRA 1904 3 GX - In bland. 19 K2 SIRTH	Sample Identification	Analyses Requested	Method Of Analysis	Date of Sampling/Time	No. of Samples	Remarks	Caruficate V SeriffRaporters	Vodesheel COV	Sent Sample Disposed	
9-10 SIRTH COX Phenoldhulliant of W	m 92-54			DE 824						
13 KZ SIRTH BOTH FOUNDAMENT S  29 SIRTH BOTH PROPERTY SAMPLE SAMPLE HOUNDAMENT SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	WARRE TO CITY		-	100		The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon				- T-3
13 KD - Ibalivin Thorm - Ibalivin Thorm - 192 KD - Ibalivin Thorm - 192 KD - Ibalivin Thorm - 192 KD - Ibalivin Thorm - 192 KD - Ibalivin Thorm - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin - 192 KD - Ibalivin -	220	M	- brandle mc		<u> </u>	CON - The Driendy				1 1
SIRTH WEINTER HIME HIME TO THE STATE TO THE		5	- trail of thorn-		3					
Blank Blank one same:		Avenue	hit with		7					
- Phenyldisultunic	SIR									
	\$ 100	XOX	- Phenoldwallant		8					· • • • • • • • • • • • • • • • • • • •
Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Biank  Bi			100			R. Callino				<del>- 1 - 1</del>
BIVITY  1 USE ORE IT COCE FOR EACH MATURE OF SAMPLE	63					Andrews - Walter and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon				· · · · · · · · · · · · · · · · · · ·
BIMIN BINGE ON SAMPLE.										<del>"</del>
BIMIK 1 USE ONE! I COC FOR EACH MATURE OF SAMPLE	76							-		
1 USE ONE I TOCO FOR EACH MATURE OF SAMPLE	Blank									
	1 USE ONE (1) GOC FOR EACH NATURE OF SAMPLE			+ *						

Senal No. 2139



# CO MEASUREMENT DATA

		i ediar .	Bag Samples		
Facility:	BMC FORESTRY COR	PORATION	Analysis Date:	December-16, 2024	<u> </u>
Sample Date:	December 13, 2024		Analyzed By:	JOSE ARIAY M. SANTL	AGO
Collected By:	ECF, HPO, MSL, JBT		Signature:	A TAN	400
CO Analyzer		THE TAX SALE			
Manufacturer		FUJI EI	<b>LECTRIC</b>	CO., LTD.	
Analyzer Model					
Serial Number		ZPA	ABBY2 / N	[2C0833	
Analyzer Range					
Setting, ppm			0 - 1000		
Analyzer Span					
Value, ppm	1		800		
<del></del>		Pre-Measure	ment Calibration		*
Time		Gas Value	CO response		
0800H	Cylinder No.	(ppm)	(ppm)	% Difference*	Status
Zero Gas	N2 240403	0	0	(% span) 0.0000	(≤ 2% span)
Certified Gas 1	D962229	200	201	-0.1250	Passed
Certified Gas 2	D962122	500	499	0.1250	Passed
Certified Gas 3	D962087	. 800	800	0.0000	Passed Passed
'((Gas Value-CO'R	esponse) /Span Value))x 100%			0.0000	Fassed
		CO Tedlar	Bag Samples		-
Time	Tedlar Bag	CO		Tedlar Bag	60
1 mie	ID No.	(ppm)	Time	ID No.	CO
0900H	PJ24-566 S1R1	25		ID NO.	(ppm)
091 <b>0</b> H	PJ24-566 S1R2	26			
0920H	PJ24-566 S1R3	15			
		<u> </u>			
	Pos	t-Measurement (	Calibration Drift	Check	
Time	Gas Value	Pre-Meas	Post-Meas	% Drift**	Status ¹
	(ppm)	CO Response	CO Response	(% span)	(≤ 10 % span)
1800H		(ppm)	(ppm		(= 10 / v spain)
Zero Gas	0	0	0	0.0000	Passed
Certified Gas 1	200	201	198	0.3750	Passed
Certified Gas 2 Certified Gas 3	500	499	495	0.5000	Passed
	800	800	797	0.3750	Passed
	Pre-Meas Cal-Co Resp for the				<del>-                                    </del>
QA/QC Check	:: CompletenessLegibility_	Accuracy/	Specifications	Reasonablenessover 8	haura /
		,		Over 8	iiouto .
	——————————————————————————————————————				
Checked By:	JANS CHOLO E. CHUA	-	04/0Cm-+- =	ENVIDOR	<del></del>
	Signature Over Printed Name		QA/QC/Date:	EDINDO C. FERNANDO	1
	S S. O. L. LIMOG FIGHIC			Signature Over Brinted Name	
				/ /	

# **ANNEX E**

# **EQUIPMENT CALIBRATION CERTIFICATES**



#### METER BOX POST-TEST CALIBRATION CHECK

#### **USEPA Approved Alternative Method ALT-009**

BMC FORESTRY CORP. ILP IRISAN, BAGUIO CITY VERTICAL SHAFT KILN NO. 2

#### Meter Box #: 2

Calibration
5-point orifice calibration

Date 25-Nov-24 كH_@ 46.4705

Y 0.9754

Calculate  $Y_{\text{qa}}$  for each test run using the following equation:

$$Y_{qa} = \frac{\theta}{V_m} \sqrt{\frac{0.0011503T_m}{\Delta H_{20} \left(P_b + \frac{\Delta H_{avg}}{13.6}\right)} \times \frac{29}{M_d}} \times \left(\sqrt{\Delta H}\right)_{avg}$$

where:

 $\begin{array}{lll} Y_{qa} & \text{dry gas meter calibration check, value dimensionless.} \\ \theta & \text{total run time, min.} \\ V_m & \text{total sample volume measured by dry gas meter, m}^3. \\ T_m & \text{absolute average dry gas meter temp., }^{\circ}K. \\ P_b & \text{barometric pressure, mm Hg.} \\ 0.0011503 & =(760/298) (0.75 \times 0.0238)^2 (\text{mm Hg/}^{\circ}K) & (\text{m}^3/\text{min})^2 \\ \Delta H_{\text{avg}} & \text{average orifice meter differential, mm H}_2\text{O.} \\ \Delta H_{\text{@}} & \text{orifice meter calibration coefficient, mm H}_2\text{O.} \\ dry & \text{molecular weight of stack gas, gm/gm mole.} \\ 29 & \text{dry molecular weight of air, gm/gm mole.} \\ 13.6 & \text{specific gravity of mercury.} \end{array}$ 

After each test run series, do the following:

Average the three or more values of  $Y_{qa}$  obtained from the test run series and compare this average with the dry gas meter calibration factor, Y. The average  $Y_{qa}$  must be within  $\pm 5\%$  of Y.

If the average  $Y_{qq}$  does not meet the  $\pm 5\%$  criterion, recalibrate the meter over the run full range of orifice settings, as detailed in Method 5. Then follow the subsequent procedure in Method 5.

- INCICIO	BOX POST-TEST CALIBRATION	DIA CHECK	
	Run 1	Run 2	Run 3
Meter Box	Meter Box #: 2	Meter Box #: 2	Meter Box #: 2
Time, min θ	60.0	60.0	60.0
Total volume, dry m³ V _m	1.5500	1.5208	1.5350
Average meter temp, ^o C	24.83	25.00	25.75
Average meter temp, ^O K T _m	297.98	298.15	298.90
Barometric pressure, mm Hg P _b	654.30	654.70	654.30
∆H _{avg} , mm H₂O	59.917	57.167	58.667
∆H _@ , mm H₂O		46.4705	
Mol. wt. of stack gas, g/g-mole M _d	29.64	29.64	29.64
QA gamma Y _{qa}	0.9917	0.9872	0.9925
Average Yqa		0.9905	
Meter box gamma Y		0.9754	
Difference to be within 5%		1.5% - PASS	



#### TRAM NO. 2 - ORTHOAL ORTHOE

#### USING FIVE CRITICAL ORIFICES

Console M Number	odel 	XC572- QC6V	Date	25 <b>-</b> No	ov-24	Time	13	00H	Std Temp		298	°K	
Console Se Number	erial	1404036	E	Barometric	Press <b>un</b>		755.9	mm Hg	Std Press	i	760	mm Hg	
DGM Mode Number	I	G1.6	Theoretical	Critical Va	cuum		357r	mm Hg or	14in Hg	K,	0.3858		
DGM Seria Number	l	2012- 014438	Calibration	Technician			ŀ	IPO	Previous calibratio	n	0.9	873	
		Met	ering Console	<u></u>					Critic	al Orifice		<u> </u>	
Elapsed	DGM Orifice		Volume		Outlet	Temp.		Coef.	Ambien	t Temp.	Critical	Actual Vacuur	
Time	ΔH	Initial	Final	Dif	Initial	Final	Serial	x10⁴	Initial	Final	Vacuum	1-2in	
θ	P _m	V _m ,	V _m ,	Vm	<b>t</b> m	t _{mt}	#	К'	tamo	lamb	in Hg or	or 25- 50mm	
min	mm H₂O	m³	m³	>0.14m³	³C	°C	- Alexandra Annania	metric units	°C	°C	mm Hg	> Critica	
17.0	10.0	300.1000	300.2640	0.164	25.0	25.0	40	2.09977	27.1	27.6	15.0	17.0	
11.0	20.0	300.2750	300.4312	0.156	25.0	25.0	48	3.10936	27.6	26.8	15.0	17.0	
9.0	32.0	300.4388	300.6048	0.166	25.0	25.0	55	4.05110	26.8	26.3	15.0	16.0	
7.0	54.0	300.6102	300.7768	~ <del>0</del> .167	25.0	25.0	63	5.20716	26.3	26.4	15.0	16.0	
5.0	94.0	300 7850	300.9456	0.161	25.0	25.0	73	7.14867	_ 26.4	26.4	1.5.0	16.0	
	Standa	rdized Data						Dry Gas M	eter				
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Cal	ibration Fa	ctor	Fic	wrate			 ∆H⊉		
Dry Gas	Meter	Critical	Orifice	Va	lue	Var'n		& Corr	0.0212 1	Variation			
V _{m(std)}	Q _{m(sta)}	Vorisio	Q _{cr(std)}			ΔY	Q _r ,	(atd)(corr)	الا:	 Н _Ф		———— VHa	
$m^3$	m³/min	$m^3$	m³/min		Y	±2%	m	³/min	mm	H ₂ O		.አ.ህ∺ _@ ±5.1mm Hg	
0,1606	0.0094	0.1557	0.0092	0.9	692	-0.64	0.	0092	51.8	3778	4	1.4	
0.1532	0.0139	0.1492	0.0136	0.9	743	-0.11	0.	0136	47.3	3852	d	9	
0.1630	0.0181	0.1592	0.0177	0.9	772	0.19	0.	0177	44.6	6711	_	1.8	
0.1639	0.0234	0.1592	0.0227	0.9	717	-0.38	0.	0227	45.	7906	-4	0.7	
0.1586	0.0317	0.1561	0.0312	0.9	845	0.94	0.	0312	42.0	6276	-:	3.8	
	***************************************	•	Y Average	0.9	754		ΔН	e Average	46.4	4705			
		l cer	tify that the ab	ove Dry Gas	s Meter was	s calibrated	-in-arcord	ance with U	SEPA Meth	od 5.			
			1/2	/					<del></del>				

2rd Floor VAG Bidg Ortigas Ave., Greenhilis San Juan City, Metro Mania, Philippine Fels. (632) 863-4129: Fax (632) 727-9831 Email: <u>chilibris any com ch</u>





#### TEAM NO. 2 - ORBIGAR USERDE

# DETERMINATION OF ORIFICE COEFFICIENT K'

Consol	e Model I	Number	XC572-QC6V	Date	25-	Nov-24	Time	09	15H	Std Temp	298.15	°К	
Consol	le Serial N	Number	1404036	Barometric I	Pressure			755.9	mm Hg	Std Press	760	mm Hg	
DGM M	odel Nun	nber	G1.6	Theoretical Vacuum	Critical		357mm	Hg or	14in Hg	K,	0.3	3858	
DGM S	erial Num	iber	2012-014438	Calibration 1	Technicia	ın	I f Males and the desired and the second and the se	HPO		Previous calibration		0.9873	
			Metering Cons	ole	·					Critical O	rifice		
	Elap sed	DGM Orific e	Volu	me	Outlet	Temp			oient mp	Critical Vacuu	Actual Vacuu m	Coeff.	Diff
Run	Time	ΔH	Initial	Final	Initia	Fina	Orific e	Initia	Final	m	1-2in or	x10 ⁴	%
	0 min	P _m mm H ₂ O	V _{mi} m³	V _{mf} m ³	t _m , °C	t _m ,	Ωl	t _{imo}	t _{omb}	in Hg or mm Hg	25- 50mm >	ĸ.	+0.5
1	5	10	299.1000	299.1472	24.0	24.0	40	27.3	27.2	15	Critical 17		10.0
2	5	10	299.1472	299.1944	24.0	24.0	40	27.2	27.2	15	17	2.00986	0.00
		-	. • .	<u></u>	<u> </u>				1		Average	2.09969	0.00
1	5	20 .	299.1980	299.2676	24.0	24.0	48	27.2	27.5	15	17	2.09977	
2	5	20	299.2676	299.3376	24.0	24.0	48	27.5	27.6	16	17	3.09993	0.30
	-l			L <u></u>	· .	<b>!</b>		-	<u> </u>		Average	3 11878	0.30
1	5	32	299.3400	299.4308	24.0	24.0	55	27.6	27.5	15	17	3.10936	2.00
2	5	32	299.4308	299.5218	24.0	25.0	55	27.5	27.5	15	17	4.05022 4.05198	0.02
		***	<del>'                                    </del>							V440-1	Average	4.05110	0.02
1	5	54	299.5300	299.6472	25.0	25.0	63	27.5	27.5	15	16	5.22096	0.26
2	5	54	299.6472	299.7638	25.0	25.0	63	27.4	27.4	15	16	5.19337	0.26
	,								La,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Average	5.20716	0.20
1	5	94	299.7710	299.9308	25.0	25.0	73	27.2	27.2	15	16	7.14266	0.08
2	5	94	299.9308	300.0906	25.0	24.0	73	27.2	27.2	15	16	7.15467	0.08
											Average	7.14867	0.33

Calibrated By:

Halcy Lemon P. Orquina

Signature over Printed Name

Checked By:

Manz L. Agdalpen

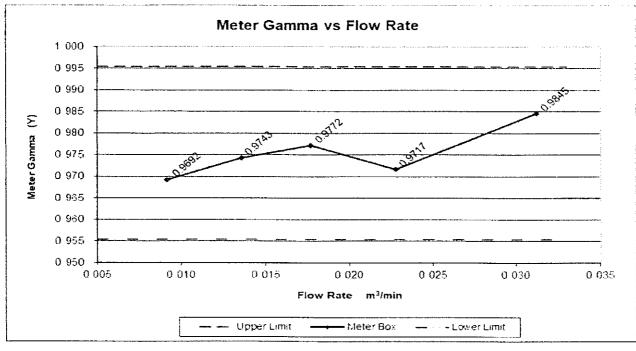
Signature over Printed Name

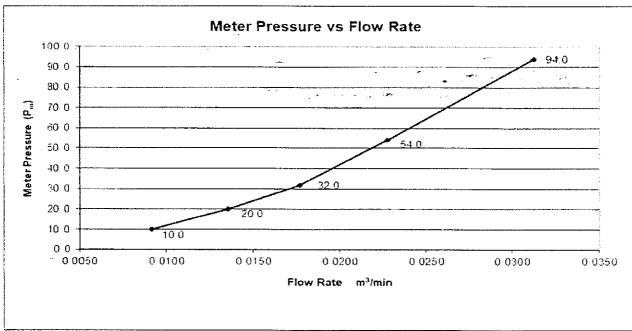
QA/QC:

Edindo C. Fernando

Signature over Printed Name

Date:


25 November 2024


2"Floor, VAG Bidg, Ortigas Ave., Greenhilfs San Juan City, Metro Manua, Philippine Tels, (632) 863-6129- Fax (632) 727-9831 Email: act (2015 serv.com.pp.



Department of Environment and Natural Resources (DENR)
FINARONMENTAL MANAGEMENT BUREAU
ACCREDITED THIRD PARTY TESTER
Contificate No: SAT NO. 2022-72







Calibrated By:

Haley Lemon P. Orquina
Signature over Princed Name

Checked By:

Manz L. Agdalpen
Signature over Printed Name

QA/QC:

Edindo C/Fernando Signature over Printed Name

Date:

25 November 2024

2rd Floor, VAG Bidgi Ortigas Avel, Greenhilis San Juan City, Metro Mania, Philippine Teis (632) 863-6129- Fax (622) 727-9831 Email: adv@bs.euv.com.ch





# POST TEST THERMOCOUPLE CALIBRATION CHECK

EPA Approved Alternative Method (Alt-011) Single Point Calibration

Thermocouple ID	TMC- T2	Probe / Pitot Tube ID	SPA-6FT-2 / PT-6FT-2
Personnel	HPO, MSL, CAS	Date	25 November 2024

Sensor	Calibrated By:	Reference Temp. °C ¹	Thermocouple Temp. °C	Difference ² ( within <u>+</u> 1°C )	Continuity Check ³	PASS / FAIL
PROBE	НРО	30.1	30	0.1	ок	PASSED
FILTER	НРО	30.2	30	0.2	ок	PASSED
STACK	НРО	30.2	30	0.2	ок :	PASSED
EXIT	НРО	30.1	30	0.1	ок	PASSED
OVEN	HPO	30.2	30	0.2	ОК	PASSED
AUX.	HPO	30.1	30	0.1	óк	PASSED

¹ Reference Thermometer is mercury-in-glass and ASTM certified, unless otherwise noted.

Calibrated By:

Haley Lemon P. Orquina
Signature over Printed Name

4-emon P. Orquina Checked By:

Manz L. Agdalpen Signature over Printed Name

QA/QC:

Edindo C/Fernando Signature over Printed Name

do

25 November 2024

2rd Floor, VAG Bidg, Onigas Ave., Greennills San JuanCity Mero Manila Philippines Tels. (632) 853-6129: Fax (632) 727-9831 Email: <u>rfo@csiers.comph</u>



Date:

²After each test run series, check the accuracy (and, hence, the calibration) of each thermocouple system at ambient temperature. The temperature of the thermocouple and reference thermometers shall agree with  $\pm$  1 °C.

³The continuity check involves subjecting the tip of the thermocouple to a change in temperature to check the crimps, loose connections. Thermocouples with crimps and loose connections will not immediately respond to temperature changes, and those with wrong connections will show an opposite change in temperature.



## TEMPERATURE DISPLAY CALIBRATION

Meter Console No.	BSI - T2	Personnel	HPO, MSL, CAS
Reference Calibration Maker	PIE	Pretest	ОК
Model	520B	Posttest	OK
Serial No.	223734	Date	25 Nov 2024

TC CHANNEL ID	Reference Temp. 1, °C	Temp. Reading 1, °C	Criteria	Criteria Met	Reference Temp. 2, °C	Temp. Reading 1, °C	Criteria	Criteria Met
PROBE	0	0	0	Y	50	49	0.310	Υ
FILTER	0	0	0	Υ	50	49	0.310	Y
EXIT	0	0	0	Υ	50	49	0.310	Y
AUX	0	0	0	Υ	50	49	0.310	Y
STACK	0	0	0	Y	50	48	0.619	Υ
STACK	0	0	0	Y	250	247	0.574	Υ

TC CHANNEL ID	Reference Temp. 3, °C	Temp. Reading 1, °C	Criteria	Criteria Met	Reference Temp. 4, °C	Temp. Reading 1, °C	Criteria	Criteria Met
PROBE	100	99	0.268	Y	150	148	0.473	Υ
FILTER	100	99	0.268	Υ	150	148	0.473	Y
EXIT	100	99.	0.268	- Y	150	149	0.236	Y
AUX	100	99	0.268	Y	150	149	0.236	Υ
STACK	100	99	0.268	Υ	150	149	0.236	Y
STACK	350	349	0.161	Y	450	447	0.415	Y

CRITERIA: Percent difference between the Reference Temperature and the average Temperature can be only ± 1.5%°K.

EQUATION: [(Ref. Temp. + 273)- (Temp. Reading + 273)] x 100 (Ref.Temp. +273)

Calibrated By:

Halcy Lemon P. Orquina
Signature over Printed Name

Checked By:

Manz L. Agdalpen

Signature over Printed Name

QA/QC:

Edindo C. Feynando

Signature over Printed Name

Date:

25 November 2024



# TEMPERATURE SENSOR CALIBRATION DATA SHEET

Date	25 November 2024	Thermocouple No.	TMC – T2
Personnel	HPO, MSL, CAS	Reference	AlcoholThermometer

Date	Reference Point Number	Source (Specify)	Reference Thermometer Temp., °C	Thermocouple Display Temp., °C	Absolute Temperature Difference. %
	1	HOT WATER	99.9	100	0.1
25 Nov 2024	2	AMBIENT	28.3	28	0.3
	3	ICE WATER	2	2	0
	1	HOT WATER	99.8	100	0.2
18 Jan 2024	2	AMBIENT	28.1	28	0.1
	3	ICE WATER	2.2	2	0.2
	1	HOT WATER	99.2	99	0.2
30 Jun 2023	2	AMBIENT	28.1	28	0.1
	3	ICE WATER	2.2	2	0.2

Ca	lih	ra	ted	By	•
~ 4	150		u.u		•

Haley Lemon P. Orquina Signature over Printed Name

Checked By:

Manz L. Agdalpen Signature over Printed Name

QA/QC:

Edindo C. Pernando Signature over Printed Name

Date:

25 November 2024



#### TYPE-S PITOT TUBE CALIBRATION

PITOT TUBE ID	PT-T2-4FT	Probe Assembly ID	SPA- T2-4FT
Calibrated by:	HPO, MSL, CAS	Date Calibrated	26 November 2024

PARAMETER	VALUE	ALLOWABLE RANGE
Assembly Level	YES	YES
Holes Damaged	NO	NO
Obstructed	NO	NO
αΙ	0	-10°<α1<+10°
α2	0	-10°<α2<+10°
β1	1	-5°<β1<+5°
β2	0	-5°<β2<+5°
Y	1	
θ	1	
A	0.905	For ¼" OD, 0.526 to 0.750" For ³ / ₈ " OD, 0.788 to 1.125"
Z =A sin Y	0.016	Z = ≦ 0.125"
$W = A \sin \theta$	0.016	W = <u>≤</u> 0.031"
P _A	0.469	For ¼" OD, 0.263 to 0.375" For ³ / ₈ " OD, 0.394 to 0.563"
PB	0.474	For ¼" OD, 0.263 to 0.375"  For ¾" OD, 0.394 to 0.563"
P _A - P _B	-0.005	-0.063 to 0.063"
Dī	0.318	0.188 to 0.375"

Where:  $\alpha 1\& \alpha 2$  = angles between the pitot tube opening and the horizontal plane when viewed from the end  $\beta 1\&\beta 2$  = angles between the pitot tube opening and the horizontal plane when viewed from the side

Y= the angle measured when calculating the difference in length between the two pitot tube legs  $\theta$  = the angle measured when calculating the distance that the pitot tubes are rotated

A = the distance between the tips of the pitot tube opening

Z =The difference in length between the two pitot tube legs

W= the distance that the pitot tube legs are rotated

 $P_A\&P_{B=}$  vertical distance between each pitot tube opening plane & the center line of the pitot tube  $D_T$ = the tube external diameter

#### Certification

I certify that the Type S pitot tube meets or exceeds all specifications, criteria and / or applicable design features and is hereby assigned a pitot tube calibration factor (Cp) of 0.84.

Calibrated By:	Halcy Lemon P. Orquina Signature over Printed Name	Checked By:	Manz L. Agdalpen Signature over Printed Name
QA/QC:	Edindo C Fernando Signature over Printed Name	Date:	26 November 2024



# **NOZZLE CALIBRATION SHEET**

Date	26 November 2024	Personnel	HPO, MSL CAS	
Nozzle Box ID	NS – T2	Nozzle Type	Stainless Steel	T

ID	D ₁ (mm)	D₂(mm)	D₃(mm)	<b>D</b> (mm)	Average (mm)
T2 NS-1	3.06	3.04	3.02	0.04	3.04
T2 NS-2	4.09	4.09	4.09	0.00	4.09
T2 NS-3	5.90	5.87	5.90	0.02	5.89
T2 NS-4	7.90	7.88	. 7.90	0.01	7.89
T2 NS-5	9.35	9.34	9.36	0.02	9.35
T2 NS-6	10.90	10.90	10.90	-0.00	10.90
T2 NS-7	12.41	12.40	12.39	0.00	12.40

D = Maximum difference in any two measurements. Tolerance = 0.1 mm; Average = Average of D_{1,2,3}

Calibrated By:

Halcy Lemon P. Orquina

Signature over Printed Name

Checked By:

Manz L. Agdalpen Signature over Printed Name

QA/QC:

Edindo C. Fernando

Signature over Printed Name

Date:

26 November 2024



# FLASK CALIBRATION SHEET

Date	26 November 2024	Personnel	HPO, MSL, CAS
FLASK BOX ID	T2- M7 Flask-A	Flask Type	Glass

FLASK ID	1 st Volume(mL)	2 nd Volume(mL)	3 rd Volume(mL)	Average Volume (mL)
BSI T2 - F1	2231	2228	2231	2230
BSIT2 - F2	2233	2232	2225	2230
BSIT2 - F3	2248	2250	2252	2250
BSI T2 - F4	2230	2228	2232	2230
BSI T2 - F5	2229	2231	2230	2230
BSI T2 - F6	2246	2251	2253	2250 -
BSI T2 - F7	2229	2229	2232	2230
BSI T2 - F8	2238	2241	2241	2240
BSI T2 – F9	2247	2251	2252	2250

*Note: The flask volumes are measured within +/- 10mL. All calibrations are at room temperature.

Calibrated By:

Haley Lemon P. Orquina Signature over Printed Name Checked By:

Manz L. Agdalpen Signature over Printed Name

QA/QC:

Edindo C. Ferriando Signature over Printed/Name

Date:

26 November 2024



# **DIGITAL BALANCE CALIBRATION**

Digital Balance ID	DB - T2	Personnel	HPO, MSL, CAS
Manufacturer	AND CO. LTD.	Date	26 November 2024
Model	EJ-1500	Calibration Standard	1000g
Serial Number	BA2826513	Туре	Weights (1500g max)

Ecce	entricity Test	Repeat	ability Test
Test Load	1000g	1000g When Loaded up to 150 (Using 1000g& 500g standard	
Position	Balance Indication	Trial	Balance Indication
1	1000.0	1	1549.9
2	1000.0	2	1549.9
3	1000.0	3	1549.9
4	. 999.9	4	1549.9
. 5	1000.0	5	1549.9
Test Results	0.1	Standard Deviation	0

	Ĺ	inearity Test		
Nominal Load	Unit under Test Reading	Deviation from Nominal	Coverage Factor	UE at 95% C.L
Weights	g	g	k	g
0	0	0	2	0
200g	200	0	2	0
500g	500	0	2	n
1000g	1000	0	2	<u> </u>
1500g	1499.9	0.1	2	0.16

Acceptable EPA Method 4 tolerance must be less than 0.5 gram.

²Acceptable EPA Method 5 tolerance must less than 0.5 gram.

Equipment Description	Equipment ID	Traceability Reference
Standard Weight	1254	08-09-2022-BSI-T2

Calibrated By:

Halcy Lemon P. Orquina
Signature over Printed Name

Checked By:

Manz L. Agdalpen
Signature over Printed Name

QA/QC:

Edindo C. Fernando Signature over Printon Name

Date:

26 November 2024

2rd Floxi, VAG Bldg: Onigas Ave., GreenHis San Juan City, Metro Mania, Philippines Tels. (632) 863-6129 • Fax (632) 727-9831 Email: <u>ofo@ssienv.com</u>



Department of Environment and Natural Resources (DENR)

ENVIRONMENTAL MANAGEMENT BUREAU

A C C R E D I T E D T H I R D P A R T Y T E S T E R

Certificate No: SAT NO. 2022-72



#### Making our world more productive

CERTIFICATE NUMBER: 90168754/D962229

: LINDE PHILIPPINES INC.

REVISION NUMBER REVISION DATE

# Certificate of Analysis

Material Number: S802100-AE-C6

90168754

Customer Tag:

PO Number Order Date

9300463129 08-Nov-2021

128002321 SO Number Vcode

GM34242/10A/S BS4

Certification Date: 29-Nov-2021

CYLINDER NUMBER

D962229

Customer

Job Card

#### **SPECIFICATION**

Component	Requested Concentration	Certified Concentration	Unit	Certified Uncertainty (% +/-)	
NITROGEN CARBON MONOXIDE	200	200	Balance ppm	2	

The Certified uncertainty is relative unless specified "abs" as absolute with a confidence level of 95% (coverage factor K=2).

**CYLINDER** 

VALVE

10L ALUM **BS4 BRASS** 

Content 1,494 M3 Pressure

150 Bar(a)

Reference Temperature

20°C

Shelf Life 36 Month

**UN Number** Recommended Storage and Usage Temperature 1956 10 to 40 C Min. Usage Pressure

5 BAR G

TRACEBILITY

Category PROCESS

Traceabiltiy Type WEIGHT

Traceable To

Reference Procedure

National Metrology Centre(NMC) ISO6142:2001

METHOD OF CERTIFICATION

Method

REMARKS

Gravimetric

INSTRUMENTATION Method of Analysis

LS71704



Checked By

Product filled gravimetrically using high-load high-accuracy, weight traceable to National Metrology Centre (NMC) standards. Linde Gas Singapore has obtained a corporate License complying to ISO 9001 standard.

Page 1 of 1



## Making our world more productive

CERTIFICATE NUMBER: 90168756/D962122

REVISION NUMBER

REVISION DATE

# Certificate of Analysis

Material Number: S823400-AE-C6

Customer Tag:

Customer

: LINDE PHILIPPINES INC.

9300463129 08-Nov-2021

Job Card 90168756 Certification Date: 22-Nov-2021 Order Date SO Number : 128002321 Vcode

PO Number

: GM34553/10A/S BS4

CYLINDER NUMBER

D962122

#### **SPECIFICATION**

Component	Requested Concentration	Certified Concentration	Unit	Certified Uncertainty (% +/-)	
NITROGEN CARBON MONOXIDE	500	500	Balance ppm	- 2	***************************************

The Certified uncertainty is relative unless specified "abs" as absolute with a confidence level of 95% (coverage factor K=2).

**CYLINDER** 

10L ALUM BS4 BRASS

VALVE

1.470 M3 Content

Pressure

150 Bar(a)

Reference Temperature

20°C

Shelf Life 36 Month

**UN Number** 

1956

5 BAR G Min. Usage Pressure

Recommended Storage and Usage Temperature 10 to 40'C

TRACEBILITY

Category PROCESS

Traceabiltiy Type WEIGHT

Traceable To

Reference Procedure

National Metrology Centre(NMC) ISO6142:2001

METHOD OF CERTIFICATION

Method

Gravimetric

INSTRUMENTATION Method of Analysis

REMARKS





Product filled gravimetrically using high-load high-accuracy, weight traceable to National Metrology Centre (NMC) standards. Linde Gas Singapore has obtained a corporate License complying to ISO 9001 standard.

Page 1 of 1



Making our world more productive

CERTIFICATE NUMBER: 90168755/D962087

REVISION NUMBER REVISION DATE

# Certificate of Analysis

Material Number: S803400-AE-C6

Customer Tag:

Customer

: LINDE PHILIPPINES INC.

PO Number 9300463129

Job Card 90168755 Certification Date: 22-Nov-2021

Order Date SO Number

Vcode

08-Nov-2021 128002321 GM23712

CYLINDER NUMBER

D962087

**SPECIFICATION** 

Component	Requested Concentration	Certified Concentration	Unit	Certified Uncertainty (% +/-)	
NITROGEN			Balance		concernation control of
CARBON MONOXIDE	800	800	ppm	2	

The Certified uncertainty is relative unless specified "abs" as absolute with a confidence level of 95% (coverage factor K=2),

**CYLINDER** 

10L AL BS4 BRASS

VALVE

1-494 M3 Content

Pressure 150 Bar(a)-UN Number 1956

Reference-Temperature

Shelf Life 36 Month

Min. Usage Pressure

5 BAR G

Recommended Storage and Usage Temperature

TRACEBILITY

Category PROCESS

Traceabiltiy Type WEIGHT

Traceable To

Reference Procedure

National Metrology Centre(NMC) ISO6142:2001

METHOD OF CERTIFICATION

Method

Gravimetric

INSTRUMENTATION Method of Analysis

REMARKS





Product filled gravimetrically using high-load high-accuracy, weight traceable to National Metrology Centre (NMC) standards. Linde Gas Singapore has obtained a corporate License complying to ISO 9001 standard.

# LUTRON ELECTRONIC ENTERPRISE CO., LTD.

ADDRESS: 4F, 106, Min Chuan West Road, 103 Taipei, Taiwan

Tel: +886-2-25570844, 2553-3067 Fax: +886-2-25577132 E-MAIL: <u>lutron@lutron.com.tw</u>

http://www.lutron.com.tw

# **CALIBRATION & TEST CERTIFICATE**

To whom it my concern:

We hereby certify that the instrument under mentioned has been certainly calibrated according to our calibration standard and the testing result in the calibration procedure has been good enough within the tolerance regulated in our specification.

Name of Model

: HUMIDITY/TEMP/BARO

Temperature

: 23.2°C

Model Number

: PHB-318

Humidity

: 65 %RH

Serial Number

: AM.02197

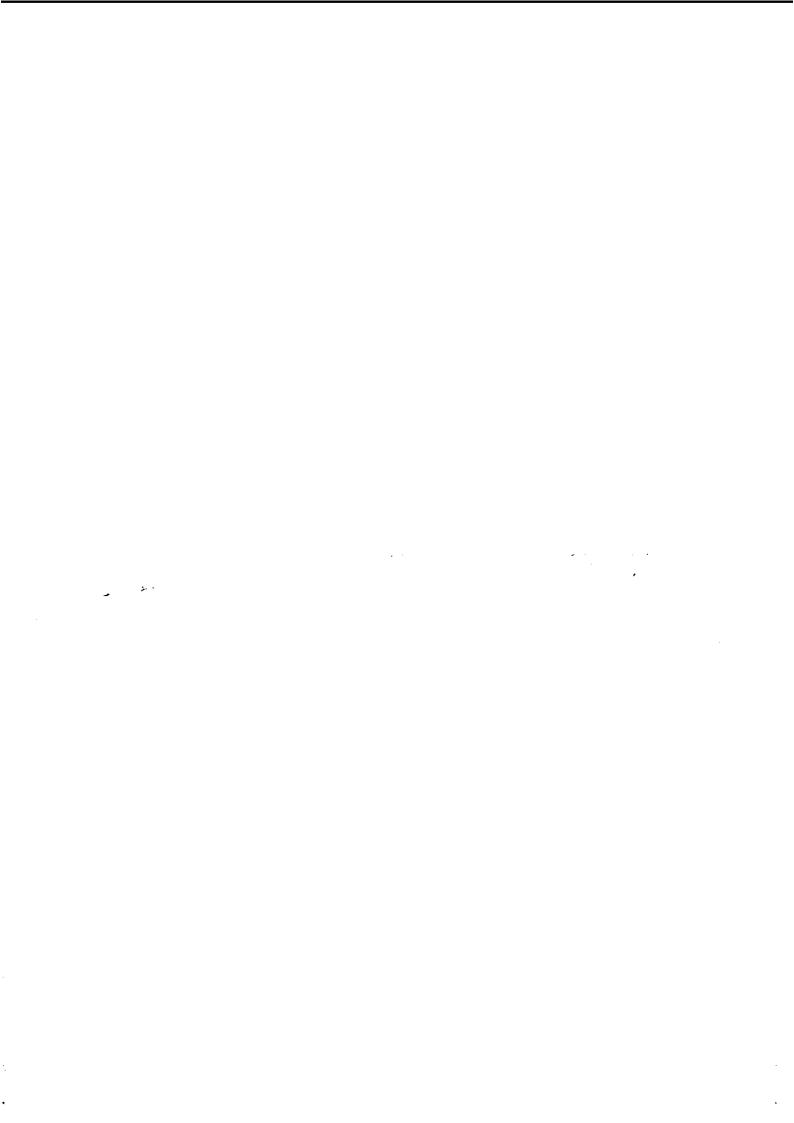
Date of Calibration : Apr. 2, 2024

(The standard generators used for calibration procedure are proofed once a year and can be traceable to the standard authorized by public organization.)

LUTRON ELECTRONIC ENTERPRISE CO., LTD.






Signature



The Art of Measurement



# ANNEX F DENR ACCREDITATION





# Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU Visayas Avenue, Diliman, Quezon City



SAT No. 2022-72

# CERTIFICATE OF ACCREDITATION

Pursuant to DENR Administrative Order No. 26 Series of 2013 of the Department of Environment and Natural Resources having substantially met all the requirements prescribed therein,

# BERKMAN SYSTEMS INCORPORATED (BSI)

208 VAG Building, Ortigas Ave., Greenhills, San Juan City, Metro Manila

is hereby duly accredited as

# SOURCE EMISSION TESTING FIRM

As such, the following are authorized as:

QA/QC Manager Edindo C. Fernando

# Team Leader Halcey Lemon P. Orquina

This certification shall allow the above firm and personnel to conduct stack testing limited to the following methods and parameters:

Director


- 1. US-EPA Method 1 to 5 PM
- 2. US-EPA Method 6/8 SO₂
- 3. US-EPA Method 7 NO.
- 4. US-EPA Method 10 CO

Granted this 14th day of July 2022 and valid until July 14, 2025

Digitally signed by Cuñado William Purgatoric DN: cn=Cuñado William Purgatorio, serialNumber=001006000462A.

P. CUÑA Destruction of the Natural Resources, c=





# **ANNEX G**

# **TEST PARTICIPANTS**



# **TEST PARTICIPANTS**

## **BMC FORESTRY CORPORATION**

Mr. Narhy C. Pomilban

Pollution Control Officer

**BSI** 

Mr. Halcy Lemon P. Orquina

DENR Accredited Team Leader / Field Engineer

Mr. Marvin S. Llarena

- Field Technician

Mr. Christian A. Soleta

- Field Technician

Mr. Jimuel B. Torrelino

- Sampling Aide/Driver

Mr. Edindo C. Fernando

DENR Accredited QA/QC Manager



# ANNEX H

# **TEST PLAN**





November 8, 2024

#### **ENGR. JEAN C. BORROMEO**

OIC, Regional Director
DENR – Environmental Management Bureau
Cordillera Administrative Region (CAR)
DENR Compound, Gibraltar Road, Baguio City

CC: ENGR. RAUL G. CUBANGAY

OIC Chief, Environmental Monitoring and Enforcement Division

Subject: Test Plan for BMC Forestry Corporation – Irisan Lime Project

#### **Dear Director Borromeo:**

We are pleased to submit the test plan for our proposed Source Emission Test to be conducted by Berkman Systems, Inc., an accredited third-party tester at BMC Forestry Corporation - Irisan Lime Project located at Km.5 Naguilian Road, Irisan, Baguio City.

We hope this addresses your requirements.

Thank you.

Very truly yours,

**BMC FORESTRY CORPORATION** 

Rv.

NARHY C. POMILBAN Pollution Control Officer

Noted by:

FRANCISCO O. FLAVIER

Resident Manager



November 15, 2024

**ENGR. JEAN C. BORROMEO** 

OIC, Regional Director

CC: ENGR. RAUL G. CUBANGAY

Chief, Environmental Monitoring and Enforcement Division

**ENVIRONMENTAL MANAGEMENT BUREAU** 

**CORDILLERA ADMINISTRATIVE REGION (CAR)** 

DENR Forestry Compound, Pacdal District

Baguio City, Benguet

Subject: Test Plan for BMC Forestry Corporation - Irisan Lime Project

Dear Dir. Borromeo:

We are pleased to submit the test plan for our proposed Source Emission Monitoring to be conducted at BMC Forestry Corporation - Irisan Lime Project located at Km.5, Naguilian Road, Irisan, Baguio City.

We hope that this addresses your requirements.

Very truly yours,

**BSI** 

EDINDO C. FERNANDO Field Operations Manager

**DENR** Accredited QA/QC Manager

SAT No. 2022-72

2nd Floor, VAG Bidg, Ortigas Ave., Greenhills

Department of Environment and Natural Resources (DENR)



#### SOURCE SPECIFIC TEST PLAN

This document is the Source Specific Test Plan of BSI (Berkman Systems, Inc.) that describes the emission testing that will be completed at BMC Forestry Corporation - Irisan Lime Project located at Km.5, Naguilian Road, Irisan, Baguio City.

# Section A: FACILITY INFORMATION

**BMC Forestry Corporation - Irisan Lime Project** 

Irisan, Baguio City

Contact Person:

Narhy C. Pomilban

Pollution Control Officer

Telephone:

(074) 445-7180

# Section B: PRODUCTION INFORMATION AND FACILITY REQUIREMENTS

The plant should operate the one (1) unit of 1.08 MT/hr Vertical Shaft Kiln set for at 90% or greater of permitted capacity during testing. The Implementing Rules and Regulations of the Philippine Clean Air Act specify that the operating capacity during emission testing shall be the basis for setting the maximum allowable operating capacity during permit application.

The facility must provide the following items:

- The client shall provide an on-site single phase 220VAC/60Hz-power supply.
- The client shall provide at least two (2) sampling portholes based on the existing stack diameter and pipe length. Sampling platforms should be installed or constructed properly for the safety of the sampling personnel.
- Copy of latest Permit to Operate (PTO)
- Schematic diagram of the process
- Copy of the latest certificate of fuel analysis and delivery receipt.
- Copy of engine log sheet during sampling
- Photo documentation and Video coverage will be taken by the accredited sampling personnel during sampling activity.

## Section C: SOURCE INFORMATION

The test will be at **one (1) unit of 1.08 MT/hr Vertical Shaft Kiln** set for 3 sampling runs to be conducted on December 12-14, 2024.

Parameters to be tested and duration - see Table 1.

**TABLE 1 – TEST METHODOLOGY** 

Particulars	Parameter	Sampling Methodology	No. of Test runs/Duration	Notes
one (1) unit of 1.08 MT/hr	Volumetric Flow Rate (VFR)	EPA Method 1-4	3 one-hour run/ exhaust	Performed concurrent with PM test
	Oxygen / Carbon Dioxide	EPA Method 3 By Fyrite Method	3 runs / exhaust	Integrated Tedlar bag sample during M5 test
	Particulate Matter (PM)	EPA Method 5	3 one-hour run/ exhaust	Performed with Method 5 set-up
Vertical Shaft Kiln	Sultur Oxides	EPA Method 6 modified	3 one-hour run/ exhaust	Simultaneous with  Method 5
	Nitrogen Oxide (NOx)	EPA Method 7	3 runs / exhaust	Three grab sample flasks collected per run
	Carbon Monoxide (CO)	EPA Method 10 By NDIR	3 runs / exhaust	Integrated Tedlar bag sample during M5 test

# Section D: QUALITY ASSURANCE / QUALITY CONTROL PROCEDURES

Normal QA/QC procedures described in the Methods will be strictly followed.

# Section E: SAMPLING DATE

December 12-14, 2024

The sampling team leader will coordinate the specific run plans with the abovementioned Plant representative. The sampling team will be at the Plant on or before 9:00 AM of the sampling date.

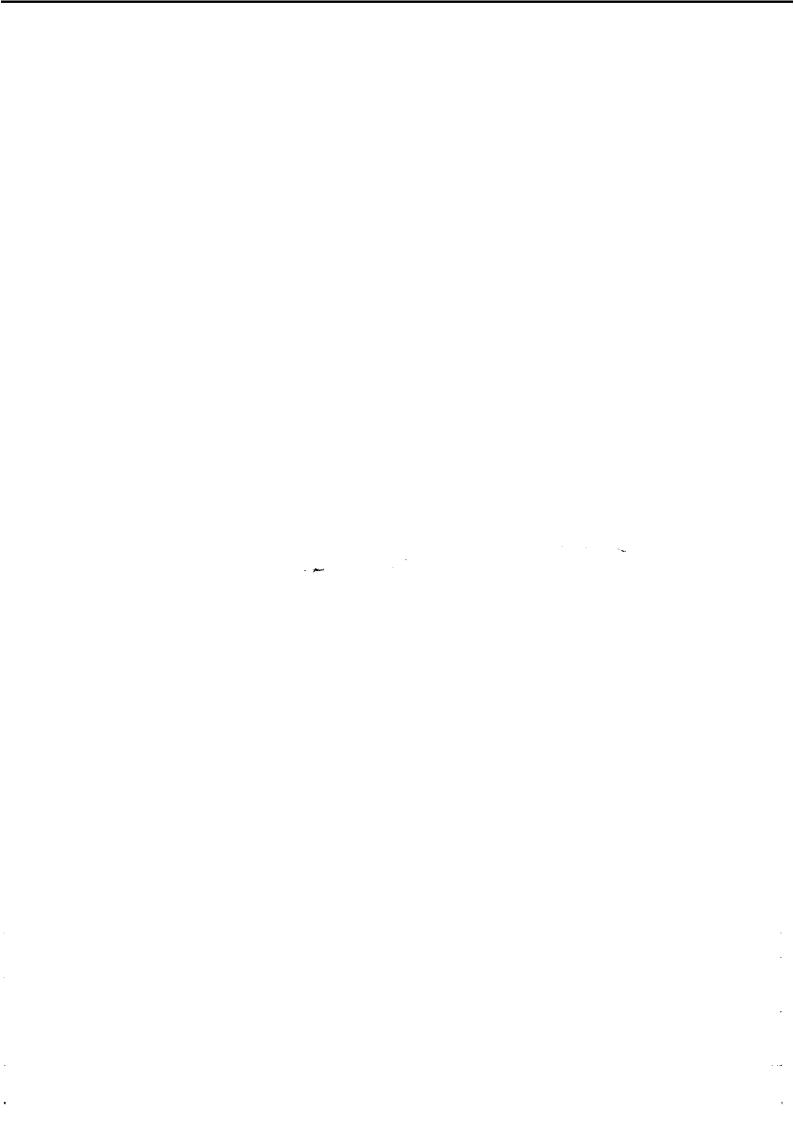
# Section F: SAMPLING PERSONNEL

The proposed sampling team shall consist of the following personnel:

#### Team:

<ol> <li>Halcy Lemon P. Orquina</li> </ol>	-	Accredited Team Leader
2. Edindo C. Fernando	-	QA/QC Manager
3. · Ruel P. Abando	-	Accredited Team Leader (back up)
<ol><li>Jose Arjay M. Santiago</li></ol>	-	QA/QC Manager (back up)
5. Romeo M. Elsisura	-	Field Technician
6. Marvin S. Llarena	-	Field Technician

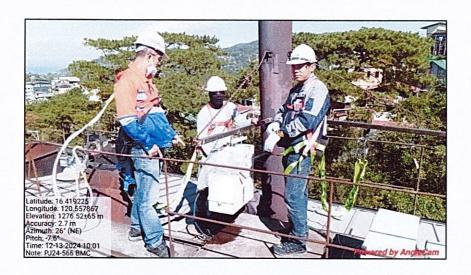
Field Technician 7. Eugene B. Salazar Field Technician 8. Christian A. Soleta Field Technician 9. Jimuel B. Torrelino Driver / Technician


10. Joseph Dandy A. Quilet Driver / Technician

Signed:

EDINDO C. FERNANDO Field Operations Manager

DENR Accredited QA/QC Manager


SAT No. 2022 7/2



# ANNEX I PHOTO DOCUMENTATION



# PHOTO DOCUMENTATION





Vertical Shaft Kiln No. 2



Source Emission Monitoring BMC FORESTRY CORPORATION

Irisan, Baguio City December 13, 2024





MR. NARHY C. POMILBAN

Email: npomilban@benguetcorp.com

Company:

BMC FORESTRY CORPORATION - BC ILP

Date: 22 January 2025

From:

**ENGR. JUBELL D.C. MOGOTE** 

Page 1 of: 2

cc:

BSI Project No: PJ 24 566

Special Instructions:

Confidential

□ Urgent ▼ Please reply ▼ For your information

For follow-up

If you do not receive all pages or transmission is illegible, please contact the originator to re-send. Should the e-mail be sent to a wrong address, please notify BSI immediately and destroy this copy. Thank you.

Subject: Initial Report on Source Emission Monitoring

Dear Mr. Pomilban,

Please find in the succeeding pages the results of the source emission monitoring conducted on December 13, 2024 at your plant in Irisan, Baguio City.

# **Source Emission Monitoring Results**

Source Information		PM (mg/Nm³)	SO _X (as SO ₂ ) (mg/Nm ³ )	NO _X * (as NO ₂ ) (mg/Nm³)	CO (mg/Nm³)
VERTICAL SHAFT KILN NO. 2	Run 1	16.9	2.3	13.5	28.6
Brand Name: No information provided Date Installed: August 1940** Rated Capacity: 1.08 MT/hr Load During Sampling: 95% Fuel Used: LSFOI / RFO Fuel Sulfur Content: No Fuel Analysis Provided Fuel Consumption: No Information Provided Annual Operating Hours: 8,760 hours	Run 2	18.6	1.5	13.0	29.8
	Run 3	30.8	< 1.5	14.0	17.2
	Average	22.1	1.9***	13.5	25.2
DENR Standards (existing source fuel burning equipment; other stationary source)		150	1500	1000	500

^{*}Average of three (3) trial tests

Emissions are not applicable for the corrected oxygen factor since the source is not included in the list of equipment under DENR EMB Memorandum Circular No. 2021-15.





^{**}Based from previous sampling records

^{***}Average of detected values only.

TO: MR. NARHY C. POMILBAN

COMPANY: BMC FORESTRY CORPORATION - BC ILP

DATE: 22 January 2025

Page 2 of 2

We would like to request a scanned copy of your process flow chart, annual operating records, copy of self-monitoring report (SMR) if possible, monitoring logsheet, fuel consumption during sampling, and fuel delivery receipt in line with the source emission monitoring conducted at your facilities. These documents will be attached to the final report as per DENR mandatory requirement. Please be informed that DENR-EMB requires that all third party testers to comply with all mandatory requirements including the submission of source emission summary.

The final report will be prepared as soon as we receive a scanned copy of this document with your signature. If we are unable to receive a response from you within three (3) working days upon receipt of this initial report, we will start preparing the final report.

If you have concerns, please do not hesitate to contact us.

Thank you and best regards.

JUBELI D.C/MOGOTE Environmental Specialist

Noted by:

EDINDO C. FERNANDO

DENR-EMB Accredited QA/QC Manager

SAT No. 2022-72

Conforme:

Francisco O. Flavier/ Managing Head

BMC FORESTRY CORPORATION - BC ILP







# CERTIFICATION

This is to certify that **BSI** has satisfactorily completed the *Source Emission Monitoring* conducted on December 13, 2024 at **BMC FORESTRY CORPORATION** – **BC ILP** located in Km. 5, Naguilian Road, Irisan, Baguio City.

We commend BSI for the successful completion of the contracted scope of work to the full satisfaction of our company.

This certification is being issued upon the request of BSI this 22nd day of January 2025.

**BMC FORESTRY CORPORATION** 

By:

Francisco O Flavier

Resident Manager/Managing Head



# AMBIENT AIR QUALITY AND NOISE LEVEL MEASUREMENT MONITORING REPORT

Reference No.: GEPC-AAQM-2406-035

**Prepared for:** 

# BENGUET CORPORATION ACUPAN CONTRACT MINING PROJECT

Balatoc, Virac, Itogon, Benguet

Sampling Date: June 29, 2024

Report Date: July 17, 2024

# AMBIENT AIR QUALITY AND NOISE LEVEL MEASUREMENT MONITORING REPORT CERTIFICATION

# **THREE (3) STATIONS AREA TESTS**

# **PARAMETERS:**

TOTAL SUSPENDED PARTICULATE (TSP)

SULFUR DIOXIDE (SO₂)

NITROGEN DIOXIDE (NO₂)

NOISE LEVEL MEASUREMENT

# BENGUET CORPORATION ACUPAN CONTRACT MINING PROJECT

Balatoc, Virac, Itogon, Benguet

The ambient air monitoring and noise level measurement monitoring results reported herein were headed and performed by Mr. Angelo V. Guevarra and his team. The laboratory analysis of the collected samples is conducted by Mach Union Laboratories Inc. and has been verified and found to be orderly.

I have certified that the information discussed in this report is accurate to the best of my knowledge.

Signed by:

ANGELO V. GUEVARRA

SAT No. 2023-152

Date Signed: July 17, 2024

# Benguet Corporation - Acupan Contract Mining Project Reference No.: GEPC-AAQM-2406-035

# AMBIENT AIR QUALITY MONITORING REPORT

FACILITY NAME: Benguet Corporation

**Acupan Contract Mining Project** 

FACILITY ADDRESS: Balatoc, Virac, Itogon, Benguet

# 1.0 INTRODUCTION

Greentek Environmental Phils. Co. was contracted by Benguet Corporation - Acupan Contract Mining Project to conduct ambient air sampling for three (3) Stations within their plant facility as a requirement of their environmental permit and partly for their regular environmental monitoring.

Ambient air sampling was conducted on June 29, 2024, to analyze nitrogen dioxide (NO2), sulfur dioxide (SO2) and total suspended particulate (TSP) levels.

# 2.0 SAMPLING METHODOLOGY

The DENR standard ambient air sampling equipment and analytical procedures were used in the sampling activity. These equipment and procedures are specified below:

# **Total Suspended Particulate Matter (TSP)**

Reference Procedure: USEPA, 40 CFR 50, Appendix B

Sampling Equipment: High Volume Sampler (1-Hour Air Sampler)

Method of Analysis: Gravimetric Method

Sulfur dioxide (SO₂)

Reference Procedure: USEPA, 40 CFR 50, Appendix A

Sampling Equipment: Gas Bubbler Sampler (USEPA compliant)

Method of Analysis: Pararosaniline Method

Nitrogen dioxide (NO₂)

Reference Procedure: Air Pollution Monitoring Manual, EMB-1994
Sampling Equipment: Gas Bubbler Sampler (USEPA compliant)

Method of Analysis: Colorimetric, Griess Saltzman



# Benguet Corporation - Acupan Contract Mining Project Reference No.: GEPC-AAQM-2406-035

The SO2 and NO2 samples were stored in an icebox, and the TSP filters were placed in a clean envelope. All collected samples were then transported to the laboratory for analysis.

# 3.0 SAMPLING LOCATIONS

There are Three (3) sampling stations for ambient air monitoring. The table below shows the location and observations made during the sampling activity.

STN	LOCATION	OBSERVATION / ACTIVITY IN THE AREA DURING THE TIME OF SAMPLING
1	Along Keymens Road (Upwind)	The sampling site at Along Keymens Road is dry with light winds. The facility remains operational during sampling to ensure accurate data collection under typical conditions. Throughout this time, a total of 2 dump trucks, 2 jeeps, 8 motorcycles and 10 cars passed by the site.
2	Near Assay Laboratory & Gate 2 (Downwind)	The sampling site at Near Assay Laboratory & Gate 2 is dry with light winds. The facility remains operational during sampling to ensure accurate data collection under typical conditions. Throughout this time, a total of 4 cars, 8 motorcycles and 7 jeeps passed by the site.
3	Near BCACMP Office (Upwind)	The sampling site at Near BCACMP Office is dry with light winds. The facility remains operational during sampling to ensure accurate data collection under typical conditions. Throughout this time, a total of 2 motorcycles and 9 cars passed by the site.



# 4.0 SUMMARY OF RESULTS

The summary results of the laboratory analysis are presented below for all sampling areas.

Table 1
Laboratory Analysis Results and Standard Limits for 60 minutes sampling

Stn	Location	Date / Time Sampling	TSP (ug / Nm³)	SO ₂ (ug / Nm ³ )	NO ₂ (ug / Nm ³ )
1	Along Keymens Road <b>(Upwind)</b>	29-June-2024 1021H-1121H	284.4	10.9	9.9
2	Near Assay Laboratory & Gate 2 (Downwind)	29-June-2024 1132H-1232H	207.1	10.9	10.9
3	Near BCACMP Office (Upwind)	29-June-2024 1244H-1344H	227.7	10.9	10.1
D	PENR NAAQ Stand minutes sam	300	340	260	

These data are measured to standardize the test results to 25°C and 760mmHg and for comparison purposes.



# Table 2 Meteorological Monitoring Reading for 60 minutes sampling

STN	Location (GPS)	Date / Time Sampling	Barometric Pressure. (Inch Hg) Result Avg.	Ambient Temp.(°C) Result Avg.	% Relative Humidity Result Avg.	Wind Speed Avg. (m/s)
1	Along Keymens Road (Upwind)	29-June-2024	27.09	31.9	58.3	0.2
	N 16°21'36" E 120°39'32"	N 16°21'36"		01.5	00.0	<b>0.2</b>
2	Near Assay Laboratory & Gate 2 (Upwind)	29-June-2024	27.33	34.5	51.4	0.2
2	7	1132H-1232H	21.33	34.5	31.4	U.∠
3	Near BCACMP Office (Upwind)	29-June-2024	29.63	34.2	-10	0.5
3 -	N 16°21'38" E 120°39'36"	1244H-1344H	29.03	34.2	54.6	0.5



# Benguet Corporation - Acupan Contract Mining Project Reference No.: GEPC-AAQM-2406-035

# 5.0 DISCUSSION OF RESULTS

The USEPA "Quality Assurance Handbook for Air Pollution Measurement Systems, Environmental Management Bureau, Department of Environment and Natural Resources, Philippine Environmental Policies, Laws, and Regulations handbook was used as a guide to achieve the quality assurance objectives of producing data that is complete, representative, and of known precision and accuracy.

The above results of analysis are compared to the National Ambient Air Quality Standards (NAAQS) for source-specific air pollutants from industrial operations. These standards are specified in the Implementing Rules and Regulations of the Philippine Clean Air Act of 1999.

During sampling on June 29, 2024, the weather from station 1 to 3 was cloudy to sunny with prevailing light to moderate wind blowing from the Southwest to Northeast. *Thus, the results of TSP, SO₂ and NO₂ concentrations are within the applicable CAA/IRR standard for 60 minutes of sampling.* 

# NOISE LEVEL MEASUREMENT MONITORING REPORT

FACILITY NAME: Benguet Corporation

**Acupan Contract Mining Project** 

FACILITY ADDRESS: Balatoc, Virac, Itogon, Benguet

# INTRODUCTION

Environmental noise is the unwanted or harmful outdoor sound created by human activity. On June 29, 2024, daytime noise level monitoring was conducted in three (3) stations within the premises of their facility located at the above address. Noise level measurement was performed, and the measurement was conducted as part of their environmental monitoring and permit requirements.

### **OBJECTIVE OF THE MONITORING**

The objective of noise monitoring is to provide data regarding the level of noise in a location so that it may be compared to the National Pollution Control Commission's (NPCC) noise limit standard. It is also to assess the impact of industrial activities on noise pollution and implement mitigation strategies to safeguard both workers well-being and the surrounding environment.

### SAMPLING METHODOLOGY

A precision-type digital sound level meter was used for noise measurement. The said instrument is a LUTRON sound level meter, Model SL-4033SD. The sound level meter meets the IEC 61672 class 1 standard. The sound level meter that was used to measure the level was calibrated at Switchtek Measurement Systems with an acoustical calibrator (Lutron Sound Level). The noise was measured using an "A" weighting network and "slow response" with different limits for various times of the day and area categories. Noise measurement was performed for about 3 minutes per station after the 1-hour ambient sampling activity. The noise sampler was handheld at about thirty degrees (30°) from the plane directly pointing to the facility.



# **SAMPLING LOCATIONS**

There are three (3) sampling stations for noise level measurement monitoring. The table below shows the location and observations made during the sampling activity.

STN	LOCATION	OBSERVATION / DURING NOISE LEVEL MEASUREMENT
1	Along Keymens Road	The audible noise detected came from the machinery around the area.
2	Near Assay Laboratory & Gate 2	The audible noise detected came from the people's voices and vehicles that passed by near the sampling point.
3	Near BCACMP Office	The audible noise detected came from the guard post (radio) near the sampling point.

# **SUMMARY OF RESULTS**

Table 3

Noise Level Measurement Monitoring Reading

Location	Time	Median (dBA)	Category of the Area	DENR Standard (dBA)
Along Keymens Road	1123H-1126H	57.8	Class C	70
Near Assay Laboratory & Gate 2	1235H-1238H	57.4	Class C	70
Near BCACMP Office	1345H-1348H	56.3	Class C	70



# Table 4 Environmental Noise Quality Standards in General Areas

	Maximum Allowable Noise (dBA)					
Category of the Area	Day Time 0900H to 1800H	Morning & Evening 0500H to 0900H / 1800H to 2200H	Nighttime 2200H to 0500H			
AA	50	45	40			
А	55	50	45			
В	65	60	55			
С	70	65	60			
D	75	70	65			

The Philippines standard for noise is categorized into five (5) classes of sections, and the maximum allowable noise is classified in different time.

# **Description per Category**

Class AA A section or contiguous area which requires quietness, such as areas within 100 meters from school sites, nursery schools, hospital, and special home for the aged.

Class A A section or contiguous area which is primarily used for residential purposes.

Class B A section or contiguous area which zoned or used as a commercial area.

Class C A section primarily zoned or used as a light industrial area.

Class D A section which is primarily reserved, zoned, or used as a heavy industrial area.



# Benguet Corporation - Acupan Contract Mining Project Reference No.: GEPC-AAQM-2406-035

# **DISCUSSION OF RESULTS**

The environmental noise standards are based on Memorandum Circular No. 002 Series of 1980 of the National Pollution Control Commission. The noise was measured using an "A" weighting network and "slow response" with different limits for various times of the day and area categories. The location of Benguet Corporation - Acupan Contract Mining Project is primarily zoned or used as light industrial area (Class C) with a DENR Daytime Noise Standard of 70 dBA.

The results of the noise level measurement reading show that the noise level in stations 1 to 3 is within the applicable DENR daytime limit of 70 dBA. The audible noise detected came from the vehicles that passed by near the sampling point.

# "APPENDIX A"

# AMBIENT AIR MONITORING FIELD DATAS

# AMBIENT AIR MONITORING DATA Benguet Corporation - Acupan Contract Mining Project June 29, 2024

GPS Location: N 16°21'36" E 120°39'32"

Station 1	Along Keymens Road			Flowrate			
(Upwind)	Aldi	ig Keyillelis Ki	oau	TSP	NO2	SO2	Wind Speed
Time	Pbar inHg	Amb. Tmp. °C	RH%	m3/min	lpm	lpm	m/s
1021H-1031H	27.10	33.8	54.9	1.0	0.5	0.5	0.2
1031H-1041H	27.10	32.2	56.6	1.0	0.5	0.5	0.1
1041H-1051H	27.09	31.3	59.2	1.0	0.5	0.5	0.2
1051H-1101H	27.09	30.1	59.9	1.0	0.5	0.5	0.3
1101H-1110H	27.09	31.9	60.5	1.0	0.5	0.5	0.1
1111H-1121H	27.09	32.1	58.7	1.0	0.5	0.5	0.2
Average	27.09	31.9	58.3	1.0	0.5	0.5	0.2

GPS Location: N 16°21'34" E 120°39'31"

Station 2	Near Assay Laboratory & Gate 2				Flowrate		
(Downwind)	Neal Ass	ay Laboratory	& Gale 2	TSP	NO2	SO2	Wind Speed
Time	Pbar inHg	Amb. Tmp. °C	RH%	m3/min	lpm	lpm	m/s
1132H-1142H	28.17	34.7	52.8	1.0	0.5	0.5	0.2
1142H-1152H	27.17	35.2	49.1	1.0	0.5	0.5	0.1
1152H-1202H	27.17	34.9	48.6	1.0	0.5	0.5	0.2
1202H-1212H	27.16	34.4	51.8	1.0	0.5	0.5	0.2
1212H-1222H	27.16	33.8	52.6	1.0	0.5	0.5	0.1
1222H-1232H	27.16	34.1	53.4	1.0	0.5	0.5	0.2
Average	27.33	34.5	51.4	1.0	0.5	0.5	0.2

GPS Location: N 16°21'38" E 120°39'36"

Of C Location.		7 2 1 00		_ 120 0	000		
Station 3	Nos	Near BCACMP Office			Flowrate		
(Upwind)	Nea	II BCACINIP OII	ice	TSP	NO2	SO2	Wind Speed
Time	Pbar inHg	Amb. Tmp. °C	RH%	m3/min	lpm	lpm	m/s
1244H-1254H	27.13	33.4	54.8	1.0	0.5	0.5	0.3
1254H-1304H	27.13	31.6	61.3	1.0	0.5	0.5	0.2
1304H-1314H	27.13	32.5	59.8	1.0	0.5	0.5	0.2
1314H-1324H	27.13	31.4	58.1	1.0	0.5	0.5	0.3
1324H-1334H	27.12	32.9	59.5	1.0	0.5	0.5	0.2
1334H-1344H	27.12	30.6	63.4	1.0	0.5	0.5	0.4
Average	27.13	32.1	59.5	1.0	0.5	0.5	0.3

# NOISE LEVEL MEASUREMENT MONITORING RESULTS Benguet Corporation - Acupan Contract Mining Project June 29, 2024

Station 1	Along Keymens Road				
Ī	Time of Samplir	ng (1123H- 1126H)			
58.1	59.2	55.7	58.4		
57.2	57.6	56.2	58.8		
58.8	59.4	58.1	57.1		
55.4	58.9	57.5	56.9		
56.7	57.7	55.8	58.3		
55.6	57.8	53.2	59.6		
58.2	58.2	54.6	58.9		
Median =	57.8	Average =	57.43		
Minimum =	53.2	Maximum =	59.6		

Station 2	Near Assay Laboratory & Gate 2						
T	ime of Sampling	g (1235H - 1238H)					
55.7	54.7	62.8	54.1				
57.5	56.4	60.1	57.3				
59.3	53.8	58.7	56.6				
58.6	55.9	59.1	57.5				
57.2	58.2	56.8	59.4				
58.1	59.6	52.9	58.6				
56.8	62.4	53.7	55.3				
Median =	57.4	57.4 Average = 57.40					
Minimum =	52.9	Maximum =	62.8				

Station 3	Ne	ear BCACMP Offic	e
T	ime of Sampling	g (1345H - 1348H)	
49.8	59.4	57.8	55.1
49.9	57.8	55.9	55.8
54.6	58.7	53.1	58.3
52.1	58.9	54.6	57.6
55.8	59.6	56.7	54.5
54.3	61.3	58.2	53.8
58.2	60.4	56.8	55.9
Median =	56.3	Average =	56.25
Minimum =	49.8	Maximum =	61.3



# AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING

Benguet Corporation - Acupan Contract Uning Project Name of Facility:

Ralatoc. Virgo, Itagon Benguet Facility Address:

LATER Personnel: MRE, PANCE Facility Representative:

Station No.:

1 (upuno) Along Reymens

Specific Location: Sampling Date:

Road Arma

Filter ID:

6 24 24 Coordinates: 240217

1621 36 N 120 3932E

Filter Weight:

2-490 2. 4891

			Ambient	SO2	NO2	TSP			Wind
Time	pBar inHg	RH%	Temp.,	Flow Rate, Ipm	Flow Rate, Ipm	Flow Rate, Ipm	Weather Condition	Wind Direction	Speed m/s
10211-10511	77-10	54.9	35.6	3.0	0.0	1.0	and-	80-35	0.2
1901 - 1991 +	23-10	Plante	22.2	0.5	0.5	1.0	Supa-4	4年 - 14年	9.1
tonik - work	27.04	19.1	91-9	6.5	0.5	1.0	Jun-1	1910 - 2.2	0.2
porté - Noté	£3 .09	59.9	50-1	0.6	04	1-0	Junel	410-9E	0.3
norft - men	F9 : 69	40.5	51.9	D. C	0.6	1.0	Juney.	760-SE	0.1
m k - 1120k	27-09	58.7	9/2-1	2.9	6.5	1-0	PHANE	#30+chE	6.5

Description of the sampling location and observations: (use separate sheet if necessary)

- 15 CA CAID IS DPENATIONAL THRUIN IN MARPLIAN PENDO.

- THE AREA WAS DRY WITH LIBHT WIND.

- THE AMPLIAN LOCATION POINT IS LOCATED BLOCK KEYMERY ROAD.

# Dumptonois - 1

Jesp - 11

Motoscopcie - 111 - 11

Car - WI-HII-



# Noise Level Monitoring

Station No.:

T (WWW) IND)

Sampling Date:

10/29/24

Specific Location:

ALDRIC WE-IMENO ROAD

Time		1		1	Noise Source / Observation
129 #	1.35	59-2	55.7	58.4	NOICE CAME FROM MACRIMEN
	54.2	57.6	56.2	52.8	AMOUD THE AREA .
	588	59.4	58-1	57-1	
	55.4	58.9	57.5	50.9	
	54.7	57.7	C. 8	58.9	
7	65.4	578	53.2	59.4	
1/26 H	58.2	58 2	54.4	88.0	



# AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING

Name of Facility: DENUNET WEPPRATION - ACMPAN WITHAUT MINISTED PROJECT

Facility Address: PALATEC VIRAL ITTUON BENUIST

Facility Representative: LLOYD P. CAMADO Personnel: MRC - MMC

Station No.:

2 (DOWNVINO)

Specific Location:

BEAR ACCENT LAS 9 WATE TO

Sampling Date:

u 29 24 (

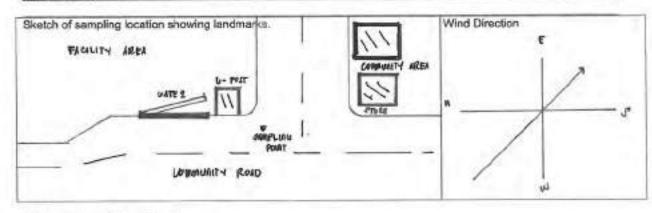
Coordinates: [8 21 54 1 / 120 59 5] FF
Filter Weight: 2.4422

Filter ID:

	#800 F		Ambient	S02	NO2	TSP	230000000000000000000000000000000000000	1,550,550	Wind
Time	pBar inHg	RH%	Temp., °C	Flow Rate, Ipm	Flow Rate, Ipm	Flow Rate, Ipm	Weather Condition	Wind Direction	Speed m/s
11m2#-1142#	27-17	12.8	64.7	0.4	0.5	1.0	Juna-4	190-JP	0.2
14211-11121	17-17	49-1	25-2	0.6	0.5	1-0	Fmu2	No-SE	D-1
1024-12028	27. 14	40.00	54-9	0.5	0.6	1.0	-Nank	410 - UF	0.2
12028-12128	100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO. 100 CO	\$1.8	54-4	0.5	0.5	1.0	.Chen-/	NU - SE	0.2
2 T. H -  2 E 2 P	27.10	52. W	99.8	D.B	0.0	1-0	JUANY	M/0) - 34	0.1
2524 - 12928	27-16	19.4	94-1	0.5	0.6	1-0	LAUDA	NM -42	0.5

Description of the sampling location and observations: (use separate sheet if necessary)

- DOKEMP IS EPERATORIL DURING MAPLING PERIOD-


THE SAMPLING LOCATION POINT IS NEW ASSAT LAB AND WATE 2.

- THE AREA WAS DAY WITH LINHT WIND.

CAR - III

MANDECHOLE - III - II

John - But - 4



# **Noise Level Monitoring**

Station No.:

2 (DODWWIND)

Sampling Date:

10 |29 |24

Specific Location:

HEAR ACTAY LAS Y WATE 2

Time		100			Noise Source / Observation
1295 H	55.7	54.7	02.9	54-1	BOUSE CHIEF FROM PERPLE VOICE
11-30//	4. 4	56.4	40.1	54.0	AND VEHICLE PAGED BY-
	19.9	19.8	18.7	50-6	
	58.0	55-9	£4-1	C4- E	
	57.2	58.Z	50.8	59.4	
an en oan	58.1	59.6	62.9	£8.6	
1238 H	Cn. 8	12.4	59.7	24.9	



# AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING

Name of Facility: BENULET LORPORATION - ACUPAN LONGBACT MININD PROJECT

Facility Address: BALATTIC. VIRAC , ITOUGH BEHOUET

Facility Representative: 110-10 P. CAMADO Personnel: micc - icinc

Station No.:

5 (WPWIND)

Specific Location:

MEAR BOACHD DEFICE

Sampling Date: Filter ID: U |29/24

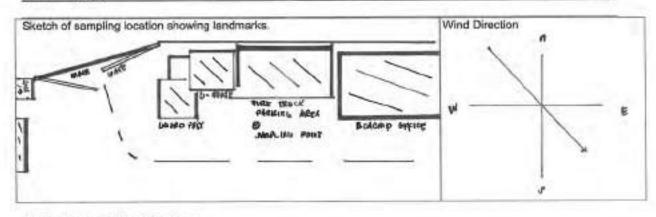
Coordinates:

12 21'18 n /120'39 36 "E

2.4247

240226 Filter Weight:

	1		Ambient	502	NO2	TSP		Miller	Wind
Time	pBar inHg	RH%	Temp., °C	Flow Rate, Ipm	Flow Rate, Ipm	Flow Rate, Ipm	Weather Condition	Wind Direction	Speed m/s
2444-12546	27.19	24.5	99-4	0.5	0.4	1.6	JURAY.	Um- CE	0.5
1804- 1504#	27-15	UI . 5	0.000	0.8	6.6	1.0	HOUR	610- 4E	0.1
BO4# - 1514#	27-19	14.8	52.6	0.8	0.5	1.0	- Frank	NU-52	0.2
15141 -1544	27.19	59.1	91-1	8.5	0-6	1.0	Annu/	10-45	0.5
5241-15541	27.12	19.5	90.7	0-5	0.5	1-0	Pane4	4V -24	0-2
1994 - 1944	27 (2		The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	0.5 1	10	Penny.	AM- GE	0-4	


Description of the sampling location and observations: (use separate sheet if necessary)

- BOACOTP IS OPERATIONAL DURING JAMPUNG PERIOD.

- THE AREA WAS DRY WITH LIGHT WIND.

- THE SAMPLIAM POINT IS NEAR BOACOND DIFFICE

MOTORCHICE- IL



# **Noise Level Monitoring**

Station No.:

3 (UPWIAD)

Sampling Date:

6 29/24

Specific Location:

MEAR BOACED OFFICE

Time	Language Control	Vin Marin	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	The same of	Noise Source / Observation
134CH	49.8	54.4	57.8	S.F. 1	hoise came brom whalp past
	49.9	57.8	55.9	55.8	WHILE RADIOUS THE AREA-
	54.6	58.7	53-1	58.3	
	52.1	58.9	54· W	57'0	
	11.8	59-6	50.7	54.5	
C. Proposition of	14.5	61.3	58.2	13.8	
1344 H	58.2	40 4	54.8	55.9	

# "APPENDIX B"

# RESULTS OF LABORATORY ANALYSIS

# AMBIENT AIR SAMPLING LABORATORY REPORT Benguet Corporation - Acupan Contract Mining Project June 29, 2024

# Laboratory Data

Station #	TSP	SO2	NO2
	ug	ug	ug
Station 1	15,100	0.29	0.262
Station 2	11,000	0.29	0.299
Station 3	12,100	0.29	0.269

# Computation

 $\begin{array}{ll} {\sf TSP} &= ({\sf concentration-ug})/(({\sf flowrate-1.0})^*(298/({\sf Tm-ave.+273}))^*(({\sf Pbar-ave.*25.4})/760))^*60 \\ {\sf SO2} &= ({\sf concentration-ug})/(({\sf flowrate-0.5}/1000)^*(298/({\sf Tm-ave.+273}))^*(({\sf Pbar-ave.*25.4})/760))^*60 \\ {\sf NO2} &= ({\sf concentration-ug})/(({\sf flowrate-0.5}/1000)^*(298/({\sf Tm-ave.+273}))^*(({\sf Pbar-ave.*25.4})/760))^*60 \\ \end{array}$ 

# **Concentration at Standard Condition**

Station #	TSP ug/Ncm	SO2 ug/Ncm	NO2 ug/Ncm
Station 1	284.4	10.9	9.9
Station 2	207.1	10.9	10.9
Station 3	227.7	10.9	10.1



# MACH UNION LABORATORIES INC.

Notin Office: Mach timori Boldbig, 335 Authorig-Capete Road, Talon 3, 1740 Las Pillas City, Philippines
Extension Office: 4NFR4 Stdg., PMC-LT0 Cmpt., 314 Alabang-Zapole Road, Talon 1, 1740 Las Pillas City
Tel. No.: (02)8553-81381 / (02)8553-8382 / (02)8553-8879/(02)8550-873 Par No.: (02)8553-8579 et pl. No.: (02)8553-8579 et pl. No.: (02)8553-879 et pl. No.: (02)8533-879 et pl. No.: (02)8533-8

# CERTIFICATE OF ANALYSIS

MU24013542-001

Lab. Sample 10:

07/16/2024

Date Reported:

Work Order : NU24013542

Cliant ID : NCRMUL-000358

CUSTONER : GREENTEK ENVIRONMENTAL PHILS., CO.

2353 RJ Place Blog., Unit 3A, Selya St., Pandacan, Manila

Attention : Liweyway P. Gacoli

09175139249 id greenlek@gmail.com PROJECT DETAILS: Benguet Corporation - Acupan Contract Mining Project

# SAMPLE INFORMATION

Chilled and Ambient

Storage Condition

Sample Type: Air Ambient Acres Acces CONTRACT MINING PROJECT MENTION - ACCES ACCEST MINING PROJECT

Description Air Ambient Sample in Absorbing Solution in 50ml, HDPE and Filer Paper (Round)

Collection Date and Time 06/29/2024 12:00 AM Collected by CLSTOMER

 Received Date and Time
 07/03/2024 01:00 PM

 Analyzed Start Date and Time
 07/03/2024 09:30 AM

 Analyzed End Date and Time
 07/12/2024 09:00 PM

# Comments

4 At semple information stated herein are based on the details provided by the customer. The results in this certificate of technique induses only to the semples submitted to and leaster by the boomstury.



Page 1112



Recognised: Department of Ecohomnest & Matural Repounder (DIMR-SME) + Burson of Anthol Industry (SM-SM) Extension Office: ANYRA Bidg, PMC-LTO Cmgd., 214 Alabang-Zapite Noad, Talon 1, 1740 Las Phina Dig Email: Info@machuson.com = Website: www.macharisn.com = http://www.facebook.com/Machthran Accredied: Philippine Accreditation Bureau (07)-PAII) * Department of Health * Food & Drug Administration Tel: No. (02)8553-8381 / (02)8553-8382 / (02)8553-8879 / (02)8550-2573 Far No. (02) 8553-8878 No in Office. Mech Union Building. 325 Autong-Zapota Road, Tolon 3, 1740 Las Piñas City, Philippines



# CERTIFICATE OF ANALYSIS

GREENTEK ENVIRONMENTAL PHILS, CO. AT! AIR MU24011542 CUSTOMER Work Order

Sample Source

MU24013542-001

Lab. Sample ID

07/16/2024

Data Reported:

CNVINCINMENTAL PRILLS CO.	Maria de comite a desta como maria de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio del la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio del la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio de la companio	CLIAL TY MONITOHING	Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro		

K-TS
/ TEST REBULTS
RATORY TES
LABORAT
2

SAMPLETD	PARAMETER	TEST METHOD	UNIT	REBALT
ICACAP - STN 1	Nutragen disside	Griess Saltzman Method	Ď,	0.262
BCaCMP - STN 1	Suhr doods	Paranganine Method	8	< 0.29
BCACMP - STN 1	Total Suspended Particulate	High Volume /Bravimetric Method	8	15100
SCACMP - STN 2	N/mgm doxide	Chiesa Baltzman Method	9	0.299
CACMP - STN 2	Sulfar dicoods	Parancaanina Method	9	e013
BCACMP - STN 2	Total Suspended Perticulate	High Volume /Gravimetric Method	8	11000
BCACMP - STN 3	Nitrogen douse	Gness Satzman Method	9	0.269
BCACAP - STR 9	Suhr doode	Parandere Method	9	et 0 >
BCACMP + STN 3	Total Suspended Particulate	High Volume /Sravimetric Method	9	12100

Appeaved for Ridease by:

Abdigital Abutencia, ChE Tychool anager Proc. Longe Mo. 1000351

Page 2 of 2

Ketre Degulayan, RCh Crem PRCa C13881

Checked by:

Marisa T. Mansor, PiCh Supervising Chemist PRC# 0005465 OWEREARY

Cerdine by:

Code of Pathral Requisitors 10th 40 Plats 50 to 51. USA 1955. Selected Methods of Mesquisia Art Postsants. IMHO 1976. US 6PA Title 40 Code of Federal Regulations. Part 56 Standard of Performance for New Statemary Sources. Appendix A to 0.1987

Test Mathosi Reference:

MUDAUL MAZ, PINAL, MITTIG MARK

# "APPENDIX C"

# SAMPLING ACTIVITY PHOTOS AND VICINITY MAP





Station 1 - Along Keymens Road (UPWIND)





Station 2 - Near Assay Laboratory & Gate 2 (DOWNWIND)





Station 3 - Near BCACMP Office (UPWIND)

# "APPENDIX D"

# AMBIENT AIR EQUIPMENT CALIBRATION CERTIFICATES



# Switchtek Measurement Systems

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines. Tel Nos.02 4267583 / 9282869 / 9287769 Fax 90s.4537604 email Address: admin@swtichtek.com.ph



www.witchtek.com.ph

Certificate No.: Identification:

4000.23-0342-1.23

Calibration of

3 INI. (berometer function)

Job:

P1 32

GREENTEK ENVIRONMENTAL PHILL, CO

**Test and Verification** 

CALIBRATOR INFORMATIONS

Instruments

Instrument

Instrument

Instruments

Model No.:

Serial No.:

Traceability

Finance Dane -Cetogorius

Cal Officer

November 22, 2023

Certificate of Calibration Initials. CAC

Men

2

Hours Total cost

Barigo, precision barometer

Lumel temp and humidity transmitter

Temperature and Humidity chamber

Drieck, pressure collibrator

XB-OTS-34

20130803

CNAS

1.00

Туре Certificate

CERTIFICATE OF CALIBRATION - 3 IN 1 (Barometer Function)

This report of calibration shall document that the instrument horsin was examined and tasted in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

have d to:

GREENTEK ENVIRONMENTAL PHILS., CO

Address:

2353 RI PLACE UNIT SA SRLYA STREET BRIGY, 860 PANDACAN, MANUA, PHILIPPINIS

LHRT LINDER TEST (UUT):

Instrument Brand:

3 IN1 (barometer function)

LUTTION

Model No.: Serial Wo.:

PHB-318 No record

ID code: Ranne

No record Temp. ( 0-50 Dag. C)

Humidity (10 to 95%)

Dewpoint (-25.3 to 48.9 Deg. C)

Barometer (10 to 999.9 hPa)

Resolution

Temp. (0.1 Deg. C) Humiday (U.3 %) Devepoint (0.1 Deg. C) Barometer (1 hPa)

Accuracy:

Temperature:

#98/15°C°F

SERN

2 ± (3% reading + 1% f04). < 70% RH - 3% RH ± 3% RH.

Barometric pressure

10.0 to 999.9 (± 1.5 hPa) 3000 to 1100 (± 2 hPa) Movember 20, 2023

Calibration Date: Calibration Due:

November 19, 2024

**Environmental Condition**:

Conditions -

DRY/BASIC/NEUTRAL Relative Humiday: 55.6 ±9%, 1007 hPa

Ambient Temp. (Deg C): 24.4 ±2.

By comparison technique, unit under test was placed in a Chamber with a Standard precision basemeter, Temperature and Humidity calibrator. Proceedures of calibration and test conform to the requirements of NPL, NIST and ISO/IEC Guide 17025. Data were gathered and platted against an ideal curve.

Standard error and uncertainty of measurement are written on the attached sheet.

Remarks:

All data pertain only to the unit data thad ob-Sinely at the time of text. This certificate is not valid w/oct and and signature. Unauthorized reproduction is prohibited.

Calibrated By:

C.A. CASADO

Dates

November 20, 2023

Date:

Properties Totales Tot



# Switchtek Measurement Systems

A Division of Switchtels Construction Corporation

4th Floor Northridge Placa, Americ A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537684 esnal Address: admin@sultchtek.com.ph

www.switchtelk.com.ph



November 20, 2023

November 19, 2024

C.A. CASADO

Certificate No.:

4000.23-9142-1.23

Calibration of

3 IM1 (barometer function)

Calibration Date:

Calibration Due:

Calibrated By:

Identification: Address:

GREENTEK ENVIRONMENTAL PHILS., CO

2353 RJ PLACE UNIT 3A SELYA STREET BRGY.850 PANDACAN, MANRA, PHILIPPINES

# CERTIFICATE OF CALIBRATION - 3 IN 1 (Barometer Function)

This report of calibration shall document that the instrument herein was assumined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

### UNIT UNDER TEST (UUT):

Instrument:

3 IN1 (barometer function)

Brand:

LUTRON

Model No.:

PHB-319

Sertal No.:

No record

Range:

Temp. ( 0-50 Deg. C)

Humidity (10 to 95%)

Dewpoint (-25.3 to 48.9 Deg. C)

Barometer (10 to 999.9 hPa)

Resolution:

Temp. (0.1 Deg. C)

Hamidity (0.1%) Dewpoint (0.1 Deg. C)

Barometer (1 hPa)

ID code:

No record

### Results:

### Barometer

REFERENCE READING (hPa)	UNIT UNDER YEST READING (hPa)	ERROR IN READING (hPa)	STANDARD DEVIATION	REMARKS
1009.0	1003.0	6.00	4.2426	The user should determine the suitability of the instrument for its intended use
1005,0	1000.0	5.00	3,5355	
1000.0	995.0	5.00	3,5355	
990.0	0.880	5.00	4,2426	

Standard error: ± 7.78 hPa

Uncertainty: ±

6.09 hPa



# Switchtek Measurement Systems

### A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave... Baltay Toro, Curzon City, 1300, Philispines Tel Nos 83517471 / 89282869 / 89287769 Fax No. 89828269 email Address: admin@switchtek.com.ph. www.switchtek.com.ph

Certificate No.:

4000.05-5664-2.23. REV

Calibration of

Rotameter

Identification:

GREENTEK ENVIRONMENTAL PHILS., CO.

tab

Test and Verification

Fig.ager

32

Certificate of Calibration

Done

July 20, 2024

CAC Hours

Type

Categories Cal Officer

**Test and Californition** 

Men

Total cost

Certificate

# CERTIFICATE OF CALIBRATION - ROTAMETER

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

issued To:

GREENTEN ENVIRONMENTAL BUILS OF

Address:

2430 LAURA STREET, PANDACAN, MANILA, PHIUPPINES

UNIT UNDER TEST (UUT):

Instrument:

ficitameter

KIMOTO

Brand: Model No:

#94-403E3

Social No:

Novecord No record

Property ID: Range

0.1 to 2.5 LPM

Brighinting

Calibration Date: July 02, 2024

Calibration Due:

0.1 LPM

July 02, 2025

CALIBRATOR INFORMATION:

Standard Thermometer:

Instrument:

DWYER, Rotameter

Inert Gas:

Pure (N2) Nitrogen Gas

Heraeus, Standard platinum

resistance thermometer Test Gauge, NABLUKAS,

Cert#5A/5200.01

Instrument:

Standard Gauge:

Primary DC DRYCAL

Brand:

tios.

Serial No.: 4229

Traceability:

NIST, NPL and PTS Lab.

**Environmental Condition**:

Condition

DRY/BASIC/NEI/TRAL Relative Humidity: 48 ±5%, 1009 hPa

Ambient Temp. (Deg C):

19.8 ±2

### Calibration Method:

By comparative technique, unit under test was tested and calibrated in referenced with a Standard Flowmeter, at planned intervals using dried and filtered lisert get and in accordance with NST, NPL and ISO/IEC Guide 17025. Data were gathered and tabulated.

During calibration, the unit was found to have a standard error of ± 0.0000 LPM with a confidence level of not less than 95%. Invertantly of measurement is a 0.056 UPM. Calculations were taken using Standard Seviation Formula.

NO. OF TEST	REFERENCE READING (LPM)	UNIT UNDER TEST READING (LPM)	ERROR IN READING (LPM)	STANDARD DEVIATION
3	0.000	0.00	0.000	0.0006
2	0.500	0.50	0.000	0.0000
3	1.000	100	0.000	0.0000
4	1.500	150	0.000	0.0000
5	2.000	2:00	0.006	0.0000

All data pertain only to the unit described obtained at the time of test. This certificate is not valid w/out seal, and signature Unauthorized reproduction is prohibited.

******** NOTE MEASUREMENT INDICATOR IS AT THE UPPER PART OF THE FLOATER*********

Calibrated By:

Date: July 02, 2024

July 02, 2024



#### Switchtek Measurement Systems

A Division of Switchtok Construction Corporation

4th Filose Northridge Plaza, Annex A. 12 Congressional Ave., Bahay Toro, Queron City, 1100, Philippines Tel Hos./02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtel.com.ph



www.switthtek.com.ph

Certificate No.:

400.01-6227-1-23

Califoration of

Sound Level Meter

Mentifications

GREENTEK ENVIRONMENTAL PHILS., CO PT

Test and Verification

doc Fin.acc:

32

Diretticate of Calibration

Done.....

June 4, 2024 Culibration

Smittady...:

CAC

Total cost

Type Cortificate

Categories Dal Officer

#### CERTIFICATE OF CALIBRATION - SOUND LEVEL METER

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/ISC 17025 against NIST traceable reference standards and its co-equal standards.

hashed You

GREENTRY PROGRAMMENTAL PHILS. CO.

AdMresic

2353 RJ PLACE UNIT SA SELYA STREET BRGY, 860 PANDACAN, MANILA, PHILIPPINES

UNIT URDER TEST (UUT):

Instrument:

Sound Level Meter

Brand:

BUTRON

Madel No: Serial No: GLANESKI) 1433801

75 to 130 dt.

60 Code:

the record Californition Date: Autor 3, 2024 Ame 2, 2025

Relative Humidity: 41.2 ±5%, 1006 RPs

CALIBRATOR INFORMATION:

Instrument

Sound Level Calibrator

Brand:

Lutron Secial No.

1.278821 \$2,942

Model No: Traceability:

IEC 60942 Type II A Standard

NIST and NPL

Emironmental Condition:

Calibration Due:

Conditions

DRY/NASIC/MULTRAL

Ambient Youp. (Dag C): 23.3:2

#### Calibration Method-

By comparative technique, Standard Sound Generator was introduced at the unit under text at a constant value of 94.0 dB to 114 dB at a uniform frequency of 1000 Hz. Data were gathered and tabulated. Procedures of test conform to the requirements of CMME 88 Guidefines, IEC 60942 of the NIST and National Physical Laboratories

During collibration, the unit was found to have a standard error of ±0.00 dB with a confidence level of not less than 95%. Uncertainty of measurement is ±0.58 dB. Calculations were taken using the Standard Deviation Formula.

TRIALS	REFERENCE READING (MB)	URIT UNDER TEST READING (UR)		ENROR IN READING	STANDARD	REMARKS	
		AS FOLIND	AS LIFT		DEANTION	The transfer of	
1	94.0	55.8	94.0	0.00	0.0000		
2	134.0	115.0	1143	0.30	0.2121	Passed	

All data permit only to the unit described objecting at the liter of test. This credificate is not cold subout seel and signature. Uncerthorized reproduction is prohibited.

Calibrated By:

C.A. CASADO

Aure 3, 20174 Date:

6 Substant Theorement * 200 * 100 * "100 * "100 * "100 * "100 * "Theorement * "Theorement * "Substant * " Theorement * "Substant * " Theorement * "Substant * " " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theorement * " Theoremen Conscioned Disposition



#### Switchtek Measurement Systems

A Division of Switchtek Construction Corporation

4th Floor Morthridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Cuszon City, 1106, Philippines

Tel Nos: 3453-7694; 8928-2869; 8928-7769 Fax No.: 8426-7593 email Address: admin@switchtek.com.ph

www.witchtek.com.ph



Certificate No.2

4000.05-8227-1.23

Identification: Job:

P2

Fig.ner:

32

Done.... Categories

GREENTEK ENVIRONMENTAL PHILS., CO

May 15, 2024

Call Officer

Calibration of

High Volume Sampler

Test and Verification Certificate of Calibration

Initials ...

CAC Hours 1.0

Total cost

Type Certificate

CERTIFICATE OF CALIBRATION - HIGH VOLUME SAMPLER

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST tracoable reference standards and its co-equal standards.

1

Issued To:

GREENTEK ENVIRONMENTAL PHILS., CO

Address:

2353 RI PLACE UNIT DA SELVA STREET BRGY, 860 PANDACAN, MANILA, PHILIPPINES

UNIT UNDER TEST (UUT):

Instrument:

High Volume Sampler

Beards Model Nec STAPLEX TFIA-2

Serial No:

25707T 0.5 to 2 m3/min.

Ranger Gosduntinn

0.1 m3

ID code:

No record

Collbration Debra

May 10, 2025

Calibration Due:

May 11, 2024

CAUBRATOR INFORMATION:

Instrument:

**Rotating Vane Anemometer** LUTRON

Manufacturers Model No:

AM-4206M

Serial Hos

0492205 0 to 30.0 m/s

0 to 50.0°C

**HEA** 

Origin:

Calibrated Against:

shient Temp. (Dog C): 24.5±2

UKAS, thru Laser Doppler Anemomet

**Environmental Condition** 

Conditions

DRY/BASIC/NEUTRAL

Relative Humidity: 56 ±5%, 1011 hPa

Calibration Method:

By comparative technique, unit under test was tested and calibrated in reference with a rotating vane anemometer at planned intervals using dried and filtered inert gas and with NIST, NPL and ISO/IEC Guide 17025. Data were gathered and tabulated.

During calibration, the unit was found to have a standard error of ±0.008 m3/min. with a confidence level of not less than 95%. Uncertainty of measurement is ±0.062m3/min. Calculations were taken using Standard Deviation Formula.

NO. OF TEST	REFERENCE READING {m3/min.}	NEADING (m3/min.)	ERROR IN READING (m3/min.)	STANDARD DEVIATION
1	1.00	1.0	0.000	0.0000
2	1.49	1.5	0.020	0.0071
1	2.01	2.0	-0.030	0.0071

All data pertain only to the unit described obtained at the time of test. This certificate is not valid w/out soal, and signature. Unauthorized reproduction is prohibited.

Calibrated By:

Dates

CATCESADO May 11, 2024 Certified By:

Distar

Temperature" frames "Sound" Gai Detector/Vasilyor "Flow "Valuate" Weight" 83" 10" Conductivity "Expeditivity "Conductivity "Expedit "Annocate "Amounts "New Trace ncy Controller "Hygrometer "Glass & Si-Metal *Sphgmoranorater *Lose Oher mater *Dall Two Gauge *Gauge *Gauge *Gauge Book* Gages Meres* Psychocontent* Whydoox* Skielonic M Meter* Tuerdernee form Beter* Hi Too Mater* Capacitance & Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial Colonial

#### "APPENDIX E"

AMBIENT AIR TESTING PARTICIPANTS

#### **AMBIENT AIR TESTING PARTICIPANTS**

#### **BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT**

Mr. Lloyd P. Camado - Facility Representative

#### **GREENTEK ENVIRONMENTAL PHILS. CO.**

Mr. Angelo V. Guevarra - QA/QC Manager

Mr. Manny R. Cruz - Field Technician Mr. Rodel M. Castante - Field Technician



## Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU Visayas Avenue, Diliman, Quezon City



SAT No. 2023 - 151

#### CERTIFICATE OF ACCREDITATION

Pursuant to DENR Administrative Order No. 26 Series of 2013 of the Department of Environment and Natural Resources having substantially met all the requirements prescribed therein,

#### GREENTEK ENVIRONMENTAL PHILS, CO.

#2430 Laura St., Pandacan Manila

is hereby duly accredited as

#### SOURCE EMISSION TESTING FIRM

As such, the following are authorized as:

QA/QC Manager Danilo M. Palaypay, Jr.

Team Leader Aaron Jonathan R. Regilme

This certification shall allow the above firm and personnel to conduct stack testing limited to the following methods and parameters:

1. US-EPA Method 1 to 5 - PM

2. US-EPA Method 6/8 - SO2

3. US-EPA Method 7 - NO_x

4. US-EPA Method 10 - CO

Granted this

December 22, 2023 and valid until

December 22, 2026

GILBERT C. GONZALES, CESO III

Director and concurrent Assistant Secretary for Field Operations



#### "APPENDIX F"

## LABORATORY CERTIFICATES OF RECOGNITION

#### SCOPE OF RECOGNITION*

Water and Westmonter
Ammonia as NH₂-N; Aesenie
Barium; BOD; Boron; Cadmium
Chemical Otogen Demand; Chloride
Chumium as Hexavolent Chromium (Cr⁶⁻)
Coliform, Fecal; Celiform, Total
Celor (True); Copper as Dissolved Capper
Copper, Total; Cyunide as Free Cyunide
Dissolved Oxygen; Placetide; Iran; Lead
Manganese; Moreary; Nichol; Mitteite as NO₂-N
Oil and Gresso; pill; Phosphate; Selenium
Settlenbie Solide; Sulfate

#### DENR RECOGNIZED SIGNATORIES

For Air, Metals, Physical-Chemical and Waste Analyses Marisa T. Manaor

For Bacteriological Analysis Luchie S. Ignacio.

*Exclusive of sampling: Analytical methods and references approved for water and austrosater are in Amer CR 040/2020.

ELR LASORATORY CODE NO. NCR-29

Republic of the Philippines
DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES
Visugus Avenue, Dilinum, Quezon City

This

#### CERTIFICATE OF RECOGNITION

C.R. No. 040/2020

is hereby granted to

#### Mach Union Laboratories, Inc.

March Union Bldg., 335 Alabang-Zaprate Road. Talon 3. Las Piñes City and ANPRA Bldg., PMC-LTO Compound, Alabang-Zaprate Road. Talon 1. Las Piñes City

after having been assessed and found to comply with the documentation, analytical performance and other technical requirements of Administrative Order No. 63, Series of 1998, Guidelines for the Designation of DENR Recognized Environmental Laboratories.

This certificate is valid for three years from date of issue unless otherwise revoked or cancelled.

In testimony whereof, I have hereunto signed this Certificate and issued the same this thirtieth day of June, year two thousand and twenty at Quezon City, Philippines.

ROYA, CIMATU Secretary

#### SCOPE OF RECOGNITION*

Water and Wastewarer
Surfectants (Methylene Blac Active Substances)
Temperature; Total Dieselved Solide
Total Suspended Solide; Zinc

Ambient Air
Nitrogen Dioxide; Sulfur Dioxide
Suspended Particulate Matter - PM10
Suspended Particulate Matter - TSP

Stationary Source Emissions NOs; Particulates Suffer Onides as SOs.

#### DENR RECOGNIZED SEGNATORIES

For Air, Metols, Physical-Chemical and Waste Analyses Marisa T. Mangor

For Bocteriological Analysis Luchie S. Ignacio.

"Enclusive of sampling: Analytical methods and references approved for unter and scattenator are in James CR (44)-2001.

ELR LABORATORS CCDE No. NCR-29

Republic of the Philippines
Department of Environment and Natural Resources
Visigos Ademic, Dilliman, Quezon City

This

#### CERTIFICATE OF RECOGNITION

C.R. No. 040/2020

is hereby granted to

#### Mach Union Laboratories, Inc.

Mach Union Bldg., 315 Alabang-Zapote Road, Talon 3, Lus Piltas City and ANFRA Bldg., PMC-LTO Compound, Alabang-Zapote Road, Talon 1, Lus Piltas City

after having been assessed and found to comply with the documentation, analytical performance and other technical requirements of Administrative Order No. 63, Series of 1998, Guidelines for the Designation of DENR Recognized Environmental Laboratories.

This certificate is valid for three years from date of issue unless otherwise revoked or cancelled.

In testimony whereof, I have hereunto signed this Certificate and issued the same this thirtieth day of June, year two thousand and twenty at Quezon City, Philippines.

ROY A. CIMATU Secretary

#### SCOPE OF RECOGNITION*

Sediments Arsenic Total Cadmium, Copper, Iron Lend, Manganese, Nickel Silver, Zinc; Total Morcary

Weates

Askinsony: Antimony compounds
Assenic and its compounds
Barium and its compounds
Cadmium and its compounds
Chromium compounds
Lead compounds
Mercury and mercury compounds
Selenium and its compounds.

#### DENR RECOGNIZED SIGNATORIES

For Air, Metals, Physical-Chemical and Waste Analyses Marisa T. Manant

For Bacteriological Analysis Luchie S. Ignacio.

*Endurine of sampling, Analytical methods and references approved for uniter and wastereater are in Annex CR 040/2020.

> ELR LABORATORY CODE NO. NCR-09 Page 3 of 8

Republic of the Philippines
DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES
Visigus Adenue, Dillinon, Quezon City

This

#### CERTIFICATE OF RECOGNITION

C.R. No. 040/2020

is hereby granted to

#### Mach Union Laboratories, Inc.

Mach Union Hidg., 315 Alabarg-Zapote Road, Tolon 3, Las Pillar City and ANERA Bidg., FMC-LTO Compound, Alabarg-Zapote Road, Tolon 1, Los Pillas City

after having been assessed and found to comply with the documentation, analytical performance and other technical requirements of Administrative Order No. 63, Series of 1998, Guidelines for the Designation of DENR Recognized Environmental Laboratories.

This certificate is valid for three years from date of issue unless otherwise revoked or cancelled.

In testimony whereof, I have bereunto signed this Certificate and issued the same this thirtieth day of June, year two thousand and twenty at Quezon City, Philippines.

ROY A. CIMATU Secretary

ANNEX CR 040/2020 Mach Union Laboratories, Inc.

#### RECOGNIZED PARAMETERS AND ANALYTICAL METHODS

PARAMETERS	ANALYTICAL METHODS	REFERENCES
Ammonia as NH ₃ -N	Phenate Method	SMEWW 4500-NH ₃ F
	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 B (SMEWW 3030E)
Arsenic	Manual Hydride Generation/ Atomic Absorption Spectrometric Method	SMEWW 3114 B
	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)
	Direct Nitrous Oxide - Acetylene Flame Method (Nitric Acid - Hydrochloric Acid / Hotplate Digestion)	SMEWW 3111 D (SMEWW 3030 F)
Barium	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)
BOD	5-Day BOD Test	SMEWW 5210 B
	Carmine Method	SMEWW 4500-B C
Boron	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)
Cadmium	Direct Air-Acetylene Flame Method (Nitric Acid - Hydrochloric Acid/ Hotplate Digestion Method)	SMEWW 3111 B (SMEWW 3030 F)

ANNEX CR 040/2020 Mach Union Laboratories, Inc.

#### RECOGNIZED PARAMETERS AND ANALYTICAL METHODS

PARAMETERS	ANALYTICAL METHODS	REFERENCES
	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 B (SMEWW 3030E)
Cadmium	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)
	Open Reflux Method	SMEWW 5220 B
Chemical Oxygen Demand	Closed Reflux, Colorimetric Method	SMEWW 5220 D
	Argentometric Method	SMEWW 4500-Cl- B
Chloride	Ion Chromatography with Chemical Suppression of Eluent Conductivity	SMEWW 4110 B
Chromium as Hexavalent Chromium (Cr ⁶⁺ )	Colorimetric Method	SMEWW 3500-Cr B
Coliform, Fecal	Multiple Tube Fermentation Technique – Fecal Coliform Procedure	SMEWW 9221 E
Coliform, Total	Multiple Tube Fermentation Technique – Standard Total Coliform Fermentation Technique	SMEWW 9221 B
Color (True)	Visual Comparison Method	SMEWW 2120 B
Copper as Dissolved	Direct Air-Acetylene Flame Method (Nitric Acid - Hydrochloric Acid / Hotplate Digestion Method)	SMEWW 3111 B (SMEWW 3030 F with SMEWW 3030 B)
Copper	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 B (SMEWW 3030 E with SMEWW 3030 B)

ANNEX CR 040/2020 Mach Union Laboratories, Inc.

#### RECOGNIZED PARAMETERS AND ANALYTICAL METHODS

PARAMETERS	ANALYTICAL METHODS	REFERENCES
Copper, Total	Direct Air-Acetylene Flame Method (Nitric Acid - Hydrochloric Acid / Hotplate Digestion Method)	SMEWW 3111 B (SMEWW 3030 F)
	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 B (SMEWW 3030E)
	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)
Cyanide as Free Cyanide	Cyanide - Selective Electrode (w/o distillation)	SMEWW 4500-CN- F
Dissolved Oxygen	Iodometric Method - Azide Modification	SMEWW 4500-O C
	Membrane Electrode Method	SMEWW 4500-0 G
Fluoride	Ion Chromatography with Chemical Suppression of Eluent Conductivity	SMEWW 4110 B
	Ion-Selective Electrode Method	SMEWW 4500-F-C
	Direct Air-Acetylene Flame Method (Nitrie – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)
Iron	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3120 B (SMEWW 3030 F)
Lead	Direct Air-Acetylene Flame Method (Nitric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 E)

ANNEX CR 040/2020 Mach Union Laboratories, Inc.

#### RECOGNIZED PARAMETERS AND ANALYTICAL METHODS

PARAMETERS	ANALYTICAL METHODS	REFERENCES
	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 E)
Lead	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)
	Direct Air-Acetylene Flame Method (Nitric – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)
Manganese	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)
Mercury	Cold-Vapor Atomic Absorption Spectrophotometric Method	SMEWW 3112 B
	Direct Air-Acetylene Flame Method (Nitric – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)
Nickel	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)
Nitrate as NO3-N	Ion Chromatography with Chemical Suppression of Eluent Conductivity	SMEWW 4110 B
AND THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRA	Nitrate Electrode Method	SMEWW 4500-NO3- D

ANNEX CR 040/2020 Mach Union Laboratories, Inc.

#### RECOGNIZED PARAMETERS AND ANALYTICAL METHODS

PARAMETERS	ANALYTICAL METHODS	REFERENCES	
Oil and Grease	Liquid-Liquid, Partition - Gravimetric Method	SMEWW 5520 B	
pH	Electrometric Method	SMEWW 4500-H+ B	
Phosphate	Stannous Chloride Method	SMEWW 4500-P D	
	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 B (SMEWW 3030 E)	
Selenium	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)	
	Manual Hydride Generation/ Atomic Absorption Spectrometric Method	SMEWW 3114 B	
Settleable Solids	Imhoff Cone Method	SMEWW 2540 F	
Sulfate	Ion Chromatography with Chemical Suppression of Eluent Conductivity	SMEWW 4110 B	
	Turbidimetric Method	SMEWW 4500-SO42- E	
Surfactants (Methylene Blue Active Substances)	Anionic Surfactants as MBAS	SMEWW 5540 C	
Temperature	Laboratory and Field Methods	SMEWW 2550 B	
Total Dissolved Solids	Gravimetric, Dried at 180°C	SMEWW 2540 C	
Total Suspended Solids	Gravimetric, Dried at 103-105°C	SMEWW 2540 D	
	Direct Air-Acetylene Flame Method (Nitric – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)	
Zine	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)	



#### AMBIENT AIR QUALITY AND NOISE LEVEL MEASUREMENT MONITORING REPORT

Reference No.: GEPC-AAQM-2412-072

Prepared for:

## BENGUET CORPORATION ACUPAN CONTRACT MINING PROJECT

Balatoc, Virac, Itogon, Benguet

Sampling Date: December 13, 2024

Report Date: December 27, 2024

## AMBIENT AIR QUALITY AND NOISE LEVEL MEASUREMENT MONITORING REPORT CERTIFICATION

#### THREE (3) STATIONS AREA TESTS

#### **PARAMETERS:**

TOTAL SUSPENDED PARTICULATE **(TSP)**SULFUR DIOXIDE **(SO₂)**NITROGEN DIOXIDE **(NO₂)**NOISE LEVEL MEASUREMENT

## BENGUET CORPORATION ACUPAN CONTRACT MINING PROJECT

Balatoc, Virac, Itogon, Benguet

The ambient air monitoring and noise level measurement monitoring results reported herein were headed and performed by Mr. Danilo M. Palaypay, Jr. and his team. The laboratory analysis of the collected samples is conducted by Mach Union Laboratories Inc. and has been verified and found to be orderly.

I have certified that the information discussed in this report is accurate to the best of my knowledge.

Signed by:

DANILO M. PALAYPAY, JR.

SAT No. 2023-151

Date Signed: December 27, 2024

#### AMBIENT AIR QUALITY MONITORING REPORT

FACILITY NAME: Benguet Corporation Acupan Contract Mining Project

FACILITY ADDRESS: Balatoc, Virac, Itogon, Benguet

#### 1.0 INTRODUCTION

**Greentek Environmental Phils. Co.** was contracted by **Benguet Corporation Acupan Contract Mining Project** to conduct ambient air sampling for Three (3) stations within their plant facility as a requirement of their environmental permit and partly for their regular environmental monitoring.

Ambient air sampling was conducted on December 13, 2024, to analyze nitrogen dioxide (NO2), sulfur dioxide (SO2) and total suspended particulate (TSP) levels.

#### 2.0 SAMPLING METHODOLOGY

The DENR standard ambient air sampling equipment and analytical procedures were used in the sampling activity. These equipment and procedures are specified below:

#### **Total Suspended Particulate Matter (TSP)**

Reference Procedure: USEPA, 40 CFR 50, Appendix B

Sampling Equipment: High Volume Sampler (1-Hour Air Sampler)

Method of Analysis: Gravimetric Method

Sulfur dioxide (SO₂)

Reference Procedure: USEPA, 40 CFR 50, Appendix A

Sampling Equipment: Gas Bubbler Sampler (USEPA compliant)

Method of Analysis: Pararosaniline Method

Nitrogen dioxide (NO₂)

Reference Procedure: Air Pollution Monitoring Manual, EMB-1994
Sampling Equipment: Gas Bubbler Sampler (USEPA compliant)

Method of Analysis: Colorimetric, Griess Saltzman

The SO2 and NO2 samples were stored in an icebox, the TSP filters were placed in a clean envelope. All collected samples were then transported to the laboratory for analysis.

#### 3.0 SAMPLING LOCATIONS

There are Three (3) sampling stations for ambient air monitoring. The table below shows the location and observations made during the sampling activity.

STN	LOCATION	OBSERVATION / ACTIVITY IN THE AREA DURING THE TIME OF SAMPLING
1	Along Keymens Road (Upwind)	The Plant facility was operational during sampling with light to moderate wind. There were twelve (12) cars, fourteen (14) trucks and fifteen (15) motorcycles that passed by during sampling.
2	Near Assay Laboratory & Gate 2 (Upwind)	The Plant facility was operational during sampling with light to moderate wind. There were ten (10) trucks, five (5) car and eight (8) motorcycles that passed by during sampling.
3	Near BCACMP Office (Downwind)	The Plant facility was operational during sampling with light to moderate wind. There were five (5) trucks and one (1) car that passed by during sampling.



#### 4.0 SUMMARY OF RESULTS

The summary results of the laboratory analysis are presented below for all sampling areas.

Table 1
Laboratory Analysis Results and Standard Limits for 60 minutes sampling

Stn	Location	Date / Time Sampling	TSP (ug / Nm³)	SO ₂ (ug / Nm³)	NO ₂ (ug / Nm³)
1	Along Keymens Road (Upwind)	13-Dec-2024 1315H-1415H	270.6	10.8	19.9
2	Near Assay Laboratory & Gate 2 (Upwind)	13-Dec-2024 1135H-1235H	190.3	10.8	15.9
3	Near BCACMP Office (Downwind)	13-Dec-2024 1015H-1115H	182.2	10.8	12.4
DENR NAAQ Standards for 60 minutes sampling			300	340	260

These data are measured to standardize the test results to 25°C and 760mmHg and for comparison purposes.



Table 2
Meteorological Monitoring Reading for 60 minutes sampling

STN	Location (GPS)	Date / Time Sampling	Barometric Pressure. (Inch Hg) Result Avg.	Ambient Temp.(°C) Result Avg.	% Relative Humidity Result Avg.	Wind Speed Avg. (m/s)
1	Along Keymens Road <b>(Upwind)</b>	4-Dec-2024	27.12	29.4	59.9	1.7
	N 16°21'35.718" E 120°39'31.724"	1315H-1415H				
2	Near Assay Laboratory & Gate 2 (Upwind)	13-Dec-2024	27.25	30.7	56.9	1.2
	N 16°21'33.744" E 120°39'30.636"	1135H-1235H				1.2
2	Near BCACMP Office (Downwind)	13-Dec-2024	27.27	29.9	55.8	1.1
	N 16°21'38.406" E 120°39'36.17"	1135H-1235H	21,21			1.1

#### 5.0 DISCUSSION OF RESULTS

The USEPA "Quality Assurance Handbook for Air Pollution Measurement Systems, Environmental Management Bureau, Department of Environment and Natural Resources, Philippine Environmental Policies, Laws, and Regulations handbook was used as a guide to achieve the quality assurance objectives of producing data that is complete, representative, and of known precision and accuracy.

The above results of analysis are compared to the National Ambient Air Quality Standards (NAAQS) for source-specific air pollutants from industrial operations. These standards are specified in the Implementing Rules and Regulations of the Philippine Clean Air Act of 1999.



#### Benguet Corporation Acupan Contract Mining Mining Project Reference No.: GEPC-AAQM-2412-072

During sampling on December 12, 2024, the weather from stations 2 to 3 was sunny with prevailing light to moderate wind blowing from the Northeast to Southwest, while on December 13, 2024, the weather from station 1 was sunny with prevailing light to moderate wind blowing from the Southwest to Northeast, respectively. Thus, the results of TSP, SO₂ and NO₂ concentrations are within the applicable CAA/IRR standard for 60 minutes of sampling.

#### NOISE LEVEL MEASUREMENT MONITORING REPORT

FACILITY NAME: Benguet Corporation Acupan Contract Mining Project

FACILITY ADDRESS: Balatoc, Virac, Itogon, Benguet

#### INTRODUCTION

Environmental noise is the unwanted or harmful outdoor sound created by human activity. On December 13, 2024, daytime noise level monitoring was conducted in Three (3) stations within the premises of their facility located at the above address. Noise level measurement was performed, and the measurement was conducted as part of their environmental monitoring and permit requirements.

#### **OBJECTIVE OF THE MONITORING**

The objective of noise monitoring is to provide data regarding the level of noise in a location so that it may be compared to the National Pollution Control Commission's (NPCC) noise limit standard. It is also to assess the impact of industrial activities on noise pollution and implement mitigation strategies to safeguard both workers well-being and the surrounding environment.

#### SAMPLING METHODOLOGY

A precision-type digital sound level meter was used for noise measurement. The said instrument is a LUTRON sound level meter, Model SL-4033SD. The sound level meter meets the IEC 61672 class 1 standard. The sound level meter that was used to measure the level was calibrated at Switchtek Measurement Systems with an acoustical calibrator (Lutron Sound Level). The noise was measured using an "A" weighting network and "slow response" with different limits for various times of the day and area categories. Noise measurement was performed for about 3 to 5 minutes per



station after the 1-hour ambient sampling activity. The noise sampler was handheld at about thirty degrees (30°) from the plane directly pointing to the facility.

#### SAMPLING LOCATIONS

There are Three (3) sampling stations for noise level measurement monitoring. The table below shows the location and observations made during the sampling activity.

STN	LOCATION	OBSERVATION / DURING NOISE LEVEL MEASUREMENT					
1	Along Keymens Road	The audible noise was detected from the plant facility that the generator set was operational during sampling.					
2	Near Assay Laboratory & Gate 2	The audible noise was detected from the plant facility that the generator set was operational during sampling.					
2	Near BCACMP Office	The audible noise was detected from the plant facility that the generator set was operational during sampling.					

#### **SUMMARY OF RESULTS**

Table 3
Noise Level Measurement Monitoring Reading

Location	Time	Median (dBA)	Category of the Area	DENR Standard (dBA)
Along Keymens Road	1420H-1423H	62.9	Class C	70
Near Assay Laboratory & Gate 2	1238H-1241H	55.8	Class C	70
Near BCACMP Office	1120H-1123H	49.5	Class C	70



#### Table 4 Environmental Noise Quality Standards in General Areas

	Maximum Allowable Noise (dBA)							
Category of the Area	Day Time 0900H to 2900H	Morning & Evening 0500H to 0900H / 2900H to 2200H	Nighttime 2200H to 0500H					
AA	50	45	40					
А	55	50	45					
В	65	60	55					
С	70	65	60					
D	75	70	65					

The Philippines standard for noise is categorized into Three (3) classes of sections, and the maximum allowable noise is classified in different time.

#### **Description per Category**

- Class AA A section or contiguous area which requires quietness, such as areas within 100 meters from school sites, nursery schools, hospital, and special home for the aged.
- Class A A section or contiguous area which is primarily used for residential purposes.
- Class B A section or contiguous area which zoned or used as a commercial area.
- Class C A section primarily zoned or used as a light industrial area.
- Class D A section which is primarily reserved, zoned, or used as a heavy industrial area.



Benguet Corporation Acupan Contract Mining Mining Project Reference No.: GEPC-AAQM-2412-072

#### **DISCUSSION OF RESULTS**

The environmental noise standards are based on Memorandum Circular No. 002 Series of 1980 of the National Pollution Control Commission. The noise was measured using an "A" weighting network and "slow response" with different limits for various times of the day and area categories. The location of Benguet Corporation Acupan Contract Mining Project is primarily zoned or used as a industrial area (Class C) with a DENR Daytime Noise Standard of 70 dBA.

The results of the noise level measurement reading show that the noise level in stations 1 to 3 were within the applicable DENR daytime limit of 70 dBA. The audible noise was detected from the plant facility and vehicle that passing by during sampling.

#### "APPENDIX A"

## AMBIENT AIR MONITORING FIELD DATAS

## AMBIENT AIR MONITORING DATA Benguet Corporation - Acupan Contract Mining Project December 13, 2024

GPS Location: N 16°21'35.718" E 120°39'31.724"

Station 1	Alor	a Kovmono B	aad		Flowrate		
(Upwind)	Aldi	Along Keymens Road				SO2	Wind Speed
Time	Pbar inHg	Amb. Tmp. °C	RH%	m3/min	lpm	lpm	m/s
1315H-1325H	27.12	31.1	59.2	1.0	0.5	0.5	1.8
1325H-1335H	27.12	29.7	59.6	1.0	0.5	0.5	1.6
1335H-1345H	27.12	29.6	58.7	1.0	0.5	0.5	1.6
1345H-1355H	27.11	29.0	60.0	1.0	0.5	0.5	1.8
1355H-1405H	27.11	28.6	60.7	1.0	0.5	0.5	1.8
1405H-1415H	27.11	28.3	61.2	1.0	0.5	0.5	1.8
Average	27.12	29.4	59.9	1.0	0.5	0.5	1.7

GPS Location: N 16°21'33.744" E 120°39'30.636"

Station 2	Noar Acc	ay Laboratory	8 Gato 2		Flowrate		
(Upwind)	Neal Ass	ay Laboratory	& Gale 2	TSP	NO2	SO2	Wind Speed
Time	Pbar inHg	Amb. Tmp. °C	RH%	m3/min	lpm	lpm	m/s
1135H-1145H	27.25	31.2	53.2	1.0	0.5	0.5	1.2
1145H-1155H	27.25	31.1	57.5	1.0	0.5	0.5	1.0
1155H-1205H	27.25	30.8	57.7	1.0	0.5	0.5	1.0
1205H-1215H	27.24	30.7	56.7	1.0	0.5	0.5	1.2
1215H-1225H	27.24	29.5	59.5	1.0	0.5	0.5	1.4
1225H-1235H	27.24	31.0	56.8	1.0	0.5	0.5	1.2
Average	27.25	30.7	56.9	1.0	0.5	0.5	1.2

GPS Location: N 16°21'38.406" E 120°39'36.17"

Station 3	Б	BCACMP Office			Flowrate		
(Downwind)		CACIVIP OTTICE	<del></del>	TSP	NO2	SO2	Wind Speed
Time	Pbar inHg	Amb. Tmp. °C	RH%	m3/min	lpm	lpm	m/s
1015H-1025H	27.27	28.7	58.9	1.0	0.5	0.5	1.0
1025H-1035H	27.27	29.5	57.7	1.0	0.5	0.5	1.0
1035H-1045H	27.27	29.9	56.3	1.0	0.5	0.5	1.2
1045H-1055H	27.27	30.0	55.9	1.0	0.5	0.5	1.0
1055H-1105H	27.26	30.6	53.2	1.0	0.5	0.5	1.2
1105H-1115H	27.26	30.9	53.0	1.0	0.5	0.5	1.2
Average	27.27	29.9	55.8	1.0	0.5	0.5	1.1

#### NOISE LEVEL MEASUREMENT MONITORING RESULTS Benguet Corporation - Acupan Contract Mining Project December 13, 2024

Station 1	Along Keymens Road							
ī	Time of Sampling (1420H- 1423H)							
65.0	62.0	63.2	62.0					
64.5	62.9	63.7	62.7					
64.3	61.9	63.6	62.5					
69.6	62.5	62.5	63.1					
66.0	65.6	62.2	62.8					
63.9	62.6	62.3	62.6					
63.0	63.7	61.7	62.5					
Median =	62.9	Average =	63.39					
Minimum =	61.7	Maximum =	69.6					

Station 2	Near Assay Laboratory & Gate 2								
7	Time of Sampling (1238H - 1241H)								
54.6	59.8	56.5	56.3						
53.6	69.8	55.8	55.7						
53.2	63.2	56.3	55.8						
58.2	68.5	57.8	55.5						
53.3	55.5	55.4	61.7						
55.0	55.4	56.0	50.2						
54.5	56.6	56.1	52.1						
Median =	55.8	Average =	56.87						
Minimum =	50.2	Maximum =	69.8						

Station 3	BCACMP Office							
T	Time of Sampling (1120H - 1123H)							
53.5	50.6	52.0	48.4					
48.8	49.8	51.0	50.6					
51.3	48.6	49.0	49.6					
48.6	48.5	48.5	49.1					
54.1	48.5	50.6	54.6					
52.4	48.8	50.8	48.8					
51.5	47.9	49.1	49.3					
Median =	49.5	Average =	49.3					
Minimum =	47.9	Maximum =	54.6					



#### AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING

Acopin Contract Mining Project Name of Facility: Benguet

Facility Address: TTOGON

Junimen solys Personnel: RSP, BCB, EGT Facility Representative:

Station No.:

Cupwind

Specific Location:

Road Along kumen's 12 - 13-24 Coordinates:

16° 21' 35.71+" N 120 39'31. 724E

Sampling Date: Filter ID:

240478

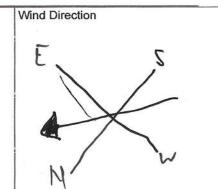
Filter Weight:

2.6956

Baromet	Barometric		Ambient	TSP	NO2	SO2			Wind
Time	Pressure inHg	RH%	Temp.,	Flow Rate m³/min	Flow Rate, Ipm	Flow Rate, Ipm	Weather Condition	Wind Direction	Speed m/s
315 - 1325	27.12	59.2	31.1	1.0	2-0	0.1	Sunn 2	SU=NE	1.8
321 - 1335		59.6	29.7	1.0	0.5	2.0	SUNNY	SW-NE	1.0
335 - 1345		38. 7	29.6	1.0	0-5	0.5	SURVE	SU- NE	1.6
345 - 1355		0.00	29.0	1.0	0-5	2-0	Sana	SW - NE	1-8
20:11- 228		60.7	28-6	1.0	2.0	2.0	24204	SU-NE	1.8
2141 - 2041	27-11	61.2	28.3	1.0	v S	2-0	Sunny	SW-NE	1.8

Description of the sampling location and observations: (use separate sheet if necessary)

Area is light moderate wind. Operations during sempling period.


vehicle

cer - 14-11. 11

TRUCK - MH - ML - 1111

Motorcycle- TH - HU-M+. Sketch of sampling location showing landmarks.

weiting soled furnd ferdames . Roed Road



#### **Noise Level Monitoring**

Station No.: Sampling Date: 12 - 13 - 24 Along keymen's Road Specific Location:

Time					Noise Source / Observation
1420	65.0	62.0	43-5	620	
	44.5	62.4	43.7	41.7	N C
F-112-14-2-7-15-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	64.3	41.5	03.6	2-50	Morse Came From
	44.6	42.5	025	(3.)	facility operation
	64.0	45.4	41.2	U2.4	PAR C 4.05
	43. 9	42.4	47.3	42.6	
1423	43.0	43.7	41.7	425	



#### AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING

Bungue + Corp Mining Acupan Name of Facility:

Facility Address.

Jenimah Salayos Personnel: RIP, BCB, EGJ Facility Representative:

Station No.:

2 CUPWIND)

Specific Location: Sampling Date:

Near Assay Leb and Met Coordinates:

12-13-24

16° 21'33. 744"N 120°39 "30.636"E

Filter ID:

240477

Filter Weight:

2.6824

Barramete	Donomotrio		Ambient	TSP	NO2	SO2			Wind
Time	Barometric Pressure inHg	RH%	Temp.,	Flow Rate m³/min	Flow Rate, Ipm	Flow Rate, Ipm	Weather Condition	Wind Direction	Speed m/s
1135 - 1145	54.55	33.2	31.2	1.0	0.5	0-3	Sunny	NE-SV	1.2
145.1135	27.25	575	31.1	1.0	2.0	0.3	SUNNY	NE-2M	1.0
135 - 1205	27.25	37.7	30.8	1.0	2.0	0.5	Sugar	NE-SV	1.0
205-1215	WERE STATE	36.7	30.7	1.0	2.0	0.5	Sunny	ME. 2N	1.2
215 - 1225	27.24	39.5	29.5	1.0	0.5	0.5	Sunny	ME-SV	1.4
12 85-1235		20.8	31.9	1.0	0.5	2.0	Sunny	HE-SV	1.2

Description of the sampling location and observations: (use separate sheet if necessary)

The	Amer 15	cemented	2-4	60174	Secuse	6 -
the	ve bre le	PSACIS	34	the toc	ð.	
+ le	Area	[i] bi	17	no deret e	wind	

Vericle

HH - MH -Truck -

Moduragele - MI-11 Sketch of sampling location showing landmarks.

Rusa

Wind Direction

#### **Noise Level Monitoring**

Station No.:

Sampling Date:

12-13-24

Specific Location:

Near Assey Les end

Time					Noise Source / Observation
Mak	54.4	59.4	20.5	56.3	*
• • • • • • • • • • • • • • • • • • • •	53.4	69.8	3.8	35.7	Maise Came from
	39.2	63.2	SC.3	8.22	the behicle pessing
	38.2	68.5	23.8	33,5	the Action Laser
	53.3	22-2	55.4	41.7	b 11 - 11
	33.0	35.4	20-0	20-5	ph 4 ye Loig.
1241	19.5	20.0	20.1	52-1	



### AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING

Name of Facility: Benguet Corp Acutan Contract Mining Project

Facility Address: TTOGON BENGUET

Facility Representative: Mr. Jemingh Salayar Personnel: RIP BCB EGT

Station No.:

3 coovenind)

Specific Location:

BCACMP . OFFICE

Sampling Date:

12 - 13 - 24

16°21' 38.406"N 120°39'36.17"E

Filter ID:

240476

Coordinates: Filter Weight:

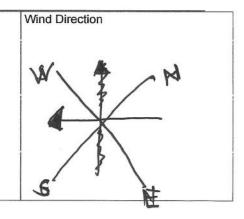
2.6923

	Barometric		Ambient	TSP	NO2	SO2			Wind
Time	Pressure inHg	RH%	Temp.,	Flow Rate m³/min	Flow Rate, Ipm	Flow Rate, Ipm	Weather Condition	Wind Direction	Speed m/s
2501 - 2101	27.27	58.9	28-7	1.0	0.5	6.5	Sunnu	ME-SV	1.0
1025-1035	23.23	57.7	29.5	1.0	0.5	2-0	Sunny	NE SV	1.0
1035-1045	27.27	56.3	29.9	1.6	ی. ع	2.0	Sunny	NE -SV	1.2
1045 - 1055	27.27	23.9	30.0	1.0	2.0	2.0	Sunny	NE-SV	1.0
2011 - 2001	23.20	\$3.2	30.6	1.0	2.0	2.0	Sunny	NE-SW	1.2
1105 -1115	27.24	53.0	30.9	1.9	0-5	0.5	SUNN	Ne-Sw	1.2

Description of the sampling location and observations: (use separate sheet if necessary)

			10	4 1 1	
	during	Samp?	1180	Period-	
-	The "	Area is	1: 4	Mo dora fe	vind.

Truck - MU - Motorcycle -


Sketch of sampling location showing landmarks.

Garage Sampling Admin of Frice

Roy J

Parking Area

Area



#### **Noise Level Monitoring**

Station No.: Sampling Date: 12 · 13 - 24

Specific Location: OSAMP - SPECE

Time					Noise Source / Observation
1120	33.7	30.6	35.0	48.9	. •
	48.8	45.8	51.0	30.0	Noise Come From
	51.3	48.4	44.0	48.6	
	48.4	44.5	48.5	45.1	the bettele prosing
	54.1	48.5	50.4	54.6	
	32.4	48.8	30.8	48.8	by near Rold.
1123	51.5	47.9	45.)	45.9	

#### "APPENDIX B"

## RESULTS OF LABORATORY ANALYSIS

#### AMBIENT AIR SAMPLING LABORATORY REPORT Benguet Corporation - Acupan Contract Mining Project December 13, 2024

#### Laboratory Data

Station #	TSP ug	SO2 ug	NO2 ug
Station 1	14,500	0.29	0.532
Station 2	10,200	0.29	0.425
Station 3	9,800	0.29	0.333

#### Computation

TSP	= (concentration-ug)/((flowrate-1.0)*(298/(Tm-ave.+273))*((Pbar-ave.*25.4)/760))*60
SO2	= (concentration-ug)/((flowrate-0.5/1000)*(298/(Tm-ave.+273))*((Pbar-ave.*25.4)/760))*60
NO2	= (concentration-ug)/((flowrate-0.5/1000)*(298/(Tm-ave.+273))*((Pbar-ave.*25.4)/760))*60

#### **Concentration at Standard Condition**

Station #	TSP ug/Ncm	SO2 ug/Ncm	NO2 ug/Ncm
Station 1	270.6	10.8	19.9
Station 2	190.3	10.8	15.9
Station 3	182.2	10.8	12.4



# IACH UNION LABORATORIES INC.

Main Office: Mach Union Building, 335 Alabang-Zapote Road, Talon 3, 1740 Las Piñas City, Philippines Extension Office: ANFRA Bldg., FMC-LTO Cmpd., 314 Alabang-Zapote Road, Talon 1, 1740 Las Piñas City Tel. No.: (02)8553-8381 / (02)8553-8382 / (02)8553-8879 / (02)8550-2573 Fax No.: (02)8553-8878 Email: Info@machunion.com • Website: www.machunion.com • http://www.facebook.com/MachUnion Accredited: Philippine Accreditation Bureau (DTI-PAB) • Department of Health • Food & Drug Administration Recognized: Department of Environment & Natural Resources (DENR-EMB) • Bureau of Animal Industry (DA-BAI)

## CERTIFICATE OF ANALYSIS

MU24035702-001

Lab. Sample ID:

Date Reported: 12/21/2024

Nork Order : MU24035702

Client ID : NCRMUL-000356

CUSTOMER : GREENTEK ENVIRONMENTAL PHILS. CO.

2430 Laura St., Brgy. 862, Pandacan, Manila

Attention Liwayway P. Gaddi

09175139249

greentek.services@yahoo.com

PROJECT DETAILS: BENGUET CORP ACUPAN CONTRACT MINING PROJECT

Itogon, Benguet

## SAMPLEINFORMATION

Sample Type : Air Ambient

**BCACMP AIR QUALITY MONITORING** 

Identification :

Description : Air Ambient Sample in Absorbing Solution in 50mL HDPE and Filter Paper (8X10)

Collection Date and Time : 12/13/2024 12:00 AM

Collected by : CUSTOMER

Storage Condition : Chilled and Ambient

Received Date and Time : 12/16/2024 02:35 PM Analyzed Start Date and Time : 12/16/2024 03:15 PM

Analyzed End Date and Time : 12/20/2024 06:00 PM

## Comments:

All sample information stated herein are based on the details provided by the client. The results in this certificate of testing relates only to the samples submitted to and tested by the laboratory.

3

Page 1 of 2



Recognized: Department of Environment & Natural Resources (DENR-EMB) • Bureau of Animal Industry (DA-BAI) Extension Office: ANFRA Bldg., FMC-LTO Cmpd., 3.14 Alabang-Zapote Road, Talon 1, 1740 Las Piñas City Email: info@machunion.com . Website: www.machunion.com . http://www.facebook.com/MachUnion Accredited: Philippine Accreditation Bureau (DTI-PAB) • Department of Health • Food & Drug Administration Tel. No.: (02)8553-8381 / (02)8553-8382 / (02)8553-8879/ (02)8550-2573 Fax No.: (02) 8553-8878 Main Office: Mach Union Building, 335 Alabang-Zapote Road, Talon 3, 1740 Las Piñas City, Philippines



## CERTIFICATE OF ANALYSIS

GREENTEK ENVIRONMENTAL PHILS., CO. MU24035702 CUSTOMER Work Order

: BCACMPAIR QUALITY MONITORING Sample Source

MU24035702-001

Lab. Sample ID:

12/21/2024 Date Reported:

## LABORATORY TEST RESULTS

SAMPLEID	PARAMETER	TEST METHOD	LIND R	RESULT
BCACMP - STN 1	Nitrogen Dioxide	Griess Salfzman Method	6n	0.532
BCACMP - STN 1	Sulfur dloxide	Pararosaniline Method	na	< 0.29
BCACMP - STN 1	Total Suspended Particulate	High Volume /Gravimetric Method	6n	14500
	Nitrogen Dioxide	Griess Saltzman Method	D'n	0.425
	Sulfur dioxide	Pararosaniline Method	nd	< 0.29
BCACMP-STN 2	Total Suspended Particulate	High Volume /Gravimetric Method	, and	10200
BCACMP - STN 3	Nitrogen Dioxide	Griess Saltzman Method	6n	0.333
BCACMP - STN 3	Sulfur dioxide	Pararosaniline Method	6n	< 0.29
BOACAD STN 3	Total Suspended Particulate	High Volume /Gravimetric Method	6n	0086

Test Method Reference:

Code of Faderal Regulations Title 40 Parts 50 to 51, USA, 1999. Selected Methods of Measuring Air Pollutants. WHO. 1976. US EFA Title 40 Code of Federal Regulations. Part 50 Standard of Performance for New Stationary Sources. Appendix A to O. 1991

Checked by:

MU24035702 FINAL 241221 0917H

Victor Gregory Jude D.

MANUMUM Marisa T. Manaor, RCh Supervising Chemist PRC# 0005465

Certified by:

Aladino M. Abulencia, ChE Approved for Release by: Technidal Manager Page 2 of 2

PRC License No. 0008351

#### "APPENDIX C"

## SAMPLING ACTIVITY PHOTOS AND VICINITY MAP







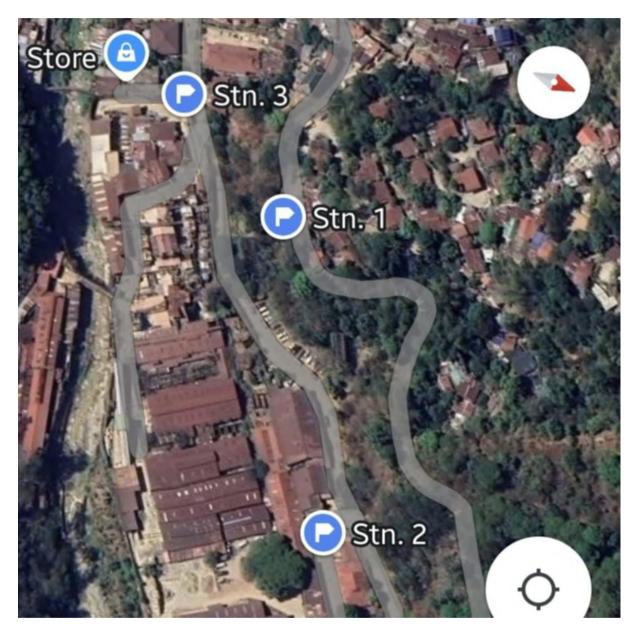
**Station 1 - Along Keymens Road (Upwind)** 







Station 2 - Near Assay Laboratory & Gate 2 (Upwind)








**Station 3 - Near BCACMP Office (Downwind)** 





**VICINITY MAP** 

### "APPENDIX D"

# AMBIENT AIR EQUIPMENT CALIBRATION CERTIFICATES



A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 32 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph

www.switchtek.com.ph



November 20, 2024

November 19, 2025

C.A. CASADO

Certificate No.:

4000.23-9147-1.23

Calibration of

3 IN1 (barometer function)

**Calibration Date:** 

Calibration Due:

Calibrated By:

Identification:

GREENTEK ENVIRONMENTAL PHILS., CO

Address:

23S3 RJ PLACE UNIT 3A SELYA STREET BRGY.860 PANDACAN, MANILA, PHILIPPINES

### CERTIFICATE OF CALIBRATION - 3 IN 1 (Barometer Function)

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

### UNIT UNDER TEST (UUT):

Instrument:

3 IN1 (barometer function)

Brand:

LUTRON

Model No.:

PHB-318

Serial No.:

No record

Range:

Temp. ( 0-50 Deg. C) Humidity (10 to 95%)

Dewpoint (-25.3 to 48.9 Deg. C)

Barometer (10 to 999.9 hPa)

Resolution:

Temp. (0.1 Deg. C) Humidity (0.1 %)

Dewpoint (0.1 Deg. C)

Barometer (1 hPa)

ID code:

No record

### Results:

### Barometer

REFERENCE READING (hPa)	unit under test reading (hPa)	ERROR IN READING (hPa)	STANDARD DEVIATION	REMARKS
1009:0	1003.0	6.00	4.2426	The user should determine the suitablity of the instrument for its intended use
1005.0	1000.0	5.00	3,5355	
1000.0	995.0	5.00	3.5355	
990.0	984.0	6.00	4.2426	is intended use

Standard error: ±

7.78 hPa

Uncertainty: ±

hPa



### A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.83517471 / 89282869 / 89287769 Fax No. 89828269 email Address: admin@switchtek.com.ph

www.switchtek.com.ph

Certificate No.:

4000.05-5664-2.23. REV

Calibration of

Rotameter

Identification:

GREENTEK ENVIRONMENTAL PHILS., CO

inh

Test and Verification

Fin.acc:

Certificate of Calibration

Done....

July 20, 2024

Initials...

CAC Hours

Total cost

Type

Categories

Test and Calibration

Men

Certificate

Cal Officer

### CERTIFICATE OF CALIBRATION - ROTAMETER

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

Issued To:

GREENTEK ENVIRONMENTAL PHILS CO

Address:

2430 LAURA STREET, PANDACAN, MANILA, PHILIPPINES

UNIT UNDER TEST (UUT):

Instrument:

Rotameter

Brand: Model No: KIMOTO F94-40883

Serial No:

No record

Property ID:

Range:

No record 0.1 to 2.5 LPM

Graduation:

0.1 LPM

Calibration Date:

July 02, 2024

Calibration Due:

July 02, 2025

CALIBRATOR INFORMATION-

Standard Thermometer:

Instrument:

DWYER, Rotameter

Inert Gas:

Pure (N2) Nitrogen Gas

Heraeus, Standard platinum resistance thermometer

NIST, NPL and PTB Lab.

Test Gauge, NABL, UKAS,

Cert#SMS200.01

Instrument:

Primary DC DRYCAL BIOS

Brand:

Serial No.: Traceability:

Standard Gauge:

4329

**Environmental Condition:** Condition:

DRY/BASIC/NEUTRAL

Relative Humidity: 48 ±5%, 1009 hPa

Ambient Temp. (Deg C):

19.8 ±2

### Calibration Method:

By comparative technique, unit under test was tested and calibrated in referenced with a Standard Flowmeter at planned intervals using dried and filtered inert gas and in accordance with NIST, NPL and ISO/IEC Guide 17025. Data were gathered and tabulated.

During calibration, the unit was found to have a standard error of ± 0.0000 LPM with a confidence level of not less than 95%. Uncertainty of measurement is ± 0.058 LPM. Calculations were taken using Standard Deviation Formula.

### Result:

NO. OF TEST	REFERENCE READING (LPM)	UNIT UNDER TEST READING (LPM)	ERROR IN READING (LPM)	STANDARD DEVIATION
1	0.000	0.00	0.000	0.0000
2	0.500	0.50	0.000	0.0000
3	1.000	1.00	0.000	0.0000
4	1.500	1.50	0.000	0.0000
5	2.000	2.00	0.000	0.0000

All data pertain only to the unit described obtained at the time of test. This certificate is not valid w/out seal and signature, Unauthorized reproduction is prohibited.

******** NOTE MEASUREMENT INDICATOR IS AT THE UPPER PART OF THE FLOATER**********

Calibrated By:

Certified By:

July 02, 2024

July 02, 2024 Date:

Date:

nd* Gas Detector/Analyzes *Flow *Volume* Weight* Rh* Ph* Conductivity *Resistivity *Conductivity *Voltage *Amperes *Kwhzmeter *Frequency Controller Hygrometer *Glass & Bi-Metal Thermometer *PRV *SRV *TRV *Relief-Valve *Recorder *Thermostat *Torque Wrench *Calorimeter *Caliper* Micro tester" hydrometer" Capacitance & inductance Neter "Sphygmomanometer" low Ohin meter "Dial Test Gauge Block" Ruler* Daygen Meter* Psychometer* Villyation* Delectric kV



A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph



www.switchtek.com.ph

Certificate No.:

400.01-8227-1.23

Calibration of

Sound Level Meter

Identification:

GREENTEK ENVIRONMENTAL PHILS., CO

Test and Verification

tob:

P1

Certificate of Calibration

Fin acc Done ....: 32 June 4, 2024

CAC Inétials...:

Categories

Total cost

Type

Cal Officer

Calibration

Men 2

Certificate

**CERTIFICATE OF CALIBRATION - SOUND LEVEL METER** 

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

tssued To:

COFFERENCE PROJECTION OF THE CO

Address-

2353 RI PLACE LIMIT 3A SELVA STREET BRGY, 860 PANDACAN, MANILA, PHILIPPINES

### UNIT UNDER TEST (UUT):

Sound Level Meter

Brand:

LUTRON GP-AGRACIO

Model No: Serial Mo:

1.433801

Range:

35 to 130 dB

ID Code:

No record

Calibration Due:

June 2, 2025

Calibration Date: June 3, 2024

### CALIBRATOR INFORMATION:

Instrument:

Sound Level Calibrator

Brand:

Lutron

Serial No: Madel No: 1.278821 SC_947

Traceability:

IEC 60942 Type II A Standard

NIST and NPL

### **Environmental Condition**

Condition:

DRY/BASIC/NEUTRAL

Relative Humidity: 41.2 ±5%, 1006 hPa

Ambient Temp. (Deg C): 23..7 ±2

### Calibration Method:

By comparative technique, Standard Sound Generator was introduced at the unit under test at a constant value of 94.0 d8 to 114 d8 at a uniform frequency of 1000 Hz. Data were gathered and tabulated. Procedures of test conform to the requirements of OMML 88 Guidelines, IEC 60942 of the NIST and National Physical Laboratories.

During calibration, the unit was found to have a standard error of ±0.00 dB with a confidence level of not less than 95%. Uncertainty of measurement is ±0.58 dB. Calculations were taken using the Standard Deviation Formula.

TRIALS REFERENCE READING (dB)	is i felbi		ERROR IN READING	STANDARD	REMARKS	
	AS FOUND	AS LEFT		DEVIATION		
1	94.0	93.8	94.0	0.00	0.0000	North
2	114.0	114.0	114.3	0.30	0.2121	Passed

All data pertain only to the unit described object pd at the time of test. This certificate is not valid w/out seal and signature. Unauthorized reproduction is prohibited.

Calibrated By:

C.A. CASADO

Date:

June 3, 2024

Certified E

Temperature* Pressure* Sound* Gas Detector/Analyzer *Flow *Volume* Weight* Rh* Ph* Conductivity *Resistivity *Conductivity *Voltage *Amperes *Kwinrmeter *Frequency Controller *Frigorometer *Glass & Bi-Metal Thermometer *PRV *SRV *TRV *Relief-Valve *Recorder *Thermostat *Torque Wrench *Calorimeter *Caliper* Micrometer * Durometer *Reliactometer *Multi-tester* Hydro Transformer Turns Ratio* Hi Pot Meter* Dayspen Meter* Vibration* Dielectric kV Meter* Transformer Turns Ratio* Hi Pot Meter* Capacitance & Dissipation



A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1106, Philippines

Tel Nos: 3453-7694; 8928-2869; 8928-7769 Fax No.: 8426-7593 email Address: admin@switchtek.com.ph

www.switchtek.com.ph

Calibration of

Initials...:

**Test and Verification** 

**CALIBRATOR INFORMATION:** 



Certificate No.:

lob:

4000.05-8227-1.23

Identification:

**GREENTEK ENVIRONMENTAL PHILS., CO** 

21

Fin.acc:

32

Done....: Categories May 15, 2024

Cal Officer

Men 1

Certificate of Calibration CAC

Hours 1.0

**Total cost** 

High Volume Sampler

Type Certificate

**CERTIFICATE OF CALIBRATION - HIGH VOLUME SAMPLER** 

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

issued To:

**GREENTEK ENVIRONMENTAL PHILS., CO** 

Address:

2353 RJ PLACE UNIT 3A SELVA STREET BRGY. 860 PANDACAN, MANILA, PHILIPPINES

UNIT UNDER TEST (UUT):

Instrument:

High Volume Sampler

Brand: Model No: STAPLEX TFIA-2

Serial No:

25707T

Graduation-

0.5 to 2 m3/min.

01m3 No record

ID code:

Calibration Date: May 11, 2024

Calibration Due:

May 10, 2025

Ambient Temp. (Deg C):

Instrument:

Model No:

Serial No-

Range:

Origin:

Manufacturer:

0 to 50.0 °C

24.5 ±2

LUTRON

AM-4206M

0 to 30.0 m/s

0432206

**Calibrated Against:** 

UKAS, thru Laser Doppler Anemometer

**Rotating Vane Anemometer** 

**Environmental Condition**:

Condition:

DRY/BASIC/NEUTRAL

Relative Humidity: 56 ±5%, 1011 hPa

Calibration Method:

By comparative technique, unit under test was tested and calibrated in reference with a rotating vane anemometer at planned intervals using dried and filtered inert gas and with NIST, NPL and ISO/IEC Guide 17025. Data were gathered and tabulated.

During calibration, the unit was found to have a standard error of ± 0.008 m3/min. with a confidence level of not less than 95%. Uncertainty of measurement is ± 0.062m3/min. Calculations were taken using Standard Deviation Formula.

Results.

NO. OF TEST	REFERENCE READING (m3/min.)	UNIT UNDER TEST READING (m3/min.)	ERROR IN READING (m3/min.)	STANDARD DEVIATION
1	1.00	1.0	0.000	0.0000
Z	1.49	1.5	0.010	0.0071
3	2.01	2.0	-0.010	0.0071

All data pertain only to the unit described obtained at the time of test. This certificate is not valid w/out seal and signature. Unauthorized reproduction is prohibited.

Calibrated By:

Date:

May 11, 2024

Certified By:

Date:

Temperature* Pressure* Sound* Gas Detector/Analyzer *Flow *Volume* Weight* Rh* Ph* Conductivity *Resistivity *Conductivity *Voltage *Amperes *Kwhrmeter *Frequency Controller *Hygrometer *Glass & Bi-Metal hermometer *PRV *SRV *TRV *Relinf-Valve *Recorder *Thermostat *Torque Wrench *Colorimeter *Caliper * Micrometer * Durometer * Refractometer * Multi-tester * Hydrometer * Capacitance & Inductance Mete * 5phygmomanometer *Low Ohm meter *Dial Test Gauge *Gauge Block * Ruler * Oxygen Meter * Psychometer * Vibration * Dielectric kV Meter * Transformer Turns Ratio* Hi Pot Meter * Capacitance & Dissipation

### "APPENDIX E"

AMBIENT AIR TESTING PARTICIPANTS

### **AMBIENT AIR TESTING PARTICIPANTS**

### BENGUET CORPORATION ACUPAN CONTRACT MINING PROJECT

Ms. Jemimah Salayog - Facility Representative

### **GREENTEK ENVIRONMENTAL PHILS. CO.**

Mr. Danilo M. Palaypay, Jr. - Technical and QA/QC Manager

Mr. Bryan C. Badon
 Mr. Emerbill G. Justo
 Mr. Reynaldo S. Pile
 Team Leader - Trainee
 Team Leader - Trainee
 Field Technician / Driver



# Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU Visayas Avenue, Dillman, Quezon City



SAT No. 2023 - 151

### CERTIFICATE OF ACCREDITATION

Pursuant to DENR Administrative Order No. 26 Series of 2013 of the Department of Environment and Natural Resources having substantially met all the requirements prescribed therein,

### GREENTEK ENVIRONMENTAL PHILS. CO.

#2430 Laura St., Pandacan Manila

is hereby duly accredited as

### SOURCE EMISSION TESTING FIRM

As such, the following are authorized as:

QA/QC Manager
Danilo M. Palaypay, Jr.

# Team Leader Aaron Jonathan R. Regilme

This certification shall allow the above firm and personnel to conduct stack testing limited to the following methods and parameters:

- 1. US-EPA Method 1 to 5 PM
- 2. US-EPA Method 6/8 SO,
- 3. US-EPA Method 7 NOx
- 4. US-EPA Method 10 CO

Granted this __December 22, 2023

and valid until_

December 22, 2026

GILBERT C. GONZALES, CESO III

Director and concurrent
Assistant Secretary for Field Operations



### "APPENDIX F"

# LABORATORY CERTIFICATES OF RECOGNITION

SCOPE OF RECOGNITION AND DENR RECOGNIZED
SIGNATORIES ARE SPECIFIED
AND CAN BE VERIFIED AT https://emb.gov.ph/denr-recognized-environmental-laboratory/
AND ARE INTEGRAL PARTS OF THIS CERTIFICATE.



ISSUE DATE: JULY 25, 2023 EXPIRY DATE: JULY 25, 2026

ELR LABORATORY CODE NO. NCR-29

Republic of the Philippines

DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES

Visayas Avenue, Diliman, Quezon City

This

# CERTIFICATE OF RECOGNITION

C.R. No. 040/2023

is hereby granted to

# Mach Union Laboratories Inc.

Mach Union Bldg., 335 Alabang-Zapote Road, Talon Tres, Las Piñas City & ANFRA Bldg., FMC-LTO Compound 314 Alabang Zapote Road, Talon Uno, Las Piñas City

performance and other technical requirements of Administrative Order No. 63, series of after having been assessed and found to comply with the documentation, analytical 1998 (AO 63), Guidelines for the Designation of DENR Recognized Environmental Laboratories.

This certificate remains valid subject to continued compliance with the requirements of AO 63. In testimony whereof, I have hereunto signed this Certificate at Quezon City, Philippines.



Home (https://emb.gov.ph)

About Us V July 25, 2026

Services *

Foreign Assisted Projects

E-Library -

МΕν

Laboratory Head:

Marisa T. Manaor

### **SCOPE OF RECOGNITION**

(Exclusive of Sampling)

Water and Wastewater

PARAMETERS	ANALYTICAL METHODS	REFERENCES
Ammonia as NH ₃ -N	Ammonia - Selective Electrode Method	SMEWW 4500-NH ₃ D
Ammonia as NH ₃ -N	Phenate Method	SMEWW 4500-NH ₃ F
	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 (SMEWW 3030 E)
Arsenic	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)
	Manual Hydride Generation/ Atomic Absorption Spectrometric Method	SMEWW 3114 B
	Direct Nitrous Oxide-Acetylene Flame Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3111 D (SMEWW 3030 F)
Barium	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)
BOD	5-Day BOD Test	SMEWW 5210 B
Boron	Carmine Method	SMEWW 4500-B C
	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)
Cadmium	Direct Air-Acetylene Flame Method (Nitric Acid – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)
	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 (SMEWW 3030 E)
	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)
Ob	Closed Reflux, Colorimetric Method	SMEWW 5220 D
Chemical Oxygen Demand	Open Reflux Method	SMEWW 5220 B
Chlavida	Argentometric Method	SMEWW 4500-CI ⁻ B
Chloride	Ion Chromatography with Chemical Suppression of Eluent Conductivity	SMEWW 4110 B
Chromium as Hexavalent Chromium (Cr ⁶ +)	Colorimetric Method	SMEWW 3500-Cr B
Coliform, Fecal	Multiple Tube Fermentation Technique – Fecal Coliform Procedure	SMEWW 9221 E
Coliform, Total	Multiple Tube Fermentation Technique - Standard Total Coliform Fermentation Technique	SMEWW 9221 B
Color (Apparent)	Visual Comparison Method	SMEWW 2120 B

Gらく手中(http://www.gov.ph)	Visual Comparison Mathod About Us Programs Services For	GON ASSISTED PROJECTS - E-Library - MI	
	Direct Air-Acetylene Flame Method (Nitric Acid – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)	
Copper, Total	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 (SMEWW 3030 E)	
	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)	
	Direct Air-Acetylene Flame Method (Filtration; Nitric Acid – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F with SMEWW 3030 B)	
Copper as Dissolved Copper	Electrothermal Atomic Absorption Spectrometric Method (Filtration; Nitric Acid / Hotplate Digestion)	SMEWW 3113 (SMEWW 3030 E with SMEWW 3030 B)	
	Inductively Coupled Plasma – Emission Spectroscopy Method (Filtration; Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F with SMEWW 3030 B)	
Cyanide as Free Cyanide	Cyanide - Selective Electrode (w/o distillation)	SMEWW 4500-CN ⁻ F	
Discretized Occurren	Iodometric Method - Azide Modification	SMEWW 4500-O C	
Dissolved Oxygen	Membrane Electrode Method	SMEWW 4500-O G	
Thereids	Ion Chromatography with Chemical Suppression of Eluent Conductivity	SMEWW 4110 B	
Fluoride Ion-Selective Electrode Method		SMEWW 4500-F ⁻ C	
	Direct Air-Acetylene Flame Method (Nitric Acid – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)	
Iron	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)	
	Direct Air-Acetylene Flame Method (Nitric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 E)	
Lead	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 (SMEWW 3030 E)	
	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)	
Manganese	Direct Air-Acetylene Flame Method (Nitric Acid – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)	
Waligariese	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)	
Mercury	Cold - Vapor Atomic Absorption Spectrophotometric Method	SMEWW 3112 B	
Nickel	Direct Air-Acetylene Flame Method (Nitric Acid – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)	
	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)	
	Ion Chromatography with Chemical Suppression of Eluent Conductivity	SMEWW 4110 B	
Nitrate as NO ₃ -N	Nitrate Electrode Method	SMEWW 4500-NO ₃ - D	
	Colorimetric, Brucine	US EPA 352.1	
Oil and Grease	Liquid-Liquid, Partition - Gravimetric Method	SMEWW 5520 B	

면이 (http://www.gov.ph)	Electrometric Method  About Us   Programs   Services   Fore	ioSMEWW 4500 is Ht B E-Library ME
Phosphate as Phosphorus (Total,	Stannous Chloride Method	SMEWW 4500-P D
Reactive)	Vanadomolybdophosphoric Acid Colorimetric Method	SMEWW 4500-P C
	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 (SMEWW 3030 E)
Selenium	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)
	Manual Hydride Generation/ Atomic Absorption Spectrometric Method	SMEWW 3114 B
Settleable Solids	Imhoff Cone Method	SMEWW 2540 F
	Ion Chromatography with Chemical Suppression of Eluent Conductivity	SMEWW 4110 B
Sulfate	Turbidimetric Method	SMEWW 4500-SO ₄ 2- E
Surfactants (Methylene Blue Active Substances)	Anionic Surfactants as MBAS	SMEWW 5540 C
Temperature	Laboratory and Field Methods	SMEWW 2550 B
Total Dissolved Solids	Gravimetric, Dried at 180°C	SMEWW 2540 C
Total Suspended Solids	Gravimetric, Dried at 103-105°C	SMEWW 2540 D
	Direct Air-Acetylene Flame Method (Nitric Acid – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)
Zinc	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)

### Sediments

PARAMETERS	ANALYTICAL METHODS
Arsenic	Manual Hydride Generation / Atomic Absorption Spectrophotometric Method
Barium	Direct Nitrous Oxide – Acetylene Flame Method
Total Cadmium, Copper, Iron, Lead, Manganese, Nickel, Silver, Zinc	Atomic Absorption Spectrophotometric Method (Wet Ashing)
Total Mercury	Cold – Vapor Atomic Absorption Spectrophotometric Method

### Ambient Air

PARAMETERS	ANALYTICAL METHODS
Nitrogen Dioxide	Gas Bubbler Griess-Saltzman Method
Sulfur Dioxide	Gas Bubbler and Pararosaniline Method
Suspended Particulate Matter-TSP	High Volume and Gravimetric Method
Suspended Particulate Matter-PM ₁₀	High Volume with 10-micron particle size inlet; Gravimetric

Stationary Source Emissions GOVPH (http://www.gov.ph)

Home (https://emb.gov.ph)

About Us ▼

Programs ~

Services ▼

Foreign Assisted Projects

E-Library ▼

ME

PARAMETERS	ANALYTICAL METHODS
NOx	Phenoldisulfonic Acid Method
Particulates	Gravimetric Method
Sulfur Oxides as SO ₂	Titration Method with Barium Chloride using Thorin as indicator

### Wastes

PARAMETERS	ANALYTICAL METHODS
Antimony; Antimony compounds	US EPA Method 1311/ Hydride Generation AAS
Arsenic and its compounds	US EPA Method 1311/ Hydride Generation AAS
Barium and its compounds	US EPA Method 1311 / Flame AAS Method
Cadmium and its compounds	US EPA Method 1311 / Flame AAS Method
Chromium and its compounds	US EPA Method 1311 / Flame AAS Method
Fluoride and its compounds	US EPA Method 1311 / Ion Selective Electrode Method
Hexavalent chromium compounds	US EPA Method 1311 / Colorimetric Method
Lead compounds	US EPA Method 1311 / Flame AAS Method
Mercury and mercury compounds	US EPA Method 1311 / Cold-Vapor AAS Method
Silver and its compounds	US EPA Method 1311 / Flame AAS Method

### **DENR RECOGNIZED SIGNATORIES**

### NAME OF SIGNATORY

### **AREA/S OF RESPONSIBILITY/IES**

Gino Franco P. Camposano

Physical-Chemical Analyses

Luchie S. Ignacio

Bacteriological Analysis

Marisa T. Manaor

Ali Analyses

Katrina U. Pagulayan

Air, Metals and Physical-Chemical Analyses

Liza Louise P. Perez

Bacteriological Analysis



7 August 2024

Ref. No.: LT-24-241-25-68

MR. FRANCISCO O. FLAVIER
Resident Manager
BMC FORESTRY CORPORATION – BC ILP
Km. 5 Naguilan Road, Irisan, Baguio City

Subject:

24-Hours Ambient Air Quality and Noise Level Monitoring Report

Dear Mr. Flavier,

We are pleased to submit the final report of the 24-hours ambient air quality and noise level monitoring as a result of our visit to your plant in Irisan, Baguio City on May 27 to 29, 2024.

We hope that this report addresses your requirements.

Very truly yours,

Executive Vice President

ERA/mla





## 24-HOURS AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING REPORT

### **BMC FORESTRY CORPORATION – BC ILP**

Km. 5 Naguilan Road, Irisan, Baguio City



**Philippines** 

## 24-HOURS AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING REPORT

(May 27 to 30, 2024)

# BMC FORESTRY CORPORATION – BC ILP Irisan, Baguio City

### Prepared for:

BMC Forestry Corporation – BC ILP Km. 5 Naguilan Road, Irisan, Baguio City Tel. No.: (074) 445-7180; Fax No.: (074) 445-7185

Prepared by:

BSI 2nd Floor VAG Building, Ortigas Avenue Greenhills, San Juan, Metro Manila Tel. No.: (02) 863 6129; Fax. No.: (02) 727 9831

### **TABLE OF CONTENTS**

CO	NTENT	S PAG	ì
1.	INTRO	DDUCTION	•••
2.	OBJEC	CTIVE OF THE MONITORING	
3.		ODS OF SAMPLING AND ANALYSIS	
3. 3. 4. 4. 4. 5.	1 24 3.1.1 3.1.2 3.1.3 2 SA 3.2.1 3.2.2 3.2.3 3 24 RESUL 1 24 2 24	-HOURS AMBIENT AIR QUALITY MONITORING Particulate Matter less than 10 microns Sulfur Dioxide Nitrogen Dioxide MMPLING OBSERVATIONS Wind Direction Wind Speed Cloud and Rain Description -HOURS AMBIENT NOISE LEVEL MONITORING LTS AND DISCUSSION -HOURS AMBIENT AIR QUALITY MONITORING -HOURS AMBIENT NOISE LEVEL MONITORING -HOURS AMBIENT NOISE LEVEL MONITORING RENCES	
Tabi Tabi Tabi Tabi Tabi Tabi Tabi Tabi	LE 2. LE 3. LE 4. LE 5. LE 6. LE 7. LE 8.	METHODS OF AMBIENT AIR SAMPLING AND ANALYSIS  MODERN BEAUFORT WIND SCALE  CLOUD DESCRIPTION  RAIN DESCRIPTION  NOISE MONITORING PERIODS  24-HOURS AMBIENT AIR QUALITY MONITORING RESULTS.  FIELD OBSERVATIONS AND PHOTO DOCUMENTATIONS DURING SAMPLING  24-HOURS AMBIENT NOISE LEVEL MONITORING RESULTS.  SOURCES OF 24-HRS AMBIENT NOISE	2 2 6 6
LIST	r of Al	NNEXES	
Ann: Ann:	EX C EX D	MAP OF AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING STATIONS AMBIENT AIR QUALITY MONITORING SUMMARY OF RESULTS LABORATORY CERTIFICATES EQUIPMENT CALIBRATION CERTIFICATES TEST PARTICIPANTS	

### **BMC FORESTRY CORPORATION – BC ILP**

24-Hours Ambient Air Quality and Noise Level Monitoring Report

### 1. INTRODUCTION

This report presents the procedures and results of the ambient air quality and noise level monitoring conducted on May 27 to 30, 2024 at BMC Forestry Corporation – BC ILP situated in Irisan, Baguio City. BSI was commissioned to conduct the monitoring wherein Mr. Halcy Lemon P. Orquina led the team that conducted the 24-hours ambient air quality and noise level monitoring. Meanwhile, Mr. Francisco O. Flavier, Resident Manager of BMC Forestry Corporation – BC ILP, served as site contact person during the activity.

The pollutants considered for the 24-hours ambient air quality monitoring were particulate matter less than 10 microns ( $PM_{10}$ ), sulfur dioxide ( $SO_2$ ), and nitrogen dioxide ( $NO_2$ ) at three (3) designated sampling stations within the plant's vicinity (see *Annex A*). In addition, noise level measurements were also undertaken at the same stations.

### 2. OBJECTIVE OF THE MONITORING

The purpose of the monitoring was to verify the company's compliance with the ambient air quality guideline values of the Department of Environment and Natural Resources (DENR) Administrative Order No. 2000-81 (Implementing Rules and Regulations of the Philippine Clean Air Act of 1999), and the noise level standards of the National Pollution Control Commission (NPCC) Memorandum Circular 002 Series of 1980.

### 3. METHODS OF SAMPLING AND ANALYSIS

### 3.1 24-Hours Ambient Air Quality Monitoring

The prescribed methods of sampling and analysis in DAO No. 2000-81 for PM₁₀, SO₂, and NO₂ were employed. The methodologies are discussed in this section and presented in *Table 1*.

Table 1. Methods of Ambient Air Sampling and Analysis

Parameter	Sampling Methodology / Analysis
Particulate Matter less than 10 microns (PM ₁₀ )	Low Volume - Gravimetric Method
Sulfur Dioxide (SO ₂ )	Bubbler - Pararosaniline Method
Nitrogen Dioxide (NO ₂ )	Bubbler – Griess-Saltzman Reaction Method

Reference: USEPA 40 CFR, Part 50

### **BMC FORESTRY CORPORATION - BC ILP**

24-Hours Ambient Air Quality and Noise Level Monitoring Report

### 3.1.1 Particulate Matter less than 10 microns

Sampling of  $PM_{10}$  was carried out by using a low volume  $PM_{10}$  sampler. Ambient air was drawn at a controlled flow rate into a specially-shaped cyclone inlet where the larger particulates are inertially separated from  $PM_{10}$  size range. Each size fraction in the  $PM_{10}$  size range is then collected on a pre-weighed glass microfiber filter over the specified sampling period. The filter paper with retained particles was recovered after sampling and desiccated for 24 hours in the laboratory followed by accurate weighing using a calibrated mass balance. The net weight (mass gain) from the initial and final masses of the filter paper corresponds to the amount of  $PM_{10}$  collected. The concentration of  $PM_{10}$  in ambient air was determined from the ratio of total mass of  $PM_{10}$  collected and the total normal volume of air sampled.

### 3.1.2 Sulfur Dioxide

Sulfur dioxide in the ambient air was sampled using a handy gas sampler by aspirating air at a controlled flowrate into a solution of 0.04 M sodium tetrachloromercurate (TCM) through a glass midget impinger over the specified sampling period. The solution was then treated in the laboratory with formaldehyde and with a specially purified acid-bleached pararosaniline to form an intensely colored pararosaniline methyl sulfonic acid. The color intensity was measured spectrophotometrically at 548 nm and is directly related to the amount of SO₂ collected. SO₂ concentration was determined from the difference between the absorbance of the sample and blank, multiplied by the calibration factor, and divided by the total normal volume of air sampled.

### 3.1.3 Nitrogen Dioxide

Nitrogen dioxide in the ambient air was determined using Griess-Saltzman Reaction Method. Air was drawn using a handy gas sampler at a controlled flowrate into an azo dye forming reagent through a glass midget impinger over a specified sampling period. The absorption reaction produces a stable red-violet color. The color intensity was read by a spectrophotometer in a laboratory at 550 nm and is directly related to the amount of NO₂ collected. NO₂ concentration was determined from the difference between the absorbance of the sample and blank, multiplied by the calibration factor, and divided by the total normal volume of air sampled.

### 3.2 Sampling Observations

Meteorological observations such as wind direction and speed were recorded during the duration of the activity in order to correlate the interpretation of the gathered concentrations.

### **BMC FORESTRY CORPORATION — BC ILP**

24-Hours Ambient Air Quality and Noise Level Monitoring Report

### 3.2.1 Wind Direction

Wind direction is the direction from which the wind originates. It is reported in the cardinal directions. The wind direction in a certain station is determined by observing the motion of the wind from field observation of objects such as trees, grasses, smoke, etc. using a compass as a reference.

### 3.2.2 Wind Speed

Wind speeds were recorded during the sampling activity using the Beaufort Wind Scale as a guide. Devised by Britain's Admiral Sir Francis Beaufort, this was one of the first scales used to estimate and report wind speeds via visual observations. The scale starts with  $\theta$  and goes to a force of 12. Table 4 details the categorization of the Beaufort wind forces  $\theta$  to 4 only, along with the corresponding equivalent speeds, wind descriptions, and land observations.

Table 2. Modern Beaufort Wind Scale

Force	Equivalent Speed (m/s)	Description	Land Observation
BF0	0.0 - 0.2	Calm	Calm     Smoke rises vertically
BF1	0.3 - 1.5	Light Air	Direction of wind shown by smoke drift, but not by wind vanes
BF2	1.6 - 3.3	Light Breeze	<ul><li>Wind felt on exposed skin</li><li>Leaves rustle</li><li>Wind vanes begin to move</li></ul>
BF3	3.4 - 5.4	Gentle Breeze	Leaves and small twigs constantly moving     Light flags extended
BF4	5.5 - 7.9	Moderate Breeze	<ul><li>Dust and loose paper raised</li><li>Small branches begin to move</li></ul>

Source: Encyclopedia of Coastal Science (2005)

### 3.2.3 Cloud and Rain Description

The systems used to describe sky condition and rain description during the sampling period are outlined in *Tables 3* and 4, respectively. These terminologies were adopted and used by the Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA).

### **BMC FORESTRY CORPORATION - BC ILP**

24-Hours Ambient Air Quality and Noise Level Monitoring Report

Table 3. Cloud Description

Sky Condition	Definition / Description
Clear or Sunny Skies	<ul> <li>State of the sky when it is cloudless, totally clear or with a few small light clouds visible.</li> <li>Has a total cloud cover of less than one okta.</li> </ul>
Partly Cloudy	State of the sky is within 2-5 oktas total cloud cover or has between 30% to 70% cover of the celestial dome.
Partly Cloudy to at Times Cloudy	Mostly partly cloudy but there are times when more than 70% of the celestial dome is covered with clouds.
Mostly or Mainly Cloudy	<ul> <li>The sky is mostly covered with clouds but with possible brief periods of sunshine.</li> <li>The total cloud cover is between 6 to 8 oktas.</li> </ul>
Cloudy	<ul> <li>The sky is covered with clouds between 6 to 8 oktas or has more than 70% cloud cover.</li> <li>Predominantly more clouds than clear sky.</li> <li>For a longer period during the day, the sun is obscured by clouds.</li> </ul>
Overcast	The sky is totally or completely covered with thick and opaque clouds, 8 oktas or around 100% cloud cover.

Source: PAGASA

Table 4. Rain Description

Rain Description	Definition / Description
Very Light Rains	<ul> <li>Scattered drops that do not completely wet an exposed surface regardless of duration.</li> </ul>
Light Rains	<ul> <li>The rate of fall is from trace to 2.5 mm per hour.</li> <li>Individual drops easily identified and puddles (small muddy pools) form slowly.</li> <li>Small streams may flow in gutters.</li> </ul>
Moderate Rains	<ul> <li>The rate of fall is between 2.5 mm to 7.5 mm per hour.</li> <li>Puddles rapidly forming and down pipes flowing freely.</li> </ul>
Heavy Rains	<ul> <li>The rate of fall is greater than 7.5 mm per hour.</li> <li>The sky is overcast, there is a continuous precipitation.</li> <li>Falls in sheets, misty spray over hard surfaces.</li> <li>May cause roaring noise on roofs.</li> </ul>
Monsoon Rains	<ul> <li>Heavy and continuous precipitation attributed to either the Southwest or Northeast Monsoon.</li> </ul>
Occasional Rains	Not frequent but is recurrent precipitation.
Widespread Rains	Precipitation occurring extensively throughout an area.
Frequent rains	Precipitation occurring regularly and often throughout the time duration.
Intermittent Rains	Precipitation which ceases at times and re-occur again.

Source: PAGASA

### **BMC FORESTRY CORPORATION - BC ILP**

24-Hours Ambient Air Quality and Noise Level Monitoring Report

### 3.3 24-Hours Ambient Noise Level Monitoring

A direct-reading sound level meter (in A-weighting network) was used to collect noise level data at each sampling station. A-weighted (dBA) scale was selected as required by the 1978 NPCC and the 1980 NPCC standards were also based on the same weighting network. A-weighting network most closely approximates the response of human ear to various sound frequencies.

The procedure used followed that of Wilson (1989), in which at least a total of fifty (50) readings were recorded in order to increase the confidence limits of the data. Procedures outlined by Wilson (1989) were adopted in the monitoring as the time interval, duration of sampling, size of data needed, and methods of noise level analysis were not specified in the 1978 NPCC.

According to the provision provided in the NPCC Memorandum Circular 002 (1980), the arithmetic median of seven (7) maximum-recorded noise levels is regarded as the noise level comparable to the standard. 24-Hours ambient noise levels were undertaken at four periods with the inclusive times as seen in *Table 5*. Field observations during the monitoring were also noted so as to identify the primary sources of noise in each area.

Table 5. Noise Monitoring Periods

Period	Time
Morning	5:00 AM - 9:00 AM
Daytime	9:00 AM - 6:00 PM
Evening	6:00 PM - 10:00 PM
Nighttime	10:00 PM - 5:00 AM

### 4. RESULTS AND DISCUSSION

### 4.1 24-Hours Ambient Air Quality Monitoring

Three (3) designated sampling stations were assessed with  $PM_{10}$ ,  $SO_2$  and  $NO_2$ . The pollutant concentrations, as presented in *Table 6*, were within the DENR National Ambient Air Quality Guideline Values (NAAQGV) for Criteria Pollutants of 150  $\mu$ g/Ncm for  $PM_{10}$ , 180  $\mu$ g/Ncm for  $SO_2$ , and 150  $\mu$ g/Ncm for  $NO_2$  based on 24 hours averaging time.

### **BMC FORESTRY CORPORATION – BC ILP**

24-Hours Ambient Air Quality and Noise Level Monitoring Report

Table 6. 24-Hours Ambient Air Quality Monitoring Results

Station	Location	Date / Time of Sampling	PM ₁₀ (μg/Ncm)	SO ₂ (μg/Ncm)	NO ₂ (μg/Ncm)
A24-1	Basketball Area	May 27-28, 2024 / 1420H-1420H	8.06	0.29	4.00
A24-2	Near Plant Barracks	May 28-29, 2024 / 1433H-1433H	7.27	0.57	1.97
A24-3	Near Bamboo Plantation/Water Tank	May 29-30, 2024 / 1500H-1500H	6.27	0.94	1.18
DE		Quality Guideline Values for lon 24 hours averaging time	150	180	150

Sampling observations during the monitoring as well as photo documentations are summarized in *Table 7*. Moreover, the summary of results including the gathered meteorological data, laboratory certificate of analyses, and calibration records of the equipment used were attached in *Annexes B*, *C*, and *D*, respectively.

# BMC FORESTRY CORPORATION - BC ILP

24-Hours Ambient Air Quality and Noise Level Monitoring Report

h
000
-=
Q
Я
E
S
h
3
·F
-
76
Ē
0
#
2
=
0
8
3
Ų
2
0
7
ĕ
1
-
2
E
CO
0
<b>±</b>
6
a
S
7
<u> </u>
7
Field Observations and Photo Documentations during Samplin
7
_
<b>'</b> .
a

ing Sampling	Photo Documentations						authors 16 et 1938.  Carponer 17 to 15 et 1938.  Acrossop 7 to 15 et 1938.  Acrossop 7 to 15 et 1939.			Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1997)  Common (s. 1
Table 7. Field Observations and Photo Documentations during Sampling	Field Observations	The monitoring station is located on cement ground of the basketball court. Behind the station is a rocky terrain. The area is surrounded by trees and grass. No vehicular activities were observed. Plant is at normal operation during the monitoring.	Weather was generally cold with mostly cloudy to overcast skies. Wind was blowing	predominantly from the southeast at light air condition. Light to heavy rainfall occurred during the periods between 1520H to 1920H, 0620H to 0820H and 1320H to 1420H occurred during sampling. Air temperature ranged from 20.1 to 28.3°C, with hourly readings averaging to 23.4°C.	The monitoring station is located on gravelly ground partly covered with grass near Plant Barracks. The area is surrounded by trees and plants. No vehicular activities were observed. Plant is at normal operation during the monitoring.	Weather was generally cold with partly cloudy to overcast skies. Wind was blowing	predominantly from the southeast at light air to light breeze condition. Light rainfall occurred during the period between 1533H to 1833H and 0133H to 0333H occurred during sampling. Air temperature ranged from 21.2 to 30.5°C, with hourly readings averaging to 24.3°C.	The monitoring station is located on an elevated and unpaved soil ground covered with grass. The area is surrounded by trees and small plants. No vehicular activities were	observed. Plant is at normal operation during the monitoring.	Weather was generally cold with partly cloudy to overcast skies. Wind was blowing predominantly from the southeast at light air condition. Light rainfall occurred during the period between 1600H to 2300H and 0400H to 0600H occurred during sampling. Air temperature ranged from 20.4 to 29.6°C, with hourly readings averaging to 23.8°C.
	Station	A24-I	Basketball Area	May 27 to 28, 2024 1420H-1420H	A24-2	Near Plant Barracks	May 28 to 29, 2024 1433H-1433H	A24-3	Near Water Tank	May 29 to 30, 2024 1500H-1500H

### **BMC FORESTRY CORPORATION - BC ILP**

24-Hours Ambient Air Quality and Noise Level Monitoring Report

### 4.2 24-Hours Ambient Noise Level Monitoring

The same three (3) ambient air quality stations were monitored for 24-hours ambient noise level and the results are presented in *Table 8*.

All stations are categorized under Class C areas (a section which is primarily reserved as a light industrial area). As per NPCC Memorandum Circular 002 Series of 1980, the applicable standards for Class C areas are 65 dBA for morning, 70 dBA for daytime, 65 dBA for evening, and 60 dBA for nighttime measurements.

Table 8. 24-Hours Ambient Noise Level Monitoring Results

Station	Location	Date / Time of Sampling	Period	Noise Level (dBA)	NPCC Standards Class C (dBA)
		May 28, 2024 / 0606H-0616H	MORNING	54	65
N24-1	Basketball Court	May 27, 2024 / 1630H-1640H	DAYTIME	52	70
1V24-1	Area	May 27, 2024 / 1803H-1813H	EVENING	52	65
		May 27, 2024 / 2203H-2213H	NIGHTTIME	44	60
		May 29, 2024 / 0530H-0540H	MORNING	56	65
N24-2	Near Plant Barracks	May 28, 2024 / 1441H-1451H	DAYTIME	56	70
1724-2	Near Plant Barracks	May 28, 2024 / 1800H-1810H	EVENING	55	65
		May 28, 2024 / 1000H-1010H	NIGHTTIME	55	60
		May 30, 2024 / 0600H-0610H	MORNING	56	65
N24-3	Near Bamboo	May 29, 2024 / 1438H-1448H	DAYTIME	55	70
1424-3	Plantation / Water Tank	May 29, 2024 / 1000H-1010H	EVENING	55	65
		May 29, 2024 / 2200H-2210H	NIGHTTIME	56	60

Class C - A section primarily reserved as a light industrial area

The results indicate that all stations complied with the 24-hours ambient noise level standards. The primary sources of noise are summarized in *Table 9*. The equipment calibration certificate of the noise meter used during the measurement is attached in *Annex D*.

### **BMC FORESTRY CORPORATION – BC ILP**

24-Hours Ambient Air Quality and Noise Level Monitoring Report

Table 9. Sources of 24-Hrs Ambient Noise

Station	Location	Period	Sources of Noise
		Morning	Kiln operation, compressor and rustling of tree leaves
N24-1	Basketball Court	Daytime	Kiln operation, compressor and rustling of tree leaves
1424-1	Area	Evening	Kiln compressor, chirring insects and rustling of tree leaves
		Nighttime	Compressor, chirring insects and rustling of tree leaves
		Morning	Kiln #2 operation
N24-2	Near Plant Barracks	Daytime	People conversation and kiln #2 operation
1824-2	Near Fram Barracks	Evening	Raindrops, kiln #2 operation and people conversation
	·	Nighttime	Kiln #2 operation and chirring insects
		Morning	Kiln #2 operation, compressor and rustling of tree leaves
N24-3	Near Bamboo Plantation / Water	Daytime	Kiln #2 operation, compressor and rustling of tree leaves
1824-3	Tank	Evening	Kiln #2 operation, compressor and rustling of tree leaves
		Nighttime	Kiln #2 operation, compressor and rustling of tree leaves

### 5. REFERENCES

- DENR Administrative Order No. 2000-81. 1999. Implementing Rules and Regulations of the Philippine Clean Air Act of 1999.
- National Pollution Control Commission. 1978. Rules and Regulations of the National Pollution Control Commission, Chapter IV Article I Noise Control Regulations, Sections 74-79, Implementing Rules and Regulations, Presidential Decree No. 984 (National Pollution Control Decree of 1976). Manila: Official Gazette. June 1978, 4477-4479 pp.
- National Pollution Control Commission. 1980. NPCC Memorandum Circular 002 Series of 1980
   Amendments to Article 1 (Noise Control Regulations), Chapter IV (Miscellaneous Regulations), Rules and Regulations of the National Pollution Control Commission.

  Manila: Official Gazette.
- PAG-ASA. 2004. Definition and description of weather forecast terminologies used and adopted by PAG-ASA. http://kidlat.pagasa.dost.gov.ph/wb/terminology.html (Accessed November 2013).
- U.S. National Archives and Records Administration. Code of Federal Regulations. Title 40 Part 50. National Primary and Secondary Ambient Air Quality Standards. 2000.
- Wilson, C. E. 1989. Noise Control: Measurements, Analysis, and Control of Sound and Vibration. New York: Harper & Row, Publishers, Inc.

### **ANNEX A**

# MAP OF AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING STATIONS

# BMC FORESTRY CORPORATION - BC ILP

Irisan, Baguio City



Note: Arrow indicates wind direction during sampling



MAP OF AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING STATIONS

### **ANNEX B**

# AMBIENT AIR QUALITY MONITORING SUMMARY OF RESULTS

Ambient Air Quality Summary of Results for the 24-Hour Monitoring of TSP, PM₁₀, Particulate Pb, SO₂, and NO₂

PJ24-241 Project No.

: BMC Forestry Corp. ILP Client

: Irisan, Baguio City Location

Station Code	A1	A2	A3
Location	Basket Ball Area	Near Plant Barracks Area	Near Bamboo Plantation / Water Tank
Date of Sampling	May 27, 2024	May 28, 2024	May 29, 2024
Time of Sampling	1420H-1420H	1433H-1433H	1500H-1500H

Volume of air for PM ₁₀ sampling, Ncm         20.7239         20.6357         20.7240           PM ₁₀ Weight, µg         167         150         130           PM ₁₀ Concentration, µg/Ncm         8.06         7.27         6.27		Particulate Matter Less than 10 Microns (PM ₁₉ ) Data	ons (PM ₁₀ ) Data	
167 150 8.06 7.27	Volume of air for PM ₁₀ sampling, Ncm	20.7239	20.6357	20.7240
8.06 7.27	PM ₁₀ Weight, µg	167	150	130
	PM _{to} Concentration, µg/Ncm	8.06	7.27	6.27

	Sulfur Dioxide (9	Sulfur Dioxide (SO ₂ ) and Nitrogen Dioxide (NO ₂ ) Data	
Volume of air for SO _{2 and} NO ₂ sampling, Ncm	1.2410	1.2357	1.2410
SO ₂ Weight, µg	0.357	0.700	1.170
SO ₂ Concentration, µg/Ncm	0.29	0.57	26.0
NO ₂ Weight, µg	4.970	2.440	1.460
NO ₂ Concentration, µg/Ncm	4.00	1.97	1.18
Average Temperature, °C	23.4	24.3	23.8
Clouds (Octa)	5/8 to 8/8	5/8 to 8/8	5/8 to 8/8
Prevailing Wind Direction	BF1	BF1, BF2	BF1 BF2
Prevailing Wind Condition	333	SE	38

Beaufort Force Calm (0.0 - 0.2 m/s) Remarks: BF BF0

Light Air (0.3 - 1.5 m/s) Light Breeze (1.6 - 3.3 m/s) BF1 BF2

BF3 BF4

Gentle Breeze (3.4 - 5.4 m/s) Moderate Breeze (5.5 - 7.9 m/s)

# ANNEX C

LABORATORY CERTIFICATES



Unit 201-204 & 406 Rizalina Annex Bldg. 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 Fax No. 8929-4824 Email: info@elarsi.com

CLIENT

**ADDRESS** 

2nd Flr., VAG Bldg Ortigas Ave. Greenhills

San Juan, Metro Manila

Contact Number

: 8863-6129

Nature of Sample/s No. of Sample/s Submitted : Four (4)

: Ambient Air Sample

Lab. Report No.

241927-AA

Date/Time Sampled

05-27-24 to 05-30-24 1600H

Date Received

05-31-24

Date Analyzed

05-31-24 to 06-06-24

Date Reported

06-06-24

## [REPORT OF ANALYSES]

Sample No.	Sample ID	NO₂, ugª	Analysis Date/Time
ES-2408616	PJ 24 241 A24-1	4.97	05-31-24 1614H
ES-2408617	PJ 24 241 A24-2	2.44	05-31-24 1614H
ES-2408618	PJ 24 241 A24-3	1.46	05-31-24 1614H
ES-2408619	PJ 24 241 Blank	< 0.038	05-31-24 1614H

a - Method 406 / Griess-Saltzman

Reference

James P. Lodge, Methods for Ambient Air Sampling & Analysis, 3rd edition

Analyzed By

JENAIA A. ANDAYA, RCht Laboratory Chemical Technician PRC Lic. No. 0009297

Analyzed By:

JESSEMAR G. GUIMBAQLIBOT, RChT Laboratory Chemical Technician PRC Lic. No. 0006109

Checked By:

JACINTO, RCh Laboratory Supervisor PRC Lic. No. 0010872

Certified Correct By:

M. GOFREDO, JR., RCh Laboratory Manager PRC Lic. No. 0009824

Test results reflect the quality of the samples as received.

No portion of this report may be reproduced in any form, without written authorization of ELARSI, inc. This report is not valid without the official dry seal and watermarks of the laboratory.

Page 1 of 1 Page/s

EI_HRAFORM_10





Unit 201-204 & 406 Rizalina Annex Bldg. 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 Fax No. 8929-4824 Email: info@elarsi.com

CLIENT

**ADDRESS** 

2nd Flr., VAG Bldg Ortigas Ave. Greenhills

San Juan, Metro Manila

Contact Number

**:** 8863-6129

Nature of Sample/s No. of Sample/s Submitted : Four (4)

: Ambient Air Sample

Lab. Report No.

Date/Time Sampled

Date Received

Date Analyzed

Date Reported

241926-AA

05-27-24 to 05-30-24 1600H

05-31-24

06-27-24 to 07-04-24

: 07-04-24

#### [REPORT OF ANALYSES]

Sample No.	Sample ID	SO₂, ugª	Analysis Date/Time
ES-2408612	PJ 24 241 A24-1	0.357	06-27-24 1400H
ES-2408613	PJ 24 241 A24-2	0.700	06-27-24 1400H
ES-2408614	PJ 24 241 A24-3	1.17	06-27-24 1400H
ES-2408615	PJ 24 241 Blank	< 0.155	06-27-24 1400H

a - Pararosaniline Method / Colorimetric

Reference

CFR 40 Appendix A2 to Part 50

Analyzed By:

JESSEMAR G. GUIMBAQLIBOT, RChT

Laboratory Chemical Technician PRC Lic. No. 0006100

Checked By:

JEMMA D. JACINTO, RCh Laboratory Supervisor

PRC Lic. No. 0010872

Certified Correct By:

RENATO M. GOFREDO, JR., RCh

Laboratory Manager PRC Lic. No. 0009824

Test results reflect the quality of the samples as received.

No portion of this report may be reproduced in any form without written authorization of ELARSI, Inc.

This report is not valid without the official dry seal and watermarks of the laboratory

LABORATORY C.R. No. 005/2021

Page 1 of 1 Page/s

EI_HRAFORM_10



Unit 201-204 & 406 Rizalina Annex Bldg. 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 Fax No. 8929-4824 Email: info@elarsi.com

CLIENT

**ADDRESS** 

2nd Flr., VAG Bldg Ortigas Ave. Greenhills

San Juan, Metro Manila

**Contact Number** 

: 8863-6129

Nature of Sample/s No. of Sample/s Submitted : Four (4)

: Ambient Air Sample

Lab. Report No.

241925-AA

Date/Time Sampled

05-27-24 to 05-30-24 1600H

Date Received

05-31-24

Date Analyzed

: 06-06-24 to 06-10-24

Date Reported

: 06-10-24

#### [REPORT OF ANALYSES]

Sample No.	Sample ID	PM ₁₀ , ug ^a	Analysis Date/Time
ES-2408608	PJ 24 241 A24-1	167	06-06-24 0845H
ES-2408609	PJ 24 241 A24-2	150	06-06-24 0845H
ES-2408610	PJ 24 241 A24-3	130	06-06-24 0845H
ES-2408611	PJ 24 241 Blank	< 100	06-06-24 0845H

^a - Method 501 / Gravimetric

Reference

James P. Lodge, Methods for Ambient Air Sampling & Analysis, 3rd edition

Analyzed By:

Laboratory Chemical Technician PAC Lic. No. 0009297

Checked By:

Laboratory Supervisor PRC Lic. No. 0010872

Certified Correct By:

TO M. GOFREDO, JR., RCh Laboratory Manager

PRC Lic. No. 0009824

Test results reflect the quality of the samples as received.

No portion of this report may be reproduced in any form without written authorization of ELARSI, inc

This report is not valid without the official dry seat and watermarks of the laboratory

RECOGNIZED LABORATORY C.R. No. 005/2021

Page 1 of 1 Page/s

EI HRAFORM 10

REQUEST FOR ANALYSIS

troi

Date Turne SHINDING WAT 1 241925-119 Sample Disposed Date/Time 7 | Plan 24 DATE OF THE FOLLOWING Date/Time CBI N CHAIN OF CUSTODY FORM FOR LABORATORY USE ONLY.
FOR LABORATORY USE ONLY.

Lab. Report No. Certificate Sent/Reported 14.7. Orun (Printed Name Signature)
(Printed Name Signature)
(Printed Name Signature) Dim C Remarks No. of Samples Submitted by: Approved by: Reviewed by: 6 Date of Sampling/Time 28 24 36-30 37-18 Stack Source Emission Soil
Ambient Air Sample Sludge
Work Env. Measurement Sediment Prose pra Ar Others 400 May NA May Others Contact No./s Chara - 424-0664 Nature of Sample (PLEASE CHECK) Solids Metals FOOD WATER FOR MADILINE FILLY - JAN THAI Method Of Analysis Drinking Water
Wastewater
Others Unit 201-204 & 406 Rizalina Annex Bidg. 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 , 8994-3443 ° Fax No. 8929-48-24 ° E-mait: info@elarsi.com Others Water Uniters otherwise requested all samples will be disposed two (2) wears after analysis.
 (is right-states wearther it have a statements are not me. Analyses Requested Routine (7-12 Working Days) Glass/Sterile Glass TEDLAR Bag Others 74 / 14 Container Type Company: BSI Address: Dg. Th. F. Avg
Contact Person: HALCY LINY ORGANIA 7.27 PMIS 2 707 PMIO 9 8 8 8 502 S Others 1 USE UNE(1) COC FOR EACH NATURE OF SAMPLE 43-21th Sample Identification A 2-29th P12-121 A1-21 Hrs Pick-up And A Sample Condition Upon Receipt Sealed / Container Intact Urgent/Rush (3-5 Working Days) Courier Method of Transport FOR LAB. USE ONLY. 1 - \$0980AC J E LADSOND - 10 furn Around Time * X 080 * X Chilled/Frozen Room Temp Sample No. Walk in \$ **1** 1 \$

Sensi No

## **ANNEX** D

## **EQUIPMENT CALIBRATION CERTIFICATES**

#### Calibration Report

Tisch Particulate Matter 10 (PM10) Air Sampler No.  $06012024PM_{10}475-11$ 

Submitted by: Edindo C. Fernando

BSI (Berkman Systems Inc.,)

Address: 2nd Floor VAG Bldg., Greenhills, San Juan

#### <u>Site</u>

#### Calibrator Make/Model

Location: On-Site

Date: Jun 1, 2024

Tech.: Roberto L. Co Sampler: TE-Wilbur PM₁₀ Air Sampler

Serial #: 475 / TSP - D SN: 3868

Make: BGI Tetracal Model/S.N.: 139/#1, Range: 6-30LPM

Result of Venturi Calibration No. 1: 5.37813 ΔΡ΄ ^ 0.52138

Overall Uncertainty: 0.35%

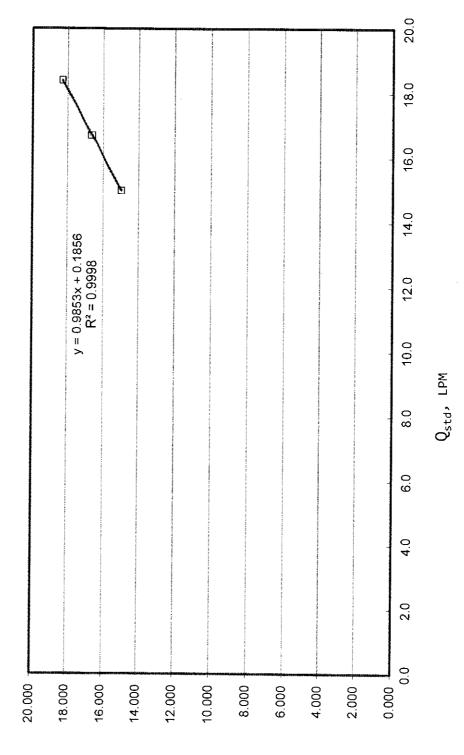
Temp	(°	F):	
Ta	( °	K):	295
Ta	( °	C):	22

Elevation (ft): SL Press (in Hg):

Pa (mm Hg): 752

Test Points	Test Points Sampler Flowmeter Setting, LPM		CURLS I I I I I I I I I I I I I I I I I I I		Q _s , STP, LPM
1	15.0	15.050	14.950		
2	16.7	16.746	16.670		
3	18.4	18.368	18.300		

#### Remarks:


- 1. The above values are those obtained at the time of test and refer only to the particular instrument submitted.
- 2. The flow rate controller was set at 16.7 LPM.

Calibrated by:

ROBERTO L. CO



Page 2 of 2



Calibration Graph

Да, ГРМ

#### **CALIBRATION REPORT** No. 06292024GS-BSI-DGS-2-10

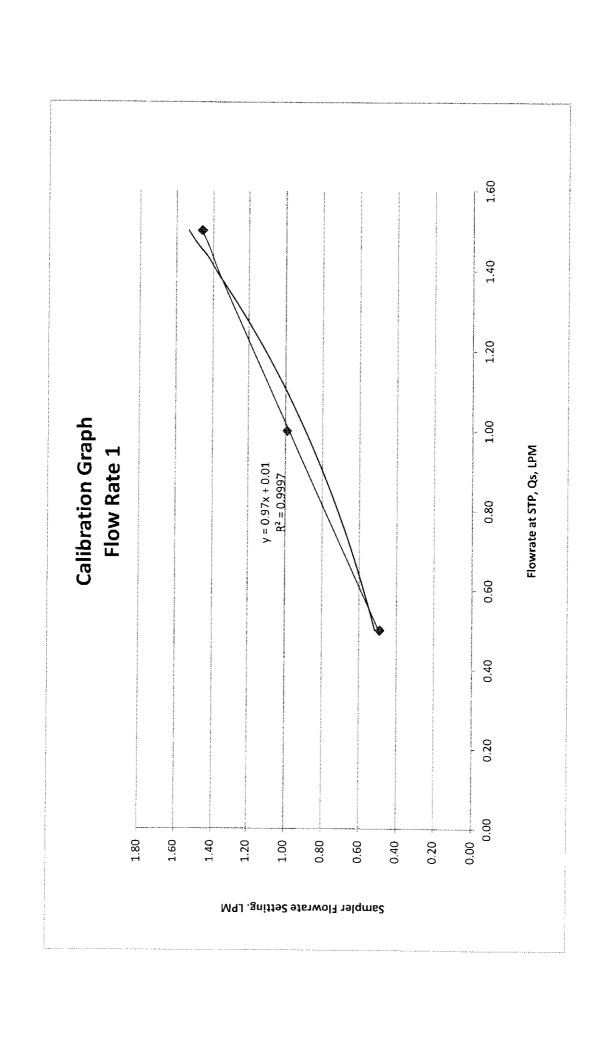
Instrument/Model:
Serial Number:
Submitted by:
Address:
BSI Dual Gas Sampler
BSI DGS-2
Mr. Edindo Fernando
BSI (Berkman System Inc)
752

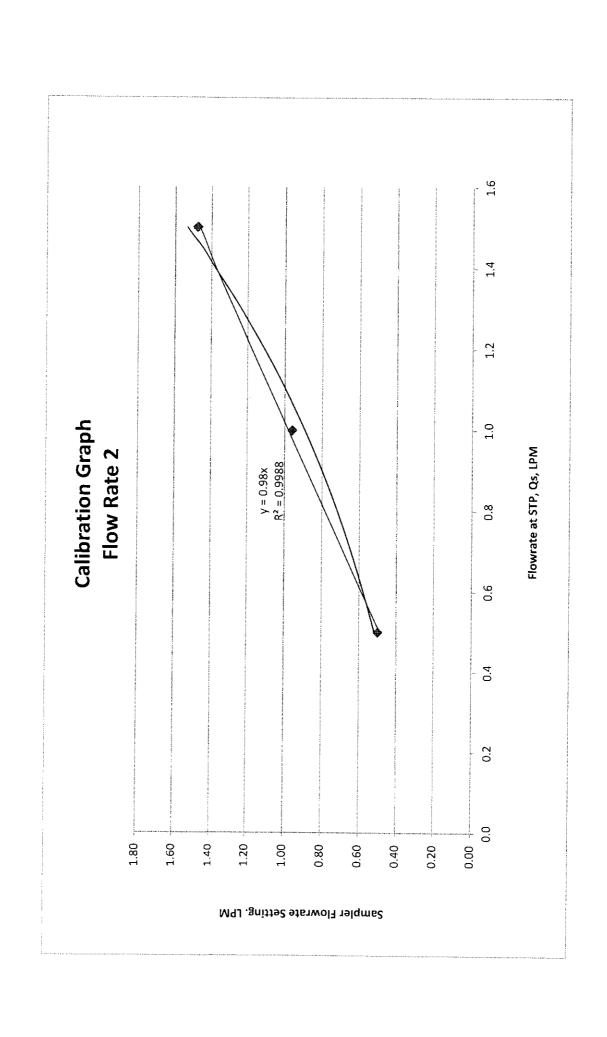
Standard Used: Agilent ADM1000 Range: 1000ml/min
Temp.,°C: 25 Rel. Humidity,%: 60

Date: 29-Jun-24

#### CALIBRATION DATA FLOW RATE 1

Test Point	Ooint UUT Flowmeter Qa, Actual, Setting, LPM LPM		$Q_{ m s}$ , STP, LPM
1	0.5	0.50	0.49
2	1.0	1.00	0.99
3	1.5	1.50	1.46


#### FLOW RATE 2


FLOW RATE 2							
Test Point	UUT Flowmeter Setting, LPM	Qa, Actual, LPM	Q _s , STP, LPM				
1	0.5	0.50	0.50				
2	1.0	0.98	0.96				
3	1.5	1.50	1.48				

Remarks: 1. The above values are those obtained at the time of test and refer only to the particular instrument submitted.

Calibrated By:

Roberto L. Co







### Switchtek **Measurement Systems**

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph



www.switchtek.com.ph

2

Certificate No.: Identification:

4000.23-8979-4.23

BERKMAN SYSTEMS INCORPORATED

Calibration of

3 IN1 (Anemometer, Barometer, XRH)

Job:

Ρŧ 32

Test and Verification Certificate of Calibration

Fin.acc: Done....:

December 5, 2023 Calibration

Initiats ::

CAC Hours

Total cost

Temperature and Humidity chamber

Туре

Calegories Cal Officer

1 00

Certificate

#### CERTIFICATE OF CALIBRATION - 3 IN 1 (ANEMOMETER, BAROMETER, % RH)

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

issued to:

BERKMAN SYSTEMS INCORPORATED

Address:

Suite 208 YAG Bldg., Ortigas Avenue, Greenhills, San Juan, Metro Manita, Philippines

UNIT UNDER TEST (UUT):

3 INI (Anemometer, Barometer, %RH)

Instrument Brand Model No.:

LUTRON ARH-4225

Serial No.:

AJ.79434

Range:

Velocity (0-30.0 m/s) Temp. ( 0-50 Deg. C) Humidity (10 to 95%)

Dewpoint (-25.3 to 48.9 Deg. C)

10.0 to 999.9 hPa

Resolution:

Velocity (0-30.8 m/s)/0.1 m/s

Temp. ( 0-50 Deg. C)/0.1 Deg. C

Humidity (10 to 95%)/0.1 %RH

Dewpoint (-25.3 to 48.9 Deg. C)/0.01 Deg. C

Barometeric (10.0 to 999.9 hPa) /0.1

**CALIBRATOR INFORMATION:** 

Model No.: X8-015-34 Serial No.: 20130803

Traceability:

CNAS

instrument; Manufacturer Rotating Vane Anemometer LITTROM

Model No: Serial No:

Range:

AM-4206M 0432206 0 to 30.0 m/s

0 to 50.0 °C

Calibrated Against: UKAS, thru Laser Doppler Anemometer instrument

Barigo, Precision Barometer

Calibrated Against: NIST

Calibration Due: December 3, 2024

Calibration Date: December 4, 2023

**Environmental Condition:** 

Candition

DRY/BASIC/NEUTRAL

Ambient Temp. (Deg C): 23 +2

Relative Humidity: 52.2 ±5%, 1010 hPa

#### Catibration Method:

By comparison technique, unit under test was tested in reference with a Rotating vane anemometer, precision barometer. Standard Temperature and Humidity calibrator. Procedures of calibration and test conform to the requirements of NPL, NIST and ISO/IEC Guide 17025. Data were gathered and plotted against an ideal curve. Standard error and uncertainty of measurement, are written on the attached sheet.

All data pertain only to the unit described obtained at the time of test. This certificate is not valid w/out seal and signature. Unauthorized reproduction is prohibited.

Calibrated By:

Date:

ahefi makashi vuat vastusus. Kakuasit ili iseteki mehda eenteti vetuvinuus touninuu nugi nimeji nyiyin lagu tamp mannifi vii fariski stolla lala kalilidi vitamisusa hingi. Munninuu mimella liitamisesi intamika kalikaman mi ki milimmin vii tuukemin tortti kärana on 1 malletik hindista atteratan, makashingi miki taliliku kindista vii

Certified By: Date:



#### Switchtek Measurement Systems

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph

www.switchtek.com.ph



Certificate No.:

4000.23-8979-4.23

Calibration of

3 INI (Anemometer, Barometer, XRH)

December 4, 2023

December 3, 2024 C.A. CASADO

Identification: Address:

BERKMAN SYSTEMS INCORPORATED

Suite 208 YAG Bldg., Ortigas Avenue, Greenhills, San Juan, Metro Manila, Philippines

Calibration Date:

Calibration Due:

Calibrated By:

#### CERTIFICATE OF CALIBRATION - 3 IN 1 (ANEMOMETER, BAROMETER, % RH)

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

#### UNIT UNDER TEST (UUT):

Instrument

3 INI (Anemometer, Barometer, %RH)

Brand Model No.: LUTRON

Serial No.:

ABH-4225 AJ.79434

Range:

Velocity (0-30.0 m/s)

Temp. ( 0-50 Deg. C) Humidity (10 to 95%)

Dewpoint (-25.3 to 48.9 Deg. C)

10.0 to 999.9 hPa

Resolution:

Vetocity (0-30.0 m/s)/0.1 m/s

Temp. ( 0-50 Deg. C)/0.1 Deg. C Humidity (10 to 95%)/0.1 %RH

Dewpoint (-25.3 to 48.9 Deg. C)/0.01 Deg. C Barometeric (10.0 to 999.9 hPa) /0.1

MODE:

THERMOHYGROMETER

#### Results:

Temperature:

REFERENCE READING (°C)	UNIT UNDER TEST READING (°C)	ERROR IN READING (°C)	STANDARD DEVIATION	REMARKS
9.6	9.9	-0.30	0.2121	The user should determine
20.0	21.3	-1.30	0.9192	the suitability of the
23.9	24.8	-0.90	0.6364	instrument of its intended
40.4	39.8	0.60	0.4243	use.

Standard error: # 1.10

°C

Uncertainty: ±

1.22

#### Relative Humidity:

	inite itemitemity.				
	REFERENCE READING (% RH)	UNIT UNDER TEST READING (% RH)	ERROR IN READING (% RH)	STANDARD DEVIATION	REMARKS
Γ	73.7	58.0	15.70	11.1016	
Г	64.2	50.6	13.60	9.6167	DA NATURA THIS NADE
Г	55.0	42.0	13.00	9.1924	DO NOT USE THIS MODE
Γ	47.0	35.0	12.00	8.4853	

Standard error: # 19.20 % RH

Uncertainty: *

12.01 % RH



#### Switchtek **Measurement Systems**

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph



www.switchtek.com.ph

Certificate No.:

4000.23-8979-4.23

Calibration of

3 INI (Anemometer, Barometer, XRH)

Calibration Date: December 4, 2023

Calibration Due:

Calibrated By:

December 3, 2024

C.A. CASADO

Identification: Address:

**BERKMAN SYSTEMS INCORPORATED** 

Suite 208 VAG Bldg., Ortigas Avenue, Greenhills, San Juan, Metro Manila, Philippines

#### CERTIFICATE OF CALIBRATION - 3 IN 1 (ANEMOMETER, BAROMETER, % RH)

This report of calibration shall document that the instrument harein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

#### UNIT UNDER TEST (UUT):

Instrument:

3 INI (Anemometer, Barometer, %RH)

Brand

LUTRON

Model No.: Serial No.:

ABH-4225 AJ.79434

Range:

Velocity (0-30.0 m/s)

Temp. ( 0-50 Deg. C) Humidity (10 to 95%)

Dewpoint (-25.3 to 48.9 Deg. C)

10.0 to 999.9 hPa

Resolution:

Velocity (0-30.0 m/s)/0.1 m/s

Temp. ( 0-50 Deg. C)/0.1 Deg. C Humidity (10 to 95%)/0.1 %RH

Dewpoint (-25.3 to 48.9 Deg. C)/0.01 Deg. C Barometeric (10.0 to 999.9 hPa) /0.1

MODE:

THERMOHYGROMETER

#### Rosults:

#### Barometric

REFERENCE READING (hPa)	UNIT UNDER TEST READING (hPa)	ERROR IN READING (hPa)	STANDARD DEVIATION	REMARKS
1015	1007	8.00	5.6569	The user should determine
1010	1004	6.00	4.2426	the suitablity of the instrument for its intende
1000	993	7.00	4.9497	use

Standard error: # 8.57 hPa Uncertainty: * 7.87 hPa

Valacity

REFERENCE READING (m/s)	UNIT UNDER TEST READING (m/s)	ERROR IN READING (m/s)	STANDARD DEVIATION	REMARKS
0.00	0.00	0.00	0.0000	The user should determine
5.20	5.10	0.10	0.0707	the suitablity of the
9.55	9.40	0.15	0.1061	instrument for its intended
15.10	14.90	0.20	0.1414	use

Standard error: * 0.16 m/s Uncertainty: * 0.59 m/s



#### Sivvitchtek Measurement Systems

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.83517471 / 89282869 / 89287769 Fax No.84420560 email Address: admin@switchtek.com.ph



www.switchtek.com.ph

Certificate No.:

400.01-8979-1 23

Calibration of

Sound Level Meter

identification:

**BERKMAN SYSTEMS INCORPORATED** 

Job:

**Test and Verification** 

Fin.acc: Done.....: 32

**Certificate of Calibration** CAC

November 3, 2023

initials...:

**Total cost** 

Type

Categories Cal Officer Calibration

Men 2

Certificate

**CERTIFICATE OF CALIBRATION - SOUND LEVEL METER** 

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against MIST traceable reference standards and Rs co-equal standards.

issued To:

**BERKMAN SYSTEMS INCORPORATED** 

Address

Suite 208 YAG Bidg, Ortigas Avenue, Greenhills, San Juan, Metro Manila, Philippines

UNIT UNDER TEST (UUT):

Sound Level Meter

Lutron

Instrument Brand

Model No:

Serial No: ID Code:

SL-4030 1503730 No record

Range:

30 to 130 dR

Relative Humidity: 51.3 +5%,1006 hPa

Graduation:

Calibration Date: November 3, 2023

Calibration Due: November 2, 2024

0.1 dB

CALIBRATOR INFORMATION:

Instrument

Lutron

Brand: Serial No:

1.278821 SC.-942

Model No: Traceability:

IEC 60942 Type II A Standard

Sound Level Calibrator

NIST and NPL

Environmental Condition:

Condition:

DRY/BASIC/NEUTRAL

Ambient Temp. (Deg C): 21.7 ±2

By comparative technique, Standard Sound Generator was introduced at the unit under test at a constant value of 94.0 dB and 114.0 dB at a uniform frequency of 1000 Hz. Data were gathered and tabulated. Procedures of test conform to the requirements of OIML 88 Guidelines, IEC 60942 of the NIST and National Physical Laboratories.

During calibration, the unit was found to have a standard error of + 0.10 dB with a confidence level of not less than 95%. Uncertainty of measurement is a 0.28 dB. Calculations were taken using the Standard Deviation Formula.

Results

	TRIALS	REFERENCE READING (dB)	UNIT UNDER TEST READING (dB)		ERROR IN READING	STANDARO	REMARKS
ı		(00)	AS FOUND	AS LEFT	(48)	DEVIATION	
l	1	94.0	94.3	94	0.000	0.0000	Passed
Į	2	114.0	114.5	114.2	0.200	0.1414	Passed

pd obtained at the time of test. This certificate is not valid w/nut seat and signature. Unauthorized All data pertain only to the unit despri reproduction is prohibited.

Date:

CASADO November 3, 2023 Certified By:

Date:

Temperatures Pressure Sepret Geo Detector/Analyzer "New "Volume" thight" Rh. For Conductorly "Residency Conductorly "Conductorly "Condu parlam" Persont "Sourd Gas Detecto (Analyzer "Haw "Velame" might ish ish Conductory i consulary Connectory Connector Source Connector (Analyzer Connector) And Hermanister (Burneter Source Connector) And Hermanister (Burneter Source Connector) And Hermanister (Burneter Source Connector) And Hermanister (Burneter Source Connector) And Hermanister (Burneter Source Connector) And Hermanister (Burneter Source Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Source Connector) And Hermanister (Burneter Source Connector) And Hermanister (Burneter Source Connector) And Hermanister (Burneter Source Connector) And Hermanister (Burneter Source Connector) And Hermanister (Burneter Source Connector) And Hermanister (Burneter Source Connector) And Hermanister (Burneter Source Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Source Connector) And Hermanister (Burneter Source Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And Hermanister (Burneter Connector) And

## **ANNEX E**

## **TEST PARTICIPANTS**

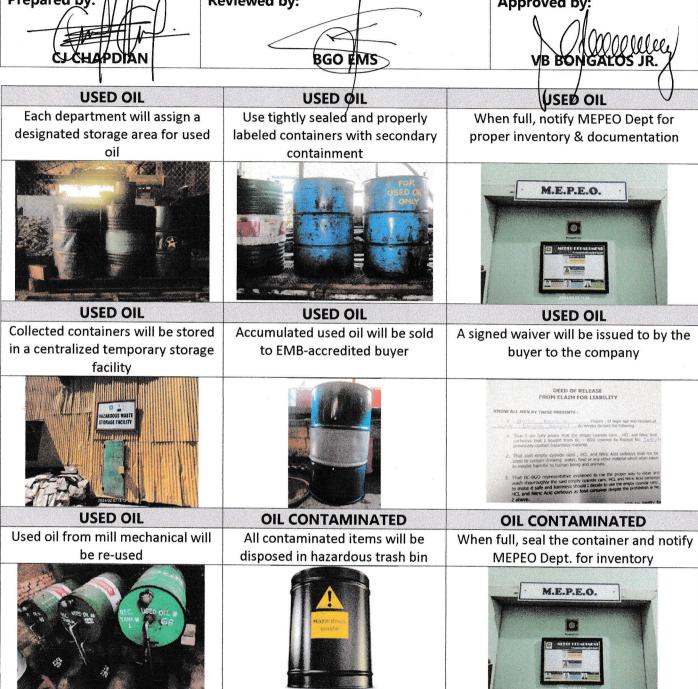
#### **TEST PARTICIPANTS**

#### BMC FORESTRY CORPORATION - BC ILP

Mr. Franciso O. Flavier - Resident Manager

#### **BSI**

Mr. Halcy Lemon P. Orquina - Field Engineer

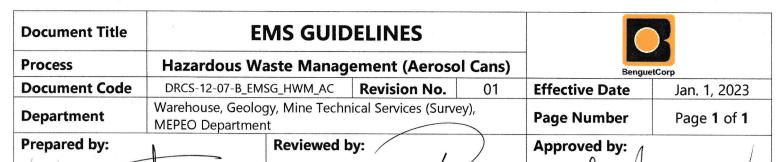

Mr. Edindo C. Fernando - QA/QC Manager

Mr. Joseph Dandy A. Quilet - Field Technician

Mr. Christian A. Soleta - Field Technician

Mr. Jimuel B. Torellino - Sampling Aide / Driver

Appendix H **EMS GUIDELINES Document Title** Hazardous Waste Management (Used Oil, Oil **Process** and Grease Contaminated Items) **Document Code** DRCS-12-07-A_EMSG_HWMCI **Revision No.** 02 **Effective Date** Jan. 2, 2024 Mill, Mill Mechanical, Mine Mechanical, Motorpool, **Department Page Number** Page 1 of 2 Warehouse, MEPEO Department Prepared by: Reviewed by: Approved by:

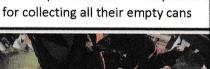





<b>Document Title</b>	EMS GUIDELINES				
Process	Hazardous Waste Management (Used Oil, Oil and Grease Contaminated Items)			BenguetCorp	
<b>Document Code</b>	DRCS-12-07-A_EMSG_HWMCI	Revision No.	02	<b>Effective Date</b>	Jan. 2, 2024
Department	Mill, Mill Mechanical, Mine Mecha Warehouse, MEPEO Department	nical, Motorpool,		Page Number	Page <b>2</b> of <b>2</b>

OIL CONTAMINATED	OIL CONTAMINATED	OIL CONTAMINATED		
Collected containers will be stored in a centralized temporary storage facility	Contact an EMB-accredited Treatment/Storage/Disposal Company	Used spill kit materials are disposed in the hazardous trash bin		
MAZABORGS WASTE STORAGE FACILITY  DOCA DE DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OCA DATE  OC		HAZARDOUS WASTE		






SV CAO-ROSARIO Each department will be responsible BGO EM

VB BONGALOS JR.

**AEROSOL CANS** 

**AEROSOL CANS** 





Empty cans will be stored in it's original box (labeled "empty")



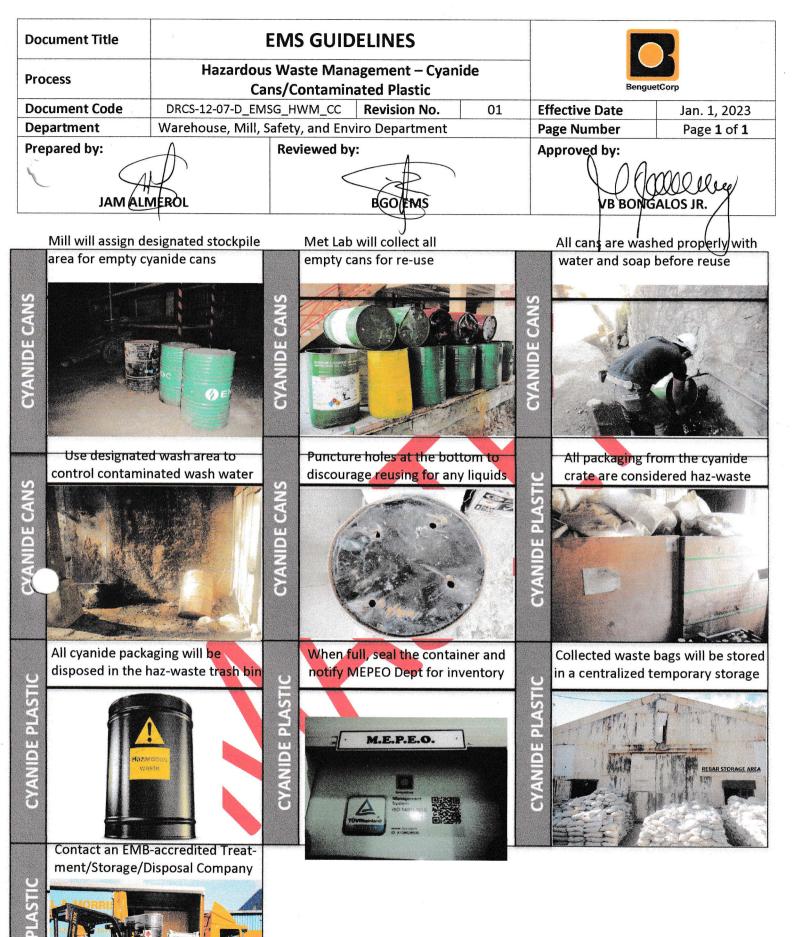
**AEROSOL CANS** 

**AEROSOL CANS** 

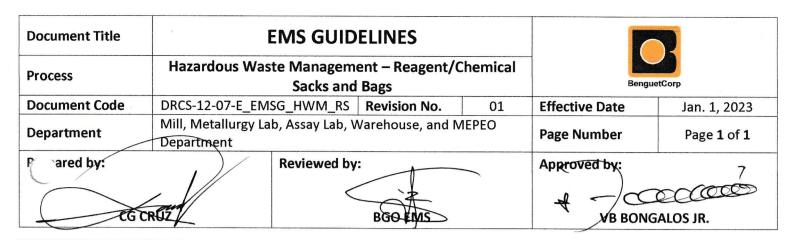
When the box is full, seal the box & notify MEPEO Dept for inventory



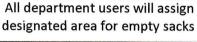
Collected containers will be stored in a centralized temporary storage




Contact an EMB-accredited Treatment/Storage/Disposal Company












REAGENT SACKS/BAGS






Accumulated sacks will be transferred to a centralized temporary storage



REAGENT SACKS/BAGS

REAGENT SACKS/BAGS

Notify MEPEO Dept for proper inventory and documentation



REAGE AT SACKS/BAGS

Contact an EMB-accredited Treatment/Storage/Disposal Company

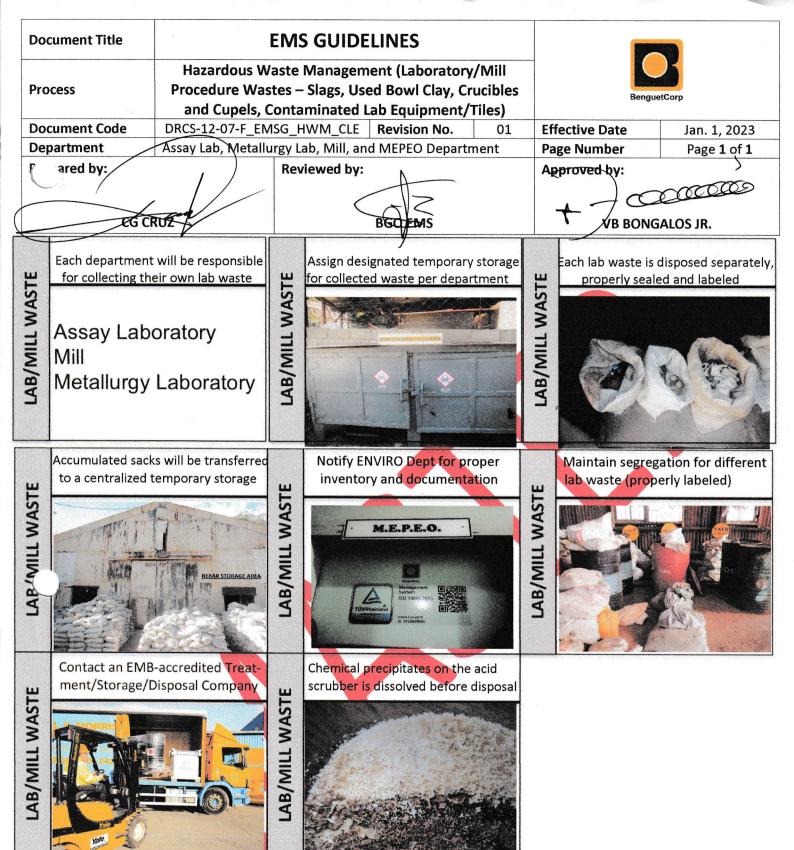


The sacks from the following eagents are considered haz-waste

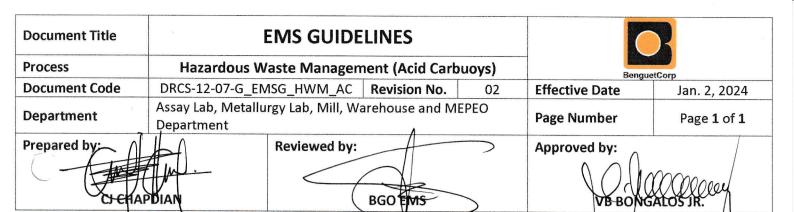
> Caustic Soda Borax Soda Ash, Light Litharge

Empty carbon sacks can be stored for future re-use CARBON SACKS ACTIVATED CARRON




Empty sodium metabisulfite bags are washed for re-use




Use designated wash area to control contaminated wash water











HCL/HNO, CARBUOYS

CARBUOYS


Each department will have a temporary space for empty carbuoy storage



When space is full, notify MEPEO for proper inventory & documentation



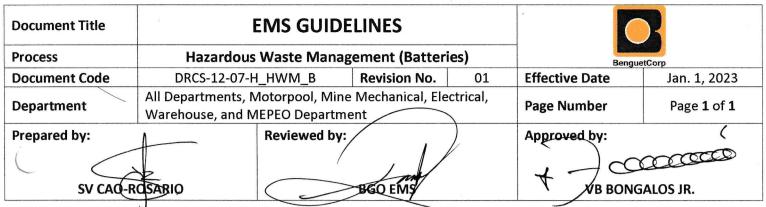
Collected carbuoys will be stored in a centralized temporary storage

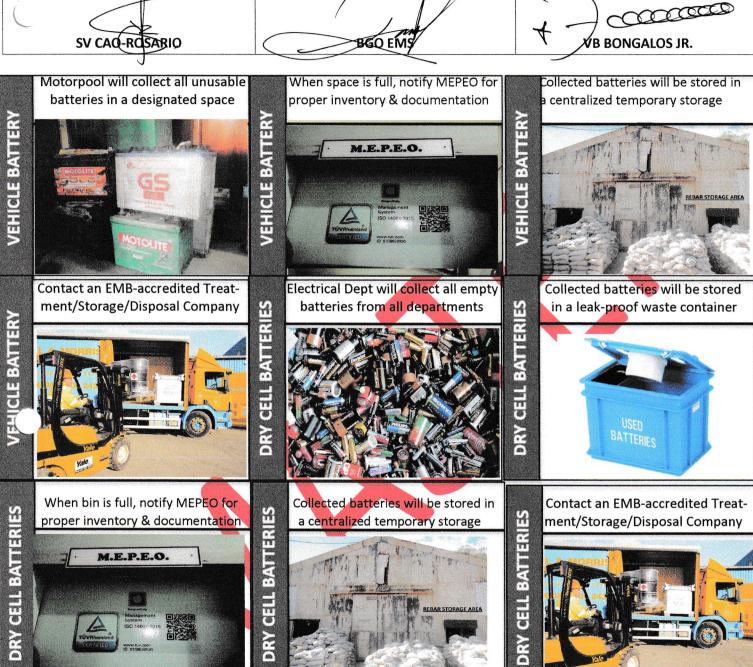


HCL/HNO3 CARBUOYS

Materials & Management Group will contact interested buyers

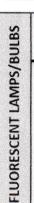
My prices are:
Scrap Iron: P 3.00/kg
Gallon: P10.00 each
Scrap Drums & Yero: P 1.00/kg Hope that you will consider these prices. Thank you ver Respectfully Yours,


HECTORII. AMANCIO Camablo Clan Representative


A signed waiver will be issued by the buyer to the company

DEED OF RELEASE FROM CLAIM FOR LIABILITY


HCL/HNO3 CARBUOYS














All busted lamps and bulbs are collected by the Electrical Dept

CI CHAPDIAN



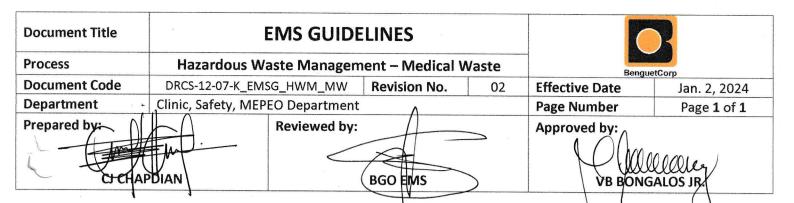
Collected lights/bulbs are stored in a centralized temporary storage

BGO ENS



FLUORESCENT LAMPS/BULBS

Notify MEPEO Department for proper inventory & documentation


VB BONGALOS JR.

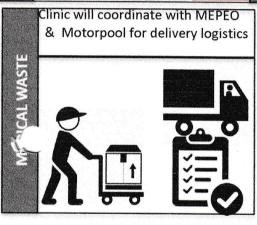


FLUORESCENT LAMPS/BULBS

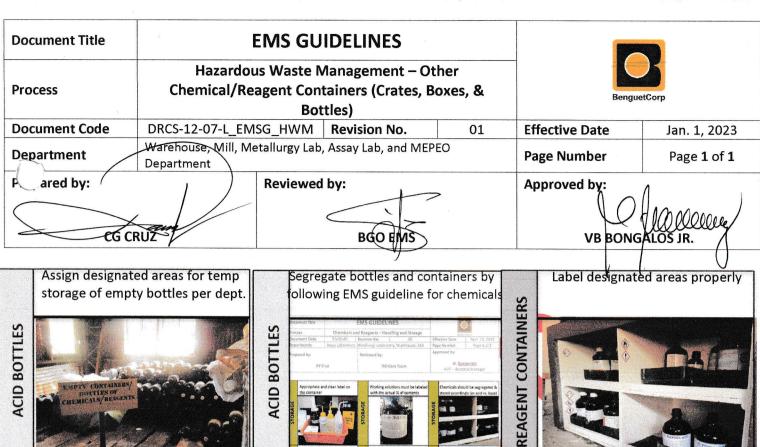
Contact an EMB-accredited Treatment/Storage/Disposal Company








When bin is full, it is transferred to specially marked "biohazard" bags




MEPEO Department is notified for proper inventory & documentation







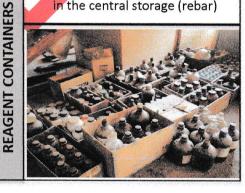




When storage is full, notify Enviro or proper inventory& documentation





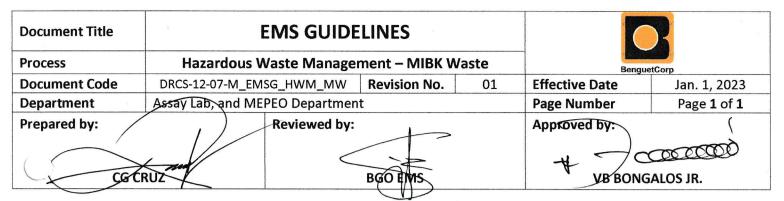

Collected containers are stored in a centralized temporary storage



REAGENT CONTAINERS



Maintain segregation and labels in the central storage (rebar)

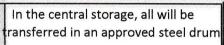



Contact an EMB-accredited Treatment/Storage/Disposal Company



REAGENT CONTAINERS

REAGENT CONTAINERS










Notify MEPEO Dept for proper





MIBK WASTE

Contact an EMB-accredited Treatment/Storage/Disposal Company





Process

Hazardous Waste Management – Ink

Cartridges / Bottles

Document Code

DRCS-12-07-N_EMSG_HWMIC

Department

MEPEO, All Departments

Page Number

Page 1 of 1

**BGO EMS** 

Prepared by:

Reviewed by:

Approved by:

VB BONGALOS JR

DISPOSAL

Empty printer ink cartridges/
bottles are collected from each
department.

MEPEO Dept. is notified for proper inventory and documentation of the empty cartridges/ bottles that are disposable.

DISPOSAL

Collected empty cartridges/ bottles that are disposable are stored in the Hazardous Waste Storage Facility.

DISPOSAL









DISPOSAL

Contact an EMB-accredited
Transporter and Treater for
proper disposal

RECYCLING

Collected empty cartridges/ bottles are turned over to the Procurement Dept. which handles the refilling.









## Republic of the Philippine Department of Environment and Natural Resources

#### **ENVIRONMENTAL MANAGEMENT BUREAU**

Cordillera Administrative Region Baguio City

#### **ENVIRONMENTAL COMPLIANCE CERTIFICATE**

CAR 1012 - 174 - 2110 (Amended)

The Department of Environment and Natural Resources (DENR) thru the Environmental Management Bureau – Cordillera Administrative Region (EMB-CAR) hereby grants this Environmental Compliance Certificate (ECC) for the Acupan Contract Mining Project (ACMP) of Benguet Corporation located at the former Balatoc Power Station Area, Virac, Itogon, Benguet, after complying with the Environmental Impact Assessment (EIA) requirements as prescribed in the promulgated guidelines implementing section 3 (b) of P.D. 1586.

This Certificate is further specified as follows:

#### A. Scope:

- This Certificate is valid only for the abovecited project with a rated milling capacity not to exceed 300 dry metric tons per day (300 DMT/Day) and/or as described in the submitted documents.
- 2. This Certificate does not exempt the project from the requirements of other concerned agencies;

#### B. Conditions:

- 1. The development and operation of the project shall be in accordance with the plans and specifications described in the submitted documents. Any major modification and/or expansion shall be subject to the Environmental Impact Statement (EIS) System requirement;
- 2. The proponent shall cause the implementation of the Environmental Management Plan (EMP) and all other BC commitments described in the submitted EIA documents;
- 3. Tailings and other wastes generated from the operation of the plant shall be contained and disposed-off properly in the designated pollution control facility(ies) as described in the submitted EIA documents;
- 4. Pond/plant effluent discharges shall conform with the standards set forth under RA 9275 otherwise known as the Clean Water Act of the Philippines and its implementing Rules and Regulations;

Chp Chp

- 5. Piezometer monitoring station(s) shall be installed along strategic area(s) at tailings pond nos. 1 and 2 (TP #1 & TP #2) to monitor phreatic level stability;
- 6. The legal requirements pursuant to RA 6969 also known as the Toxic Substances and Hazardous and Nuclear Waste Control Act of 1990, RA 9275 or the Philippine Clean Water Act of 2004 and, RA 8749 or the Philippine Clean Air Act of 1999 shall be secured consistent to the operations of the plant. Compliance to said requirements shall be coordinated with the EMB-CAR;
- 7. Should there be a breakdown in the pollution control appurtenances and/or major damage(s) incurred, the proponent shall voluntary cease its operation until such time that said damages incurred shall be rehabilitated or restored. Further, the proponent shall immediately inform the EMB, DENR-CAR of said damages and of the remedial measures undertaken;
- 8. The proponent shall submit to EMB-CAR one (1) year prior to the final shutdown of the plant a comprehensive abandonment plan. In relation, the EMB shall first review and approve the environmental aspects/components of the plan consistent with EMB functions prior to implementation;
- 9. To oversee the compliance of the proponent with the ECC conditions, the proponent shall maintain the operation of the established Sectoral Monitoring Team including the Environmental Monitoring Fund (EMF) to cover all costs attendant to the said monitoring.
- 10. The project is subject to on-the-spot monitoring/inspection at any reasonable time by the EMB-CAR which may be in coordination with concerned groups.
- 11. The proponent shall cause the implementation of any undertaking which may be imposed by the EMB-CAR as a result of Technical Conference/s called relative hereof:
- 12. This Certificate supersedes the Environmental Compliance Certificate (ECC) NO. CAR 0211-144-120 issued the project on November 29, 2002.
- 13. This Certificate shall be deemed automatically expired if the project is not implemented within five (5) years from the date of issuance; and
- 14. Any transfer of project proprietorship or project name carries the same conditions in this ECC for which notification to the EMB-CAR shall be made by the proponent within fifteen (15) days from such transfer.

Non-compliance with any of the above stipulations will be sufficient cause for the suspension or cancellation of this Certificate, administrative sanctions against the office head and/or imposition of fine in the amount not to exceed Fifty Thousand Pesos (P

50,000.00) for every violations thereof, at the discretion of the DENR (Section 9 of P. D. 1586).

- C. Recommendations (for the consideration of the project proponent, the PMRB-Benguet/MGB-CAR and, other concerned agencies in the issuance of applicable permits/authorities):
  - 1. The recommendations cited in the Geotechnical Analysis of Dam and Review of the Hydrology for the Re-mining of Tailings from the BGO Tailings Ponds No. I, II, & III final report, where applicable, should be given preferential consideration under the requirements of the MGB-CAR;
  - Qualified local residents should be given priority employment during the development and operation of the project;
  - Construction works should be under the tight supervision of a technical personnel to ensure that standards and requirements of sound engineering, safety and health practices are strictly followed;
  - An emergency response and contingency plan in the event of failure of any of the project appurtenant facilities and/or during disaster/calamity; and
  - The appurtenant physical structures and equipment of the project, where applicable, are subject to the requirements of the National Building Code of the Philippines and the permitting requirements of MGB-CAR/LGUconcerned.

1 5 DEC 2010. _ _

issued thisday of	, Year Two Thousand Ten.
	A.
	1-21-C
RECOMMENDING APPROVAL:	APPROVED:
	$A_{\Lambda}$
NESTOR M. DONAAL Chief, EIA Division	- //my
NESTOR M. DONAAL	PAQUITO T. MORENO, JR. Regional Director
Chief, EIA Division	Regional Director

Amendment of ECC Condition	₽ 1,200.00	O.R. No.	Date
Legal Research Fee	₽ 240.00	O.R. No.	Date





Republic of the Philippines

Department of Environment and Natural Resources

#### NVIRONMENTAL MANAGEMENT BUREAU

Cordillera Administrative Region Baguio City

February 22, 2018

MR. FRANCISCO O. FLAVIER

Operations Manager BMC Forestry Corporation Km. 5, Naguilian Rd., Irisan, Baguio City Office of the Regional Director

EMB-CAR

RELEASED

By

Date 226

SUBJECT

AMENDMENT OF ECC NO. ECC-OL-CAR-2016-0058 ISSUED ON SEPTEMBER 15, 2016 TO BMC FORESTRY CORPORATION FOR THE IRISAN LIME PROCESSING PLANT LOCATED AT KM. 5, NAGUILIAN RD., IRISAN, BAGUIO CITY

Dear Mr. Flavier:

This has reference to the letter dated October 23, 2017 requesting for an amendment of the Environmental Compliance Certificate (ECC) numbered ECC-OL-CAR-2016-0058 issued on September 15, 2016 for maximizing the plant production capacity of the Irisan Lime Processing Plant.

After careful evaluation of the submitted documents and in consideration of the payment of PhP 2,035.00 under O.R. numbers 2673464 and 7643336 dated 11/23/2017, this office has decided to grant the ECC amendment. The project description of the ECC shall now read as follows:

#### PROJECT DESCRIPTION

The ECC covers the operation of the Irisan Lime Processing project with an annual production capacity of 19,420 MT and the full operations of the three (3) vertical shaft kilns located within an 18,541sq. m. lot at Km. 5, Naguilian Rd., Irisan, Baguio City covered by the Transfer Certificate of Title numbered 018-2013000103 in the name of Ifaratoc Mineral Resources Corporation (IMRC). The project involves the processing of raw lime stones into quicklime and slaked lime through calcination process by subjecting the limestone feeds into continuous heat in vertical shaft kilns.

All other provisions of the original ECC (No. ECC-OL-CAR-2016-0058 issued on September 15, 2016) not herein amended shall remain valid and existing. Consequently, non-compliance with the said conditions shall be sufficient cause for the imposition of fines in accordance with the penal provisions of PD 1586 and/or cancellation of the ECC.

This letter shall be attached to and shall form part of the aforementioned ECC.

For information and record.

Very truly yours,

REY ALDO S. DIGAMO OIC, Regional Director

DENR Cmpd., Gibraltar Rd. Baguio City 2600 P.O. Box 1959 J. W. 2/24/15 Telefax I J. W. 2/24/15 Tel. No.

Telefax No. (074) 444-6440 Tel. No. (074) 442-2346/ 442-3896 (074) 446-2881/ 443-4909



# Republic of the Philippines Department of Environment and Natural Resource ENVIRONMENTAL MANAGEMENT BUREAU

DENR Compound, Gibraltar, Baguio City
Telephone No.(074) 442-2346, (074) 446-2881, (074) 443-4909 Fax No.(074) 446-6440
car@emb.gov.ph
Visit us at http://www.emb.gov.ph/portal/car

September 15, 2016

ECC-OL-CAR-2016-0058

MR. FRANCISCO O. FLAVIER

Operations Manager BMC Forestry Corporation Km. 5, Naguilian Rd., Irisan, Baguio City

Subject:

ENVIRONMENTAL COMPLIANCE CERTIFICATE

Dear Mr. Flavier:

This refers to the Environmental Compliance Certificate (ECC) application for the Irisan Lime Kilns operation at Km. 5, Naguilian, Irisan, Baguio City.

After satisfying the requirements of the said application, this Bureau has decided to grant an ECC for the above-mentioned project.

With the issuance of this ECC, you are expected to implement the measures presented in the Initial Environmental Examination Checklist (IEEC), intended to protect and mitigate the project's adverse impacts on community health, welfare and the environment. Environmental considerations shall be incorporated in all phases and aspects of the project. You may proceed with the project implementation after securing all the necessary permits from other pertinent Government agencies. This Office will be monitoring the project periodically to ensure your compliance with stipulations cited in the attached ECC.

Please be guided accordingly.

Very truly yours,

OIC, Regional Director

O S. DIGAMO



# Republic of the Philippines Department of Environment and Natural Resource

#### ENVIRONMENTAL MANAGEMENT BUREAU

DENR Compound, Gibraltar, Baguio City
Telephone No.(074) 442-2346, (074) 446-2881, (074) 443-4909 Fax No.(074) 446-6440
car@emb.gov.ph
Visit us at http://www.emb.gov.ph/portal/car

#### ENVIRONMENTAL COMPLIANCE CERTIFICATE

(Issued under Presidential Decree 1586)

ECC-OL-CAR-2016-0058

THIS IS TO CERTIFY THAT the BMC Forestry Corporation, a subsidiary of Benguet Corporation, Inc., herein represented by its Operations Manager, Francisco O. Flavier, is granted this ECC for the operation of the Irisan Lime Processing Plant, by the Department of Environment and Natural Resources (DENR), through the Environmental Management Bureau (EMB).

SUBJECT ONLY to the conditions and restrictions set in this ECC and in the attached document labelled as Annexes A and B.

This Certificate is issued with the following details and supersedes the unnumbered ECC issued by the National Environmental Protection Council (NEPC) on December 2, 1982.

#### PROJECT DESCRIPTION

The ECC covers the operation of the Irisan Lime Processing project with an annual production capacity of 9,500 MT located within an 18,541 sq. m. lot at Km. 5, Naguilian Rd., Irisan, Baguio City covered by the Transfer Certificate of Title numbered 018-2013000103 in the name of Ifaratoc Mineral Resources Corporation (IMRC). The project involves the processing of raw lime stones into quicklime and slaked lime through calcination process by subjecting the limestone feeds into continuous heat in vertical shaft kilns. The details of the project components, amenities and facilities are found in Annex C hereof.

This Certificate is issued in compliance with the requirements of Presidential Decree No. 1586, and in accordance to DENR Administrative Order (D.A.O.) No. 2003-30. The EMB, however, is not precluded from reevaluating and correcting any deficiencies or errors that may be found after issuance of this Certificate.

Issued at EMB-CAR, DENR Compound, Gibraltar, Baguio City this September 15, 2016.

Recommending Approval:

pertopropor

NESTOR M. DONAAL OIC-Chief, Clearance & Permitting Division

Approved:

HEYNALDO S. DIGAMO



Environmental Compliance Certificate
IRISAN LIME KILNS
Km.5, Naguilian, Irisan Baguio City, Benguet
BMC FORESTRY CORPORATION

### SWORN ACCOUNTABILITY STATEMENT

I, FRANCISCO O. FLAVIER, Operations Manager, representing the BMC FORESTRY CORPORATION with Office address at Km. 5, Naguilian Rd., Baguio City, takes full responsibility in complying with all conditions in this Environmental Compliance Certificate (ECC).

FRANCISCO O. FLAVIER

Signature

TIN No. 103-481-016

Subscribed and sworn before me this	6 SEP 2016	, the above-named affiant taking issued on June 01, 2016	oath
presenting his CTC 13724959 at Baguio Cit	у .	_, issued on	

Notary Public

My Commission Violes on 31 December 2016
Roll No. 61a in Violes on 31 December 2016

IBP No. 1003788, 01-07-16; Bagulo-Benguet PTR No. 2436102; 12-21-15; Saguio City

Doc. No. Page No. Book No. Series of



### I. CONDITIONS

### ENVIRONMENTAL MANAGEMENT

All commitments, mitigating measures and monitoring requirements, contained in the Initial Environmental Examination Checklist Report for the lime processing plant project, particularly in the Environmental Management Plan/ Environmental Monitoring Plan, including any modifications and/or additional information as approved by the EMB, shall be instituted to minimize any adverse impact of the project to the environment throughout its implementation, which shall include among others, to wit:

- Voluntary cease its operation in the event of any malfunction in any of the appurtenant facilities
  until the time that said damages are rehabilitated or restored, Further, the proponent shall
  immediately inform the EMB-CAR of said damages and of remedial measures undertaken;
- Uncalcined limestone/discards shall be prevented from deposition to and along drainage/natural
  waterways and water bodies, and shall be disposed off properly in an appropriate/designated
  disposal site(s) which shall be maintained in a stable and non-polluting condition;
- Timely construction of adequate engineered earth retaining structures along affected and geologically unstable areas, especially in the stockyard of limestone and quarry areas, to protect adjacent properties/environment;
- 4. The proponent shall plant appropriate/indigenous tree species along the periphery of the project site to serve as buffer for dust and noise and improvement of aesthetics and in the support of the National Greening Program and climate change initiatives of the government;

### GENERAL CONDITIONS

- 5. The legal requirements pursuant to RA 6969 or the Toxic Substances and Hazardous and Nuclear Wastes Control Act of 1990, RA 8749 or the Philippine Clean Air Act of 1999, RA 9003 or the Ecological Solid Waste Management Act of 2000 and RA 9275 or the Philippine Clean Water Act of 2004 shall be secured whenever applicable. Compliance with said requirements shall be coordinated with the Clearance and Permitting Division (CPD) of EMBCAR, DENR;
- The proponent shall secure regularly necessary permit(s)/clearances/authority from concerned national and local offices relative to project implementation;
- The proponent shall allow entry of EMB-CAR personnel into the project site at all times to conduct monitoring and to validate project's compliance with the ECC conditions stipulated therein and EMP Mitigating Measures;
- The proponent shall submit to EMB-CAR within fifteen (15) days after every quarter a Selfmonitoring Report (SMR) and a Compliance Monitoring Report (CMR) semi-annually;



The proponent shall cause the implementation of any undertaking which may be imposed by EMB-CAR as a result of Technical Conference/s called relative to environmental issues arising from the implementation of the project;

### II. RESTRICTIONS

- 10. Limestone feed materials shall be strictly sourced out from the company's permitted quarry areas and/or other sources sanctioned by government authorities. Violation of this condition shall automatically cause the cancellation/revocation of this ECC or imposition of fine;
- Project development shall be in accordance with the submitted documents. Major modifications and/or expansion shall be subject to a new Environmental Impact Assessment (EIA) requirement;
- 12. Any transfer of project ownership carries the same conditions and restriction in this ECC for which a written notification to the EMB-CAR shall be made by the transferee/transferor within fifteen (15) days from such transfer; and
- 13. The project shall undergo the requirements specified in the implementing guidelines of the Department Administrative Order No. 2003-30 if the project construction has stopped for a period of five (5) years.

Non-compliance with any of the provisions of this Certificate shall be a sufficient cause for the cancellation of this Certificate and/or imposition of a fine in an amount not to exceed Fifty Thousand Pesos (P50, 000.00) for every violation thereof without prejudice to imposition of fines and penalties under other environmental laws.

*NOTE: This Certificate cancels the ECC issued by the National Environmental Protection Council (NEPC) on December 2, 1982.



#### PROJECT ASSESSMENT PLANNING TOOL

For the assistance of the Proponent and the Government agencies concerned in the management of the Project and for better coordination in mitigation of the impacts of the Project on its surrounding areas and the environment, the following are recommended for appropriate action.

OTHER REGULATORY REQUIREMENTS/CONDITIONS	AGENCIES/ENTITIES	
Compliance with the Labor Code of the Philippines	DOLE - Bureau of Working Condition	
<ol> <li>Compliance with the Sanitation Code of the Philippines</li> </ol>	Department of Health (DOH)	
<ol> <li>Compliance with the Ecological Solid Waste Management Act.</li> </ol>	LGU Concerned	
4. Compliance to the Mining Act of the Philippines	MGB, DENR/LGU concerned	

### ENVIRONMENTAL PLANNING RECOMMENDATIONS FOR THE PROPONENT

- Priority of employment shall be given to qualified local residents. Adequate public information for jobs available to local residents in the affected areas shall be provided;
- Preservation of the existing trees be included as an essential part of the development/improvement scheme;
- Undertake project during reasonable time periods of the day so as not to cause undue disturbance;
- Strict supervision of project implementation by competent technical personnel to ensure that standards and requirements of sound engineering, safety and health practices are strictly followed; and
- Working areas should have appropriate warning signs, lighting during night time and barricade to prevent accident.



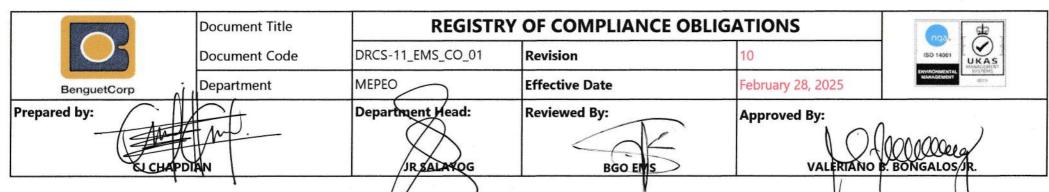
### PROJECT COMPONENTS, AMENITIES AND FACILITIES

### **Processing Plant Components/Facilities**

- 1. Three (3) units 2 m. x 4 m. high vertical shaft kilns
- 2. Three (3) units fuel oil pumps
- 3. Seven (7) units 15,000-liter each capacity fuel oil tanks
- 4. One (1) unit 60,000-liter capacity overhead fuel storage tank
- 5. One (1) unit 90 MT silo storage
- 6. Two (2) units 95 MT lime and limestone bins
- 7. Two (2) units lump lime discharge bins
- 8. Two (2) units crushed lime discharge bins
- 9. Two (2) units settling tanks
- 10. Three (3) units 66 m3/min each capacity gas scrubber
- 11. Three (3) units dust collector
- 12. Three (3) units standby generator sets
  - . One (1) unit 50 KW capacity "CATERPILLAR" standby generator set
  - Two (2) units 200 KW each capacity "CUMMINS" standby generator set
- 13. One (1) unit-three (3) compartments oil-water separator
- 14. One (1) unit platform scale
- 15. One (1) unit air compressor
- 16. One (1) unit skip bucket elevator
- 17. One (1) unit belt conveyor
- 18. One (1) unit brick cutter
- 19. One (1) unit lime crusher

### **Buildings/Amenities/Others**

- Two-storey 489.75 sq. m. office building with one unit two-chambered septic tank
- 2. Two-storey 520.0 sq. m. bunkhouse with two units two-chambered septic tanks
- 3. One-storey 310.50 sq. m. staff house with one unit two-chambered septic tank
- 4. 225 sq. m. parking area
- 4,340 sq. m. stockyard (raw materials sourced-out from legal sources and from lot development activities)
- 6. A basketball court


NESTOR M. DONAAL
OIC-Chief, Clearance & Permitting Division

REYNALDO S. DIGAMO OIC, Regional Director



Environmental Compliance Certificate
IRISAN LIMEKILNS
Km.5, Naguilian, Irisan Baguio City, Benguet
BMC FORESTRY CORPORATION

### Appendix J



No.	Governing Laws, Rules and Regulations	Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks
1	General Environment PD 1586 Establishing an Environment Impact Statement System including other Environmental Manangement related measures and for other purposes DAO 2003-30 Implementing Rules and Regulations (IRR) for the Philippine Environmental Impact Statement (EIS) System	Securing ECC	DENR - EMB	ECC NO: CAR 1012 - 174 - 2110 (Amended - December 15, 2010)	COMPLIANT	Restricted to 300 tonnes per day
2	DAO 2014-02- Revised Guidelines for Pollution	Accreditation of Pollution Control Officer		Compliances\MEPEO\Accreditation of Pollution Control Officer-COA No. 2023- CAR-5329 Renewal.pdf	COMPLIANT	Accreditation is valid until April 17, 2026
3	Control Officer Accreditation	Training Course for Managing Head		EMB CAR 419-2015 (Training Course for Managing Head)	COMPLIANT	Attended by VBB on Feb. 17, 2020
4	DAO 2003-27  Amending DAO 26, DAO 29 and DAO 81, Among others on the Submission of Self-Monitoring-Report (SMR)	Preparation and Submission of Self-Monitoring- Report (SMR)	DENR/ EMB	Self-Monitoring-Report 4th Quarter of 2024	COMPLIANT	Submitted on January 15, 2025
5				Solid Waste Management Guidelines	COMPLIANT	EMSG-09: Solid Waste Management Guidelines



No.	Governing Laws, Rules and Regulations	Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks
6	R.A. 9003 Ecological Solid Waste Management Act of 2000;	Section 4, Segragation, Collection and Transport of Solid Waste	DENR - EMB	Annual Environmental Protection and Enhancement Program for ACMP-Benguet  Corp 2025	COMPLIANT	Proposed AEPEP Submited: Nov. 29, 2024 Revised AEPEP Submited: December 5, 2024 (Revised Solid waste management is included into the program)
7	DAO 2001-34 Implementing Rules & Regulations of RA 9003			Module-5, Self-Monitoring-Report 4th Quarter of 2024 (Solid Waste Collection and Monitoring Report)	COMPLIANT	Submitted on January 15, 2025
8	R.A. 9275 Philippine Clean Water Act of 2004;			<u>Discharge Permit for Phase II Tailings</u> <u>Dam Application Permit Update</u>	PARTIALLY COMPLIANT	The renewal of the Discharge Permit (DP) is already on processed and submitted through online application, though the releasing of the DP will depends on the water analysis results if the arsenic parameter will normalize.
9				Discharge Permit of Oil-Water Separator at Mine Mechanical Shop (DP-CAR-24-10617)	COMPLIANT	Expiry date: July 21, 2025
10		Section 14: Discharge Permit	DENR - EMB	Discharge Permit of Oil-Water Separator at Motorpool Shop (DP-CAR-23-07804)	COMPLIANT	Expiry date: July 21, 2025
11				Discharge Permit of one (1) unit 2- Chambered Septic Tank for the Administartion Building (DP-CAR-24- 08775)	COMPLIANT	Approved: Sep. 9, 2024 Valid Until: Sep. 9, 2025
	DAO 2005-10 Implementing Rules & Regulations of RA 9275			Discharge Permit of one (1) unit 2- Chambered Septic Tank for the Assay Laboratory Building (DP-CAR-24-12186)	COMPLIANT	Approved: Dec. 3, 2024 Valid Until: Dec. 3, 2025
						MASTER COPY

No.	Governing Laws, Rules and Regulations	Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks
13		Regulement	rardes	Discharge Permit of one (1) unit 2- Chambered Septic Tank for the Metallurgy Laboratory (DP-CAR-24-11549)	COMPLIANT	Approved: Nov. 20, 2024 Valid Until: Nov. 20, 2025
14	,			Discharge Permit of one (1) unit 2- Chambered Septic Tank for the Motorpool Department (DP-CAR-24-08775)	COMPLIANT	Approved: Sep. 16, 2024 Valid Until: Sep. 16, 2025
15		Section 14.6: Self- Monitoring Report	DENR - EMB	Self-Monitoring-Report 4th Quarter of 2024	COMPLIANT	SMR 4th Qtr 2023 - Module 3
16				A. Latest Quarterly MMT Water Quality Sampling & Testing	COMPLIANT	Date sampled: November 12, 2024
- 1	DAO 2016-08 Water Quality and General Effluent Standards 0f 2019			B. Latest Monthly water quality sampling & testing.	COMPLIANT	Date sampled: January 16, 2025
18	Standards of 2019			C. Motorpool Shop Oil-Water Separator water quality testing	COMPLIANT	Date sampled: January 16, 2025
19				D. Mine Mechanical Shop Oil-Water Separator water quality testing	COMPLIANT	Date sampled: January 16, 2025
20				Permit to Operate 2-unit Thermo Digestion Chamber w/ 1-unit Scrubber at Assay Lab. PTO-OL-CAR-2021-03214-R	COMPLIANT	Date Issued: May 22, 2021 Date Expires: January 22, 2026
21				Permit to operate 2-unit Cupellation  Furnace w/ 1-unit Lead fume scrubber system at Assay Lab. Permit No: PTO-OL- CAR-2023-00343-R	COMPLIANT	Date Issued: January 12, 2023 Date Expires: January 12, 2026
22				Permit to Operate Dust Collection Facility  System (Application)	COMPLIANT	Date Issued: May 3, 2024 Date Expires: August 3, 2028
	R.A. 8749 Philippine Clean Air Act of 1999;					MASTER COPY

No.	Governing Laws, Rules and Regulations	Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks
13				Discharge Permit of one (1) unit 2- Chambered Septic Tank for the Metallurgy Laboratory (DP-CAR-24-11549)	COMPLIANT	Approved: Nov. 20, 2024 Valid Until: Nov. 20, 2025
14				Discharge Permit of one (1) unit 2- Chambered Septic Tank for the Motorpool Department (DP-CAR-24-08775)	COMPLIANT	Approved: Sep. 16, 2024 Valid Until: Sep. 16, 2025
15		Section 14.6: Self- Monitoring Report	DENR - EMB	Self-Monitoring-Report 4th Quarter of 2024	COMPLIANT	SMR 4th Qtr 2023 - Module 3
16				A. Latest Quarterly MMT Water Quality Sampling & Testing	COMPLIANT	Date sampled: November 12,
17	DAO 2016-08 Water Quality and General Effluent Standards 0f 2019		9	B. Latest Monthly water quality sampling & testing.	COMPLIANT	Date sampled: January 16, 2025
18	Standards of 2019			C. Motorpool Shop Oil-Water Separator water quality testing	COMPLIANT	Date sampled: January 16, 2025
19			r.	D. Mine Mechanical Shop Oil-Water Separator water quality testing	COMPLIANT	Date sampled: January 16, 2025
20				Permit to Operate 2-unit Thermo Digestion Chamber w/ 1-unit Scrubber at Assay Lab. PTO-OL-CAR-2021-03214-R	COMPLIANT	Date Issued: May 22, 2021 Date Expires: January 22, 2026
21				Permit to operate 2-unit Cupellation Furnace w/ 1-unit Lead fume scrubber system at Assay Lab. Permit No: PTO-OL- CAR-2023-00343-R	COMPLIANT	Date Issued: January 12, 2023 Date Expires: January 12, 2026
22				Permit to Operate Dust Collection Facility  System (Application)	COMPLIANT	Date Issued: May 3, 2024 Date Expires: August 3, 2028
	R.A. 8749 Philippine Clean Air Act of 1999;					MASTER COPY

No.		Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks
23	Article 4, Section 21-Pollution From Motor Vehicles Article 5, Section 24 Pollution From Other Sources DAO 2000-81 Implementing Rules & Regulations of RA 8749	Permit to Operate of Air Polltion Sources	DENR - EMB	PTO One Unit Acid Fume Scrubber System  at Mill Refinery  PO No.	PARTIALLY COMPLIANT	Issued: March 11, 2020 Expires on February 16, 2025  Renewal is on process: Submited online: January 15, 2025
24				Permit to Operate Two Units 25 kVa Genarator Sets Permit No.: PTO-OL-CAR- 2023-08042-R	COMPLIANT	Issued: June 21, 2023 Expires on June 20, 2027
25		. *		Permit to Operate 12 units 15kgs/hr eavh Assing Vessels	COMPLIANT	Issued: July 2, 2024 Expires on April 2, 2029
	6969, Toxic Substances and Hazardous and Nuclear Was 1992-29 Implementing Rules & Regulations of RA 6969		of 1990;			
26	DAO NO. 1997-39 Chemical Control Order for Cyanide and Cyanide Compounds	Securing CCO Reg. Cert.		CCO Registration Certificate for Cyanide and Cyanide Compounds  RCN: CCOr-CAR-CN-2020-00058	COMPLIANT	Online registration Issued on March 4, 2020
27	DAO NO. 2013-24 Chemical Control Order for Lead and Lead Compounds	Securing CCO Reg. Cert.		CCO Registration Certificate for Lead and Lead Compounds RCN: CCOr-2024-00222	COMPLIANT	Online registration Issued on Nov. 20, 2024
28	DAO NO. 2004-01 Chemical Control Order for Polychlorrinated Biphenyls (PCBs)	Securing CCO Reg. Cert.	DENR - EMB	CCO Registaration Certificate for Polychlorrinated Biphenyls (PCBs)  RCN: CCO-PCB-RCAR-BEN-32	COMPLIANT	Online registration Issued on June 6, 2016
29	DAO NO. 2019-17 Chemical Control Order for Arsenic and Arsenic Compound	Securing CCO Reg. Cert.		CCO Registaration Certificate for Arsenic  RCN: CCOr-CEN-As-2024-00144	COMPLIANT	Online registration Issued on August 5, 2025
	•		- minute in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contr	7		MASTER COPY

No.	Governing Laws, Rules and Regulations	Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks
30	MEMORANDUM CIRCULAR NO. 2003 – 008 Series of 2003-Procedural and Reference Manual for DAO 2003-27	Quarterly SMR submission/s		Quarterly Hazardous Waste Monitoring and Inventory	COMPLIANT	SMR 4th Qtr 2024- Module 2
31	DAO 2013-22, Revised Procedures and Standards for the Management of Hazardous Waste (Revising DAO 2004-36) 3.3 Requirement for Waste Generators	1. Hazardous Waste Genarator Registration Certificate		Hazardous Waste Genarator Registration <u>Certificate</u>	COMPLIANT	Genarator ID No. OL-GR-CAR- 11-000978
32	DAO 1992-29, Section 29. Hazardous Waste Storage and Labelling	2. Quarterly Report (SMR)		Self-Monitoring-Report 4th Quarter of 2024	COMPLIANT	Submitted on January 15, 2025
33	DOA 136-14 Guidelines for the Implementation of Globally harmonized System (GHS) in Chemical safety Program in the Workplace	3. Comprehensive Emergency Contingy PlanS		Contingency Program for Hazardous Waste- Benguet Corporation	COMPLIANT	Prepared by: JRS Reviewed by: GPG Approved by: VBB Jr.
34	DAO 1992-29, Section 29. Hazardous Waste Storage and Labelling DOA 136-14 Guidelines for the Implementation of Globally harmonized System (GHS) in Chemical safety Program in the Workplace	4. Storage and Labeling requirements	DENR - EMB	EMS Guidelines	COMPLIANT	DRCS-12-01_EMSG_HSCR, DRCS-12-02_EMSG_HSDCc, DRCS-12-03_EMSG_HTSD, DRCS-12-07-A_EMSG_HWMCI, DRCS-12-07-B_EMSG_HWMC_AC, DRCS-12-07-D_EMSG_HWM_CC, DRCS-12-07-D_EMSG_HWM_CLE, DRCS-12-07-G_EMSG_HWM_AC, DRCS-12-07-I_EMSG_HWM_FLB, DRCS-12-07-I_EMSG_HWM_PCB, DRCS-12-07-I_EMSG_HWM_MW, DRCS-12-07-I_EMSG_HWM_MW, DRCS-12-07-I_EMSG_HWM_MW, DRCS-12-07-I_EMSG_HWM_MW, DRCS-12-07-I_EMSG_HWM_MW, DRCS-12-07-I_EMSG_HWM, DRCS-12-07-I_EMSG_HWMFM, DRCS-12-07-I_EMSG_HWMFM, DRCS-12-07-I_EMSG_HWMFM, DRCS-12-07-I_EMSG_HWMFM, DRCS-12-07-I_EMSG_HWMIC, DRCS-12-09-EMSG_SWM, DRCS-12-11-I_EMSG_ACF

No.	Governing Laws, Rules and Regulations	Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks
35	DAO 2013-22, 4.0 Governing Rules and Regulation for Hazardous Waste Transporter Section 26. Waste Generators	Registered Waste Tranporters, Duly Authorized by DENR	DENR - EMB	All Waste Services, Inc. ECC	COMPLIANT	All Waste Services, Inc. ECC Amended Issued- March 18 2016
36	DAO 2013-22, 4.0 Governing Rules and Regulation for Hazardous Waste Transporter Section 27 Waste Transporter	Waste Generator ID	DENR - EMB	Transporter's Hazardous Wase Generator  Registration Certificate	COMPLIANT	Genarator ID No.: OL-GR-R3- 14-000183
37	DAO 2013-22, 4.0 Governing Rules and Regulation for Hazardous Waste Transporter, 50 Governing Rules and Regulations for Hazardous Waste Treatment Storage and Disposal (TSD) Facilities.	TSD Registration Certificate	DENR - EMB	TSD Registration Certificate	PARTIALLY COMPLIANT	The renewal is on process thru online registration of HWMS-EMB. Awaiting for the approval of the Discharge permit of the TSF 2 as it is one of the requirements for the releasing of the TSD Certificate  HWMS Portal update
1115-1102-01-1036	7942 Philippine Mining Act of 1995 2010-21 Implementing Rules & Regulations of RA 7942	1				
38	Section 270. Reporting Requirements	Records of Extraction	MGB	Semi-Annual Report on Mine Waste and Mill Tailings Produced, Contained and/ or Utilized for the Period of July-December 2024	COMPLIANT	Submitted at MGB-CAR: Feb. 14, 2024 Submitted at MGB-CENTRAL: Feb. 10, 2024
39	Section 166. General Provision for Environmental protection Section 168. Environmental Work Program (EWP)	Establishment of	tablishment of nvironmental Protection MGB	Environmental Protection and Enhance Program (EPEP)	COMPLIANT	Submitted: Nov. 08, 2019 (Hard copy Available at MEPEO Dept.)
40	Section 169. Environmental Protection and Enhancement Program Section 171. Annual Environmental Protection and Enhancement Program	Protection		Annual Environmental Protection and Enhancement Program of Benguet Corp-ACMP for 2025	COMPLIANT	Proposed AEPEPE Submited: Nov. 29, 2024 Revised AEPEP Submitted: Jan. 15, 2025



No.	Governing Laws, Rules and Regulations	Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks
41	Section 173. Organization of a Mine Environmental Protection and Enhancement Office (MEPEO)	Establishment of MEPEO as integral part of Mine Organization	MGB	<u>Table of Organization of MEPEO</u> <u>Department</u>	COMPLIANT	Updated: March 2025
42	Section 174. Environmental Monitoring Audit	Monitoring by MMT at least every quarter	MGB	4th Quarter 2024 ACMP- MMT Compliance Monitoring and Validation Report (CMVR)	COMPLIANT	2024 4th Qtr. MRFC Meeting Conducted on: Dec. 5, 2024 Submited at EMB: Jan. 15, 2024
43	Section 189. Mine Waste and Tailings Fess Reserve Fund Section 190. Mine Waste and Tailings Fees Section 191. Payment of Mine Waste and Tailings Fees Due	MWT payment semi-annually	MGB	Payment for BC - ACMP MWT Fee for July- December 2024	COMPLIANT	Awaiting for the scheduled Validation of MGB-CAR
44	Section 270. Reporting Requirements:  n. Semiannual Status Report on the Environmental Work  Program  DAO 2010-21 Revised Implementing Rules and  Regulations of R.A. 7942, otherwise known as the  Philippine Mining Act of 1995	Monthly, Quarterly and Integrated	MGB	4th Quarter Compliance Monitoring Report (CMR) / Accomplishment Report relative to the Annual Environmental Protection and Enhancement Program (AEPEP)	COMPLIANT	Submitted: Jan. 15, 2025
45	DAO 2015-02 on the harmonization of the Philippine Environmental Impact System and the Philippine Mining Act of 1995 in relation to Mining Projects.	Annual Reporting		2024 AEPEP Annual Accomplishment Report	COMPLIANT	Submited: January 30, 2025
46	Executive Order 26 of 2011 and Executive Order 193 of 2015 - Enhanced National Greening Program	Implementation and Quarterly Submission of National Greening Program (NGP) Report	MGB/CENRO	NGP Report 4th Qtr. 2024	COMPLIANT	Submitted: Jan. 15, 2025  MASTER

No.	Governing Laws, Rules and Regulations	Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks
47	Administrative Order (DAO) No. 22, series of 1989 - Adopt-A-Tree Adopt-A-Mining Forest Program	Implementation and Semi Annual Submission of Mining Forest Program Report	MGB	Mining Forest Program 2nd Sem. 2024	COMPLIANT	Submitted: Jan. 15, 2025
A SC	MGB-MEMORANDOM dated July 10, 2020 - Establishment of Bamboo Plantation in Mining Areas	Submission Quarterly Accomplishment Report	MGB	4th Quarter 2024 Bamboo Plantation Accomplishment Report	COMPLIANT	Submitted: Jan. 15, 2025
49	DAO 02 Series of 2017- The Revise Procedural Manual for DENR Administrative Orders No. 30, Series of 2003  DENR-EMB-MEMORANDUM CIRCULAR NO. 2016-001	Submission of online Semestral Compliance Monitoring Report (CMR)	ЕМВ	Online CMR 2nd Sem 2024	COMPLIANT	Submitted: January 31, 2025
	Total Number of Compliances		ENVIRONME	NTAL COMPLIANCE OBLIGATIONS	Per	centage
	Number of Compliant		46		93.88	%
	Number of Partially- Compliant			3	6.12	%
	Number of Non- Compliant			0	0.00 %	

Compliance Obligation Indi	cators:
COMPLIANT	Actions / requirements have been fully implemented, accomplished and approved.
PARTIALLY COMPLIANT	Actions have been taken to address the requirements, however, approval / implementation of the same is pending.
NON-COMPLIANT	No actions have been taken to address the requirements.





### Department of Environment and Natural Resources MINES AND GEOSCIENCES BUREAU

Cordillera Administrative Region

80 Diego Silang St., Baguio City 2600

Tel. No. 63 74 442 6392; Fax No. 63 74 304 2596; Website: www.car.mgb.gov.ph E-mail: car@mgb.gov.ph; car_mgb@yahoo.com; mgb.cordillera@gmail.com

JREAU 190 14001 : 2 180 9001 : 2 180 45001 : 3 Registers

Olelleeu

### CERTIFICATE OF APPROVAL

### SHP # 04A-2024-CAR

The Mines and Geosciences Bureau-CAR, having evaluated the submitted amended 2024 Safety and Health Program (SHP) in accordance with the provisions of Department of Environment and Natural Resources Administrative Order (DAO) No. 2010-21, the Revised Implementing Rules and Regulations of Republic Act (RA) No. 7942, otherwise known as the "Philippine Mining Act of 1995", hereby grants this Certificate of Approval to BENGUET CORPORATION-ACUPAN CONTRACT MINING PROJECT (BC-ACMP), PC-ACMP-002-CAR, located at Virac, Itogon, Benguet.

This Certificate is issued subject to the pertinent provisions of the abovementioned laws, rules and regulations, and to the following conditions:

- This Certificate is valid only for programs, projects, and activities stipulated in the CY 2024 SHP;
- The committed budget for the CY 2024 SHP is Seven Million One Hundred Sixty-Two Thousand and Two Hundred Seventeen Pesos (PhP7,162,217.00);
- The implementation of identified programs, projects and activities shall be subject to validation by the MGB-CAR and auditing of the MGB Central Office (MGB-CO);
- Benguet Corporation-Acupan Contract Mining Project (BC-ACMP), shall submit to MGB-CAR a quarterly accomplishment reports within 15 working days at the end of each quarter and an annual accomplishment report 30 days after the end of the calendar year;
- The company shall notify the MGB-CAR of any amendment in the approved SHP. Provided that the amendments do not compromise the overall safety and health programs and conditions of the project; and

MGB-CAR-FO-MSESDD-MSHS-011-ØØ (09.05.17)

"MINING SHALL BE PRO-PEOPLE AND PRO-ENVIRONMENT IN SUSTAINING WEALTH CREATION AND IMPROVED QUALITY OF LIFE."

Office of the Regional Director/Finance and Administrative Division – 63 74 442 6392; ICT – 63 74 661 7685; Geosciences Division/Laboratory Section 63 74 304 2500; Mine Management Division - 63 74 304 3068 (Monitoring and Technical Services Section/Mining Tenement Evaluation/Mineral Lands Survey Section); Mine Safety Environment and Social Development Section – 63 74 304 2595; Social Development Section/Environment Section 63 74 304 2530

(NAME OF THE OF



### Department of Environment and Natural Resources MINES AND GEOSCIENCES BUREAU



80 Diego Silang St., Baguio City 2600

Tel. No. 63 74 442 6392; Fax No. 63 74 304 2596; Website: www.car.mgb.gov.ph E-mail: car@mgb.gov.ph; car_mgb@yahoo.com; mgb.cordillera@gmail.com



Additional conditions may be imposed to effectively implement the approved SHP should the results of the monitoring by the MGB-CAR or audit by the MGB-CO warrants them.

Non-compliance with the above conditions shall be sufficient ground for the penalties indicated in the Philippine Mining Act of 1995 and its implementing rules and regulations.

Given this 18th day of June 2024 at the Mines and Geosciences Bureau-CAR, Baguio City

FAY W. APIL Regional Director Dipartment of Environment and Natural Resources
Mines and Geosciences Bureau

Condition Administrative Region
State Region State
State Region State

OG 1912 4-CAR-53560

Certificate of Approval

11:37 Al4

0619/2024

CONFORME:

MR. VALERIANO B. BONGALOS, JR.

VP/Resident Manager

Benguet Corporation-Acupan Contract Mining Project

Virac, Itogon, Benguet

MGB-CAR-FO-MSESDD-MSHS-011-ØØ (09.05.17)

"MINING SHALL BE PRO-PEOPLE AND PRO-ENVIRONMENT IN SUSTAINING WEALTH CREATION AND IMPROVED QUALITY OF LIFE."

Office of the Regional Director/Finance and Administrative Division – 63 74 442 6392; ICT – 63 74 661 7685; Geosciences Division/Laboratory Section 63 74 304 2500; Mine Management Division - 63 74 304 3068 (Monitoring and Technical Services Section/Mining Tenement Evaluation/Mineral Lands Survey Section); Mine Safety Environment and Social Development Section – 63 74 304 2595; Social Development Section/Environment Section 63 74 304 2530



## Department of Environment and Natural Resources MINES AND GEOSCIENCES BUREAU

Cordillera Administrative Region

80 Diego Silang St., Baguio City 2600

Tel. No. 63 74 442 6392; Fax No. 63 74 304 2596; Website: <a href="www.car.mgb.gov.ph">www.car.mgb.gov.ph</a> E-mail: <a href="car@mgb.gov.ph">car_mgb@yahoo.com</a>; mgb.cordillera@gmail.com



### CERTIFICATE OF APPROVAL

### SHP # 07-2024-CAR

The Mines and Geosciences Bureau-CAR, having evaluated the submitted 2024 Safety and Health Program (SHP) in accordance with the provisions of Department of Environment and Natural Resources Administrative Order (DAO) No. 2010-21, the Revised Implementing Rules and Regulations of Republic Act (RA) No. 7942, otherwise known as the "Philippine Mining Act of 1995", hereby grants this Certificate of Approval to BMC FORESTRY CORPORATION-IRISAN LIME PROJECT (BMC FC-ILP), MPP No. 01C-2022-CAR, located at Km. 5 Naguilian Road, Irisan, Baguio City.

This Certificate is issued subject to the pertinent provisions of the abovementioned laws, rules and regulations, and to the following conditions:

- This Certificate is valid only for programs, projects, and activities stipulated in the CY 2024 SHP;
- The committed budget for the CY 2024 SHP is One Hundred Fifty Seven Thousand and Seven Hundred Eighty Pesos (PhP157,780.00);
- The implementation of identified programs, projects and activities shall be subject to validation by the MGB-CAR and auditing of the MGB Central Office (MGB-CO);
- BMC Forestry Corporation-Irisan Lime Project, shall submit to MGB-CAR a
  quarterly accomplishment reports within 15 working days at the end of each
  quarter and an annual accomplishment report 30 days after the end of the
  calendar year;
- The company shall notify the MGB-CAR of any amendment in the approved SHP. Provided that the amendments do not compromise the overall safety and health programs and conditions of the project; and

MGB-CAR-FO-MSESDD-MSHS-011-ØØ (09.05.17)

"MINING SHALL BE PRO-PEOPLE AND PRO-ENVIRONMENT IN SUSTAINING WEALTH CREATION AND IMPROVED QUALITY OF LIFE."

Office of the Regional Director/Finance and Administrative Division – 63 74 442 6392; ICT – 63 74 661 7685; Geosciences Division/Laboratory Section 63 74 304 2500; Mine Management Division - 63 74 304 3068 (Monitoring and Technical Services Section/Mining Tenement Evaluation/Mineral Lands Survey Section); Mine Safety Environment and Social Development Section – 63 74 304 2595; Social Development Section/Environment Section 63 74 304 2530



### Department of Environment and Natural Resources MINES AND GEOSCIENCES BUREAU

Cordillera Administrative Region

80 Diego Silang St., Baguio City 2600

Tel. No. 63 74 442 6392; Fax No. 63 74 304 2596; Website: <a href="www.car.mgb.gov.ph">www.car.mgb.gov.ph</a> E-mail: <a href="car@mgb.gov.ph">car_mgb@yahoo.com</a>; <a href="mgb.gov.ph">mgb.cordillera@gmail.com</a>

Additional conditions may be imposed to effectively implement the approved SHP should the results of the monitoring by the MGB-CAR or audit by the MGB-CO warrants them.

Non-compliance with the above conditions shall be sufficient ground for the penalties indicated in the Philippine Mining Act of 1995 and its implementing rules and regulations.

Given this 30th day of January 2024 at the Mines and Geosciences Bureau-CAR, Baguio City

FAY W. APIL
Regional Director

Dispartment of Engineering and Hybrid Research
Mines and Geostiences Bureau
Condition Administrative Region
International later

D1302 4-CAP-51 475

Gas introduce of approval

01/00/2024

CONFORME:

MR. FRANCISCO O. FLAVIER

Resident Manager

BMC Forestry Corporation-ILP

Km. 5 Naguilian Road, Irisan, Baguio City

MGB-CAR-FO-MSESDD-MSHS-011-ØØ (09.05.17)

"MINING SHALL BE PRO-PEOPLE AND PRO-ENVIRONMENT IN SUSTAINING WEALTH CREATION AND IMPROVED QUALITY OF LIFE."

*

Office of the Regional Director/Finance and Administrative Division – 63 74 442 6392; ICT – 63 74 661 7685; Geosciences Division/Laboratory Section 63 74 304 2500; Mine Management Division - 63 74 304 3068 (Monitoring and Technical Services Section/Mining Tenement Evaluation/Mineral Lands Survey Section); Mine Safety Environment and Social Development Section – 63 74 304 2595; Social Development Section/Environment Section 63 74 304 2530





### ANNUAL SOCIAL DEVELOPMENT AND MANAGEMENT PROGRAM (ASDMP)

## CERTIFICATE OF APPROVAL ASDMP No. 2024-04-CAR (4th)

The Mines and Geosciences Bureau-CAR, having evaluated the 2024 Annual Social Development and Management Program (ASDMP), hereby grants this Certificate of Approval to **BENGUET CORPORATION** for its Acupan Contract Mining Project located in *Barangay Virac, Municipality of Itogon, Province of Benguet,* under the **Mining Patent No. PC-ACMP-002-CAR** after substantially complying with the requirements as mandated under DENR Administrative Order (D.A.O) No. 2010-21.

This Certificate is being issued subject to the pertinent provisions of the abovementioned DAO and to the following conditions:

- 1. This Certificate is valid only for the Programs/Projects/Activities (P/P/As) stipulated in the submitted 2024 ASDMP;
- 2. The budget allocation for this ASDMP amounts to Four Million Seven Hundred Seventy-four Thousand One Hundred Fifty-five and 24/100 (Php 4,774,155.24), which is equivalent to the 1.5% of the previous years' operating cost as declared in its Affidavit to implement the P/P/As stipulated in the Program which is broken down as follows:

2023 Operating Cost (Php)	Basis of Allocation	2024 ASDMP Total Amount (Php)
318,277,016.27	(75%) Development of Host and Neighboring Communities	3,580,616.43
	Balance	456,866.29
	(15%) Information, Education Communication	716,123.29
	Balance	15,064.80
	(10%) Development of Mining Technology and Geosciences	447,415.52
	Balance	175,590.35
	Sub-Total	4,774,155.24
	Sub-total (Balance from previous ASDMP)	647,521.44
	GRAND TOTAL	5,421,676.68





- The Company shall include the remaining balance (Php 647,521.44) from its previous ASDMP after determination of the 1.5% projected/operating cost to implement the P/P/As stipulated in the Program. Said balance shall be treated separately on accomplishment/monitoring reports;
- 4. The Company may incorporate any alterations and/or re-alignment of P/P/As and funds from the approved ASDMP. Provided that, such changes is the result of consultations with its host and neighboring communities, accompanied by supporting documents such as resolutions, and approved by the MGB RO;
- 5. The Company shall submit a quarterly monitoring report fifteen (15) calendar days after the end of each quarter to MGB RO. Likewise, the annual accomplishment report shall be submitted thirty (30) calendar days after the end of each calendar year to the MGB RO, copy furnished the MGB Central Office (CO); and
- Additional conditions may be imposed to effectively and efficiently implement the approved SDMP should the results of monitoring by the MGB RO or audit by the MGB CO warrant them.

Non-compliance with the above conditions shall be sufficient ground for the cancellation, revocation or termination of this Certificate or suffer the penalty prescribed in the Penal Provisions of Republic Act No. 7942, the Philippine Mining Act of 1995.

Given this 1st day of March 2024 at the Mines and Geoscience Bureau-CAR, Baguio City, Philippines.

FAY W. APIL
Regional Director
MGB-CAR





### ANNUAL SOCIAL DEVELOPMENT AND MANAGEMENT PROGRAM (ASDMP)

## CERTIFICATE OF APPROVAL ASDMP No. 2024-01-CAR (3rd)

The Mines and Geosciences Bureau-CAR, having evaluated the 2024 Annual Social Development and Management Program (ASDMP), hereby grants this Certificate of Approval to **BMC FORESTRY CORPORATION** for its Irisan Lime Project located at Barangay Irisan, in the City of Baguio, Province of Benguet, under Mineral Processing Permit (MPP) No. 01C-2022-CAR after substantially complying with the requirements as mandated under DENR Administrative Order (D.A.O) No. 2010-21.

This Certificate is being issued subject to the pertinent provisions of the abovementioned DAO and to the following conditions:

- 1. This Certificate is valid only for the Programs/Projects/Activities (P/P/As) stipulated in the submitted 2024 ASDMP;
- 2. The budget allocation for this ASDMP amounts to Eight Hundred Fifty-nine Thousand Six Hundred Seventy-seven and 87/100 (Php 859,627.87), which is equivalent to the 1.5% of the previous years' operating cost as declared in its Affidavit to implement the P/P/As stipulated in the Program which is broken down as follows:

2023 Operating Cost (Php)	Basis of Allocation	2024 ASDMP Total Amount (Php)
57,308,524.51	(75%) Development of Host and Neighboring Communities	644,720.90
	Balance	0.00
	(15%) Information, Education Communication	128,944.18
	Balance	0.00
	(10%) Development of Mining Technology and Geosciences	85,962.79
	Balance	0.00
	Sub-Total	859,627.87
	Sub-total (Balance from previous ASDMP)	0.00
	GRAND TOTAL	859,627.87







- 3. The Company shall include the remaining balance (*Php 0.00*) from its previous ASDMP after determination of the 1.5% projected/operating cost to implement the P/P/As stipulated in the Program. Said balance shall be treated separately on accomplishment/monitoring reports;
- 4. The Company may incorporate any alterations and/or re-alignment of P/P/As and funds from the approved ASDMP. Provided that, such changes is the result of consultations with its host and neighboring communities, accompanied by supporting documents such as resolutions, and approved by the MGB RO;
- 5. The Company shall submit a quarterly monitoring report fifteen (15) calendar days after the end of each quarter to MGB RO. Likewise, the annual accomplishment report shall be submitted thirty (30) calendar days after the end of each calendar year to the MGB RO, copy furnished the MGB Central Office (CO); and
- Additional conditions may be imposed to effectively and efficiently implement the approved SDMP should the results of monitoring by the MGB RO or audit by the MGB CO warrant them.

Non-compliance with the above conditions shall be sufficient ground for the cancellation, revocation or termination of this Certificate or suffer the penalty prescribed in the Penal Provisions of Republic Act No. 7942, the Philippine Mining Act of 1995.

Given this **20th** day of **February 2024** at the Mines and Geoscience Bureau-CAR, Baguio City, Philippines.

FAY W. APIL
Regional Director
MGB-CAR