
COVER SHEET

TABLE OF CONTENTS

		Page <u>Number</u>
SEC Form 17	-A	3
PART I – BUS	INESS AND GENERAL INFORMATION	
Item 1	Business	5
Item 2	Properties	17
Item 3	Legal Proceedings	18
Item 4	Submission of Matters to a Vote of Security Holders	18
PART II – OPI	ERATIONAL AND FINANCIAL INFORMATION	
Item 5	Market for Registrant's Common Equity & Related Stock Matters	18
Item 6	Management's Discussion & Analysis or Plan of Operation	22
Item 7	Financial Statements	28
Item 8	Changes in & Disagreements w/ Accountants Financial Disclosure	28
PART III – CO	NTROL AND COMPENSATION INFORMATION	
Item 9	Directors & Executive Officers of the Issuer	29
Item 10	Executive Compensation	36
Item 11	Security Ownership of Certain Beneficial Owners & Management	39
Item 12	Certain Relationships & Related Transactions	42
PART IV – CC	PRPORATE GOVERNANCE	
Item 13	Corporate Governance	43
PART V – EXI	HIBITS AND SCHEDULES	
Item 14	Exhibits and Reports on SEC Form-C	43
SIGNATURES	6	47
ANNEX "A" –	2024 SUSTAINABILITY REPORT	
-	OF MANAGEMENT'S RESPONSIBILITY FOR L STATEMENTS (ACFS 2024)	
	DRPORATION & SUBSIDIARIES 2024 AUDITED CONSOLIDATED STATEMENTS (ACFS) WITH BIR STAMPED RECEIVED	
• • • • • • • • • • • • • • • • • • • •	OF MANAGEMENT'S RESPONSIBILITY FOR L STATEMENTS (PAFS 2024)	
	DRPORATION (PARENT) 2024 AUDITED FINANCIAL STATEMENTS TAX CONFIRMATION RECEIPT	(PAFS)

SEC FORM 17-A

ANNUAL REPORT PURSUANT TO SECTION 17 OF THE SECURITIES REGULATION CODE AND SECTION 141 OF THE CORPORATION CODE OF THE PHILIPPINES

1.	 For the fiscal year ended<u>DECEMBER 31, 2024</u> 						
2.	SEC Identification Number <u>1</u>	<u>1341</u> 3.	BIR Tax Identification No.	<u>000-051-037</u>			
4.	Exact name of issuer as specifi	ed in its charter	<u>BENGUET CORPORA</u>	<u>TION</u>			
5.	PHILIPPINES Province, Country or other juris incorporation or organization		(SEC Use C Industry Classification Co				
7.	7F UNIVERSAL RE-BUILDING Address of principal office	<u>, 106 PASEO DE</u>	ROXAS, MAKATI CITY	<u>1226</u> Postal Code			
8.							
9.	Former name, former address,						
	1. Securities registered pursu	ant to Sections 8 a	and 12 of the SRC, or Sec.	4 and 8 of the RSA			
	Title of Each Class	0	Number of Shares of Co utstanding and Amount of (<u>as of December 31</u>)	Debt Outstanding			
	Convertible Preferred Class A Common Class A Stock Common Class B Stock	₽1.00 par value	217,061 s 428,120,008 s 285,064,121 s	hares*			
	(*) – Net of Treasury Shares						
	Total consolidated outstanding principal loans payable as of December 31, 2024- ₽0 Million						
11.	Are any or all of these securitie	s listed on a Stock	Exchange.				

Yes[X] No []

If yes, state the name of such stock exchange and the classes of securities listed therein:

The Convertible Preferred Class A, Common Class A and Common Class B shares of the Company are listed in the Philippine Stock Exchange (PSE).

- 12. Check whether the issuer:
 - (a) has filed all reports required to be filed by Section 17 of the SRC and SRC Rule 17.1 thereunder or Section 11 of the RSA and RSA Rule 11(a)-1 thereunder, and Sections 26 and 141 of The Corporation Code of the Philippines during the preceding twelve (12) months (or for such shorter period that the registrant was required to file such reports);

Yes [X] No []

(b) has been subject to such filing requirements for the past ninety (90) days.

Yes [] No [X]

13. State the aggregate market value of the voting stock held by non-affiliates of the registrant. The aggregate market value shall be computed by reference to the price at which the stock was sold, or the average bid and asked prices of such stock, as of a specified date within sixty (60) days prior to the date of filing. If a determination as to whether a particular person or entity is an affiliate cannot be made without involving unreasonable effort and expense, the aggregate market value of the common stock held by non-affiliates may be calculated on the basis of assumptions reasonable under the circumstances, provided the assumptions are set forth in this Form.

Not Applicable.

APPLICABLE ONLY TO ISSUERS INVOLVED IN INSOLVENCY/SUSPENSION OF PAYMENTS PROCEEDINGS DURING THE PRECEDING FIVE YEARS:

14. Check whether the issuer has filed all documents and reports required to be filed by Section 17 of the Code subsequent to the distribution of securities under a plan confirmed by a court or the Commission.

Yes [] No []

DOCUMENTS INCORPORATED BY REFERENCE

- 15. If any of the following documents are incorporated by reference, briefly describe them and identify the part of SEC Form 17-A into which the document is incorporated:
 - (a) Any annual report to security holders;
 - (b) Any information statement filed pursuant to SRC Rule 20;
 - (c) Any prospectus filed pursuant to SRC Rule 8.1.

PART I – BUSINESS AND GENERAL INFORMATION

ITEM 1. BUSINESS

1. BUSINESS DEVELOPMENT

Benguet Corporation (the "Company" or "Benguet") is a publicly-listed company that pioneered modern mining in the Philippines. It was established on August 12, 1903 to engage in gold mining. It has since expanded into refractory chromite operation in 1934, quicklime and hydrated lime production in 1950, copper production in 1971, and then into nickel mining operation in 2007. From Benguet Consolidated Mining Company in the 1900s to Benguet Consolidated Inc. in the decades of the 1950s to 1980s, and finally to its present corporate name, Benguet Corporation, the Company looks with pride at its 121 years of existence as a testament to its enduring legacy in mining excellence, sustainable practices and community development in the face of challenges brought about by global events, natural phenomena, economic conditions, and industry trends.

Benguet operates gold mines in Benguet Province, nickel mines in Zambales Province and limestone production facility in Baguio City. It also continues to hold interests in Ampucao Copper-Gold in Itogon, Benguet Province, Pantingan Epithermal Gold in Bataan, Zamboanga Gold in Zamboanga Del Sur, Copper-Gold in Agusan Del Norte, Surigao Coal in Surigao del Sur, the llocos Norte and Apayao FTAA prospects, all in the Philippines and as well as mining properties in Royston Hills, Nevada. Aside from mining and mineral exploration, the Company is also into healthcare and diagnostics services through its subsidiary, Benguetcorp Laboratories, Inc. (BCLI); port and shipping services through its subsidiary, Keystone Port Logistics and Management Services Corporation (Keystone) and land development through its subsidiaries Agua de Oro Ventures Corporation (AOVC) and BC Property Management, Inc. (BCPM). In 1980, the Company established Benguet Management Corporation (BMC), a wholly owned non-mining subsidiary, primarily to invest in projects and enterprises that diversify, stabilize and strengthen the investment portfolio of the Benquet Group of Companies. BMC is involved in other lines of business which include logistics services through its subsidiary, Arrow Freight and Construction Corporation (AFCC) (formerly Arrow Freight Corporation); trading of construction materials, equipment and supplies through its subsidiary, Benguetrade, Inc. (BTI); and real estate development and lime kiln operation through its subsidiary, BMC Forestry Corporation (BFC).

In 1950, Benguet acquired the Irisan Lime Project (ILP) from Mr. Richard L. Lile (formerly Lime Products Manufacturing). ILP is engaged in the production and trading of quicklime and hydrated lime.

In 2002, Benguet reopened Benguet Gold Operation (BGO) on a limited scale through the Acupan Contract Mining Project (ACMP) now renamed as the Acupan Gold Project (AGP). ACMP was initially conceived as a community based underground mining operation which started commercial operation in January 2003.

In 2007, Benguet developed the Sta. Cruz Nickel Project (SCNP), a surface nickel mining operation in Zambales Province operated by its wholly owned subsidiary, Benguetcrorp Resources Management Corporation (BMRC). On December 10, 2010, the Company transferred the mining permit denoted as Mineral Production Sharing Agreement (MPSA) No. 226-2005-III of its SCNP, to BRMC. The transfer of the MPSA was approved by the Mines and Geosciences Bureau (MGB) on January 16, 2012.

For the past three years, Benguet and its subsidiaries have not been involved in any bankruptcy, consolidation, or purchase/sale of significant amount of assets not in the ordinary course of business.

MINING OPERATIONS

Benguet Gold Operation (BGO) in Itogon, Benguet Province:

The Company's gold operation delivered strong performance in 2024 on the back of record gold prices inspite of challenges in the first four months of the year. It reported pre-tax income of P130.3 million, a turn around from the pre-tax loss of P7.2 million in 2023, over 4 times the pre-tax income of P29.2 million in 2022, although slightly lower than the pre-tax income of P132.5 million in 2021.

Gold production in 2024 reached 5,508.05 ounces, compared to 5,931.97 ounces in 2023, 9,402.31 ounces in 2022 and 10,675.01 ounces in 2021. Decline in production is due to lower ore milled this year. AGP milled a combined 23,667 tons ore at higher average mill head of 8.48 grams of gold per ton this year, compared to 29,195 tons at an average mill head of 7.19 grams of gold in 2023, 47,516 tons at an average mill head of 7.35 grams of gold in 2022 and 56,753 tons at an average mill head of 5.86 grams of gold in 2021.

Net revenue in 2024 amounted to P791.8 million, higher than the P627.6 million in 2023, although lower than P914.8 million in 2022, and P945.8 million in 2021. The increase in revenue is attributed to higher price of gold partly offset by lower volume of gold sold. Gold sold in 2024 decreased to 5,750.74 ounces from 5,803.21 ounces in 2023, 9,363.56 ounces in 2022 and 10,685.25 ounces in 2021. Gold was sold at an average price of US\$2,414.80 per ounce this year compared to US\$1,941.83/ounce in 2023, US\$1,802.02/ounce in 2022 and US\$1,806.68/ounce in 2021.

With the continuous increase in price of gold, BGO plans to mine Level 2000 to increase its production. BGO is engaging the services of consultants to upgrade the previous study on how to mine the flooded areas on level by level basis.

On the BGO Tailings Project, search for new technologies that will yield higher recovery of gold is still on-going. The previous study conducted to reprocess the tailings using ultra-fine grinding will yield only 63% recovery.

AGP is scheduled to undergo ISO 14001:2015 recertification applicable to Mining and Processing of Gold in April 2025 by NQA Philippines, an accredited certifying body.

Sta. Cruz Nickel Project (SCNP) in Sta. Cruz, Zambales Province:

SCNP reported lower revenue in 2024 compared to 2023, 2022 and 2021. Revenue for the year amounted to P1.5 billion lower versus P1.7 billion in 2023, P2.9 billion in 2022, and P2.8 billion in 2021. The decline was attributed to lower nickel price resulting in lower volume of ore sold. SCNP sold 15 boatloads with an aggregate tonnage of 808,556 tons in 2024, versus 16 boatloads with an aggregate tonnage of 808,556 tons in 2024, versus 16 boatloads with an aggregate tonnage of 854,074 tons in 2023, 1,169,328 tons in 2022, and 1,175,050 tons in 2021. Nickel ore was sold at an average price of US\$31.39/ton this year, against US\$37.07/ton in 2023, US\$46.97/ton in 2022, and US\$47.38/ton in 2021. This resulted to income this year of P206.62 million, lower compared to P397.00 million in 2023, P1.0 billion in 2022, and P880.4 million in 2021.

Despite the drop in nickel prices primarily due to huge growth in supply of nickel pig iron from Indonesia and sluggish demand from China in 2024, the Company is optimistic that the future of nickel is still bright.

With the continued demand for nickel, SCNP continued its mining operation and activities in Area 2 and 3 in alignment with the approved 3-year Development and Work Program.

During the MGB-III Regional Mining Summit held on June 6, 2024, BRMC was recognized for the 6 Million Man-Hours Worked without Lost Time. SCNP maintain its ISO 14001:2015 certification

from NQA Philippines. The certification is valid until February 3, 2026 applicable to Mining of Nickel Ore.

Irisan Lime Project (ILP) in Baguio City:

The Company's ILP generated P96.8 million revenue this year, slightly lower than the P97.7 million in 2023, P105.6 million in 2022 but higher than P80.9 million in 2021. Lime sold declined to 6,362 DMT from 6,464 DMT in 2023, 7,237 DMT in 2022 and 7,702 DMT in 2021. The effect of lower sales volume was partly offset by the increase of sale price this year. Lime products were sold at an average price of P15,956/DMT this year, versus P15,757/DMT in 2023, P14,587/DMT in 2022, and P10,518/DMT in 2021. Pre-tax income amounted to P25.4 million in 2024, lower compared to P29.8 million in 2023, P24.1 million in 2022, and P19.6 million in 2021.

ILP was awarded Safest Mineral Processing – Calcining Plant Category Award by the Philippine Mine Safety and Environment Association and DENR-Mines and Geosciences Bureau on November 22, 2024.

Benguet Antamok Gold Operation (BAGO) in Itogon, Benguet Province:

The Antamok Final Mine Rehabilitation and Decommissioning Plan (FMRDP) has undergone rigorous evaluation by both the MGB-CAR and the Contingent Liability and Rehabilitation Fund Steering Committee (CLRFSC), resulting in comprehensive revisions and updates. Phase 1 activities are in progress within the framework of the Annual Care and Maintenance Programs with total expenditure of P16.6 million since 2017. Out of the budgeted total of P40.03 million for the FMRDP, BAGO has already allocated resources to various rehabilitation initiatives, including the Liang Emergency Spillway, Liang Channel, reforestation activities, maintenance and patrolling of watershed areas, water quality monitoring, and solid waste management, as outlined in the annual Care and Maintenance Program or CMP to align with the FMRDP's objectives. Beyond outlining Decommissioning and Rehabilitation Plans for Antamok, the FMRDP also establishes dedicated funds to implement measures aimed at preventing and mitigating any identified risks and impacts stemming from previous project operation. Recenty, the FMRDP has already been approved by the CLRFC. The FMRDP is instrumental in ensuring the implementation of activities geared towards the sustainability of previously operated mine site areas. For the year 2024, the Company spent P0.8 million for the care and maintenance of BAGO.

EXPLORATION, RESEARCH AND DEVELOPMENT

Exploration, research and development are currently undertaken by the Company's in-house team, with or assisted by consultants and other service providers, like engineering and/or drilling contractors.

Balatoc Tailings Project (BTP) in Itogon, Benguet Province:

Similar to the Acupan Contract Mining Project, BTP will be an integral part of the Acupan Gold Project geared to re-develop the Company's Benguet Gold Operation (BGO) that was suspended because of the 7.8-magnitude earthquake that occurred on July 16, 1990.

The Company currently updates the feasibility study on BTP that will reprocess the materials in its BGO gold tailings stacking facility. BTP viability becomes more attractive given the higher prices of gold and the availability of new and modern technologies that would provide higher milling recovery rate, lesser capital expenditures, and power efficient machinery, tools and equipment. The viability study covers BTP adherence to ESG investing.

Pantingan Gold Prospect in Bagac, Bataan Province:

The Pantingan property is located in Bataan peninsula and is covered by MPSA No. 154-2000-III. It remains to be a viable prospect for epithermal gold mineralization and aggregates. The Mines and Geosciences Bureau (MGB) approved the renewal of the MPSA and the Company continues to implement the drilling programs to explore the two (2) targeted areas – V9SL and V2SL being undertaken by Coreline ExploDrill Incorporated. The drilling was quite delayed due unfavorable

weather condition in the region. Other activities performed during the year were continuous repair and rehabilitation of the access roads and man-way trails, hole-to-hole transfer and mobilization of the drill-rigs, coring operation, hauling of core-boxes, quick structural logging of cores, cutting of cores into halves and sampling. The Company also implemented consultation with the Indigenous Peoples (IPs).

On the aggregates prospect, the Company continues to apply for permits including road-right-ofway in the 30-hectares Quarry Permit Area (QPA) outside the MPSA. Permits of 6 QPAs are expected to be completed by year-end. The large-scale quarry in PAB-1 and 2 still needs drilling for Declaration of Mining Project Feasibility (DMPF). In the QPA area, the MGB has issued area clearance while the NCIP has issued Certificate of Non-Overlap (CNO) while the Environmental Management Bureau (EMB) has approved and released the ECC.. The Company is working on LGU consent and tree inventory for Tree Cutting Permit. Upon completion of the requirements for 6 QPAs, the Company will proceed on permitting of another 8 QPAs.

Ampucao Copper-Gold Prospect in Itogon, Benguet Province:

Ampucao is a viable prospect for the discovery of deep-seated porphyry copper-gold deposit corresponding to surface and underground initial geological evaluation done by geologists of the Company. Copper bearing formation hosted by intensely silicified quartz diorite was delineated in outcropping on a river within the Hartwell claims and at the mine levels of 1500 and 2300 of BC's Acupan Mine. A one-(1) kilometer long deep hole of surface drilling has been suggested to probe the down-dip extension of the projected mineralization in the Ampucao prospect. This project is covered by the Company's Application for Production Sharing Agreement (APSA) which was converted to EXPA No. 0122-CAR pursuant to Section 9 of the Department of Environment and Natural Resources (DENR) DAO No. 2021-25.

Zamboanga Gold Prospect (BOLCO) in R.T. Lim Zamboanga del Sur:

The property is about 150 kilometers from Zamboanga City. It straddles the common boundary of R. T. Lim, Zamboanga Sibugay and Siocon, Zamboanga del Norte and is covered with Exploration Permit No. EP-012-2023-IX. The Company has an operating agreement with Oreline Mining Corporation to explore and operate the property comprising of 399.0288 hectares. The Company has started the implementation of exploration works for the Work Program submitted to MGB Region IX.

Surigao Coal Project in Lianga, Surigao del Sur:

The Company acquired a coal property in Surigao del Sur through a Royalty Agreement with Diversified Mining Company in 1981. The property consists of 12-coal blocks with a total area of 12,000 hectares. Six-(6) coal blocks were extensively explored by way of mapping, trenching, drilling, electrical logging and topographic surveying. The ground evaluation works of the Company resulted in the delineation of seven-(7) coal seams of lignitic to sub-bituminous coal quality (steam grade). In the Company's application for a new Coal Operating Contract (COC), the Department of Energy (DoE) has declared it has passed the required bidding process. The Company awaits for the issuance of new COC subject to FPIC compliance. Market prospects for local coal with low BTU remains to be a concern, considering DoE's preference for clean energy and global shift to net-zero emissions.

Copper and Gold Prospect in Santiago, Agusan Del Norte

The property is located in Municipality of Santiago, Agusan Del Norte and covered by Exploration Permit Application No. 000259-XIII. The Company has signed an operating agreement with Asiga Mining Corporation to explore and operate the property consisting of 3,483 hectares claim holdings.

Financial Technical Assistance Agreement:

The Company and its subsidiary company, Sagittarius Alpha Realty Corporation (SARC), holds two (2) pending applications for Financial Technical Assistance Agreement (FTAA) denominated as AFTA No. 003 and AFTA No. 033, AFTA No. 003 with an area of 21,189.37 hectares covering

four (4) individual parcels, is within the provincial jurisdiction of Ilocos Norte, whereas AFTA No. 033 consisting of 51,892.92 hectares covering two (2) individual parcels is situated in Apayao province. Both mineral claims lie within the porphyry copper-gold and epithermal gold mineralization belt of Northern Luzon and are still greenfield for mineral exploration. BC already negotiated and signed four-(4) out of the five-(5) Memoranda of Agreement (MOA) with the concerned Indigenous People (IP) for the AFTA No. 003, and now awaiting confirmation from the National Commission on Indigenous People (NCIP) of the Free, Prior and Informed Consent (FPIC) requirement.

SUBSIDIARIES AND AFFILIATES

A. LOGISTICS

- Arrow Freight and Construction Corporation (AFCC)

AFCC, the logistics provider of the Company generated P76.0 million revenue this year, lower compared to revenues of P92.4 million in 2023, P80.9 million in 2022, and P83.2 million in 2021. Revenues were derived from the 12% management fee in providing the logistical requirements of BRMC, ore loading and hauling using its own backhoes and dump trucks and equipment rental for the maintenance of tailing ponds and roads. Net income in 2024 amounted to P29.3 million, lower than the net income of P38.6 million in 2023, P26.8 million in 2022, and P17.9 million in 2021. Currently, AFCC has 11 units of dump truck, 4 backhoes, 1 water truck and 1 fuel tanker used by BRMC in ore loading, hauling, road maintenance and environmental maintenance of its tailing ponds. AFCC plans to purchase additional dump truck and earth moving equipment for its logistic and construction business.

- Keystone Port Logistics and Management Services Corporation (KPLMSC)

KPLMSC, the port and barging services provider of the Company generated P63.9 million revenue, lower against P63.9 million revenue in 2023, P84.7 million 2022, and P78.3 million in 2021.

The revenue came from the port services and barge and management fee in handling BRMC's 808,556 tons of nickel ore exports in 2024, 854,074 tons in 2023, 1,169,328 tons in 2022, and 1,175,050 tons in 2021. Net income in 2024 amounted to P20.6 million, lower than P25.2 million in 2023, P40.8 million in 2022, and P48.4 million in 2021. Repair of the damaged side of the port is completed. Dredging of the port has been partially accomplished and expected to be completed as soon as the issue on transferring of the dredge materials is resolved. This will result in more efficient shipment loading operation for BRMC.

B. <u>REAL ESTATE</u>

- BMC Forestry Corporation (BFC)

BFC manages the real estate projects and the lime kiln operation of Irisan Lime Project. BFC reported net income of P2.5 million this year, compared to the net income of P3.9 million in 2023 and P2.5 million in 2022, and slightly higher than the net income of P1.8 million in 2021.

BFC acquired a 6-hectares property in the Province of La Union for its Woodspark expansion. Land conversion is on-going from agriculture to residential. The land development is projected to commence in October 2025.

BFC plans to continue to acquire and develop new lands as part of its plan to expand its real estate projects in La Union, Pangasinan and Tarlac.

Kelly Ecozone Project (KEP)

Phased development activities of the proposed Kelly Ecozone Project (KEP) are still on hold pending resolution of tenurial issues.

Updating and assessment of improvements of small-scale miners that will be affected by the KEP and consultation with the project-affected-people (PAP) and the local government units is a continuing program.

Assessment and evaluation of areas for the agroforestry component of KEP including site preparation and sourcing of spring to supply the water needs of the project is a work in progress. Establishment of coffee plantations is also being implemented in the area.

C. HEALTHCARE

- BenguetCorp Laboratories Inc. (BCLI)

BCLI, the healthcare provider of the Company, generated P45.2 million revenue this year, lower against P47.1 million in 2023, P48.8 million in 2022, and P47.9 million in 2021. The decrease is attributed to lost bid to service the need of major client Texas Instruments for Clinic Management and Annual Physical Examination. BCLI's net income this year amounted to P4.0 million, comparable to the net income of P3.5 million in 2023, but lower against net income of P8.1 million in 2022, and net income of P6.7 million in 2021.

BCLI continue to serve its core customers, HMO (Health Maintenance Organization), corporate clients in Baguio City, and government agencies. To further improve its laboratory services, conform with the DOH-FDA requirements and augment its income, BCLI purchased one (1) Mobile X-ray with Digital Radiography system this year and also plans to purchase one (1) Threadmill Stress Test Machine.

BCLI passed the ISO 9001:2015 - Quality Management System recertification audit conducted by TUVRheinland in November 3, 2023 valid from January 2024 to January 2, 2027. To- date BCLI is the only free standing private medical and diagnostic facility that is ISO certified in Baguio City since 2018.

BCLI received Certificates of Recognition and Appreciation from various agencies, including DOH-CAR, Social Security System, Pagibig Fund and Baguio City Health Services, for its active support and compliance with their programs and regulations.

D. BENGUETCORP INTERNATIONAL LIMITED (BIL) IN HONGKONG

- In 1988, the Company acquired BenguetCorp International Limited (BIL), a Hongkong-based and wholly owned subsidiary for international operations, which remains largely inactive. BIL's subsidiary, BenguetCorp USA Limited's (BUSA) renewed its claims over 217 hectares of mineral property for gold/silver in Royston Hills, Nevada, USA. The Company engaged the services of Burgex, Inc. to provide and perform services as needed to identify and evaluate mineral interest and opportunities in the property.

2. BUSINESS OF ISSUER

Products or Services/Sales and Market and Distribution Method

The Company currently produces and markets gold (with silver by-product) from its AGP, nickel laterite ore from BMRC, and quicklime and hydrated lime from ILP. AGP directly sells the gold it produced to Bangko Sentral ng Pilipinas, BRMC principally exports nickel ores, and ILP's quicklime products are mainly sold to local customers. The Company, through its subsidiaries, provides logistics services under AFCC, port and shipping services under KPLMSC, healthcare services under BCLI and real estate projects under BFC.

Percentage of Sales/Revenue

The Company's sales/revenue of product/services which contributed ten percent (10%) or more to sales/revenues for the past four years are as follows:

	2024 (% to total re	venue)	2023 (%	2023 (% to total revenue)		2022 (% to total revenue)			2021 (% to total revenue)		
	Local	Foreign	Total	Local	Foreign	Total	Local	Foreign	Total	Local	Foreign	Total
Gold	33%	-	33%	25%	-	25%	23%	-	23%	25%	-	25%
Lime	4%	-	4%	4%	-	4%	3%	-	3%	2%	-	2%
Nickel	-	61%	61%	-	69%	69%	-	73%	73%	-	72%	72%
Logistics & Others	2%	-	2%	2%	-	2%	1%	-	1%	1%	-	1%
Total	39%	61%	100%	31%	69%	100%	27%	73%	100%	28%	72%	100%

Status of Any Publicly-Announced New Product or Service

The Company and its subsidiaries have no publicly-announced new products or service introduced in 2024 whether prototypes that are existing or in planning stage.

Competition

The gold produced by the Company is directly sold to Bangko Sentral ng Pilipinas and the price is based on world spot market prices from the London Metal Exchange. The price of gold is currently at above-average historical level but there is no assurance that the upward trend will continue. There is virtually no competition in the industry and gold producers can easily sell their products. On the other hand, the Company principally competes in selling its nickel ores outside the Philippines. The method of competition is basically in price. However, the Company believes it can effectively compete in price with other companies due to lower operating cost and proximity of the mine to major buyers/users in Asia and China. Prices of the company's products are dictated by the world market.

Sources of Raw Materials and Supplies

The ore mined from the Company's gold properties in Acupan Gold Project (AGP) is the raw material that is processed into gold (silver by-product), while in the Sta. Cruz Nickel Project (SCNP), the nickel laterite ore that are actually mined are directly exported/sold to foreign buyers. On the other hand, limestone ore is the basic raw material of quicklime and hydrated lime produced by ILP.

In the process of producing gold (silver by-product), nickel laterite ore and quicklime, labor, materials and supplies, power, and other services are employed and utilized. Labor is generally provided by the Company's regular employees, augmented by outsourced workers and contractors for certain projects and seasonal activities in the gold, lime and nickel mining operations. In the Company's AGP, it engaged the services of accredited mining contractors to do underground mining. Operating supplies, equipment and spare parts, which are generally available, are obtained on competitive basis from sources both locally and abroad. The Company has no existing major supply contracts. Electrical power to run the Company's mining operations in Itogon, Benguet Province is currently provided by Aboitiz Power Corporation through its wholly owned subsidiary Therma Luzon, Inc. (TLI) under the term of 20-year contract up to 2031.

Customers

The gold produced by the Company's AGP, which is directly sold to Bangko Sentral ng Pilipinas represents 33% of the total sales. The Company and its subsidiary, BRMC, have existing off-take agreement with Korean trading company for the sale of nickel ore. Outside of this, BRMC is free to sell its nickel ore to other traders or refineries.

Transactions with and/or Dependence on Related Parties

In the normal course of business, the Company has transactions with its subsidiaries which principally include: (a) Purchase of materials and supplies and services needed in its mining operations which are consummated at competitive prices, (b) Sales of mine products, (c) Rental of office space and certain machinery and equipment, and (d) Other transactions comprising non-interest bearing cash advances for working capital requirements. The Company has dealings with its subsidiaries as follows:

- a. On January 1, 2021, the Company entered into a marketing agreement with BRMC for five (5) years and may be extended upon mutual agreement of the parties. BRMC shall pay a marketing fee per ton of nickel ore shipped. The Company earned P139.8 million, P141.2 million, P186.5 million and P172.7 million in marketing fees for 2024, 2023, 2022 and 2021 respectively. Outstanding trade receivable from this transaction amounted to P24.9 million, P33.5 million, P14.2 million, P111.8 million, and P3.9 million in 2024, 2023, 2022 and 2021 respectively.
 - 1. The business purpose of the arrangement is for the Company to market the ore production of BRMC at the best price obtainable in the market and under terms most advantageous to BRMC.
 - 2. The Company is authorized to enter into a long-term supply agreement and to negotiate and receive advance payment from the buyer and is entitled to a definite marketing fee. BRMC is a subsidiary that is controlled and significantly managed by the officers of the Company.
 - 3. The transaction was determined after the conduct of a market study and cost benefit analysis.
 - 4. The Related Party Transaction Committee and Management Committee reviewed and evaluated the transaction. The said Committees practiced the vetting process wherein it evaluated the fairness of the terms of the related party transactions and ensured that the terms are at arm's length following the Related Party Transactions policy of the Company. The related party transaction terms were compared with the terms granted to non-related parties under comparable circumstances and conditions. In cases where comparable transactions are not available, adequate justifications on the selection of the related party and the benefits of the engagement shall be provided.
 - 5. The marketing agreement was renewed for another five (5) years from January 1, 2021 to December 1, 2025.
- b. AFCC, a wholly owned subsidiary of the Company through BMC, continued to provide services to the Company for the delivery of various materials and supplies to various project sites. Total amount charged to the Company in 2024, 2023, 2022 and 2021 amounted to P0.4 million, P1.4 million, P2.7 million and P2.8 million respectively.
 - 1. The business purpose of the arrangement is to provide equipment services to the Company for the delivery of equipment and/or raw materials to the various project sites.
 - 2. AFCC must provide all the required equipment/ service vehicle as well as personnel necessary for the Company's operations in its project sites. AFCC is a wholly owned subsidiary of BMC, and BMC is a wholly owned subsidiary of the Company that is significantly managed by the same Officers of the Company.
 - 3. The transaction price was determined after the conduct of a market study and cost-benefit analysis.
 - 4. The Related Party Transaction Committee and Management Committee reviewed and evaluated the transaction. The said Committees practiced the vetting process wherein it evaluated the fairness of the terms of the related party transaction and ensured that the terms are at arm's length following the Related Party Transaction Policy of the Company. The related party transaction terms were compared with the terms granted to non-related parties under comparable circumstances and conditions. In cases where comparable transactions are not available, adequate justifications on the selection of the related party and the benefits of the engagement shall be provided.
 - 5. This arrangement is still in effect as intended by both parties.
- c. BFC, a wholly owned subsidiary of the Company thru BMC, was appointed as General Manager of the Company's Irisan Lime Project. Total amounts charged to the Company in 2024, 2023, 2022 and 2021 are P2.8 million, P3.3 million, P2.7 million and P0.7 million respectively.
 - 1. The business purpose of the arrangement is to handle the over-all operations and management of the Irisan Lime Project.
 - 2. BFC is to manage and supervise the marketing functions, all production aspects, the industrial and personnel relations functions, financial and internal accounting activities, and to furnish financial statements and progress reports regularly to the Company.

- 3. The transaction price was determined after the conduct of a market study and cost-benefit analysis.
- 4. The Related Party Transaction Committee and Management Committee reviewed and evaluated the transaction. The said Committees practiced the vetting process wherein it evaluated the fairness of the terms of the related party transaction and ensured that the terms are at arm's length following the Related Party Transaction Policy of the Company. The related party transaction terms were compared with the terms granted to non-related parties under comparable circumstances and conditions. In cases where comparable transactions are not available, adequate justifications on the selection of the related party and the benefits of the engagement shall be provided.
- 5. The management contract is effective for a period of five (5) years which started on January 1, 2021 to December 31, 2025.

Please see Note 24 – Related Party Transactions, of the Company's 2024 (Parent) Audited Financial Statements for details.

Terms and Expiration Dates of Royalty Contracts

The Company does not own any trademark, patent, copyright, franchise or concession. The Company has Operating Agreement with the following claimowners: Balanga Bataan Minerals Corporation (BBMC) for its Pantingan Gold Prospect in the Province of Bataan; Oreline Mining Corporation (OMC) for its Zamboanga Gold Prospect (BOLCO) in R.T. Lim, Zamboanga Sibugay; Diversified Mining Corporation for its Surigao Coal Project in Lianga, Surigao Del Sur; and Asiga Mining Corporation for its Gold and Copper-Molybdenum Project in Santiago, Agusan Del Norte. Duration of said agreements is up to end of mine life.

Government Regulations and Approval

All necessary business licenses and permits required for the continuous operation, production and sale of Company's products have been secured by the Company including new licenses or permits as well as those that have to be renewed periodically. The following Exploration Permit Application (EXPA) are undergoing evaluation by the Department of Environment and Natural Resources – Mines and Geosciences Bureau (MGB): (a.) EXPA No. 0122-CAR (formerly Application for Mineral Production Sharing Agreement (APSA) No. 009 CAR for the Company's Antamok Gold Operation; and (b) EXPA No. 0123-CAR (former APSA Nos. 010, 011, 012 and 013) for the Company's Benguet Gold Operation and Ampucao Copper-Gold Prospect in Itogon, Benguet. The Foreign Technical Assistance Agreement (FTAA) application in Ilocos Norte (AFTAA- 003) is undergoing Free, Prior and Informed Consent (FPIC) process under the NCIP Regional Office while the Apayao AFTA-033 is under evaluation by the MGB Central.

Effect of Existing or Probable Governmental Regulations

The effect of existing governmental regulations is mainly on the corresponding costs of compliance. In the case of probable government regulations, the effect or impact of such probable governmental regulations on the Company's operations could only be determined upon their passage and implementation. The indecisive stance of some government agencies to approve and issue much-needed permits and licenses may also cause delays in the mining and/or operating activities of the Company and its Subsidiaries.

Research/Developmental Expenses

The Company's total expenses for exploration and development activities for the last four (4) years as follows:

	Amount in Millions	% to Total Revenues
2024	₽27.1	1.1%
2023	₽28.3	1.1%
2022	₽31.2	0.8%
2021	₽11.7	0.3%

Costs and Effects of Compliance with Environmental Laws

The Company is committed to the protection and enhancement of our environment by ensuring that its mining operations do not just meet legal environmental standards, but also take proactive steps toward environmental sustainability. The Company's commitment to environmental protection is both strategic and holistic – integrating strict regulatory compliance with forward-looking initiatives aimed at environmental enhancement and sustainability.

Since March 2016, its gold and nickel operations have consistently maintained ISO 14001:2015 certification, reflecting robust Environmental Management System (EMS) and a firm dedication to minimizing the environmental footprint of these operations. This commitment is further solidified through the implementation of the Annual Environmental Protection and Enhancement Program (AEPEP), a comprehensive framework developed in alignment with the Mines and Geosciences Bureau (MGB) guidelines. The AEPEP outlines the Company's environmental objectives, key activities, and measurable achievements – ranging from progressive mine rehabilitation and reforestation to waste management and biodiversity conservation.

For the year 2024, the Company's gold operation spent P10.7 million in environmental protection activities bringing its expenditures to-date to P116.4 million since 2015; the nickel operation spent P13.8 million bringing its expenditures to-date to P347.9 million since 2010 and the Irisan Lime Project spent a total of P1.9 million bringing its expenditures to-date to P14.8 million since 2014. These expenditures focused on land resource enhancements, progressive rehabilitation, maintenance of environmental structures such as Tailings Storage Facilities (TSF) and its appurtenances, drainage tunnels, and strict implementation of hazardous and solid waste management, as well as carrying out close monitoring of air, water and noise quality, Biodiversity Enhancement and Protection, alongside Coastal Resources Protection and Management, emphasizing adherence to environmental stewardship and community engagement. Furthermore, the Company also actively support the government's Mining Forest Program and National Greening Program and Bamboo Plantation Program which is done through continuous propagation and maintenance of various seedlings in the Company-owned nurseries and garden. For the year 2024, the gold operation planted 856 propagules of bamboo, 1600 seedlings of coffee and 1.841 seedlings of Benguet Pine while nickel operation have planted additional 58,890 seedlings of various species and planted 14,200 bamboo culms.

In summary, the Company not only meets regulatory standards but demonstrated that economic development and environmental sustainability go hand in hand.

Community Relations/Social Development & Management Programs (SDMP)

The Company remains steadfast in fulfilling its social development commitments by implementing Social Development and Management Programs (SDMP). These initiatives supplements the general welfare services provided by national and local governments, while addressing diverse community needs such as healthcare, medical assistance, public safety, livelihood, education, waste management, infrastructure development, and scholarship program among others.

During the year 2024, the Company's gold operation spent P3.8 million bringing its expenditures to-date to P67.9 million since 2005. Meanwhile, the nickel operations spent P7.3 million bringing its expenditures to-date to P76.0 million since 2013. The Company's Irisan Lime Project (ILP) contributed P0.6 million to SDMP in 2024, bringing cumulative expenditures to P10.2 million since 2013.

Moreover, the Company's Community Development Program (CDP) for its Pantingan Project reached a financial accomplishment of P2.2 million to-date, since 2022.

The Company made significant contribution to education within its host communities in Itogon, Benguet supporting 58 students under its Scholarship Program. In Zambales, the Company provided educational assistance to 391 high school students and 223 college students. It also extended educational assistance to 15 high school and 11 college students in Brgy. Liyang. Bataan. Additionally, the Company supported the educational services within the barangay and actively participated in initiatives like Brigada Eskwela and Brigada Pagbasa programs and activities.

The Company continuously introduce various health initiatives to improve medical services and facilities in all its communities. These efforts included providing various medicines along with other essential medical supplies. Additional programs included the PhilHealth Sponsorship Program, medical missions, disaster risk reduction efforts, and support for barangay activities through fuel and vehicle maintenance. The Company also facilitated health profiling, anti-rabies vaccination, and community health monitoring programs. Support was also extended to health workers, nutrition aide, and public safety officers.

The Company supported various livelihood programs to strengthen and empower community associations. Such programs included assisting the Livelihood Association of the barangays, empowering solo parents through food processing and providing sewing materials for the Virac Women's Club and Balatoc Women's Association, providing technical vocational training for indigent residents of the community and supported TODA members in Brgy. Biaan, Mariveles, Bataan, by financing motorcycle parts. Bamboo farming was also introduced in the host communities of Zambales, along with the provision of farming equipment. These efforts were designed to boost economic growth and strengthen community resilience.

The Company also supported various infrastructure projects aimed at improving community facilities and accessibility. Key initiatives included the improvement of the Farm-to-Market Road at Sitio Lumbag, Barangay Ampucao, construction of canal and rehabilitation of a footpath in Barangay Poblacion in Itogon, road concreting, facility improvements within barangays, repainting of community structures, repairs of the mutl-purpose hall/plazas and installation of solar lights in the communities of Zambales.

These activities show the Company is committed to responsible mining and delivering social services that will help uplift the living condition of the community where it operates.

Total Number of Employees

The Company has a total manpower complement of 1,244 in 2024, 1,131 in 2023, 1,330 in 2022, and 1,422 in 2021. This is broken down as follows:

Type of Employee	2024	2023	2022	2021
Administrative	176	133	226	175
Clerical	13	15	10	20
Exploration/Operation	209	391	292	304
Outsourced Staff (seasonal, project based, security guards, janitors and retainers / consultants	846	592	802	923
Total	1,244	1,131	1,330	1,422

The Company anticipates no material change in the number of employees for the next 12 months. There are presently no labor unions in the Company and its subsidiaries, nor were there any major pending labor actions against the Company and its subsidiaries during the past four (4) years. The Company continuously provides free housing or accommodation to managers and employees at mine site with free water, free meals and power utilities. Basic and major medical; educational assistance; transportation allowance; vacation/sick/paternity/birthday leave with pay; free protective and safety paraphernalia; Integrated Retirement Plan; Group Life and Personal Accident Insurance; and Stock Option Plan, among others are currently enjoyed by covered employees.

Business Risks

The Company recognizes, assesses, and manages certain risks that could materially and adversely affect its business, financial condition, results of operations and prospects. Regulatory risks are changes in regulations, policies, and law that will affect the mining industry and Company in particular.

- a. The operations of the Company's business are subject to a number of national and local environmental laws and regulations which should be adhered to. Non-compliance or failure to comply may delay or suspend mining operations or could result in substantial fines and penalties. In ensuring compliance, the Company is obliged to allot a considerable amount from its operational funds for rehabilitation, reforestation and other environmental protection projects in the areas of operations. The Company liaisons and maintains relationship with regulatory agencies to allow the Company to identify potential regulatory risks and proactively respond to these risks. While the Company believes it is in substantial compliance with all material environmental regulations, it can give no assurance that changes in these regulations will not occur in the future which may impact its operation and/or impose added costs to the Company.
- b. The Company's exploration, development and extraction of, minerals entail significant operating risks. There is no certainty that the activities of the Company, which by the character of its business involve substantial expenditures and capital investments in the exploration and development of its resource properties, will result in the discovery of mineralized materials in commercial quantities and thereafter in viable commercial operation. The Company tries to temper its exposure to these risks by prudent management and the use of up-to-date technology.
- c. The Company's revenues are directly affected by the world market prices of the metal it produces, which are gold (silver by-product) and nickel ore. The Company has experienced, and expects to continue to experience, significant fluctuations in operating results due to a variety of factors, including among others, depreciation of the Philippine Peso against the US Dollar, ore grades, mineable ore reserves and interest rates. The ultimate outcome of this matter cannot presently be determined and related effects will be reported as they become known. The metal prices in the world market are US Dollar denominated. The Company's reporting currency in its financial statements is the Philippine Peso. Changes in the US\$/Php exchange rate may adversely affect the financial condition of the Company. The Company exports the saleable stockpiled nickel ores to foreign buyers at favorable market price while the gold produced is directly sold to Bangko Sentral Ng Pilipinas.
- d. The Company depends on certain key personnel, and its business and growth prospects may be disrupted if their services are lost. There is no assurance that certain key officers and employees which are critical to the continued operation of the Company's business will remain employed. Should several of these key personnel resign or are separated from their present posts, the Company may face difficulties in hiring replacements and the business and operations may be disrupted as a result, which may adversely affect the financial condition and operations of the Company. To maintain their employment, the Company continuously reviews and ensure that compensation and benefit packages for officers, managers and rank and file personnel are competitive with industry standards. Continuous trainings are provided to ensure that their knowledge and skills are being updated.
- e. The operations of the Company's business is also subject to various other risks which are beyond its control. These include typhoons, earthquakes, floodings, landslides, and virus outbreak among other natural disasters which may disrupt its operations. There can be no assurance that these risks will not have an adverse effect on the Company. To mitigate the risks, management and operations meetings are conducted regularly to identify, assess and formulate related contingency plans to manage or minimize the adverse impacts of potential risks and to ensure that concerned units manage or promptly address identified risks.

f. The Company faces competition from large metal producers who have greater financial and technical resources (resulting to lower production cost) thereby flooding the market with cheaper metal produce. This competitive pressure could result not only in sustained price reductions, but also in a decline in sales volume, which would have a material adverse effect in the long term on the Company's business, operating results and financial condition. The Company principally competes in selling its nickel ores outside the Philippines. However, the Company believes it can effectively compete in price with other companies due to lower operating cost and proximity of the mine to major buyers/users in Asia and China. For gold, there is no competition in the industry and gold producers may easily sell their product directly to Bangko Sentral ng Pilipinas.

ITEM 2. PROPERTIES

The Company owns private and patented lands, mining and milling equipment, various automotive units/vehicles and support facilities for its gold mining operations in Itogon, Benguet Province; and Irisan Lime Project in Baguio City; port, dump trucks and mining equipment in Zambales. The Company also owns various artworks, vehicles, office furniture and computer units in its corporate office in Makati City. It likewise owns milling and support facilities at Zamboanga Gold Prospect in R.T. Lim Zamboanga del Sur, which are currently on care and maintenance basis.

The Company continues to lease office space at the Universal Re Building, 106 Paseo de Roxas, Makati City where its Corporate Head Office is situated. Rental is P793,659.32 per month VAT inclusive subject to 10% escalation yearly up to June 30, 2025.

Subsidiaries: BRMC (formerly BNMI) is the holder of MPSA No. 226-2005-III with an area of 1,406.74 hectares located in Sta. Cruz, Zambales. It owns assaying/laboratory equipment and various automotive equipment/vehicles for its mining business operations. BRMC continues to lease at #82,760.61 per month for office occupancy in Sta. Cruz, Zambales. The lease is renewable every 5 years subject to escalation rate of 7.5% every two years. Also, it leases a property being used as staff house for #25,000 per month net of tax subject to 10% escalation rate every two years.

KPLMSC leases a property in Candelaria, Zambales at P9,284.22 per month subject to 5% escalation yearly.

BFC owns 2 office condominium units (Unit 304 with a floor area of 138.27 square meters and Unit 305 with a floor area of 186.20 square meters) located in 3rd Floor One Corporate Plaza Condominium, Pasay Road, Legaspi Village, Makati City. BFC continues to develop and sell the remaining three (3) lots with an aggregate area of 1,043 square meters in its real estate project called Woodspark Rosario Subdivision located in Rosario, La Union. BFC purchased a parcel of land located in Naguillian, La Union with an area of 60,882 square meters to be developed as housing project.

BTI owns 2 residential lots where a 3 storey residential building staff house is erected with a floor area of 283 square meters. The two (2) lots have an aggregate area of about 708 square meters and are located in Monterraza Village, Barangay Tuding, Itogon, Benguet.

BCLI, a wholly owned subsidiary of the Company owns various medical instruments, medical furniture/fixtures/appliances, office and laboratory equipment for its clinic operations. BCLI continues to lease for its business operation occupancies in SM Baguio at P466,754.40 per month, and in Centermall, Baguio City at P100,015.30 per month which ends on February 28, 2025.

AFCC owns various heavy equipment/vehicles for its logistics business operations. It leases a property at P25,330.84 per month for office occupancy at Sta. Maria, Bulacan subject to 10% yearly escalation rate up to February 15, 2026. It also leases office space and land for motorpool purposes at Sta. Cruz, Zambales for P22,000.00 per month.

The Company and its subsidiaries have no intention at present to acquire any significant property in the next 12 months.

Please refer to Item I of this report under title "Business Development" as to the conditions of the mining operations/projects and non-mining properties/projects of the Company.

ITEM 3. LEGAL PROCEEDINGS

As of December 31, 2024, the Company and its subsidiaries have no pending legal proceedings where claims exceed ten percent (10%) of total assets on a consolidated basis. The Company and its subsidiaries are involved in litigation on a number of cases and are subject to certain claims which arise in the normal course of business, none of which, in the opinion of management, is expected to have a material adverse effect on each of the Company's operations.

ITEM 4. SUBMISSION OF MATTERS TO A VOTE OF SECURITY HOLDERS

In the December 20, 2024 virtual Annual Stockholders' Meeting of the Company, no election of directors was held because the 1993 Supreme Court Temporary Restraining Order (TRO) enjoining the holding of elections of directors, has not been lifted. Since no election of directors was held, the Company's incumbent directors (the composition of the Board of Directors is presented in Item 9 of this report) remained in office on hold-over capacity until their successors shall have been duly elected and qualified.

Except for the matters taken up in the December 20, 2024 Annual Stockholders' Meeting of the Company, there were no other matters submitted to vote of security holders during the period covered by this report. All matters taken up and voted upon at the annual meeting including tabulation of votes in person and by proxy for approval, against and abstention to each matter and the results of annual stockholders' meeting were disclosed under SEC Form 17-C to the SEC and PSE on December 20, 2024. The disclosure was posted in the Company's website.

PART II – OPERATIONAL AND FINANCIAL INFORMATION

ITEM 5. MARKET FOR ISSUER'S COMMON EQUITY AND RELATED STOCKHOLDER MATTERS

Market Information

The Company has three classes of shares, two of which (the Common Class A with a par value of \neq 1.00 per share and Convertible Preferred Class A shares with a par value of \neq 3.43 per share) can be owned only by Philippine nationals and the other class of the Company's share is Common Class B with a par value of \neq 1.00 per share which may be owned by anyone regardless of nationality. The Company's shares are listed and traded in the Philippine Stock Exchange (PSE) under the trading symbol of "BC" for Common Class A; "BCB" for Common Class B; and "BCP" for Convertible Preferred Class A share.

The closing prices of the Company's Common shares in the PSE on April 28, 2025 for Common Class A was P4.12 per share and on April 23, 2025 for Common Class B was P4.02 per share. The closing price of the Company's Convertible Preferred Class A on the last trading day of April 14, 2025 was P24.40 per share.

a) For each Quarter 2024, 2023 and First Quarter 2025, the high and low prices of the Company's shares in the PSE are as follows:

	1 ST QUARTER		1 ST QUARTER 2 ND QUARTER		3 RD QUARTER		4 TH QUARTER		2025 1 <u>st</u> Quarter
	2024	2023	2024	2023	2024	2023	2024	2023	
CONVERTIBLE PREFERRED CLASS A*									
Highest Price/Share	P 24.55	-P-	P17.22	₽-	P 18.20	₽-	P23.25	P 34.95	₽ 16.30
Lowest Price/Share	24.55	-	12.08	₽-	18.10	₽-	23.25	34.90	16.30
COMMON CLASS A									
Highest Price/Share	P4.89	₽5.70	P 4.55	₽4.88	P 4.18	₽4.70	P4.18	₽5.20	₽4.20
Lowest Price/Share	4.15	4.05	3.85	4.38	3.46	3.80	3.31	3.80	3.40
COMMON CLASS B									
Highest Price/Share	P5.34	₽5.40	P 4.83	₽4.90	P 4.14	₽4.73	P4.19	₽5.49	P -4.58
Lowest Price/Share	4.10	4.06	3.80	4.36	3.34	3.90	3.09	3.81	3.43

(*) No trading transactions in 1st, 2nd and 3rd quarter of 2023..

b.) For each quarter of 2022 and 2021, the high and low prices of the Company's shares in the PSE are as follows:

	1 ST QUARTER		2 ND QUARTER		3 RD QUARTER		4 TH QUARTER	
	2022	2021	2022	2021	2022	2021	2022	2021
CONVERTIBLE								
PREFERRED CLASS A*								
Highest Price/Share	-P 47.30	₽27.00	₽.	₽30.00	₽.	P 45.00	P33.20	P 31.55
Lowest Price/Share	47.30	18.00	₽.	18.90	₽.	45.00	23.30	31.55
COMMON CLASS A								
Highest Price/Share	P7.20	₽3.73	P 7.68	₽5.88	P5.89	P 5.88	P5.05	P 6.58
Lowest Price/Share	4.95	2.26	5.45	2.48	4.77	4.40	4.07	4.80
COMMON CLASS B								
Highest Price/Share	P 7.00	₽3.60	P7.77	₽5.58	P 5.95	₽5.87	P5.44	P 6.40
Lowest Price/Share	4.50	2.41	5.60	2.40	4.90	4.12	4.03	4.73

(*) No trading transactions in 2nd and 3rd quarter of 2022.

Holders:

a.) As of April 15, 2025, the Company's public float is 40.10% of the 715,779,951 outstanding shares of the Company consisting of 429,547,273 common Class A, 286,015,617 common class B and 217,061 Convertible Preferred Class A shares with a total of 16,857 stockholders.

b.) Of the 715,779,951 outstanding shares of the Company, 79,400,172 common Class B shares or 11.09% are owned by foreign nationals/institutions as of April 15, 2025.

The list of top 20 stockholders for Common Class "A", Common Class "B" and Convertible Preferred Class "A" shares of the Company as of April 15, 2025 are as follows:

A. Common Class "A" Share

	Number of	Percent to Total
Name	Shares Held	Outstanding/Class
PCD Nominee Corporation (Filipino)	191,900,903	44.68%
Palm Avenue Holding Company, Inc.	65,624,727	15.28%
Palm Avenue Holdings Co. and/or Palm Avenue Realty Corp.	63,920,490	14.88%
Red Earth Mineral Resources Corporation	53,000,000	12.34%
Palm Avenue Holdings Co. and/or Palm Avenue Realty Corp.	30,384,375	7.18%
FEBTC TA 4113-000204-5 (ESPP)	5,067,846	1.18%
FEBTC TA 4113-000204-5	3,016,623	0.70%

Sysmart Corporation	2,036,181	0.47%
Cynthia Manalili Manalang	1,500,000	0.35%
Paredes, Gabriel M. or Paredes, Marianne G.	564,900	0.13%
Sun Hung Kai Sec. AC#YU034	356,625	0.08%
Marilex Realty Development Corporation	331,200	0.08%
Hermogene H. Real	240,300	0.06%
Luis Juan L. Virata	234,003	0.05%
Francisco M. Vargas	219,000	0.05%
The First Nat'l Invest Co.	188,130	0.04%
Ionian Realty and Development Corporation	148,500	0.03%
Estate of Alfonso T. Yuchengco	136,272	0.03%
Vital Ventures Management Corporation	135,000	0.03%
Juvencio Tan	114,000	0.03%

B. Common Class "B" Share

Name	Number of Shares Held	Percent to Total Outstanding/Class
PCD Nominee (Filipino)	122,441,172	•
Palm Avenue Realty and Development Co.	43,680,000	15.27%
Red Earth Mineral Resources Corporation	37,000,000	12.94%
Cede & Co.	29,674,860	10.38%
PCD Nominee (Non-Filipino)	24,962,744	8.73%
Michael Vozar TOD Sharon K. Vozar Sub To Sta Tod Rules	736,260	0.26%
Charles F Carroll TTEE, UA 05/24/95 FBO Carroll Family Trust 1	543,000	0.19%
National Financial Services	504,033	0.18%
Fairmount Real Estate, Inc.	484,257	0.17%
Independent Realty Corporation	483,441	0.17%
Evelyn B.Stephanos TR US 05/12/11 Elizabeth Bakas Irrev Trust	450,000	0.16%
Richard Soltis & Veronica T. Soltis JT Ten	396,000	0.14%
Arthur H.Runk TTEE of Arthur H.Runk Liv Tr U/A dtd 08/17/1990	354,000	0.12%
HSBC Private Bank (Suisse) SA 9-17 Quai Des Bergues	303,795	0.11%
William David Courtright	300,000	0.10%
William T. Coleman	300,000	0.10%
Garry A. Gil TTEE FBO Arthur Weir Gill Rev Tr	300,000	0.10%
Edmund S. Pomon	300,000	0.10%
Sysmart Corporation	273,729	0.10%
Sanford Halperin	251,364	0.09%

C. Convertible Preferred Class "A" Share

	Number of	Percent to Total
Name	Shares Held	Outstanding/Class
PCD Nominee Corporation (Filipino)	65,794	30.31%
Fairmount Real Estate	59,262	27.30%
Jose Concepcion, Jr.	5,000	2.30%
Reginaldo Amizola	1,737	0.80%
Evengeline Alave	1,720	0.79%
Maverick Marketing Corp.	1,720	0.79%
Jayme Jalandoni	1,380	0.64%
Rosendo U. Alanzo	1,376	0.63%
Romelda E. Asturias	1,376	0.63%
Rosalina O. Ariacho	1,324	0.61%
CMS Stock Brokerage Inc.	1,324	0.61%
Luisa Lim	1,238	0.57%

Delfin GDN Jalandoni	1,118	0.52%
Ventura O. Ducat	1,032	0.48%
Equitiworld Securities, Inc.	1,000	0.46%
Benito V. Jalbuena	1,000	0.46%
Conchita Arms	1,000	0.46%
Remedios Rufino	1,000	0.46%
Carlos W. Ylanan	1,000	0.46%
B & M Incorporated	952	0.44%

Dividends – The dividend rights and restrictions of the Company's Convertible Preferred Class A, Common Class A and Common Class B stocks are contained in the Amended Articles of Incorporation of the Company, to wit:

"For a period of ten years after issuance, the holders of each shares of Convertible Preferred Stock shall be entitled to receive out of surplus profits of the Corporation earned after issuance of such Stock, when and as declared by the Board of Directors, cash dividends equal to the peso amount of and payable at the same time as that declared on each share of Common Class A or Common Class B Stock. The total cash dividends payable at any given time on Common Class A, Common Class B and Convertible Preferred Stock shall not exceed seventy-five per centum (75%) of the total after-tax earnings for any current fiscal year of the Corporation from all sources.

Immediately upon the expiration of ten years from issuance, the holders of shares of Convertible Preferred Stock still outstanding shall be entitled to receive out of surplus profits of the Corporation, when and as declared by the Board of Directors, cash dividends at the fixed annual rate of eight percentum (8%) of the par value of such Stock before any cash dividends shall be declared or set apart for holders of Common Class A and Common Class B Stock. The balance of the net profits of the Corporation available for cash dividends shall be distributable exclusively to holders of Common Class A and Common Class B Stock. Dividends accrued and unpaid, if any, on the Convertible Preferred Stock at the end of any given fiscal year of the Corporation shall be cumulated, provided and to the extent that the net profits of the Corporation earned during such fiscal year are at least equal to the amount of such accrued and unpaid dividends; no cash dividends shall be declared and paid to holders of Common Class A and Common Class B Stock until after such accumulated, accrued and unpaid dividends on the Convertible Preferred Stock shall have been paid or provision for payment thereof made. Holders of Convertible Preferred Stock shall not be entitled to any part of stock dividends declared and issued on outstanding Common Class A and Common Class B and no stock dividends may be declared and issued on Convertible Preferred Stock."

Following the termination on October 22, 2024 of the Debt Restructuring Agreement dated 20 December 1993 and the loan security: Mortgage Trust Indenture dated 20 December 1993, Real State Mortgage dated 18 March 1994 and Chattel Mortgage dated 18 March 1994, the Company declared cash dividend equivalent to P0.28 per share of the Company's outstanding Preferred Class "A" shares and P0.20 per share of the Company's outstanding Common Class "A" and "B" shares with November 14, 2024 as record date for stockholders entitled to dividends and payment date set on December 10, 2024 during its Special Board Meeting on October 29, 2024. The dividend was paid from the Unrestricted Retained Earnings as of December 31, 2023.

The Company has not declared cash dividends in fiscal year 2023, 2022 and 2021 due to the restrictions provided in Section 13(d) of the 1993 Debt Restructuring Agreement which prevents the Company from declaring or paying dividends to its stockholders during the pendency of the debt.

Recent Sales of Unregistered or Exempt Securities

Under the present implementation of the Company's Stock Option Plan (the "Plan"), below are the transactions of sold stocks/exercised options in the past four years ended December 31, 2024, 2023, 2022 and 2021:

- 1. In the May 3, 2011 stock option grant:
 - a) 431,198 Class "A" shares at option price of ₽1.69/share with par value of ₽1.00/share;
 - b) 334,176 Class "B" shares at option price of P1.91/share with par value of P1.00/share.
- 2. In the September 7, 2012 stock option grant There were no options exercised.
- 3. In the May 28, 2014 stock option grant There were no options exercised.
- 4. In the March 17, 2017 stock option grant:
 - a) 3,779,350 Class "A" shares at option price of P1.38/share with par value of P1.00/share;
 - b) 2,517,023 Class "B" shares at option price of P1.43/share with par value of P1.00/share.
- 5. In the March 18, 2021 stock option grant There were no options exercised.

Other than the above transactions, the Company has not sold or issued any securities within the past four years ended December 31, 2024, 2023, 2022 and 2021 which are not registered under the SRC including the sales of reacquired securities, securities issued in exchange of property, services, or other securities, and new securities resulting from the modification of outstanding securities.

ITEM 6. MANAGEMENT'S DISCUSSION AND ANALYSIS OR PLAN OF OPERATION

FOR THE YEARS ENDED DECEMBER 31, 2024, 2023, 2022 AND 2021

The following discussion and analysis of financial performance of the Company should be read in conjunction with the Company's Audited Consolidated Financial Statements (ACFS) and related notes as of December 31, 2024, 2023, 2022 and 2021 prepared in conformity with Philippine Financial Reporting Standards (PFRS). The results and plan of operation of the Company and its subsidiaries are presented and discussed under Business Development in Item 1-Business of this report.

CONSOLIDATED RESULTS OF OPERATIONS

Despite lower nickel sales in 2024, the Company continued to report strong operating results with its Acupan mine contributing significantly from its gold output.

Consolidated net income for 2024 amounted to P435.7 million, lower than net income of P554.1 million in 2023, net income of P1.3 billion in 2022 and net income of P1.4 billion in 2021. The increase/decrease in net income was the net effect of the following:

Revenues

The Company registered consolidated revenues of P2.4 billion in 2024, lower than P2.5 billion in 2023, P4.0 billion in 2022, and P3.8 billion in 2021. Revenues were composed mainly of nickel, gold and lime sales.

	2024	2023	2022	2021
Nickel	₽1,451.4	₽1,757.68	₽2,952.3	₽2,766.5
Gold and silver	791.7	627.5	914.8	945.8
Lime and others	142.8	146.3	158.1	129.6
Gross Revenue	₽2,385.9	P 2,531.4	P 4,025.2	₽3,841.9

Revenues are attributed mainly from the sale of 15 boatloads of nickel ore aggregating 808,556 tons, lower compared to 16 boatloads of nickel ore aggregating 854,074 tons in 2023, 22 boatloads aggregating 1,169,328 tons in 2022 and 22 boatloads aggregating 1,175,050 tons in 2021. Nickel ore was sold at effective average price of US\$31.39/ton this year versus US\$37.07/ton in 2023, US\$46.97/ton in 2022, and US\$47.38/ton in 2021. Nickel sales contributed 61% of gross revenues. Gold sales on the other hand contributed 33% on account of better price this year. The Acupan Gold Project (AGP) sold 5,750.24 ounces of gold this year, against 5,803.21 ounces of gold in 2023, 9,363.56 ounces of gold in 2022, and 10,685 ounces in 2021. Average selling price of gold in 2024

jumped by 24% to US\$2,414.80/ounce from US\$1,941.83/ounce in 2023, US\$1,802.02/ounce in 2022, and US\$1,806.68/ounce in 2021.

Operating and Other Expenses

Cost and operating expenses this year amounted to P1.9 billion, higher against P1.9 billion in 2023 but lower against P2.4 billion in 2022, and P2.3 billion in 2021. The increase/decrease is mainly due to the net effect of the following:

Cost of mine products sold increased to P822.2 million from P680.47 million in 2023, but decreased from P970.4 million in 2022, and P938.2 million in 2021. The increase is mainly due high cost of fuel, power and materials and supplies.

Cost of services and other sales slightly increased to P85.4 million from P84.06 million in 2023, P80.2 million in 2022 and P74.8 million in 2021. The increase is mainly due to high cost of fuel, power and materials and supplies.

Selling and general expenses decreased to P866.5 million from P903.0 million in 2023, P1.1 billion in 2022, and P1,027.0 million in 2021. The decrease is mainly due to lower volume of nickel ore sold this year.

Excise taxes and royalty fees decreased to P162.3 million from P182.4 million in 2023, P299.8 million in 2022, and P284.3 million in 2021. Decrease is mainly from the lower sale of nickel laterite ores.

Other income this year amounted to P106.9 million, higher compared to P57.0 million in 2023 but lower against P164.0 million in 2022, and P280.3 million in 2021. Other income this year came from interest earned from money market placements, income from fair value gain of financial assets at FVPL, and foreign exchange gain on the Company's export of nickel ore. The other income in 2023 is mainly attributable to the change in fair value of financial assets at FVPL, amounting to P51.9 million and P8.1 million gains on foreign currency exchange. The other income in 2022 was mainly due to the P85.3 million gain on revaluation of investment properties, P39.7 million gains on foreign currency exchange and P39.3 million gains on recovery of impairment on loss on advances to contractors, while in 2021, the other income was mainly attributed to the P277.0 million gain in revaluation of investment properties.

Provision for income tax in 2024 amounted to P113.3 million, lower versus P178.5 million in 2023, P428.2 million in 2022, and P372.4 million in 2021. The provision for income tax pertains to the Regular Income Tax (RCIT) of Benguet Corporation (Parent Company), Benguetcorp Resources Management Corporation (BRMC), Arrow Freight and Construction Corporation (AFCC), Keystone Port Logistics and Management Services Corporation (KPLMSC) and Benguetcorp Laboratories, Inc. (BCLI).

CONSOLIDATED STATEMENT OF FINANCIAL POSITION

Assets

The Company's consolidated total assets as of December 31, 2024 stands at P10.87 billion, higher compared to P10.34 billion in 2023, P9.91 billion in 2022, and P8.75 billion in 2021. The increase is the net effect of the following:

Cash and cash equivalent increased to P1.8 billion from P774.2 million in 2023, P1.0 billion in 2022, P603.2 million in 2021. Increase pertains to additional investment in Unit Investment Trust Fund (UITF) and collection of nickel ore sold in 2024 and 2023.

Trade and other receivables decreased to P741.3 million from P746.7 million in 2023, P782.5 million in 2022, and P515.0 million in 2021. Decrease pertains to collection of nickel ore sold in 2023 and 2022.

The increase, however, against 2021 pertains to the sale of nickel ore and lime collected in the subsequent year.

Inventories decreased to P191.9 million from P248.0 million in 2023. Decrease pertains to nickel ore inventories sold in 2024. Increase in 2024 versus P180.6 million in 2022, and P142.1 million in 2021 is mainly due to the nickel ore produced from the continuous mining of its nickel operation.

Financial assets at fair value through profit or loss (FVPL) decrease to P704.6 million from P1.3 billion in 2023, P1.1 billion in 2022. Decrease in 2024 is attributed to the withdrawal of unit investment trust fund. The fund was used to fully settle the loan obligation. On the other hand, increase versus P675.0 million in 2021 pertains to the additional investment in unit trust fund and the change in net asset value per unit.

Other current assets decreased to P368.7 million, from P660.6 million in 2023, P352.4 million in 2022 and P481.7 million in 2021. Decrease refers to change in investment classification from more than 90 days' time deposits to less than 90 days time deposits.

The property, plant and equipment at revalued amount slightly increased to P2.0 billion from P1.8 billion in 2023, P1.7 billion in 2022, and P1.7 billion in 2021. Increase is due to revaluation increment on land and art works.

Property, plant and equipment (PPE) at cost, decreased to P743.9 million from P789.9 million in 2023, P780.2 million in 2022, and P848.4 million in 2021. The decrease this year is mainly due to the depletion and depreciation booked this year.

Deferred mine exploration costs increased to P550.5 million from P520.4 million in 2023, P492.5 million in 2022, and P455.4 million in 2021. Additions pertain to drilling and other ongoing exploration activities in the Company's Pantingan gold and aggregate prospect in Bataan.

Investment properties improved to P3.3 billion from P3.0 billion in 2023, 2.99 billion in 2022, and P2.9 billion in 2021. Improvement pertains to revaluation of land.

Increase in deferred tax assets is mainly from the deferred tax assets derived from the group's lease liabilities and amortization of past service costs from pension liabilities.

Other noncurrent assets increased to P506.6 million from P489.0 million in 2023, P471.9 million in 2022, and P402.0 million in 2021. Increased refers to additional funding of mine rehabilitation fund in compliance with the requirement of the Mines and Geosciences Bureau (MGB) under DAO 2010-21 and increase in advances to suppliers and contractors for the exploration, construction and other related activities and projects.

Liabilities

Total consolidated liabilities as of December 31, 2024, decreased to P1.70 billion, from P1.97 billion in 2023, P2.13 billion in 2022, and P2.34 billion in 2021. The decrease was due to the following:

Trade and other payables increased to P604.3 million from P507.8 million in 2023, P555.7 million in 2022, but lower against P669.4 million in 2021. Increase refers to contract liabilities reclassed from other noncurrent liabilities.

Loans payable is nil in 2024 from P339.2 million in 2023, P337.0 million in 2022 and 2021. The reduction pertains to the full payment of outstanding loans with Armstrong Capital Holdings Corporation (ACHC). The loan was acquired from Social Security System thru bidding conducted in 2024.

Increase in lease liabilities (current and noncurrent) is mainly from the renewal of lease contract of BCLI clinic spaces.

Liability for mine rehabilitation (current and noncurrent) amounted to P53.0 million in 2024, P62.1 million in 2023, P59.1 million in 2022, and P60.7 million in 2021. Decrease in liabilities for mine rehabilitation pertains to the actual rehabilitation costs spent during the year partially offset by the change in estimate and norma accretion expense.

Income tax payable amounted to P38.9 million higher compared to P33.3 million in 2023 but lower compared to P105.9 million in 2022, and P137.8 million in 2021. Liability pertains to BRMC income tax due during the fourth quarter of 2024. The increase against previous years is due to higher taxable income reported in 2024.

Decrease in pension liability is mainly due to the funding of retirement trust fund of the group.

Deferred tax liability amounted to P826.8 million in 2024, higher than P775.9 million in 2023, P769.2 million in 2022 and P748.6 million in 2021. Increase pertains to the revaluation of the group's land and artworks.

Equity

Stockholders' Equity at year-end amounted to P9.18 billion, higher than P8.37 billion in 2023, P7.78 billion in 2022, and P6.41 billion in 2021. The increase was due to the following:

Capital stock increased to P714.3 million from P624.3 million in 2023, P624.0 million in 2022 and P624.0 million in 2021 due to subscription of Red Earth Mineral Resources Corporation ("Red Earth") amounting P90.0 million.

Capital surplus increased to P686.6 million from P415.5 million in 2023, P415.1 million in 2022 and P409.9 million in 2021. Increase is mainly due to the subscription of Red Earth.

Retained earnings amounted to P6.2 billion, higher than P5.9 billion in 2023, P5.4 billion in 2022, and P4.0 billion in 2021. The increase was due to the net income earned during the year partly offset by the cash dividend declared in October 2024 amounting P143.6 million.

Other components of equity amounted to P1.6 billion higher compared to P1.4 billion in 2023, P1.4 billion in 2022, and P1.4 billion in 2021. Increase is mainly from the revaluation increment of land and artworks, cumulative translation from foreign subsidiaries and remeasurement gain on pension liabilities.

Consolidated Cash Flows

The net cash flows generated from operating activities for 2024 amounted to P360.2 million, lower than P537.5 million in 2023, P1,263.4 million in 2022, and P1,347.3 million in 2021.

In 2024, the net cash flow came mainly from the sale of 15 boatloads of nickel ore, 5,750.74 ounces of gold and interest income of P41.7 million.

In 2023, the net cash flows came mainly from the sale of 16 boatloads of nickel ore to China, 5,803.21 ounces of gold and P134.98 million VAT refund granted by the BIR.

In 2022, the net cash flows generated is attributable mainly from the 22 boatloads of nickel ore, 9,363 ounces of gold sold this year and P136.3 million VAT refund obtained from the BIR.

In 2021, the net cash flows came mainly from the sale nickel ore to China, gold sold to Bangko Sentral ng Pilipinas (BSP) and VAT refund obtained from the BIR.

During the year, the Company invested P27.1 million in exploration activities, P1.7 million in mining, milling and logistics equipment. The Company also invested P19.7 million in unit trust funds and P18.5 million in investment properties.

In 2023, the Company invested P28.3 million in exploration activities, P68.3 million in mining, milling and logistics department. The Company also invested P162.3 million in unit trust funds and P6.2 million in investment properties.

In 2022, the Company invested P31.2 million in exploration activities and P45.4 million in mining and milling equipment for the expansion of its Acupan Gold Project and Sta. Cruz Nickel Operation in Zambales. The Company also invested P480.7 million in unit trust funds during the year.

In 2021, the Company invested P11.7 million in exploration activities and P40.9 million in mining and milling equipment for the expansion of its Acupan Gold Project and Sta. Cruz Nickel Operation in Zambales. The Company also invested P660.1 million in unit trust funds during the year.

Net cash flows used in financing activities amounted to P388.6 million. This year, the Company paid loans payable amounting to P655.2 million, cash dividend of P108.1 million partly offset by proceeds from issuance of shares amounting to P360.0 million and P20.0 million deposit for future subscription.

In 2023, the Company paid principal portion of lease liabilities amounting to P5.6 million.

In 2022, the Company paid some of its advances from Bright Mining Resources Corporation and other contractors/suppliers.

In 2021, the Company fully paid its outstanding loan with Transmiddle East amounting to P185.0 million and made some payment to Bright Mining Resources Corporation and other contractors amounting to P99.6 million. The usage was partly offset by the cash generated from employees' exercise of stock options and issuance of stocks amounting to P9.8 million.

Key Performance Indicators

The Company's considered the following top five key performance indicators:

Working Capital

Working capital (current assets less current liabilities) and current ratio (current assets over current liabilities) measures the liquidity or debt paying ability of the Company. As of December 31, 2024, the Company's current ratio is 5.74:1, 4.16:1 in 2023, 3.38:1 in 2022, and 2.08:1 in 2021.

Metal Price

The Company's revenue is largely dependent on the world market prices for gold and nickel. Favorable metal prices will also have a favorable impact on the Company's revenue. The market price of gold in the Bangko Sentral ng Pilipinas which is based on world spot market prices provided by the London Metal Exchange for gold is the key indicator in determining the Company's revenue level. Average market prices for gold sold were at US\$2,414.80 per ounce this year, US\$1,941.83 per ounce in 2023, US\$1,802.02 per ounce in 2022 and US\$ 1,806.68 per ounce in 2021. Nickel ore was sold at effective average price of US\$31.39/ton this year, US\$37.07/ton in 2023, US\$46.97/ton in 2022 and US\$47.38/ton in 2021.

Tons Milled and Ore Grade

Tons milled and ore grade are key measures of operating efficiency. A lower unit production cost both in ore milled and smelting operation will result in the Company meeting, if not exceeding, its profitability targets. Tons milled totaled 23,667 this year with average ore grade of 8.48 grams per ton of gold, lower compared to 29,195 in 2023 with average ore grade of 7.19 grams per ton of gold, 47,516 in 2022 with average ore grade of 7.35 grams per ton of gold and 56,753 in 2021 with average grade of 5.86 grams per ton of gold.

Gold sold in 2024 were 5,750.74 ounces, lower than 5,803.21 ounces in 2023, 9,363.56 ounces in 2022 and 10,685.25 ounces in 2021. BRMC sold nickel ore this year with an aggregate volume of 808,556 tons ranging from 1.3% to 1.4% grade nickel ores lower compared to 854,074 tons ranging

from 1.3% to 1.4% grade nickel ores, lower than 1,169,328 ranging from 1.2% to 1.4% grade nickel ores in 2022 and lower than 1,175,050 tons of 1.2% to 1.5% grade nickel ores in 2021.

Foreign Exchange Rate

The Company's sales proceeds of its gold and nickel are mainly in U.S. dollars. A higher Philippine Peso to U.S. dollar exchange rate means higher Peso sales but would also reflect a foreign exchange loss on the restatement of the Company's dollar obligations. Conversely, a lower exchange rate reduces the Company's revenue in pesos but brings foreign exchange income on the loans. As of December 31, 2024, the peso to dollar exchange rate was at P57.845, P55.37 in 2023, P55.82 in 2022 and P50.99 in 2021.

Earnings Per Share

The earnings per share ultimately reflects the Company's financial and operational growth as a result of its performance in cost management, productivity and will provide investors comparable benchmarks relative to similar companies. The increase in the sale of gold and shipment of nickel ore will have a favorable impact on the Company's net sales and income. The reported Company earnings per share in 2024 is P0.61, P0.89 in 2023, P2.14 in 2022 and P2.29 in 2021.

Known Trends, Events or Uncertainties

The Company does not foresee any cash flow or liquidity problems over the next twelve (12) months. BRMC continues its mining operations and bring to the market saleable nickel ores; ILP continues to maintain steady market for quicklime products; AGP is expected to boost gold production and provide positive financial results despite upsurge in operating costs caused by escalating price of commodities and services, exorbitant power charges, fuel hikes, materials and supplies and some services. The Company will pursue innovation and enhancement of milling processes, methods, and equipment. The Company and its subsidiaries have pending claims applicable tax refunds from the Bureau of Internal Revenue.

Within the next twelve (12) months, the Company anticipates slight changes in the number of employees due to hiring of Project/Seasonal workers for the Pantingan project, BRMC, AFCC and KPLMSC.

The known trends, demands, commitments, events or uncertainties that may have a material impact on net sales or revenues or income from the operations of the Company are the prices of nickel and gold in the world market, the dollar to peso exchange rate, changes in the DENR's rules and regulations, drastic changes in fuel prices and the present economic condition affected by global health issues, war and military conflicts.

There are no known events that will trigger direct or contingent financial obligation that is material to the Company, including any default or acceleration of an obligation that have not been booked. The Company could be contingently liable for lawsuits and claims arising from the ordinary course of business which are unlikely to be substantial and not presently determinable. The Company has finally settled the remaining old debt subject of the 1993 Debt Restructuring Agreement on October 22, 2024.

There are no material off-balance sheet transactions, arrangements, obligations (including contingent obligations), and other relationship of the Company with unconsolidated entities or other persons created during the reporting period.

Except for what has been noted in the preceding paragraph, there were no material events or uncertainties known to management that had material impact on past performance, or that would have a material impact on the future operations, in respect of the following:

- Material commitments for capital expenditures that are reasonably expected to have a material impact on the Company's short-term or long-term liquidity;
- Known trends, events, or uncertainties that have had or that are reasonably expected to have a material favorable or unfavorable impact on net sales/revenues/income from continuing operations.

- Significant elements of income or loss that did not arise from the Company's continuing operations;
- Material changes in the financial statements of the Company from the year ended December 31, 2024 vs December 31, 2023; and
- Seasonal aspects that had a material impact on the Company's financial condition or results of operations.

ITEM 7. FINANCIAL STATEMENTS

The Audited Consolidated Financial Statements (Benguet Corporation and Subsidiaries) for the period ended December 31, 2024 is presented in Part V, Exhibits and Schedules, which said audited financial statements form part of this Annual Report (SEC Form 17-A).

ITEM 8. CHANGES IN AND DISAGREEMENTS WITH ACCOUNTANTS ON ACCOUNTING AND FINANCIAL DISCLOSURE

The Company's independent public accountants, Sycip Gorres Velayo and Company (SGV) was reappointed by the Board of Directors and approved/ratified by the stockholders of the Company on August 29, 2024 and December 20, 2024, respectively. Audit services of SGV for the calendar year ended December 31, 2024 included the examination of the parent and consolidated financial statements of the Company, assistance in the preparation of annual income tax return and other services related to filing of reports made with the Securities and Exchange Commission (SEC).

The Company is in compliance with SRC Rule 68, paragraph (3)(b)(iv) requiring the rotation of external auditors or engagement partners who have been engaged by the Company for a period of five (5) consecutive years. The Company's audit engagement partner for calendar year 2024 is Mr. Peter John R. Ventura- SEC accredited auditing partner of SGV. This is Mr. Ventura's sixth year as engagement partner for the Company. No event has occurred where SGV and the Company had any disagreement with regards to any matter relating to accounting principles or practices, financial statement disclosures, or auditing scope or procedures.

External audit fees

The aggregate audit fees inclusive of VAT and out-of-pocket expenses billed by SGV & Company are P6.4 million in 2024, P6.6 million for 2023, P5.7 million for 2022, and P5.5 million for 2021. There are no other services rendered by the external auditor other than the usual audit services as mentioned above.

Tax fees

Tax fee is nil in 2024 and 2023, P1.1 million in 2022 and P0.7 million in 2021 to the external auditor as professional fees for tax advisory services. For the years 2020 and 2019, no professional fees for tax advisory services were paid to the external auditor.

All other fees

There were no other services rendered by the external auditor other than the audit services and tax advisory services mentioned above.

Audit Committee's approval policies and procedures

Prior to the commencement of audit work, the external auditor presented their program and schedule to the Company which included discussion of issues and concerns regarding the audit work to be done. The external auditor presented to the Audit Committee the audited financial statements of the Company for the year for approval and for endorsement to the Board for final approval prior to release/issuance by the external auditor. Representatives of SGV are expected to be present at the

stockholders' meeting to respond to appropriate questions and will be given the opportunity to make a statement if they so desire.

The Audit Committee of the Company is composed of three (3) directors chaired by Independent Director, Atty. Rhodora L. Dapula, and the members are Independent Director, Dr. Bernardo M. Villegas and Director, Atty. Andrew Patrick R. Casiño.

PART III – CONTROL AND COMPENSATION INFORMATION

ITEM 9. DIRECTORS AND EXECUTIVE OFFICERS OF THE ISSUER

A. DIRECTORS

The Directors of the Company are elected at the Annual Stockholders' Meeting to hold office until the next succeeding annual meeting or until their respective successors have been elected and qualified. In the December 20, 2024 Annual Stockholders' Meeting, no election was held because the Temporary Restraining Order (TRO) issued by the Supreme Court enjoining the election of directors remained in force. The incumbent directors of the Company continued to remain in office on holdover capacity and below is a summary of their attendance to board meetings for the year 2024:

Board	Name	Date of Election/ Appointment	No. of Meetings Held During the Year	No. of Meetings Attended	% Attended
Chairman / Independent	Bernardo M. Villegas*	11.07.2019	6	6	100%
Member	Maria Remedios R.Pompidou	10.25.2000	6	6	100%
Member	Luis Juan L. Virata	08.08.1995	6	5	83.33%
Independent	Rhodora L. Dapula	08.16.2018	6	6	100%
Member	Andrew Patrick R. Casiño	06.04.2020	6	6	100%
Member	Kwok Yam Ian Chan	09.25.2020	6	6	100%
Member	Anthony M. Te	09.25.2020	6	6	100%
Member	Lina G. Fernandez	03.18.2021	6	6	100%
Member	Andrew Julian K. Romualdez	08.24.2022	6	6	100%
Member	Carlos Alfonso T. Ocampo	08.30.2023	6	6	100%
Independent	Elmer B. Serrano	08.30.2023	6	5	83.33%

^(*) Mr. Bernardo M. Villegas was elected Chairman of the Board of Directors effective November 7, 2019. He has been a Director of the Company since June 25, 1998 and appointed as Independent Director since 2002. His extension of term/retention as the Company's Independent Director was approved by the Board on August 29, 2024 and ratified by the Stockholders on December 20, 2024.

Below are the ages, citizenship, brief descriptions of business experience for the past five (5) years of below named incumbent directors. None of the Directors of the Company are government employees.

DIRECTORS REPRESENTING HOLDERS OF CONVERTIBLE PREFERRED CLASS A AND COMMON CLASS A STOCKS OF THE COMPANY:

MARIA REMEDIOS R. POMPIDOU, Director

Ms. Maria Remedios R. Pompidou, Filipino, 58 years old, first became a Director of the Company by appointment on October 25, 2000 and holds over as a director since then. She is currently the Chairman of BenguetCorp Laboratories, Inc., a wholly owned subsidiary of the Company (2013 to present); Trustee of Doña Remedios Trinidad Romualdez Medical Foundation Inc., Dr. V. Orestes Romualdez (DVOR) Educational Foundation Inc., and RTR Foundation for Scientific Research and Development Inc.; and Director of Sequioa Business Management Corporation, Perea Realty and Development Corporation and Red Palmtree Realty and Development Corporation. She is Rockefeller University Council Member and Cornell Weill Medical School Dean's Council Member.

LUIS JUAN L. VIRATA, Director

Mr. Luis Juan L. Virata, Filipino, 71 years old, first became a Director of the Company by appointment on August 8, 1995 and holds over as a director since then. He is Chairman and major shareholder of Amber Kinetics Philippines, Inc. Mr. Virata is also Chairman Emeritus of Exchange Equity Partners Group Corporation, Chairman of Cavitex Holdings, Inc., Chairman of MTV Investment Properties Holdings Corporation and Vice President of Exchange Properties Resources Corporation. He is also a Founder and Trustee of Asia Society Philippine Foundation and the Metropolitan Museum of Manila and is a Board Member of the Huntsman Foundation Wharton School University of Pennsylvania. He previously held positions with Dillon, Read and Co., Crocker National Bank, Bankers Trust Company, Philippine Airlines, the Philippine Stock Exchange and Makati Stock Exchange. He received his Bachelor of Arts and Master of Arts degrees in Economics from Trinity College, Cambridge University, UK in 1976 and his Master of Business Administration degree from the Wharton School, USA in 1979.

ANDREW PATRICK R. CASIÑO, Director

Member of the Audit Committee

Atty. Andrew Patrick R. Casiño, Filipino, 58 years old, first became a Director of the Company by appointment on June 4, 2020 and holds over as a director since then. He is a litigation lawyer with 25-year work experience as practicing lawyer in New York State in the fields of: - Criminal matters (domestic violence, DWI, orders of protection, misdemeanors), Commercial litigation, Philippine law matters (counselling and review of legal documents). Real estate (sale and purchase). Family and domestic matters (custody, child support, orders of protection, spousal support), Probate of last will and testaments, Petitions for administration of estates, Family based immigration, Employment based Immigration, US naturalization, Deportation proceedings, Petitions for political asylum, Loan contracts, Employment contracts, Commercial & Residential leases, Settlement agreements, Loan disputes, Trademarks and copyrights, Divorce and legal separation. Presently, he is collaborator on all legal matters in the United States of Philippine based law firms, Florello R. Jose and Associates and Law Firm of Ocampo Manalo. He graduated from the University of the Philippines with a degree of Bachelor of Science in Economics in 1987 and Bachelor of Laws in 1991. He obtained his Masters of Laws in Intellectual Property from the Franklin Pierce Law School, University of New Hampshire in 1999. Mr. Casiño passed the Philippine Bar Examinations in 1991 and New York State Bar Examinations in 1996.

ANTHONY M. TE, Director

Chairman of the Executive Committee and Salary and Stock Option Committee; Member of the Nominations and Election Committee

Mr. Anthony M. Te, Filipino, 55 years old, first became a Director of the Company by appointment on September 25, 2020 and holds over as director since then. He is currently a Director of <u>listed</u> <u>companies</u> Marcventures Holdings, Inc., EEI Corporation and Philippine Stock Exchange, Inc. He is also a director at Manila Standard Today Management, Inc., Media Quest Holdings Inc., Philippine Veterans Bank, Media Serbisyo Production Corporation, Armstrong Capital Holdings Corporation, Marcventures Mining and Development Corporation and Strong Building (Mining) Development Corporation. He was elected to the PSE Board in 2022 and was appointed to the Capital Market Development Committee. He is the nominee of Arnstrong Securities, Inc. and Director of the Chamber of Mines of the Philippines. Mr. Te is the chairman of Amalgamated Project Management Services, Inc., AE Pproteina Industries, Inc., Asian Asset Insurance with Brokerage Corporation (where he also serves as Soliciting Official) and Asian Appraisal Company, Inc. He is the Chairman and President of Cymac Holdings Corporation, Chairman and Chief Financial Officer of Mactel Corporation since 1999 and Principal of MNM Capital OPC in 2021. He was an independent director of Equitable PCI Bank (2004-2006), Director and Treasurer of PAL Holdings, Inc. (2000-2003), Director of Balabac Resources and Holdings Co., Inc., EBECOM Holdings, Inc., MRC Allied Industries, Inc., Oriental Petroleum and Minerals Corporation, PGA Cars, Inc. and Phoenix Energy Corp. Mr. Te obtained his Bachelor of Arts in Business Management in De La Salle University.

CARLOS ALFONSO T. OCAMPO, Director

Member of the Executive Committee and Board Risk Oversight Committee

Atty. Ocampo, Filipino, 59 years old, first became a Director of the Company by appointment on August 30, 2023. He is Founding Partner of Ocampo & Manalo Law Firm which was established in 1997. He is currently a board member of publicly-listed companies EEI Corporation and Marcventures Holdings Inc. as Director and Independent Director, respectively. He is a member of the Board of other corporations including MAA General Assurance Corporation, BlueLion Motors Corporation, Jam Transit, Inc., Prestige Cars, Autohaus Corporation, Subic Air, Inc., Brycl Resorts International Inc., Autohaus Quezon City, Inc., Jam Liner, Inc. He is Vice-Chairman of Philippine Veterans Bank. He is the Corporate Secretary of Manila Golf & Country Club, MAA General Assurance Corporation, Skytowers Infra, Inc., among others. He previously served as Vice President and General Counsel of Air Philippines and Senior Consultant of Capital Equity Legal Group. He obtained his Bachelor of Laws from the University of the Philippines and earned a Certificate in International Finance from Harvard Law School at Harvard University, Executive Education as well as a Certificate in Economic Development from the John F. Kennedy School of Government at Harvard University, Executive Education.

RHODORA L. DAPULA, Independent Director

Chairman of the Audit Committee and Member of the Corporate Governance Committee

Atty. Rhodora L. Dapula, Filipino, 47 years old, first became an Independent Director of the Company by appointment on August 16, 2018 and holds over as independent director since then. She is currently an Independent Director of *listed company* Bright Kindle Resources and Investments, Inc. She is a partner in Dapula, Dapula and Associates Law Offices since August 2007; and President/CEO of G.D. Brains and Castles Inc., and Proficientlink Realty Corporation since 2017. She is a CPA-Lawyer, Professional Regulation Commission (PRC) Licensed Real Estate Broker, PRC Licensed Real Estate Appraiser, PRC Licensed Real Estate Consultant, PRC Licensed Environmental Planner and Licensed Life and Variable Life Financial Advisor. She is a PRC accredited lecturer for Real Estate Service Seminars and Trainings and a Certified International Property Specialist.

ELMER B. SERRANO, Independent Director

Chairman of the Board Risk Oversight Committee, Member of the Corporate Governance Committee, and Member of the Related Party Transactions Committee

Atty. Serrano, Filipino, 57 years old, was appointed as an Independent Director of the Company on August 30, 2023. He is a practicing lawyer specializing in corporate law and is the Managing Partner and founder of the law firm SERRANO LAW. Atty. Serrano has been awarded "Asia Best Lawyer" by the International Financial Law Review (IFLR), "Leading Lawyer-Highly Regarded" by IFLR 1000, and named "Leading Individual" by the Legal 500 Asia Pacific.

Atty. Serrano is the Chairman of Dominion Holdings, Inc. (formerly BDO Leasing and Fnance, Inc.), a director of DFNN Inc., and Independent Director of Philippine Telegraph and Telephone Corporation. He is also a director of 2GO Group, Inc. He is also the Corporate Information Officer of BDO Unibank, Inc. and serves as the corporate secretary of bank's subsidiaries and affiliates.

Atty. Serrano is also the Corporate Secretary of SM Investments Corporation, SM Prime Holdings, Inc., Premium Leisure Corporation, Atlas Consolidated Mining and Development Corporation, as well as subsidiaries of BDO Unibank, Inc., and of DFNN Inc. He is also Corporate Secretary of, or counsel to, prominent financial industry organizations, such as the Bankers Association of the Philippines, the Philippines Payments Management, Inc. and the PDS Group of Companies.

Atty. Serrano is a Certified Associate Treasury Professional and was among the top graduates of the Trust Institute of the Philippines in 2001. He holds a Juris Doctor degree from the Ateneo de Manila University and a BS Legal Management degree from the same university.

REPRESENTING HOLDERS OF COMMON CLASS B STOCK OF THE COMPANY:

BERNARDO M. VILLEGAS, Chairman of the Board / Independent Director, Chairman of the Nominations and Election Committee, Corporate Governance Committee and Related Party Transactions Committee; Member of the Executive Committee, Salary and Stock Option Committee, Audit Committee and Board Risk Oversight Committee

Dr. Bernardo M. Villegas, Filipino, 86 years old, has been the Chairman of the Board since November 7, 2019. He first became a Director of the Company by appointment on June 25, 1998. He was designated Independent Director of the Company since 2002 up to present, although he has been a Director prior to the issuance of SEC Circular No. 16 dated November 29, 2002. He is currently Chairman and Independent Director of listed company, Filipino Fund, Inc and Independent Director of listed companies: DMCI Holdings, Inc. and Abacore Capital Holdings, Inc. He holds, among others, the following directorships/positions: Independent Director of Benguetcorp Resources Management Corporation (2012 to present), a wholly owned subsidiary of the Company; Director and Consultant of Transnational Diversified, Inc. (1998 to present): Director, PHINMA Properties (2011 to present); Director, Dualtech Foundation (1998 to present); Columnist, Manila Bulletin (1964 to present); Professor, University of Asia and the Pacific (1989 to present) and Chairman and Director, Cuervo Appraisers, Inc. Formerly, he was Independent Director of First Metro Philippine Equity Exchange Traded Fund, Inc. (2010-2022); Director of Alaska Milk Corporation (1999-2019); Director, Makati Business Club (1981-2010); Director, Phinma Foundation (1995-2001); Director, Pilipinas Shell Foundation (1995-2001); Senior Vice President, University of Asia and the Pacific (2004-2006); Chairman, Center for Research and Communication (1995); President, Philippine Economic Society (1972-1974); Chairman, Department of Economics-De La Salle University Manila (1964-1969), Committee on the National Economy & Patrimony (1986); Director, Economic Research Bureau and Graduate School of Business-De La Salle University Manila (1967-1968); Project Director, Philippine Economic History under the National Historical Commission (1969-1972); Member, Preparatory Commission for Constitutional Reforms and Constitutional Commission (1999); Consultant, Productivity Development Center-National Economic Council and Program Implementation Agency (1968-1969). He earned his Ph.D. in Economics from Harvard University and obtained his Bachelor's degrees in Commerce and Humanities (both Summa Cum Laude) from De La Salle University.

KWOK YAM IAN CHAN, Director Member of Related Party Transactions Committee

Mr. Kwok Yam Ian Chan, Filipino, 37 years old, first became a Director of the Company by appointment on September 25, 2020 and holds over as director since then. He is currently an Independent Director of <u>listed companies</u> Marcventures Holdings, Inc. and Bright Kindle Resources and Investments, Inc. He is a Managing Director of Zenith System and Heavy Equipment, Seaborne Shipping Inc., Isky Empire Realty Inc., King Dragon Realty Corporation, Armstrong Securities, Inc. and DK Ventures Inc. Mr. Chan graduated from De La Salle-College of St. Benilde with a Bachelor of Science degree in Business Administration major in Export Management. He obtained his master's degree in Economics, major in Finance at California Polytechnic University.

LINA G. FERNANDEZ, Director Member of Executive Committee and Related Party Transactions Committee

Atty. Fernandez, Filipino, 60 years old, first became a Director of the Company by appointment on March 18, 2021. She was elected as President of the Company since March 18, 2021. Before her election/appointment. Atty. Fernandez served as one of the designated Officers-In-Charge of the Company (October 2018-Mar 2021), and concurrently Senior Vice President for Finance and Comptroller since March 2018-March 2021. Atty. Fernandez previously served the Company as its Senior Vice President for Finance and Nickel Marketing Officer (November 2015-March 2018); Vice President for Corporate Planning; Chief of Staff (August 2006-November 2015); Risk Management Officer (March 2011-March 2018) and Compliance Officer for Corporate Governance (December 2016-March 2018). She also holds several positions and directorship in the following subsidiaries of the Company: President (2021 to present) and Director (2014-Present) of Benguetcorp Resources Management Corporation; Chairman of Arrow Freight and Construction Corporation, Benguetcorp Construction and Development Corporation (Formerly Batong Buhay Mineral Resources Corporation), BC Property Management, Inc., Berec Land Resources, Inc., Balatoc Gold Resources Corporation, Benquet Pantukan Gold Corporation and Keystone Port Logistics and Management Services Corporation; Chairman and President of Benquet Management Corporation and BMC Forestry Corporation; Director and President of Ifaratoc Mineral Resources Corporation, Director, President and Chief Operating Officer of Pillars of Exemplary Consultants, Inc.; Director and Vice President of Acupan Gold Mines, Inc., and Sagittarius Alpha Realty Corporation; Director and Treasurer of Agua de Oro Ventures Corporation, and Benguetrade, Inc. and Director of Benguet Laboratories, Inc. She is a CPAlawyer.

ANDREW JULIAN K. ROMUALDEZ, Director Member of Executive Committee, Salary and Stock Option Committee and Nominations and Election Committee

Mr. Romualdez, Filipino, 25 years old, first became a Director of the Company by appointment on August 24, 2022. He is currently a Director of *listed companies* Marcventures Holdings, Inc. (MHI) and Bright Kindle Resources and Investments, Inc. (BKR). He is also a director of the Company's subsidiaries, Benguetcorp Resources Management Corporation, Arrow Freight and Construction Corporation, Benguetcorp Laboratories, Inc. and Benguet Management Corporation. He is also a Director of MHI's subsidiaries namely: Marcventures Mining and Development Corporation, Alumina Mining Phils., Inc. Bauxite Resources, Inc. and Brightgreen Resources Corporation. He is also a director of BKR's subsidiary, Brightstar Holdings and Development, Inc. He is a Director of Armstrong Securities, Inc. and Armstrong Capital Holdings, Inc. Mr. Romualdez graduated from Cornell University in 2022 with a Bachelor's Degree in International Agriculture and Rural Development.

B. EXECUTIVE OFFICERS

The executive officers of the Company are appointed or elected annually to a one-year term (subject to removal) by the Board of Directors immediately following the Annual Stockholders' Meeting.

Below are their respective ages, citizenships, positions held in the Company and its subsidiaries and brief description of business experiences. None of the executive officers of the Company are government employees.

LINA G. FERNANDEZ, Filipino, 60 years old, is the President of the Company since March 18, 2021.

REYNALDO P. MENDOZA, Filipino, **67** years old, is the Executive Vice President since March 18, 2021 and Assistant Corporate Secretary (2002 to present). He previously served as one of the

two Officers-In-Charge of the Company (October 2018 to March 2021) and concurrently Senior Vice President for Legal (August 2006 to March 2021). Currently, he holds various positions and directorship in the following subsidiaries of the Company: He is concurrent Chairman and President of Acupan Gold Mines, Inc. and Sagittarius Alpha Realty Corporation; Chairman of BenguetCorp Resources Management Corporation, Agua de Oro Ventures, Inc., Ifaratoc Mineral Resources Corp., Benquetrade, Inc. and Pillars of Exemplary Consultants, Inc.; Director and President of Benguetcorp Construction and Development Corporation (Formerly Batong Buhay Mineral Resources Corporation), Benguet Pantukan Gold Corporation, Berec Land Resources, Inc., Balatoc Gold Resources Corporation, and BC Property Management, Inc.; Director of BenguetCorp Laboratories, Inc., and BMC Forestry Corporation; Director and Chief Operating Officer of Benguet Management Corporation; Director and Vice President-Legal of Arrow Freight and Construction Corporation and Director and Vice President of Keystone Port Logistics and Management Services Corporation. Before joining Benguet Corporation, he was Staff Lawyer of PDCP (1987-1988) and Malayan Insurance Company (1986-1987); Associate Lawyer, Castro, Villamor & Associate (1985-1986); Apprentice Lawyer, Gono Law Office (1985-1986). He obtained his Bachelor of Law degree from the University of the Philippines in 1984 and passed the bar examination in the same year.

MAX D. ARCEÑO, Filipino, 63 years old, is the Senior Vice President for Finance and Treasurer of the Company since March 18, 2021. He was also designated as Compliance Officer for Corporate Governance since August 24, 2021. He previously served as its Vice President for Finance and Treasurer (November 2019-March 2021):Vice President for Finance, Treasurer, Taxation/Materials (March 2018-November 2019); Vice President for Accounting and Treasurer (March 2013-March 2018) and Assistant Vice President for Treasury (July 2011-February 2013). He also holds various positions in the following subsidiaries of the Company: he is concurrent Director and Treasurer of BenguetCorp Laboratories, Inc. (Feb. 2013 to present); Director, President and General Manager of Arrow Freight and Construction Corporation and Benguetrade, Inc.; Director and President of Keystone Port Logistics and Management Services Corporation, Director and Treasurer of BenquetCorp Resources Management Corporation, Benquet Management Corporation, BMC Forestry Corporation, Berec Land Resources, Inc., BC Property Management, Inc., Balatoc Gold Resources Corporation, Benguet Pantukan Gold Corporation, Benguetcorp Construction and Development Corporation (Formerly Batong Buhay Mineral Resources Corporation), Acupan Gold Mines, Inc., Sagittarius Alpha Realty Corporation, Ifaratoc Mineral Resources Corporation and Pillars and Exemplary, Inc.; and Director of Agua de Oro Ventures, Inc. Mr. Arceño graduated from the University of the East (Batch 1983) with a degree in BSBA-Accounting and passed the board examination for Certified Public Accountant in 1984. He joined the Company in 1985 as Accounting Staff I, where he rose from the ranks.

VALERIANO B. BONGALOS, JR., Filipino, 75 years old, is the Vice President/Resident Manager of Benquet District Operations since January 15, 2020. He also holds positions in in the following subsidiaries of the Company: Director and President of Agua de Oro Ventures Corporation and Director of Acupan Gold Mines, Inc., Balatoc Gold Resources Corporation, Benguetcorp Construction and Development Corporation (Formerly Batong Buhay Mineral Resources Corporation), BC Property Management, Inc. Berec Land Resources, Inc., Benguet Management Corporation, BMC Forestry Corporation, Benguet Pantukan Gold Corporation, Ifaratoc Mineral Resources Corporation, Pillars of Exemplary Consultants, Inc. and Sagittarius Alpha Realty Corporation. He previously served the Company as its Consultant (May 2018-January 14, 2020); Vice President & General Manager of Benguet District Operations (July 2013-Sept 2015), and Mine Manager of Benguet Gold Operation, Antamok Northern Division (1978-1980) and in 1984-1992. He was a Mine Manager, Lepanto Consolidated Mining Co., Lepanto, Mankayan, Benquet (2016-2017). He was Vice President for Operations and Resident Manager, Apex Mining Co., Compostella Valley, Mindanao. Inc. (May 2010-July 2011); Mine Manager, Phuoc Son Gold Company, Ltd., Quang Nam, Vietnam (November 2006-July 2009); Mine Planning Manager, Ban Phuc Nickel Mines in Hanoi, Vietnam (March to June 2006); Mine Superintendent, Lepanto Consolidated Mining Company (1999-2001); Tunnel Superintendent, San Roque Multipurpose Dam (1998); Mine Manager, Base Metal Mineral Res. Corp. (1996-1997) Davao Del Norte; Project Manager, Ground Specialist, Inc.-Contractor (1994-1995) Lepanto Mine, Mankayan; Drilling & Blasting Engineer of Al Dhary International Group in Tabuk, Saudi Arabia (1993-1994); Senior Assistant Mining Engineer, Zambia Consolidated Copper Mines (Underground Copper Mine) in Zambia, Africa (1980-1983); Project Engineer, Argonaut Mineral Exploration (1975-1978); and Shift Foreman, Long Beach Mining Corporation (1974). He is a BS Mining Engineering graduate of Mapua Institute of Technology (1973) and completed his Management Development Program at AIM in 1987. He obtained his Mining Engineering license in 1974.

EMMANUEL M. PUSPOS, Filipino, 62 years old, is the Assistant Vice President for Mining and Business Development following his promotion on August 30, 2023. He was appointed as Chief Risk Officer on March 26, 2025 to replace Ms. Pamela M. Gendrano who died on January 17, 2025. Before his promotion, he was the Company's Chief Mining Engineer (April 2022 – August 2023). He previously served the Company as Senior Mining Engineer – Corporate Engineering Head (June 2008 to May 2011) and Company's subsidiary, Benguetcorp Resources Management Corporation as Assistant Vice President – Head of Operations/Engineering (June 2011 to August 2014). He was formerly the Mine Manager, OIC-Mine and Port Operations (April 2016 to July 2019) of Agata Mining Ventures, Inc. and Chief Mining Engineer of TVI Resource Development (Philippines) Inc. (January 2015 to April 2016). He obtained his Bachelor's degree in Mining Engineering from Mapua Institute of Technology. He is a licensed Mining Engineer.

DEOGRACIAS P. HALOG, Filipino, 71 years old, is the Assistant Vice President for Technical Operations since March 22, 2024. He is a licensed Mechanical Engineer. He started his mining career in the Company in 1977 and was involved in various operations and projects such as Benguet Gold Operations (BGO), Benguet Antamok Gold Operations (BAGO) and Benguet Canada Ltd. – Ecuador Project. He left in 1990 to seek opportunity to work abroad and joined local construction and mining companies, to name a few: Apex Mining Co. Inc., Paramina Earth Technologies, Inc., Besra Vietnam, Peti Trading Inc., Lepanto Consolidated Mining Company and TVIRD-BGSP. He earned his Bachelor of Science degree in Mechanical Engineering from Mapua Institute of Technology in 1976. He attended course in Management at the Asian Institute of Management (AIM) in 1987 and Entrepreneurship at University of the Philippines-Diliman in 1996.

HERMOGENE H. REAL, Filipino, 69 years old, is the Corporate Secretary of the Company since October 25, 2000. She is currently Director of publicly-listed Companies: (i) Bright Kindle Resources and Investment, Inc., where she is also Assistant Corporate Secretary (2014 to present) and (ii) Prime Media Holdings, Inc. (2021 to present). She is also Director of Arrow Freight and Construction Corporation (2019 to present); Director of Benguetcorp Laboratories, Inc. (2019 to present); Director of Southern Alluvial Minerals and Alumina Resources Inc. (2017 to present); Director of Brightgreen Resources Holding, Inc. (2017 to present); Director of Strong Mighty Steel, Inc. (2017 to present); Director/President of Mairete Asset Holdings, Inc. (2017 to present): Director of Crimson Bauxite Mining Development Corp. (2018 to present): Director of High Reliance Holdings Company, Inc. (2021 to present); Director/Treasurer of Golden Peregrine Holdings, Inc. (January 2022 to present); and Director of Bright Star Holdings and Development, Inc. (March 2022 to present). She is also Corporate Secretary of Benguetcorp Resources Management Corporation (2014 to present), Corporate Secretary of Universal Re Condominium Corporation; Trustee and Assistant Corporate Secretary, Doña Remedios Trinidad Romualdez Medical Foundation, Inc. (1996 to present); and Practicing Lawyer, D. S. Tantuico and Associates (1998 to present).

Resignation / Demise of Directors or Officers

No directors have resigned as of to date. Demise of Ms. Pamela M. Gendrano, Assistant Vice President for Environmental Compliance and Chief Risk Officer on January 17, 2025.

Significant Employees

Other than the executive officers, other employees are expected by the Company to make significant contribution to the business.

Family Relationship

Except with respect to Mr. Andrew Julian K. Romualdez who is nephew of Ms. Maria Remedios R. Pompidou, no other directors or executive officers is related to another by affinity or consanguinity.

Involvement in Certain Legal Proceedings

The Company is not aware of any bankruptcy proceeding against any of its directors and officers during the past five (5) years. Neither is the Company aware of any conviction by final judgment in any criminal proceeding, or the involvement, of any of its directors or officers, in any case where such officer or director has been subject to any order, judgment or decree of competent jurisdiction, permanently or temporarily enjoining, barring, suspending, or otherwise limiting his involvement in any type of business, including those connected with securities trading, investments, insurance or banking activities.

ITEM 10. EXECUTIVE COMPENSATION

Summary Compensation Table

The aggregate compensation paid or incurred during the last two fiscal years and estimated to be paid in the ensuing fiscal year to the President, four most highly compensated executive officers and all other directors and officers of the Company as a group are as follows:

	Name	Principal Position
1.	Lina G. Fernandez	President
2.	Reynaldo P. Mendoza	Executive Vice President
	-	and Asst. Corporate Secretary
3.	Max D. Arceño	Senior Vice President, Finance & Treasurer
4.	Valeriano B. Bongalos, Jr.	Vice President/Resident Manager-Benguet
		District Operation
5.	Emmanuel M. Puspos	Assistant Vice President for Mining and Business
		Development
6.	Deogracias P. Halog	Assistant Vice President for Technical Operations

	Veer	Salary	Bonus	Other Annual
	Year	(In-Million)	(In-Million)	Compensation
	2025*	₽ 33.2	₽ 4.1	₽ 1.6
All above-named officers as a group	2024**	29.6	3.7	1.6
	2023**	29.6	3.6	1.7
	2022**	28.8	4.8	1.6
All other directors and officers as a	2025*	₽ 12.2	₽ 7.0	₽3.2
group unnamed	2024**	10.6	5.9	3.2
	2023**	10.5	5.0	2.0
	2022**	9.9	7.9	2.3

(*) - Estimate (**) - Actual

Employment Contract with Executive Officers

The Company has no special employment contracts with its executive officers. In the ordinary course of business, the Company has employment contracts with all its employees, including officers, in compliance with the applicable labor laws and regulations. There are no compensatory plan or arrangements with any executive officers, which results or will result from the resignation, retirement or any other termination of the executive officer's employment or from a change-in-control in the Company or a change in the executive officer's responsibilities following a change in control of the Company.

Compensation of Directors

The non-executive directors of the Company do not receive any regular compensation from the Company, except for every regular, special or committee meeting actually attended, for which members of the Board of Directors receive a per diem of 25,000.00 (gross). For the year 2024 and 2023, the directors received Christmas gift in appreciation of their invaluable service and support to the Company. There are no other material terms of, nor any other arrangements with regard to compensation as to which directors are compensated, or are to be compensated, directly or indirectly, for any services provided as a director.

Retirement Plan

The Company maintained a qualified, noncontributory trusted pension plan covering substantially all of its executive officers and employees. Normal retirement age under the plan is age 60, except for non-supervisory underground mine workers who have the option to retire at age 55. An employee shall also be entitled to a benefit equal to 50% of his monthly basic salary or the normal benefit, whichever is higher, if his employment is terminated for reasons beyond his control, such as death, disability or government policy. Benefits are dependent on the years of service and the respective employee's compensation.

Incentive Bonus Plan

The Company has an Incentive Bonus Plan. The purposes of the Plan are: (1) to attract, employ and retain management personnel of outstanding competence, and (2) to motivate its management personnel to deliver superior performance in pursuing the goals and business interests of the Company. The Plan provides for a bonus award, calculated on the basis of net income, to top operating executives, managers and members of the Board of Directors. Bonus awards are either paid in full directly to the awardees or are transferred to a trust fund and are payable to the awardees in three installments generally over a period of two years. Bonus awards for any year shall be paid in cash, or in common stock. Either Common Class A or Common Class B shares may be issued under the Plan subject to the legal limitations on ownership of Common Class A shares which can be owned only by Philippine citizens. From 1995 to 2024, there was no amount set aside for payment of bonuses in accordance with the Plan.

Warrants and Options Outstanding

Since 1975, the Company provided Stock Option Plan (the "Plan") for its and subsidiaries' selected staff employees, directors and consultants. The purpose in granting options are: (1) to encourage stock ownership in the Company, and thereby generate an interest in the Company and its subsidiaries, (2) to promote its affairs, and (3) to encourage its staff employees, directors and consultants to remain in the employ of the Company. The Plan have been amended several times and among others, to extend the termination date of granting stock options. The latest amendment was approved by the Board of Directors on August 24, 2022 and ratified by the stockholders of the Company during the November 9, 2022 annual stockholders' meeting, extending the termination date of granting stock options under the Plan until May 31, 2031.

The following changes in the stock option grants was approved by the Board in its meeting held on August 31, 2016 and ratified by the stockholders during the November 8, 2018 Annual Stockholders' Meeting due to change in par value of both Class A and B common shares from P3.00 to $\Huge{P}1.00$ per share: (a.) Change in the total number of unexercised shares on the May 3, 2011, September 7, 2012 and May 28, 2014 grants and corresponding change in the exercise price; (b.) Change in the maximum number of shares per grant: from 500,000 to 1,500,000 shares; and (c.) Repricing of the unexercised options in the May 3, 2011, September 7, 2012 and May 28, 2014 grants. The exercised price (net of 25% discount) is $\Huge{P}1.69$ per share for Common Class "A" and $\Huge{P}1.91$ per share for Common Class "B". (The exercised price is based on closing price of August 18, 2016: Common Class A – $\Huge{P}2.25$ and Common Class B – $\Huge{P}2.55$ less 25% discount pursuant to the provisions of the Plan of the Company). The repricing was brought about by the low turn-out in the availment of the grant due to high exercise price compared to market price.

In the current implementation of the Company's Plan, as of December 31, 2024, the following stock options are still valid from the date of the grant:

- a. On May 28, 2014, under the amended Plan, the Company granted stock option to certain directors in recognition of their long years of service to the Company. The option grants of 600,000 common shares with par value of P3.00 per share consisting of 360,000 Class "A" common shares at an exercise price of P7.13 per share and 240,000 Class "B" common shares at an exercise of P7.13 per share came entirely from the current balance of unissued/cancelled stock options under the present implementation of the Plan. Due to change in par value of both Class A and B shares from P3.00 to P1.00 per share and change of exercise prices from P7.13 to P1.69 per share for class "A" and P7.13 per share to P1.91 per share, the total number of unexercised shares were adjusted to 1,800,000 common shares consisting of 1,080,000 class "A" shares and 720,000 class "B" shares. The shares are exempted from registration under the SRC Rules, and the listing was approved by the PSE. The options expired on May 28, 2024, pursuant to the provisions of the Plan, that no option is exercisable after ten (10) years from the date of grant. Expired options totaled 1,080,000 common shares available for future grant.
- b. On March 17, 2017, under the amended Plan, the Company granted stock option to directors and to qualified staff, employees, and consultants of the Company and its subsidiaries who have rendered at least two (2) years of service as of March 11, 2017. The options grant of 8,414,375 common shares were sourced from the cancelled, expired and forfeited shares from previous stock option grants consisting of 5,048,625 Common Class A shares at exercise price of P1.38 per share and 3,365,750 Common Class B shares at exercise price of P1.43 per share. The shares are exempted from registration under SEC's MSRD Resolution No. 5 Series 2020 dated February 28, 2020 and the listing was also approved in principle by the PSE in its Notice of Approval dated March 4, 2021. As of December 31, 2024, the number of options granted to, exercised, and unexercised by the President, four (4) other most highly compensated executive officers and all other officers and directors of the Company under this grant are as follows:

	Option Grants		•		Opti Exerc		Options Unexercised		Options C (Cessati employ directo	on from ment /
	Class	Class	Class	Class	Class	Class	Class	Class	Class	Class
	<u>A</u>	B	A	B	A	B	A	В	A	В
LG Fernandez	138,600	92,400	₽1.38	₽1.43	138,600	92,400	-	-	-	-
Four Highest Paid Named Exec. Officers:										
RP Mendoza	138,600	92,400	₽1.38	₽1.43	138,600	92,400	-	-	-	-
MD Arceño	127,050	84,700	₽1.38	₽1.43	127,050	84,700	-	-	-	-
VB Bongalos, Jr.	-	-	-	-	-	-	-	-	-	-
EM Puspos	-	-	-	-	-	-	-	-	-	-
All Other Officers and Directors as a Group Unnamed	462,000	308,000	₽ 1.38	₽1.43	115,500	77,000	346,500	231,000	-	-

Under the Plan, options are exercisable to the extent of 30% after one year from the grant, 60% after two years from the grant, and 100% after three years from the grant. Shares included in each installment may be exercised in whole at any time, or in part from time to time, until the expiration of the option. Payment may be made in full and in cash or installment over three years, at the time of the exercise of the option, provided that the stock certificate shall be issued only upon full payment of the option price. Options are non-transferable and no option is exercisable after ten (10) years from the date of the grant.

c. On March 18, 2021, under the amended Plan, the Company granted stock option to directors, qualified staff, employees, and consultants of the Company and its subsidiaries who have

rendered at least two (2) years of service as of March 15, 2021. The option grant of 3,003,612 common shares were sourced entirely from the current balance of unissued / cancelled stock option under the present implementation of the Plan consisting of 1,802,179 Common Class A shares at exercise price of P2.19 per share and 1,201,433 Common Class B shares at exercise price of P2.05 per share. The shares are exempted from registration under SEC's MSRD Resolution No. 3 Series of 2024 dated April 4, 2024 and the listing was also approved in principle by the PSE in its Notice of Approval dated December 4, 2024.

As of December 31, 2024, the number of options granted to, exercised and unexercised by the President, four (4) other most highly compensated executive officers and all other officers and directors of the Company are as follows:

	Option Grants		Option Option Grants Exercise Price/Share		Options Exercised		Options Unexercised		Options Cancelled (Cessation from employment / directorship)	
	Class	Class	Class	Class	Class	Class	Class	Class	Class	Class B
	A	В	А	В	A	В	А	В	А	
LG Fernandez	57,750	38,500	P2.19	P2.05	-	-	57,750	38,500	-	-
Four Highest Paid Named Exec. Officers:										
RP Mendoza	57,750	38,500	P 2.19	P 2.05	-	-	57,750	38,500	-	-
MD Arceño	43,313	28,875	₽2.19	₽2.05	-	-	43,313	28,875	-	-
VB Bongalos, Jr.	24,750	16,500	₽2.19	₽2.05	-	-	24,750	16,500	-	-
EM Puspos	-	-	-	-	-	-	-	-	-	-
All Other Officers and Directors as a Group Unnamed	315,000	210,000	₽2.19	₽2.05	-	-	315,000	210,000	-	-

Under the Plan, options are non-transferable and exercisable to the extent of 30% after one year from the grant, 60% after two years from the grant, and 100% after three years from the grant. Shares included in each installment may be exercised in whole at any time, or in part from time to time, until the expiration of the option. Payment may be made in full and in cash or installment over three years, at the time of the exercise of the option, provided that the stock certificate shall be issued only upon full payment of the option price. No option is exercisable after ten (10) years from the date of the grant.

ITEM 11. SECURITY OWNERSHIP OF CERTAIN BENEFICIAL OWNERS AND MANAGEMENT

Security Ownership of Certain Beneficial Owners

The following table sets forth certain information about persons (or "groups" of persons) known by the Company to be the directly or indirectly the record or beneficial owner of more than five percent (5%) of any class of the Company's outstanding stocks as of April 15, 2025:

Title of Class	Name, Address of Record Owner And Relationship with Issuer	Name of Beneficial Owner & Relationship with Record Owner	Citizenship	Number of Shares Held	Percent Per Class
	PCD Nominee Corporation (Filipino), 29th Floor,				
	BDO Equitable Tower, 8751 Paseo de Roxas,	(see note ¹)	Filipino	191,900,903	44.64%

¹ PCD Nominee Corporation ("PCDNC") is a wholly-owned subsidiary of Philippine Central Depository, Inc. ("PCD"). The beneficial owners of such shares registered under the name of PCDNC are PCD's participants who hold the shares in their own behalf or in behalf of their clients. The PCD is prohibited from voting these

	Makati City. (Stockholder)				
	Palm Ave. Holding Company, Inc. 3F Universal Re-Building, 106 Paseo de Roxas, Makati City (Stockholder)	(see note ²)	Filipino	65,624,727	15.27%
Class A Common	Palm Avenue Holding Company and/ or Palm Avenue Realty Corp., Metro Manila, Phil. Sequestered by the Republic of the Philippines, Presidential Commission on Good Government under Executive Order Nos. 1 & 2 c/o PCGG, IRC Bldg., #82 EDSA, Mandaluyong City. (Stockholder)	(see note ²)	Filipino	63,920,490	14.87%
	Red Earth Mineral Resources Corporation 16 th Floor, Citibank Tower (now BDO Towers- Valero), Paseo de Roxas, Makati City. (Stockholder)	(see note ³)	Filipino	53,000,000	12.33%
	Palm Avenue Holdings Company and/or Palm Avenue Realty Corporation, Metro Manila, Philippines. Sequestered by the Republic of the Philippines thru PCGG under E.O. Nos. 1 & 2 and reverted to Palm Avenue as sequestered shares per Supreme Court Entry of Judgment dated March 15, 1993 in G.R. No. 90667 entitled Republic of the Philippines vs. Sandiganbayan, Palm Avenue Realty Development Corp. and Palm Avenue Holdings Company c/o PCGG, IRC Bldg., #82 EDSA Mandaluyong City. (Stockholder)	(see note ²)	Filipino	30,834,375	7.17%
Class A	PCD Nominee Corporation (Filipino), 29 th Floor, BDO Equitable Tower, 8751 Paseo de Roxas, Makati City. (Stockholder)	(see note ¹)	Filipino	65,794	30.31%
Convertible Preferred	Fairmount Real Estate c/o PCGG 6 th Floor, PhilComcen Bldg., Ortigas Avenue cor. San Miguel Avenue, Pasig City (Stockholder)	(see note ⁴)	Filipino	59,262	27.30%
	PCD Nominee Corporation (Filipino), 29th Floor, BDO Equitable Tower, 8751 Paseo de Roxas, Makati City. (Stockholder)	(see note ¹)	Filipino	122,441,172	42.80%
Class B Common	Palm Ave. Realty & Devt. Corporation, 3F Universal Re-Building, 106 Paseo de Roxas, Makati City (Stockholder)	(see note ²)	Filipino	43,680,000	15.27%

shares, instead the participants have the power to decide how the PCD shares in Benguet Corporation are to be voted.

² The Company is not aware of who is/are the direct or indirect beneficial owner/s of the stocks issued to Palm Avenue Holdings Company, Inc. and Palm Avenue Realty and Development Corporation (the "Palm Companies). In the December 20, 2024 Annual Stockholders' Meeting of the Company, the Palm Companies issued a proxy in favor of its legal counsel, Attys. Otilia Dimayuga-Molo/Andrea Rigonan-De La Cueva, to vote in all matters to be taken up in the stockholders' meeting.

³ The Company is not aware of who is/are the direct or indirect beneficial owner/s of the stocks issued to Red Earth Mineral Resources Corporation. In the December 20, 2024 Annual Stockholders' Meeting of the Company, the Red Earth Mineral Resources Corporation issued a proxy in favor of its Chairman and President, Atty. Edgar Dennis A. Padernal, to vote on matters to be taken up in the stockholders' meeting.

⁴ Sequestered shares which is presently in trust by PCGG and the record owner of which is Fairmount Real Estate. The Company is not aware of who is/are the direct or indirect beneficial owner/s of the stocks issued to Fairmount Real Estate.

Red Earth Mineral Resources Corporation 16 th Floor, Citibank Tower (now BDO Towers- Valero), Paseo de Roxas, Makati City (Stockholder)	(see note ³)	Filipino	37,000,000	12.93%
CEDE & CO. (Non-Filipino), P.O. Box 20, Bowling Green Stn., New York, NY 10004	(see note ⁵)	American	29,674,860	10.37%
PCD Nominee Corporation (Non-Filipino) 29 th Floor BDO Equitable Tower, 8751 Paseo de Roxas, Makati City	(see note ¹)	American	24,962,744	8.73%

Please note that: (a) Palm Avenue Holding Company, Inc. and Palm Avenue Holdings Company are one and the same corporation, and (b) Palm Avenue Realty and Development Corporation and Palm Avenue Realty Corporation are one and the same corporation.

The following are participants under the account of PCD Nominee who hold five percent (5%) or more of any class of the Company's outstanding capital stocks as of April 15, 2025:

Title of Class	Name, Address of Record Owner And Relationship with Issuer	Name of Beneficial Owner & Relationship with Record Owner		Number of Shares Held	Percent Per Class
Class A					
Common	RYM Business Management Corporation,	(see note ⁶)	Filipino	62,930,820	14.64%
Class B	Universal Re Building, 106 Paseo de				
Common	Roxas, Makati City (Stockholder)	(see note ⁶⁾	Filipino	60,108,441	21.01%

Security Ownership of Management

The following table sets forth certain information as of April 15, 2025, as to each class of the Company's securities owned by the Company's directors and officers.

Title of Class	Name of Beneficial Owner	Citizenship	Amount and nature of beneficial ownership		Total	Percent Per Class
			Direct	Indirect		
А	Maria Remedios R. Pompidou	Filipino	15	0	15	0.00%
А	Bhadara L. Dapula	Filipino	1	39,375*	39,376	0.01%
В	Rhodora L. Dapula	Гшршо	0	26,250*	26.250	0.01%
А	Carlos Alfonso T. Ocampo	Filipino	1	0	1	0.00%
А	Elmer B. Serrano	Filipino	1	0	1	0.00%
А	Anthony M. Te	Filipino	3	154,875*	154,878	0.04%

⁵ Cede & Co. is the registered owner of the shares in the books of the Company's transfer agent Stock Transfer Service, Inc (STSI). Cede & Company operates as a subsidiary of Depository Trust Company (DTC) a New York City-based central securities depository, the securities holding bank for most stock brokerages, shares of stock that are held in brokerage accounts. During stockholders' meeting, DTC provides Omnibus Proxy as soon as possible after the record date. The Omnibus Proxy assign Cede & Co. consenting on voting rights to Cede's participants to whom account securities are credited on the record date. To the best knowledge of the Company, there are no participants under the Cede & Co account who own more than 5% of the Company's voting securities. Cede & Co. and DTC, the securities holding bank for most stock brokerages in U.S., is not in any way related to the Company.

⁶ The Company is not aware of who is/are the direct or indirect beneficial owner/s of the stocks issued to RYM Business Management Corporation. In the December 20, 2024 Annual Stockholders' Meeting of the Company, the RYM Business Management Corporation issued a proxy in favor of its Chairman and President, Atty. Remegio C. Dayandayan, Jr., and/or its Corporate Secretary, Minda P. De Paz, to vote in all matters to be taken up in the stockholders' meeting.

	1		1			
В			0	103,250*	103,250	0.04%
А	Luis Juan L. Virata	Filipino	234,003	0	234,003	0.05%
В	Luis Juan L. Virala	Filipino	69,600	0	69,600	0.02%
А	Andrew Patrick R. Casiño	Filining	3	39,375*	39,378	0.01%
В	Andrew Patrick R. Casino	Filipino	3	26,250*	26,253	0.01%
А	Kwok Yam lan Chan	Filiping	0	39,375*	39,375	0.01%
В		Filipino	1	26,250*	26,251	0.01%
А	Andrew Julian K. Romualdez	Filiping	1,000	0	1,000	0.00%
В	Andrew Julian K. Romualdez	Filipino	1,000	0	1,000	0.00%
В	Bernardo M. Villegas	Filipino	3	0	3	0.00%
А	Line C. Fernendez	Filiping	1,566	208,350*	209,916	0.05%
В	Lina G. Fernandez	Filipino	0	146,900*	146,900	0.05%
А	Devrede D. Mendeze	Filiping	4,866	202,750*	207,616	0.05%
В	Reynaldo P. Mendoza	Filipino	0	38,500*	38,500	0.01%
А	Max D. Araaña	Filiping	1,533	58,313*	59,846	0.01%
В	Max D. Arceño	Filipino	0	113,575*	113,575	0.04%
А	Emmanuel M. Puspos	Filipino	5,100	0	5,100	0.00%
А	Deogracias P. Halog	Filipino	225	0	225	0.00%
А		Filipipe	240,600	39,375*	279,975	0.07%
В	Hermogene H. Real	Filipino	125,300	26,250*	151,550	0.05%

(*) All indirect shares of the directors and officers of the Company are lodged through a broker.

As a Group

Class A Convertible Preferred	Filipino	59,262 shares ⁷	27.30%
Class A Common	Filipino	277,581,116 shares ⁸	64.58%
Class B Common	Filipino	141,491,573 shares ⁹	49.46%

Voting Trust Holders of 5% or More

There are no voting trust holders of 5% or more of the Company's stock.

Changes in Control of the Registrant

There had been no changes in control of the Company that had occurred since the beginning of the last fiscal year. Furthermore, management is not aware of any arrangement, which may result changes in control of the Company.

ITEM 12. CERTAIN RELATIONSHIPS AND RELATED TRANSACTIONS

a) There are no transactions or proposed transactions during the last two years in which the registrant or any director or executive officer, any nominee for election as director, any security holder or member of their immediate families, is a party nor had a direct or indirect material interest. None of the directors, officers or affiliates of the Company, or beneficial owner of more

⁷ Include 59,262 Convertible Preferred Class A shares, the record owner of which is Fairmount Real Estate which is presently in trust by PCGG. In the past stockholders' meetings of the Company, the shares of Fairmount Real Estate were not voted by any person or proxies. The Company is not aware of who is/are the direct or indirect beneficial owner/s of the stocks issued to Fairmount Real Estate

⁸ Include 30,834,375 and 63,920,490 sequestered Common Class A shares, the record owners of which are Palm Avenue Holdings Company and/or Palm Avenue Realty Corporation and presently held in trust by PCGG. Also included is 65,624,727 Common Class A shares, the record owner of which is Palm Avenue Holding Co., Inc. and 62,930,820 Common Class A shares, the record owner of which is RYM Business Management Corporation (PCD Nominee).

⁹ Include 43,680,000 Common Class B shares, the record owner of which is Palm Avenue Realty and Development Corporation and 60,108,441 Common Class B shares, the record owner of which is RYM Business Management Corporation (PCD Nominee)

than 10% of any class of voting securities of the Company, or any associate of any such director or security holder, or any of its subsidiaries, had a transaction with the Company or any of its subsidiaries nor had a direct or indirect material interest.

- b) There were no transactions with promoters since the Company was organized far beyond the five (5) year period requirement.
- c) The Company has no parent company.
- d) Intercompany transactions are eliminated in the consolidated financial statements. Items eliminated are separately disclosed in a schedule in accordance with Philippine SEC requirements under SRC Rule 68, as Amended. Information regarding related party disclosure is discussed and presented on Note 28 Related Party Disclosures of the Notes to 2024 Audited Consolidated Financial Statements of the Company.

PART IV – CORPORATE GOVERNANCE

ITEM 13. CORPORATE GOVERNANCE

The Company continues to further improve its current code of corporate governance practices and develop an efficient and effective evaluation system and processes to measure the performance of the Board of Directors and management, or determine the level of compliance of the Board of Directors and management with the Manual of Corporate Governance (the "Manual") of the Company. The Manual was adopted to institutionalize the principles of good corporate governance in the entire organization and in compliance with SEC Memorandum Circular No. 19, S2016, Corporate Governance Code for Publicly Listed Companies. The Company is a recipient of a 2 Golden Arrow Award in the 2024 ACGS Golden Arrow Awards by the Institute of Corporate Directors recognizing outstanding performing Publicly Listed Companies in the Philippines.

The Company submitted its 2023 Integrated Annual Corporate Governance Report (2023 I-ACGR) to the Commission and Exchange on May 30, 2024. The 2024 I-ACGR will be submitted on or before May 30,2025.

The directors, officers and employees adhere to the leading practices and principles of good corporate governance. Corporate governance policies and principles are established to ensure that the interest of stakeholders are always taken into account; that directors, officers and employees are conducting business in a safe and sound manner; and that transactions entered into between the Company and related interests are conducted at arm's length basis and in the regular course of business. The Company confirms full compliance with its Manual of Corporate Governance. There is no incidence of deviation from the Company's Manual requiring disclosure as to the person/s and sanction/s imposed.

The Company's Corporate Governance Committee is composed of three independent directors and one compliance officer namely: Dr. Bernardo M. Villegas is the Chairman and the members are: Atty. Elmer B. Serrano and Atty. Rhodora L. Dapula; the Compliance Officer is Mr. Max D. Arceño.

In compliance with SEC Memorandum Circular 4 Series of 2019, attached to this Annual Report (SEC form 17-A) is the Company's Sustainability Report for the year ended December 31, 2024 (Annex "A").

PART V – EXHIBITS AND SCHEDULES

ITEM 14. EXHIBITS AND REPORTS ON SEC FORM 17-C

- (A) Exhibits and Schedules
 - 1. Benguet Corporation & Subsidiaries Audited Consolidated Financial Statements for fiscal year ended December 31, 2024:
 - Statement of Management's Responsibility for Consolidated Financial Statements
 - Independent Auditors' Report

- Audited Consolidated Financial Statements & Notes for the year ended December 31, 2024
- Independent Auditors' Report on Supplementary Schedules Independent Auditors' Report on Components of Financial Soundness Indicators Financial Ratios

Schedule I : Reconciliation of Retained Earnings Available for Dividends Declaration Schedule II : Map Showing the Relationship of the Companies within the Group Schedule as Required by SRC Rule 68

- Schedule A. Financial Assets
 Schedule B. Amounts Receivable from Directors, Officers, Employees, Related Parties and Principal Stockholders (Other than Related Parties)
 Schedule C. Amounts Receivable from Related Parties which are Eliminated during the Consolidation of Financial Statements
 - Schedule D. Long Term Debt
 - Schedule E. Indebtedness to Related Parties
 - Schedule F. Guarantees of Securities of Other Issuers
 - Schedule G. Capital Stock
- . 2. Benguet Corporation (Parent) Audited Financial Statements for fiscal year ended December 31, 2024:
 - Statement of Management's Responsibility for Financial Statements
 - Independent Auditors' Report
 - Audited Financial Statements & Notes for fiscal year ended December 31, 2024
- (B) The following disclosures have been reported and disclosed to the SEC and PSE under SEC Form 17-C during the last six months period covered by this report including disclosure up to the date of filing this report:

Date of SEC	
Form 17-C	Description of Disclosure
04.14.2025	Change in number of issued and outstanding shares of the Company due to
	exercised stock options
04.14.2025	Report on the list of Top 100 Stockholders of the Company with PCD Beneficial
	Owner Participants for the quarter ended March 31, 2025
04.10.2025	Report on the computation of the minimum public ownership report for the
	quarter ended March 31, 2025
04.04.2025	Report on the implementation of the amended stock option plan for the month of
	March 2025
04.03.2025	Report on shares by lot for the month of March 2025
03.26.2025	Press Release entitled "BenguetCorp Reports 2024 Positive Income"
03.26.2025	Disclosure on the approval by the Board of Directors of the Company's Audited
	Parent Financial Statements and Audited Consolidated Financial Statements as
	of year ended December 31, 2024 and of the execution of the operating
	agreement between the Company and Asiga Mining Corporation which grants
	operating rights over the latter's claim holdings located in the Municipality of
	Santiago, Agusan Del Norte.
03.10.2025	Change in number of issued and outstanding shares of the Company due to
	exercised stock options
03.04.2025	Report on shares by lot for the month of February 2025
03.04.2025	Report on the implementation of the amended stock option plan for the month of
	February 2025
02.11.2025	Change in number of issued and outstanding shares of the Company due to
	exercised stock options
02.11.2025	Disclosure regarding the annual verification and certification issued by the Mines
	and Geosciences Bureau (MGB)
02.06.2025	Report on the implementation of the amended stock option plan for the month of

	January 2025
02.05.2025	Report on shares by lot for the month of January 2025
01.20.2025	Report on the passing of the Company's Assistant Vice President for
01.20.2020	Environmental Compliance and Chief Risk Officer, Ms. Pamela M. Gendrano
01.14.2025	Report on the list of Top 100 Stockholders of the Company with PCD Beneficial
0111112020	Owner Participants for the quarter ended December 31, 2024
01.13.2025	Report on the computation of the minimum public ownership for the quarter
000_0	ended December 31, 2024
01.07.2025	Report on the implementation of the amended stock option plan for the month of
	December 2024
01.06.2025	Report on the shares by lot for the month of December 2024.
01.06.2025	Annual Report on the implementation of the amended stock option plan for the
	year ended December 31, 2024
12.20.2024	Results of the (i) 2024 Annual Mtg of the Stockholders of Benguet Corporation
	and (ii) Organizational Mtg of the Board of Directors after the ASM
12.20.2024	Press release entitled "Benguet Corporation becomes debt free after 35 years"
12.06.2024	Report on the implementation of the amended stock option plan for the month
	ended November 30, 2024 pursuant to PSE Notice of Approval (NOA) dated
	December 4, 2024 to cover the stock option granted on March 18, 2021 to
	qualified participants
12.03.2024	Report on shares by lot for the month of November 2024
12.03.2024	Report on the implementation of the amended stock option plan for the month of
	November 2024
11.11.2024	Amendment of the comprehensive corporate disclosure relative to the private
	placement of Red Earth Mineral Resources Corporation in the Company due to
	inclusion of AFS of Red Earth for the three fiscal years
11.07.2024	Comprehensive corporate disclosure relative to private placement by Red Earth
	Mineral Resources Corporation
11.07.2024	Report on the implementation of the amended stock option plan for the month of
	October 2024
11.06.2024	Report on the updated computation of minimum public ownership of the
	Company as of November 5, 2024 following the issuance of 90,000,000 common
11.05.0001	shares to Red Earth Mineral Resources Corporation
11.05.2024	Change in the number of issued and outstanding shares of the Company
	following the First Private Placement by Red Earth Mineral Resources
44.05.0004	Corporation
11.05.2024	Signing of two (2) Private Placement Agreements between the Company and
44.05.0004	Red Earth Mineral Resources Corporation
11.05.2024	Report on shares by lot for the month of October 2024
10.29.2024	Board's approval of the proposal for a private placement of Red Earth Mineral Resources Corporation
10.20.2024	Declaration of cash dividends
10.29.2024	
10.29.2024	Postponement of the Company's 2024 virtual Annual Stockholders Meeting (ASM) previously scheduled on November 28, 2024 to December 20, 2024
10.00.0004	
10.22.2024	Execution of Mutual Rescission Agreement between Benguet Corporation, Wilshire Business Consulting Corporation and Armstrong Capital Holdings
	Corporation, with Philippine Veterans Bank as Trustee
10.14.2024	DENR's approval of the renewal of the Mineral Production Sharing Agreement
10.14.2024	(MPSA) No. 154-2000-III granted to Balanga Bataan Mineral
	Corporation/Benguet Corporation (as operator)
10.10.2024	Report on the list of Top 100 Stockholders of the Company with PCD Beneficial
10.10.2024	Owner Participants for the quarter ended September 30, 2024
	טייוטר ד מהוטועמונט וטו נווב עממונבו בווטבע טבענכוווטבו טע, בעבא
10 04 2024	
10.04.2024	Report on the computation of the minimum public ownership report for the quarter ended September 30, 2024

	September 2024
10.02.2024	Report on shares by lot for the month of September 2024
09.05.2024	Report on shares by lot for the month of August 2024
09.04.2024	Report on the implementation of the amended stock option plan for the month of August 2024
09.03.2024	Signing of Amendment to Mortgage Trust Indenture and Deed of Chattel with Philippine Veterans Bank
08.29.2024	Board's approval of the increase of authorized capital stock of the company and the corresponding amendment to Article Seventh of the Amended Articles of Incorporation and Article 1, Section 1 of the Amended By-Laws of the Company
08.29.2024	Board's approval of the schedule of the 2024 Annual Stockholders' Meeting
08.29.2024	Board's approval on retention of Chairman Bernardo M. Villegas as Independent Director
08.05.2024	Report on the implementation of the amended stock option plan for the month of July 2024
08.02.2024	Report on shares by lot for the month of July 2024
07.12.2024	Report on the list of Top 100 Stockholders of the Company with PCD Beneficial Owner Participants for the quarter ended June 30, 2024
07.04.2024	Report on the computation of minimum public ownership report for the quarter ended June 30, 2024
07.03.2024	Report on the implementation of the amended stock option plan for the month of June 2024
07.02.2024	Report on shares by lot for the month of June 2024
06.05.2024	Report on the implementation of the amended stock option plan for the month of May, 2024
06.04.2024	Report on shares by lot for the month of May, 2024.

SIGNATURES

Pursuant to the requirement of Section 17 of the Code and Section 141 of the Corporation Code, this report is signed on behalf of the issuer by the undersigned, thereunto duly authorized, in the City of Makati on <u>APR 3 0 2025</u>.

BENGUET CORPORATION

(Issuer) By:

tente

LINA G. FERNANDEZ President Principal Executive Officer

VALERIANO B BONGAI

Vice President/Resident Manager – Bengyet District Operations Principal Operating Officer

HÉRMOGENE H. REAL Corporate Secretary

-nd

MAX D. AKCEÑO Senior Vice President, Finance & Treasurer Principal Financial/Accounting Officer

REPUBLIC OF THE PHILIPPINES) MAKATI CITY) S.S.

SUBSCRIBED AND SWORN to before me this <u>APR 3 0 2025</u> at Makati City, Affiants exhibited to me their identifications to wit: Atty. Lina G. Fernandez with Social Security System (SSS) No. 03-75370258, Valeriano B. Bongalos, Jr. with SSS No. 03-31004128, Max D. Arceno with SSS No.03-82056688; Atty. Hermogene H. Real with SSS No. 03-32358763, all are issued by the Office of the Social Security System, Philippines.

Doc. No. <u>125</u> Page No. <u>38</u> Book No. <u>1</u> Series of 2025. DOCUMENTARY STAMP TAX PAID SERIAL NO. <u>22453293</u> DATE: <u>APR 302025</u>

SHEILA

SHEILA C. CENIT-BELGICA Commission No. M-234 Nota y Public for Makati City Until December 31, 2025 7F Universal Re Building 106 Paseo de Roxas, Makati City Roll No. 53476 IBP Life Member No. 014470 / 02,18,16 FTR No. MKT 10469596 dated January 3, 2025

47

Annex A: Sustainability Report

Contextual Information

Company Details			
Name of Organization	Benguet Corporation		
Location of Headquarters	7F Universal RE Building, 106 Paseo de Roxas, 1226 Makati City Philippines		
Location of Operations	Itogon, Benguet Province for mining of gold and silver Irisan, Baguio City for operation / processing of lime products		
Report Boundary: Legal entities (e.g. subsidiaries) included in this report*	Benguet Gold Operations (BGO) Corporate Headquarters (CHQ) Irisan Lime Project (ILP)		
Business Model, including Primary Activities, Brands, Products, and Services	 Natural resources company engaged in, but not limited to the following: Mineral exploration; Mine development; Mineral resources extraction; Gold & silver processing; Management of mine waste and mill tailings; Production of quicklime and hydrated lime; and Restoration / rehabilitation of mined-out areas. 		
Markets Served	Processed gold is sold to Bangko Sentral ng Pilipinas (BSP); Lime products are sold to mining and allied companies and farmers within Benguet and neighboring Provinces.		
Scale of the Organization	 Total average number of employees for 2024 is 301 employees which includes Central Headquarters (CHQ), Benguet Gold Operation (BGO) and Irisan Lime Project (ILP). Total number of operations: One (1) – Mining and milling operations for gold and silver One (1) – 3 Kilns alternately operating for lime production. Net Sales (private sector) Total Capitalization Debt – Php_1.69B Equity – Php7.934B Quantity of products – Gold – 5,750.74 ounces Silver –999.10 ounces Lime – 6,362.14 Metric Tons 		
Reporting Period	CY 2024		
Highest Ranking Person responsible for this report	Atty. Lina G. Fernandez – President		

Materiality Process

Explain how you applied the materiality principle (or the materiality process) in identifying your material topics.1

The 2024 Sustainability Report provides the fundamentals of informing our stakeholders in understanding the most critical and material topics that contributed to and affected the 2024 ESG performance that impacted people's health, environment, and economy. Beyond the unprecedented challenges, the Company has embodied a solution-driven mindset to impart lasting value to its investors and stakeholders. The report provides a detailed overview of the way best sustainability practices are deeply rooted in Benguet Corporation's business.

It is of these facts that Benguet Corporation unceasingly strives to manage its operation under the following principles and commitments to attain its long-term objectives:

- a. Profit and growth-oriented;
- b. Responsible operation and care for the environment;
- c. Commitment to improving the quality of life of our employees, the communities, and all stakeholders; and
- d. Compliance with existing laws, rules, and other obligations

The Board has a clearly defined and updated vision, mission, and core values. Please refer to the BC website under the tab "About Us" http://:benguetcorp.com/about-us/

Please refer also to the Board Charter p.8 which states that one of the general responsibilities of the Board is to determine the Company's purpose, vision, mission, and strategies to carry out its objectives. http://.benguetcorp.com/corporate-governance/board-committee/

Economic Material Factors

Our economic performance is based on the value our operations contribute to the local and national governments, host and neighboring mining communities, and the environment, at large. Our operations have created derived demand resulting in the establishment of micro, small, and medium enterprises in our mining community as well as in other areas where we source our value chain. Through our operations, the quality of life of our shareholders, employees, and other stakeholders has improved, local economies vigorously grew, and protection of the environment- intensified

Environmental Material Factors

Benguet Corporation is committed to the protection and enhancement of the environment by ensuring that its mining operations are in full compliance with mining and environmental laws, rules, and regulations. It ensures close collaboration and coordination with the Department of Environment and Natural Resources (DENR), the Mines and Geosciences Bureau (MGB), the Environmental Management Bureau (EMB), and all the government agencies that monitor compliance. Sustainability is core to BC's corporate strategy and sits at the heart of everything it does. Our operation aims to be environmentally responsible, respecting human rights and supporting the communities in which BC operates. It is the leading value that enables our people to understand our common purpose, our values, how we measure success, and the basis for our decision-making. It is about managing our risks, reducing adverse environmental, social, economic, and cultural impacts, and supporting and sustaining the communities and environments in which we operate.

The Environmental Material Factors have been considered essential in keeping our operations successful. As a mining company, we are committed partners of the government in the conscientious development of the country's natural resources. This agreement comes with a huge responsibility not just to harness, but most specifically to protect, nurture, restore, and enhance the environment. Nature and the resources within are the main enablers of our business, and as such, considerable care is our priority. Mitigating any possible adverse effects of our operations on the environment is part of our day-to-day function. The Company's mining activity is guided by the provisions of the Philippine Laws, such as but is not limited to the following:

- Department Administrative Order No. 2010-21 (Implementing Rules and Regulations of R.A. 7942 The Philippine Mining Act of 1995)
- 2. R.A. 9275 Philippine Clean Water Act 0f 2004
- 3. Department Administrative Order No. 2005-10 (IRR of R.A. 9275 Philippine Clean Water Act);
- Department Administrative Order No. 2000-98 (Mine Safety and Health Standard);

¹ See GRI 102-46 (2016) for more guidance.

- 5. Department Administrative Order No. 2000-81 (IRR of R.A. 8749 Philippine Clean Air Act);
- 6. R.A. 8371 Indigenous Peoples Rights Act;
- DENR Administrative Order N0. 2001-34 (IRR of R.A. No. 9003 Ecological Solid Waste Management Act),
- 8. R.A. No. 6969 An Act to Control Toxic Substances and Hazardous and Nuclear Wastes
- Department Administrative Order No. 28 (IRR of R.A. 6969 Toxic Substances and Hazardous and Nuclear Wastes Control Act); and
- DENR Administrative Order No. 2003-30 (Revised Procedural Manual of P.D. 1586 Environmental Impact Statement System).

We constantly monitor the land, air, and water quality, the siltation levels in bodies of water, as well as the forest cover / density in the affected areas within our operations and its surrounding environs. We adhere to the strict parameters laid out by the government in ensuring that we protect the ecosystem, promote biodiversity, and enhance the environment.

Social Material Factors

Benguet Corporation puts health and safety as top priority and believes that sustainability includes playing an appropriate role in addressing global issues such as climate change, supporting and respecting human rights, and advocating for social change such as by supporting the rights of Indigenous Peoples. As a century-old corporation, BC has witnessed and navigated through countless crises together with our employees, suppliers, and local communities but BC managed to put top priority concerns to people first.

As a responsible business entity, our Vision, Mission, Goals, Safety and Environmental Policies are centered on achieving productivity and advocating for the safety and health of our employees, assisting the people within our host and neighboring communities, and the continuous enhancement of our environment. We share the stewardship of our country's natural resources. As we operate within the indigenous communities, we support local cultures and respect human rights as we help drive economic development in the area.

As a responsible corporate partner of society, the Company has a social obligation not only to preserve, protect, and enhance the physical and ecological environment but also to improve the quality of life of the people in the communities surrounding the operation.

Aside from the Company's commitment to be socially responsible and environmentally conscious, it also aims to achieve competitiveness and excellence as a natural resource development Company through enhanced productivity and improvement of quality of life of its employees, their families and the host communities. At the heart of Benguet Corporation's philosophy are the people (employees and other stakeholders) promoting not only their interests and maintaining good community relationships but also to enable them to be empowered for the stewardship of the environment and natural resources surrounding them. To support this, we empowered and developed an inclusive and diverse workforce that is representative of the communities where we operate.

As a continuing commitment and manifestation of the Company's compliance with the implementation of its Social Development and Management Programs, Benguet Corporation has extended assistance on the various needs of its host and neighboring communities in all its areas of operations based on the following development framework as provided under the SDMP guidelines:

- 1. On Human Resource Development and Institutional Building,
- 2. On Enterprise Development and Networking,
- 3. On Assistance to Infrastructure Development and Support Services,
- 4. On Access to Education and Educational Support Programs,
- 5. On Access to Health Services, Health Facilities and Health Professionals
- 6. On Protection and Respect to Socio-Cultural Values
- 7. On the Development of Mining Technology, and
- 8. On United Nations Sustainable Development Goals.

This is our fundamental way to maintain our social license.

ECONOMIC PERFORMANCE

Direct Economic Value Generated and Distributed

Disclosure		Amount (2024) - BGO	Amount (2024) - ILP	Total Amount (2024)	Total Amount (2023)	Unit
Direc	t economic value generated (revenue)	791.96	100.02	891.77	727.81M	PhP
Direc	t economic value distributed:					
a,	Operating costs	388.31	64.50	452.81	350.35M	PhP
b.	Employee wages and benefits	98.42	4.34	102.76	123.59M	PhP
C.	Payments to suppliers, other operating costs	134.00	11.07	145.07	182.92M	Php
d.	Dividends given to stockholders	143.56		143.56	0.00	PhP
e.	Interest payments to loan providers	7.934M		7,934M	2.521M	PhP
e.	Taxes given to government (excise)	31.64	Consolidated BC		25.46M	PhP
f.	Investments to community (e.g. donations, CSR)	4.91	0.67	5.58	6.77M	PhP

Identification of Impact

Corporation's

operations encompass two key sites:

the Benguet Gold Operation (BC-BGO)

in Benguet, which utilizes underground

mining or tunneling methods, and the

Irisan Lime Project (ILP) in Baguio City.

ILP sources its raw limestone from land

development and quarrying suppliers in

the surrounding areas of Baguio City

and Benguet Province as feed material

Total Revenue for 2024 increased to

Php891.77 million, up Php163.96

million or approximately 22.5% from

The increase was primarily driven by:

BGO contributing Php791.96

million, approximately 88.8% of

ILP contributing Php100.02

million, about 11.2% of the total.

Gold production in 2024 reached

5.508.05 ounces, lower compared to

5,931.97 ounces in 2023. Decline in

production is due to lower ore milled

this year. Increase in revenue is

attributed to higher price of gold partly

offset by lower volume of gold sold.

Gold sold in 2024 decreased to

5,750.74 ounces from 5,803.21

ILP generated P100.02M revenue this

year, slightly lower than 2023. Lime

sold decline to 6.362.14 DMT from

6,464 DMT in 2023, but this was partly

ounces in 2023.

Php727.81 million in 2023.

total revenue.

mining

Benguet

for its kiln plant.

Stakeholders Affected

The Company's operations generate significant economic impacts, benefiting a diverse range of stakeholders:

- Employees
- Mining Contractors
- Host and Neighboring Communities
- Local and National Government: Service Providers and Suppliers
 Local Business
- Establishments
- National Government:
- Micro, Small, and Medium Enterprises (MSMEs
- Shareholders

The Company manages its economic impacts through strict regulatory compliance, ethical business practices, and fulfillment of stakeholder commitments; it drives operational excellence and invests in longterm resilience via diversification into agribusiness, land development, and renewable energy; management, finance, health and safety, and diversification teams each have defined responsibilities, supported by proactive measures to mitigate potential negative economic impacts.

Management Approach

The Company remains steadfast in its commitment to employees and host communities by providing the following key benefits:

- Fosters economic growth in host and neighboring communities.
- Maintains the family income of employees and community residents.
- Delivers medical services through the Social Development and Management Program (SDMP).
- Offers educational scholarships to deserving students from host and neighboring communities.
- Ensures the continued collection of tax revenue by local government units.
- Assists in local government infrastructure projects and sustains the delivery of essential community services via the SDMP.
- Guarantees budgetary allocations for the protection and enhancement of the environment and for social development programs.
- · Subsidizes electricity and provides free

offset by the increase of price in 2024.	water to employees and other
A notable shift in 2024 was the payment of Php143.56 million in dividends to stockholders, whereas no dividends were distributed in 2023. This was due to the settlement of its old debt subject to the 1993 Restructuring Agreement. It underscores the company's commitment to shareholder returns.	stakeholders within the communities.

What are the Risk/s Identified?	Stakeholders Affected	Management Approach
 Risk identified that have affected the 2024 operation are the following: Financial volatility, Resource constraints, Evolving regulatory uncertainties, Illegal mining intrusions (both external and internal), Internal theft, Safety and security breaches, Environmental risks (particularly water quality), Unstable power supply, Depletion of non-renewable resources, Scarcity of timber for mine support, and Increased competition for water resources. 	 The Company Employees of the Company and Mining Contractors People in the Host and Neighboring Communities Local and National Government Service Providers and Suppliers 	The Company employs a comprehensive approach encompassing environmental protection (ISO 14001:2015 EMS compliance and rehabilitation investments), proactive stakeholder engagement (with Indigenous Peoples, LGUs, and communities through SDMP), strong regulatory communication and compliance (with DENR, MGB, EMB), and robust asset protection measures (enhanced monitoring, increased security surveillance, and technology deployment to abate gold pilferage).

What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
 The Company actively pursues strategic opportunities to enhance operational efficiency and financial resilience in the context of rising energy costs and evolving market conditions: By implementing shared mill charges, the Company reduces exposure to fluctuating fuel and power prices. With continued increases in gold prices, BGO is investing in deeper-level mining studies to optimize ore extraction, leveraging external consultants for technical evaluations, for its Expansion in below Level 2000. The Company is exploring advanced technologies to improve gold recovery from tailings, supporting both economic value creation and resource sustainability. 	 The Company Mining Contractors: Investors 	BGO addresses rising energy costs and leverages high gold prices by implementing shared mill charges to promote cost efficiency and sustainability. The Company engages consultants to assess other areas for increased production potential and is actively exploring new technologies to enhance gold recovery from tailings. These initiatives support long-term financial resilience and operational efficiency, aligned with the Company's sustainability goals.

Climate-related risks and opportunities²

Governance

Disclose the organization's governance around climate-related risks and opportunities.

The Company acknowledges the significant impacts of its energy-intensive activities, including GHG emissions. Climate-related risks and opportunities are integrated into the Company's governance structure and overseen by the Board Risk Oversight Committee (BROC). The BROC develops and implements the enterprise risk management plan, evaluating key risks, including climate and EESG factors. The Chief Risk Officer supervises risk management processes, while the executive team implements the climate strategy. The Company's ISO 14001:2015 certified EMS and the EPEP provide frameworks for managing climate risks, ensuring sustainable operations through Board oversight.

Please refer to Manual on Corporate Governance. http://benguetcorp.com/corporate- governance/board-committees/.

Strategy

Disclose the actual and potential impacts3 of climate-related risks and opportunities on the organization's businesses, strategy, and financial planning where such information is material.

Global warming is distinct. Climate change covers a wide range of different circumstances, such as the increasing number of natural calamities caused by abnormal weather conditions, depletion of water resources, food scarcity, flooding, typhoons, earthquakes, etc. Under each condition, the impacts to the mining operation of BC-BGO and to the surrounding environment are pronounced.

Every year, BGO and ILP allocate a portion of its operating cost to further strengthen its environmental programs that, to some extent, go beyond mere regulatory compliance.

BGO and ILP operations are in collaboration with the host and neighboring communities to actively participate in CO² sequestration by planting more trees in their surroundings.

All plantations that were previously established are being maintained yearly.

The total expenditures for the implementation of the environmental protection program of BC-BGO in 2024 amounted to P10,706,065.42.

Risk Management

Disclose how the organization identifies, assesses, and manages climate-related risks.

- Identification and Assessment: In accordance with ISO 14001:2015, BC-Benguet Gold Operation systematically identifies and assesses environmental aspects and their associated impacts, including climate-related risks. This process considers both direct and indirect impacts of our operations.
- Environmental Risk Management System Manual: All identified and assessed climate-related risks, along with their corresponding mitigation measures, are documented and addressed within our Environmental Management System (ERMS) Manual. This manual outlines procedures for managing these risks, including operational controls, monitoring, and emergency preparedness, Specifically: Benquet Corporation identifies, assesses, and manages climate-related risks through its enterprise risk management framework overseen by the Board Risk Oversight Committee (BROC). The committee develops and monitors risk management strategies that integrate climate-related risks with other environmental, economic, and social factors. Climate-related risks are assessed within the broader risk framework, with mitigation plans developed to manage them. Reports on risk exposures and the effectiveness of mitigation strategies are provided to the Board to ensure comprehensive management.
- Environmental Protection and Enhancement Program (EPEP): The Environmental Protection and Enhancement Program (EPEP), which is continuously monitored by regulatory agencies, includes specific measures to mitigate climate-related risks. This may include initiatives to reduce GHG emissions, improve energy efficiency, manage water resources sustainably, and protect biodiversity. The EPEP ensures that our operations comply with environmental regulations and strive for continuous improvement in our environmental performance.

² Adopted from the Recommendations of the Task Force on Climate-Related Financial Disclosures. The TCFD Recommendations apply to non-financial companies and financial-sector organizations, including banks, insurance companies, asset managers and asset owners.

³ For this disclosure, impact refers to the impact of climate-related issues on the company.

 Monitoring and Review: The effectiveness of our climate-related risk management measures is continuously monitored and reviewed as part of our EMS and EPEP. This includes regular audits, performance evaluations, and management reviews to ensure that our strategies remain effective and aligned with best practices.

Please see Risk Management Charter <u>https://benguetcorp.com/wp-content/uploads/2024/06/Risk-Management-Charter.pdf</u> And ERM Framework <u>https://benguetcorp.com/wp-content/uploads/2024/06/Enterprise-Risk-Mgnt-Framework.pdf</u>

Metrics and Targets

Disclose the metrics and targets used to assess and manage relevant climate-related risks and opportunities where such information is material.

The Company continuously looks at ways in contributing to community and ecosystem resiliency.

With the approved Annual Environmental Protection and Enhancement Program (AEPEP), the Company laid out its annual targets and milestones to continuously address and mitigate the identified climate related risks which are stated in its Corporate Governance Manual.

Recommended Disclosures

 a) Describe the board's oversight of climate-related risks and opportunities. The Board of Directors of BC-Benguet Gold Operation oversees climate-related risks and opportunities through the Board Risk Oversight Committee (BROC). The BROC ensures these risks are identified, assessed, and managed within the enterprise risk management framework. It monitors implementation, advises on risk appetite, and integrates climate considerations into the EMS and EPEP, aligning with ISO 14001:2015. The Chief Risk Officer and executive team support the BROC with regular updates, ensuring that climate risks are addressed strategically and sustainably at the highest level of governance. 	 a) Describe the climate-related risks and opportunities the organization has identified over the short, medium and long term. Among the identified risks and opportunities related to climate change are the following: 1. Risks - a. Deforestation b. Landslide c. Forest fire / bush fire d. Underground water depletion e. Air pollution 2. Opportunities – a. Employment through reforestation activities b. Watershed enhancement c. Water spring and water impounding development d. Cleaner air
 a) Describe the organization's processes for identifying and assessing climate-related risks. BC-Benguet Gold Operation employs a structured process for identifying and assessing climate-related risks, integrated into its broader risk management framework and aligned with ISO 14001:2015. Key elements include: Systematic Risk Identification: Climate-related risks (physical and transition) are systematically identified as part of environmental aspect assessments, which aligns with the principles of ISO 14001:2015. Site Manager Involvement: Site Managers assess operational risks, This ensures that operational realities and site-specific vulnerabilities to climate change are thoroughly considered. Risk Response Development: Management develops mitigation plans with budget estimates. Executive Management Approval: Plans are reported to Executive Management for approval, and to BROC, if 	 a) Disclose the metrics used by the organization to assess climate-related risks and opportunities in line with its strategy and risk management process. We recognize that there is increasing pressure to better understand and mitigate GHG emissions. Our Company strategically integrates the assessment of climate-related risks and opportunities in our business functions and risk management processes through transparent communication and a commitment to environmental stewardship, measured through the following : 1. Integrated Governance and Communication: Open lines of communication exist between the Board, Committees, Company Executives, and Site Management. We track the content of Board and Committee discussions pertaining to climate-related risks and opportunities.

	 necessary. Implementation and Reporting: Site Management implements plans and reports on progress . Monitoring: The Chief Risk Officer monitors mitigation effectiveness. Regulatory Reporting: Risks and actions are reported to regulatory agencies. Please refer to Board Risk Oversight Committee Charter link <u>http://benguetcorp.com/wp-content/uploads/2020/06/C-</u>Board-Risk-Oversight-Comm-Charter.pdf 	 Prioritized Climate-Related Programs: Programs or climate-related risks, particularly water management pollution control, tailings management and reforestation are top management programs is assessed through metrics measured against regulatory standards. Pollution contro efforts are evaluated based on reductions in air and water pollutant emissions (measured in relevant units like ppm or mg/L) and adherence to permitted levels. The success of reforestation activities is tracked by the number o hectares reforested and the survival rate of planted species. Compliance with Environmental Laws and Regulations BC-BGO and ILP adhere to the provisions of the following various Philippine Environmental Laws and Regulations: R.A. 9275 – Philippine Clean Water Act of 2004 DAO No. 2005-10 (IRR of R.A. 9275 – Philippine Clean Water Act); DAO No. 2000-81 (IRR of R.A. 8749 – Philippine Clean Air Act); DENR Administrative Order NO. 2001-34 (IRR of R.A. No. 9003 – Ecological Solid Waste Management Act); R.A. 0. 6969 – An Act to Control Toxic Substances and Hazardous and Nuclear Wastes; Department Administrative Order No. 28 (IRR of R.A. 6969 – Toxic Substances and Hazardous and Nuclear Wastes Control Act); and DENR DAO No. 2003-30 (Revised Procedural Manual of P.D. 1586 – Environmental Impact Statement System). Our compliance with environmental regulations (R.A. 9275, DAO 2005-10, DAO 2000-81, DENR AO 2001-34, R.A. 6969, DAO 28, and DENR AO 2003-30) is rigorously monitored through regular audits and inspections,
b)	Describe management's role in assessing and managing climate-related risks and opportunities.	 recording any instances of non-compliance and the corrective actions taken. We also track the number of environmental permits and licenses held and their renewa status to ensure continuous operational legality. b) Describe the impact of climate-related risks and opportunities on the organization's businesses,
•	Executive management, led by the Chief Risk Officer (CRO), manages the day-to-day assessment and management of these risks. At BC-Benguet Gold Operation, climate change management is a shared responsibility among key managers and front-line personnel. Executive management's duties include:	strategy and financial planning. The mining operation is an extractive process that is always associated with environmental risk. Benguet Corporation's operation in Itogon is the subject of rigorous evaluation and monitoring by regulatory agencies on its compliance with environmental laws and regulations to reduce or eliminate pollution.
	 a. Identifying and assessing physical and transition risks through departmental collaboration. b. Developing and implementing mitigation and opportunity strategies. c. Monitoring effectiveness against set targets. d. Regularly reporting to Executive Management and BROC 	The Company stands in solidarity with the government to arrest the deteriorating climate pattern through wise utilization of natural resources and lowering CO2 emission that affects the ozone layer.

 (when necessary). e. Integrating climate considerations into the Environmental Management System (EMS) and Environmental Protection and Enhancement Program (EPEP), aligned with ISO 14001 standards. f. Collaborating with external stakeholders on climate issues. The CRO oversees the Enterprise Risk Management (ERM) process and communicates top risks, including climate- related ones, to the BROC. 	The Company's reforestation programs (Mining Forest Program and the National Greening Program) are its positive contribution to the worsening climate change. As presented in the approved Annual Environmental Protection and Enhancement Program of 2024, Plans/Programs/Activities (P/P/A's) are all provided with corresponding budget and monitoring strategies.
 b) Describe the organization's processes for managing climate-related risks BC recognizes the role in collaborating with others to achieve progress in managing the challenges of climate change. Experts from the private sector, government agencies, the academe, and non-government organization are were consulted on various aspects to prevent and minimize the effects of climate change. The company implements programs that are consistent with its goals and targets. The budget for the full implementation of the reforestation program on denuded slopes of the mountain and rehabilitation of eroded areas are funded. Water pollution control measures are strictly monitored to prevent the escape of processed water from leaks that may contaminate the water bodies. The company seeks opportunities to work with partners to utilize technologies that will include carbon capture and the natural climate solutions of reforestation and afforestation. We will continue to seek opportunities to collaborate with value chain partners, investors, researchers, and government agencies to work towards reducing the negative effects of climate change. 	 c) Describe the targets used by the organization to manage climate-related risks and opportunities and performance against targets. The implementation of the approved 2024 Environmental Protection and Enhancement Program (EPEP) of BGO and ILP includes the annual targets and corresponding budget per activity. The total expenditures for the implementation of the 2024 EPEP amount to PHP 10,706,065.42, reflecting approximately 59.09% of the approved PhP 18,117,248.00 AEPEP budget.
d) Describe the resilience of the organization's strategy, taking into consideration different climate-related scenarios including a 2°C or lower scenario.	 c) Describe how processes for identifying, assessing, and managing climate-related risks are integrated into the organization's overall risk management.
 BC's environmental enhancement program, particularly on reforestation and forest protection, is aimed at reducing CO² in the atmosphere. In addition to the establishment of forest plantations, additional projects implemented to attain the different climate-related scenarios are as follows: Increased preventive maintenance schedule of anti-pollution devices such as scrubbers to arrest air pollutants from gold smelting processes. Dust emissions were reduced with a dust suppressor system using air and water to act as suppressors for spraying along roads inside industrial area. Regular preventive maintenance program is being conducted on vehicles and equipment to ensure smoke emissions are within the DENR-prescribed standards. 	The Board Risk Oversight Committee and CRO are tasked to make sure that the Company's environmental programs and compliances are integrated into the overall mine development program and implemented in accordance with the approved program by the Department of Environment and Natural Resources through the Mines and Geosciences Bureau and Environmental Management Bureau.

•	All environmental safeguards are put in place to mitigate and reduce the emission of CO ² .

Procurement Practices Proportion of spending on local suppliers

	Quantity				
Disclosure	BGO		ILP		Units
	2024	2023	2024	2023	
Percentage of procurement budget used for significant locations of operations that is spent on local suppliers.	92% 123,830,567.00	91% 114,454,825.00	100% 62,131,972.29	100% 61,696,298	% Php

Identification of Impact	Stakeholders Affected	Management Approach
 Both BGO and ILP demonstrate a very high proportion of their procurement budget being spent on local suppliers in both 2024 and 2023. BGO shows a slight increase in its percentage of spending on local suppliers from 91% in 2023 to 93% in 2024. On the other hand, ILP maintained a consistent 100% of its procurement budget spent on local suppliers in both years. The high proportion of spending on local suppliers by both BGO (91-92%) and ILP (100%) in 2023-2024 aligns strongly with the company's emphasis on sustainable procurement and working closely with key partners along the value chain. This preference for local sourcing contributes to several sustainability objectives: Local Economic Development: By prioritizing local suppliers, both BGO and ILP are directly supporting the economies within the Philippines. This fosters local job creation, strengthens local businesses, and contributes to the overall economic well-being of the communities. Reduced Transportation Emissions: Sourcing locally for essential commodities, supplies, and materials can significantly reduce the environmental impact associated with long-distance transportation, including lower GHG emissions: 	Employees in-charge of procurement Suppliers/manufacturers of product and services providers Materials Management Departments	BC believes that the success of the operation can be achieved through respect and transparent dealings between the management and the various agencies/entities and suppliers that provide the goods and services to the Company. It manages supplier relationships through its values and compliance with applicable regulatory frameworks. To ensure sustainability in our supply chain, a risk- based approach in assessing suppliers is in place. Suppliers must comply with the standard requirements, such as ISO certified or government standard compliances. We acknowledge the invaluable contributions of our suppliers and service providers who play an integral role in our holistic value chain.

 from freight and reduced reliance on extensive logistics networks. Stronger Partnerships: The practice of working closely with our key partners/suppliers fosters long-term relationships, promotes knowledge sharing on sustainability practices, and builds a more resilient and responsible supply chain within the Philippines. 		
What are the Risk/s Identified?	Stakeholders Affected	Management Approach
Delays in the delivery of imported supplies and materials/equipment parts have affected the mechanical availability of the equipment. Sub-standard quality of supplies and materials or products that may affect or slow down the operation and reduce gold production. Sourcing imported materials is expensive and may delay the delivery of needed supplies which will affect production.	Shareholders – lesser revenue due to lower production; Employees of contractors and suppliers – productivity is affected; Operations – they must work around the limitations of local suppliers sometimes sacrificing the timeliness of the process which may result in higher production costs. Suppliers – loss of trust and confidence	To ensure sustainability in the supply chain, a risk-based approach is being taken in assessing suppliers. We engage them through a commercial framework that is aligned with BC's Purchasing Policy. Long-term planning on mining development and programs to advance the forecasting of needed materials and supplies to ensure availability when needed by the operation. The company has prioritized suppliers with ISO 14001-2015 Certification.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
Partnering with local suppliers gives BC better credit lines, more responsive lead times, and customization options (smaller minimum order requirement). Through its mining operation, the Company is opening doors and providing business opportunities to suppliers and service providers, (local and foreign suppliers, and community residents).	Suppliers – local suppliers can sustain and grow their operations because of the mining operation of BGO and ILP. MSMEs – as mining operations expand, intermediate industries are given the opportunity to address the needs in each part of the value chain. Employees – direct collaboration in dealing with local suppliers	Continue to develop good relationships with suppliers and service providers. Continue to work with local suppliers that provide quality services and products at lower costs.

Training on Anti-corruption Policies and Procedures

Disclosure	Quantity	Units / %
The percentage of employees to whom the organization's anti-corruption policies and procedures have been communicated to	100	%
Percentage of business partners to whom the organization's anti-corruption policies and procedures have been communicated to	100	%
Percentage of directors and management that have received anti-corruption training	100	%
Percentage of employees that have received anti-corruption training	100	%

dentification of Impact	Stakeholders affected	Management Approach		
BC practices zero tolerance to corruption in the conduct of its business. Some potential sources of corruption are as follows: Employees may be involved in bribery and corruption on permit and license acquisition and during land acquisitions/negotiation. As there are numerous purchasing transactions, employees may be offered bribes/ incentives on these engagements. Giving or asking special favors to/from mining contractors, Service Contractors, or other stakeholders in exchange for personal gain such as but not limited to relaxing company policies and procedures.	Suppliers – all suppliers must go through the same screening. This ensures the company gets what it pays for, and the supplier delivers what it promises. Employees – must be the vanguards of integrity especially when representing the company to external parties. Community – those who support corruption by supporting peers engaged in unlawful conduct deprive h on est businesses of the chance of flourishing their trade and contributing back to the community. Management – should always advocate a culture of excellence and integrity. They set the values of the company and must promote the example of anti- corruption. Government regulatory agencies – officials must practice global policies on anti- corruption in the conduct of government and private business transactions.	The board sets the tone and makes a stand against corrupt practices by adopting an Anti-fraud, Corruption, and Whistleblowing Policy and its Code of Employee and Business Conduct. Pls refer to the following links: Anti-Fraud, Corruption and Whistleblowing Policy: <u>https://benguetcorp.com/wp- content/uploads/2024/06/anti-fraud-corruption- whistleblowing-policy.pdf</u> Policy on Whistle Blowing: <u>https://benguetcorp.com/wp- content/uploads/2024/06/Policy-on-Whistle- Blowing.pdf</u> Code of Employee Conduct and Discipline <u>http://benguetcorp.com/wp- content/uploads/2018/05/ECD%20wi</u> th%20ee%20acknowledgement.pdf Code of Business Conduct and Ethics <u>http://benguetcorp.com/wp- content/uploads/2020/06/E-Code-of-Conduct-of- Business-and-Ethics.pdf</u>		
What are the Risk/s Identified?	Stakeholders Affected	Management Approach		
 Delay in the acquisition of permits and licenses. Engagement in corrupt practices may result in: Cancellation or suspension of permit/licenses/contract agreements or other kinds of penalty Court case Business losses Exposure to higher or additional operational costs 	Mining contractors – reduced amount of share in volume and value LGU – less tax collection Employees – suspension and withholding of salaries and benefits, dismissal from employment. Host community –stoppage of the implementation of social development programs.	Prompt submission of documents and compliance with government requirements to avoid delay in the processing of permits and licenses. Maintain good relationships and close communication with concerned regulatory agencies. The company has clear and stringent Anti- Fraud and Corruption policies and procedures in curbing and penalizing employee involvement in offering, paying and receiving of bribes/unlawful benefits. The Company disseminated the anti- corruption policies and programs to employees throughout the organization via emails and employees signed acknowledgement.		

		Pls refer to link Code of Employee Conduct and Discipline, link #41 & 47 Page 8 ECD with ee acknowledgement.pdf (benguetcorp.com)
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
With the existence of written policies and communication to all concerned and their vigorous implementation, possible involvement in corruption and	Host community – increase in public investment and support to the organization.	Closer relationship with all the stakeholders in the mining circle and government agencies.
bribery will be minimized if not eliminated.	National government agencies and local government units – strengthen the position of the	Strict observance of the schedule for the submission of regulatory reports and compliances.
Harmonious relationship with the regulatory agencies, community, and other stakeholders.	regulatory system and guarantee a degree of fairness.	
	Suppliers/contractors / service	
The continuous mining operation is assured, and the integrity and reputation of the Company are maintained with the absence of corruption and bribery in the	providers – leads to a secure and long-term business relationship.	
organization.	Employees – job satisfaction and security and increase in employee morale and shared values.	

Incidents of Corruption

Disclosure	Quantity	Units
Number of incidents in which directors were removed or disciplined for corruption	0	#
Number of incidents in which employees were dismissed or disciplined for corruption	0	#
Number of incidents when contracts with business partners were terminated due to incidents of corruption	0	#

What is the impact and where does it occur? What is the organization's involvement in the impact?	Stakeholders Affected	Management Approach
The Company has not experienced and has no recorded incidents of corruption by any of its Board of Directors and Officers nor from its employees. The company's Code of Business Conduct and anti-corruption standards clearly prohibit bribery and corruption in all business dealings. Benguet Corporation has been recognized as a top Philippine publicly listed company for corporate governance based on the 2021 and 2022 ASEAN Corporate Governance Scorecard (ACGS) and Corporate Governance Scorecard (CGS)	The Company, Board of Directors, officers, Senior Managers, and all employees were all responsible for the strict implementation and compliance with the Employee Code of Conduct and compliant to all government and other pertinent governing bodies.	All employees are covered by the Anti- Fraud, Corruption, and Whistleblowing Policy and Employee Code of Business Conduct. Members of the Management Team continued to comply with governing bodies' requirements including Corporate Governance reports and compliances. <i>Pls refer to the following links:</i> <i>Anti-fraud, Corruption and Whistle- blowing Policy</i> <u>http://benguetcorp.com/wp-</u> content/uploads/2020/06/anti-fraud-

assessments by the Institute of Corporate Directors. This commitment is further evidenced by the Company receiving Golden Arrow Awards on January 20, 2023, September 28, 2023, and September 19, 2024. This consistent recognition underscores Management's strong and sustained dedication to good corporate governance.		corruption-whistleblowing-policy.pdf ACGS Awarded Benguet Corporation as top performing publicly listed Company http://benguetcorp.com/corporate- governance/
What are the Risk/s Identified?	Stakeholders Affected	Management Approach
Keeping the workplace free from corruption vis a' vis building a culture of integrity is always a continuous challenge as employees and stakeholders are exposed to high- valued minerals and assets. If the risk of income/profit loss due to corruption or pilferages will not be addressed, it will eventually lead to business closure.	Business closure may affect the following: Mining contractors – reduced amount of share in volume and value. LGU – lesser tax collection Employees – Suspension or termination of employment Host community – community development projects might be suspended/stopped.	Management, including its officers and managers, should set a personal example of integrity. Strong leadership and commitment in the implementation of the Anti-fraud, Corruption and Whistleblowing Policy and the Employee Code of Conduct should be uniformly implemented across all organizations and levels.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
A workplace free of corruption with employees with high regard of integrity could lead to more productive and greater business opportunities for the Company.	The opportunities/outcome will surely be reaped by the communities, LGUs, employees, and other stakeholders.	Management endeavors to further strengthen its core values, systems, and procedures to reduce, if not totally eliminate corruption and fraud in the workplace.

ENVIRONMENTAL PERFORMANCE

Resource Management Energy consumption within the organization:

Disclosure			Quantity				
	BG	GO			Total		-
	2023	2024	2023	2024	2023	2024	
Energy consumption (kerosene)	2,117.62	1,472.37	0.0	0.00	2,117.62	1,472.37	GJ
Energy consumption (diesel)	4,685.02	3,601.155	311.34	231.12	4,996.36	3,832.275	GJ
Energy consumption (bunker fuel)	0.00	0.00	4,481.7789	4,903.1768	4,481.7789	4,903.1768	GJ
Energy consumption (electricity)	5,022,416.01	4,505,184.79	222,066	209,850	5,244,482.01	4,715,034.79	kWh
Energy consumption (gasoline)	29.32	45.57	8,73	0.00	38.05	45.57	GJ
Energy consumption (LPG)	0.00	0.00	0.00	0.00	0.00	0.00	

Reduction of energy consumption

Disclosure	Quantity					Units	
	BGO		ILP		Total		
	2023	2024	2023	2024	2023	2024	
Energy reduction (kerosene)	1,122.75	645.21	0.00	0.00	1,122.75	645.21	GJ
Energy reduction (diesel)	1,448	1,083.865	0.00	80.22	1,448	1,164.085	GJ
Energy reduction (bunker fuel)	0.00	0.00	10,822.10	(421.3979)	2,738.8	(421.3979)	GJ
Energy reduction (electricity)	1,546,240	517,231.22	19,494	12,216	1,565,734	529,447.22	kWh
Energy reduction (gasoline)	29.32	(16.25)	8.73	8.73	38.05	(7.52)	GJ
Energy reduction (LPG)	0.00	0.00	0.00	0.00	0.00	0.00	

dentification of Impact	Stakeholders Affected	Management Approach
The 2024 energy data is shaped by two key operational events: the stoppage of contractor milling at BGO due to high power rates in the 1 st Quarter and 2nd Qtr, stoppage of operation of BC Team and reduced mechanical availability of mining and milling equipment at both BGO due to delays in imported parts. The decrease in electricity consumption at BGO is likely a combination of these factors. There was a delay in the development of the underground workings due to the low mechanical availability of equipment that resulted in the slowdown of milling operation due to the lower extraction and delivery of ore. Considering the slowdown of the operation, the Company continuously observes the energy conservation guidelines. <i>Please refer to the following:</i> <i>Appendix "A"-EMS Guidelines</i> on <i>Power Conservation</i>	Operations – power cost is a significant cost driver in gold operations. Small-scale miners (SSM) – The Company monitored the disconnected illegal connections by SSM to eliminate pilferage of electricity. An increase in milling charges due to the increased cost of electricity and fuel/oil affected the operation of mining contractors. Employees – home activities of employee dependents are affected by the energy conservation measures being implemented.	Safeguards in the following measures to be sustainable: Conduct regular energy level monitoring/ reports. Schedule regular follow-up of the delivery of mechanical parts and supplies. Submission of regulatory reports on energy consumption to Mines and Geosciences Bureau and Environmental Management Bureau. Maintain BC Program on energy conservation. Disconnection of illegally connected power lines by small-scale miners. Regular monitoring is implemented to prevent reconnection. BC–BGO has been re-certified ISO 14001:2015 (by NQA) as proof of commitment to make operations aligned with international environmental and safety standards that include energy conservation.

What are the Risk/s Identified?	Stakeholders Affected	Management Approach
 Price of fuel and oil - The fluctuating world market price of diesel and bunker fuel has affected the overall operating cost and the profitability of the operation. Ore grade - The low grade of ore from the mining operation has affected the milling cost. Pilferage of processed and unprocessed ore - stealing of processed/loaded carbon has contributed to income loss. Misappropriation - inappropriate target/goal setting affected the revenue projection. 	BC Operation Suppliers of fuel & oil Employees/miners Community	 BGO follows a strict set of environmental standards in the conduct of its operation to monitor power consumption and utilization. To be sustainable, there is a need to strictly implement the following: Energy level monitoring; Strengthen security measures and surveillance of mine and mill workers/employees; Close monitoring of production vs budget and revise projections when necessary; Submission of regulatory reports on energy consumption; Conduct regular Preventive Maintenance Schedule on equipment and vehicles; and Conduct regular monitoring of small-scale miners' operations in the area and implement immediate disconnection of illegally connected power lines.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
Cost savings initiatives are being implemented across the value chain to become the least-cost producer as well as achieve greener, cleaner operations. Develop a better understanding of the mine and mill operations process flow and coordination with security, mill, and mine managers that will improve relationships among department heads to prevent pilferage of commodities	Community LGU	Continuously monitor its power consumption and check areas that can be subjected to power adjustments. The company maintained reducing power consumption in its industrial areas by shifting to energy-efficient motors and lighting fixtures for a cost-reduction program. Shared electricity rates through graduated increased milling charges to contractors.

Water consumption within the organization

Disclosure	Quantity					Units	
	BGC)		P	Total		
	2023	2024	2023	2024	2023	2024	
Water withdrawal							
Industrial	61,860.54	50,352.42	481	631*	62,341.54	50,983.42	Cubic meters
Domestic	7,131.60	7,191.40	200		7,331.60	7,191.40	
Water consumption	61,860.54	50.352.42	481	631*	62,341.54	50,983.42	Cubic meters
Domestic	7,131.60	7,191.40	200		7,331.60	7,191,40	
Water recycled and reused	0.00	0.00	0.00	0.00	0.00	0.00	Cubic

Identification of Impact	Stakeholders Affected	Management Approach
 Water is a critical input for the mining operations at the BC-BGO site. Recognizing its importance, the Company actively monitors the operational impact on adjacent river systems and downstream communities in Benguet to ensure water resources are maintained at levels that allow for equitable access by all stakeholders. Water Sourcing: BC-BGO (Benguet): Industrial water for mining activities is sourced from the Company's old underground mine tunnel located in L-1200, Acupan, Itogon, Benguet. This withdrawal is governed by Water Rights Permit No. 16154 issued by the National Water Resources Board (NWRB). Potable water for employee's consumption at the BGO site is supplied by a private individual who owns and maintains a natural spring for his water delivery business, with the Company procuring this water at a fixed rate per drum. ILP (Baguio City): Domestic water needs for the ILP operations in Baguio City is supplied by the Baguio Water District (BWD). Industrial water for ILP is supplied by private individual, sourced from a natural spring permitted by the government for his water delivery business, with costs negotiated per cubic meter. 	The affected stakeholders are as follows: Company – has 24/7 access to water supply from its underground mine tunnels for industrial use. BC-BGO employees, contractors/service providers, have access to safe potable water within the mine site. Host, and neighboring communities – have free access to water sources present in the area since the Company source and utilize its water internally.	Access to water is a basic human right as it is a shared resource of high economic, environmental, and social value, Considering that its operation is dependent on the free-flowing water from the Company's underground mine tunnel and for the continuous water recharging of the aquifer, it developed a strategy through an intensified watershed development and management by implementing a reforestation program on denuded and sparsely vegetated areas within and outside the Company's mining claims. This activity is included in the Annual Environmental Protection and Enhancement Program. Streamflow measurement and water quality monitoring is done quarterly. Please refer to Appendix "B" – Certificate of Approval of Annual Environmental Protection and Enhancement Program (AEPEP for BGO) Please refer to Appendix "B-1" – Certificate of Approval of Annual Environmental Protection and Enhancement Program (AEPEP for BGO)
What are the Risk/s Identified?	Stakeholders Affected	Management Approach
 The identified water-related risks are as follows: Poor housekeeping practices by underground miners pose a risk to the quality of water intended for domestic use. The growing population and business activity in the surrounding area are expected to double overall water demand, potentially impacting availability and cost. Anticipated drying of some springs during the summer months will likely intensify competition for domestic water resources, potentially leading to price increases and volume limitations. High water competition is expected during the dry season due to the water- intensive ball milling operations of illegal small-scale miners. 	BC-BGO employees, contractors/service providers, community residents.	The company will continue to support a range of projects that offer sustainability co- benefits, including support for local communities' biodiversity conservation, and watershed rehabilitation. The Company's Mining Forest Program is a shared responsibility with the community while the government monitors the implementation of the program. The Company continues to engage with its host and neighboring communities for an uninterrupted partnership in the protection o the reforested areas to increase the water yield of the aquifer.

What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach			
In 2024, total water withdrawal across our operations decreased by 16,44%, from 69,673.14 cubic meters in 2023 to 58,174.82 cubic meters. Industrial water withdrawal dropped by 18,13% due to operational efficiencies and improved process controls, while domestic water withdrawal decreased slightly by 1.91%, reflecting stable consumption patterns. Water consumption mirrored withdrawal trends, ensuring reductions were achieved without compromising operational requirements. No water recycling or reuse activities were recorded during the reporting period. Recognizing this opportunity, we are prioritizing the development of water reuse initiatives to enhance sustainability in future operations. In addition, intensified watershed development in the area has provided livelihood opportunities for Indigenous Peoples (IPs) through contract reforestation, seedling propagation, plantation maintenance, and forest protection activities — further strengthening the community's role in environmental stewardship. Moreover, the Company's abundant underground water source presents significant potential for business development, particularly to supply bulk water needs of the surrounding communities, contributing to local water security and economic development. Our progress demonstrates our commitment to responsible resource management, community development, and environmental sustainability.	Employees, contractors/service providers, community residents	The Company actively engages stakeholders by providing livelihood opportunities such as seeding propagation, contract-based tree planting, and maintenance of reforestation areas. These initiatives strengthen community relationships, empower Indigenous Peoples and local residents, and support long-term forest rehabilitation efforts. Through intensified tree-planting activities within the mining claim, forest cover is being significantly enhanced, leading to increased spring water yield and contributing to lower atmospheric temperatures in the surrounding areas — critical factors in sustaining local ecosystems and improving climate resilience. Additionally, the Company is evaluating the development of its Acupan underground water source as a potential business opportunity to supply bulk water to nearby communities, including Itogon and Baguio City. This initiative aims to contribute to regional water security while creating new avenues for sustainable economic development.			

Materials used by the organization

Disclosure	Quantity				Units	
	BGO					
	2023	2024	2023	2024		
Materials used by weight or volume						
Renewable (identify) – lumber, paper, sawdust, flour	333,767.25	92,535	73	592 (paper/carton)	kg/liters	
Non-renewable - lubricants, motor oils, bunker fuel oil, diesel oil, kerosene, dynamite explosive, sodium cyanide, nitric acid, ammonium nitrate, sodium hypochlorite, hydrochloric acid, activated carbon, lime and sulfuric acid, caustic soda, hydrochloric acid, nitric acid, etc.	635,258.66	534,513.37	1,112,185.26	1,213,446.03	kg/liters	
Percentage of recycled input materials used to manufacture the organization's primary products and services. Note: Only sawdust was used for firing carbon ash while papers are recycled for printing internal reports and memo.	0.09% (Saw Dust)	0.13% (sawdust) 0.11% (paper)	100 73 (paper)	100 592 (paper, carton)	% Kgms.	

Contraction of the Contraction		
Total (BG0	Units	
2023	2024	
333,840.25	93,127	kg/liters
1,747,443.92	1,747,959.4	kg/liters
100 73 (paper)	100	% Kgms.
	2023 333,840.25 1,747,443.92 100	333,840.25 93,127 1,747,443.92 1,747,959.4 100 100

What is the impact and where does it occur? What is the organization's involvement in the impact?	Stakeholders Affected	Management Approach
BGO's underground mining operations utilize mine timbers for tunnel support to ensure the safety of mine workers. All timbers are procured legally, supported by Certificates of Lumber Origin issued by the DENR.	BGO mine and mill employees, community, suppliers and Irisan Lime Project employees and its surrounding residential areas. Employees of the mining	The underground workings/tunnels are supported by square-set mine timbers to provide safe working conditions for the mine workers. Pre-cast concrete columns are the alternative mine support, but the cost is expensive and may not last especially on heavy grounds and acidic
To enhance sustainability, the Company	contractors,	underground. BC-BGO is committed to

 recycles wood wastes, such as sawdust for firing carbon ash, and reuses papers internally for printing. Explosives necessary for underground development are handled responsibly, with permits issued by the Firearms and Explosives Unit of the Philippine National Police. The Company actively explores alternative materials for underground support structures. While pre-cast concrete columns are considered, they are often cost-prohibitive and vulnerable to acidic and heavy ground conditions. BC-BGO remains committed to minimizing timber usage without compromising worker safety. Forest plantation initiatives are promoted within the operational area, and suppliers are encouraged to support reforestation activities. The Company complies fully with ISO 14001:2015 standards and R.A. 9003 (Ecological Solid Waste Management Act), ensuring responsible material use and waste management practices. For the period 2024: a. Renewable material consumption dropped dramatically by 72.1%, possibly due to operational scaling or efficiency improvements; b. Non-renewable material usage remained almost flat, ensuring a stable environmental footprint despite operational needs; c. Recycling practices notably improved, reflecting strengthened environmental 		 continuing to explore other alternative materials as substitutes for mine timber for underground support without sacrificing the safety of mine workers. This is part of the Company's sustainability commitment to minimize the use of timber resources. Forest plantations will be part of the Company's sustainable commitment to environmental enhancement in its area of operation. It encourages suppliers of mine timber to participate in the reforestation program of the company and the government. In compliance with BC-BGO's commitment and its concurrence to the standards set is ISO 14001:2015 certification, the company strictly adheres to the standard set by the regulatory agencies (DENR-EME on proper recording and labeling or renewable and non-renewable materials is accordance with R.A. 9003 (Ecological Soli Waste Management Act) provisions.
commitment.		
What are the Risk/s Identified?	Stakeholders Affected	Management Approach
 Depletion of Resources: Threatening the availability of renewable materials such as lumber and paper. Environmental Degradation: Improper handling of non-renewables could lead to air, water, and soil pollution. Health and Safety Risks: Worker exposure to hazardous materials increases occupational health risks. Cost Management Risks: Heavy reliance on non-renewable materials can inflate production costs. Operational Risks: Blasting activities pose safety hazards including fly rocks, noise pollution, and dust emissions if improperly managed. 	Underground employees/miners/blasters Employees at the motor pool area, mine and mill mechanical shops; Communities adjacent to the operation.	 Regular monitoring of implementation of ISO 14001:2015 objectives, targets and performance vs. audit reports Ensure secure storage, waste management, and disposal practices aligned with regulatory standards. Continue regular quality monitoring tests and submission of reports to regulatory agencies for validation of results following DENR Standards. Monitor the strict implementation of the Annual Environmental Protection and Enhancement Program. Provision of complete PPE, regular training on chemical handling, and safety protocols enforcement

Please refer to the following: Appendix "C' - Summary of Risks Appendix "D" – EMS Document # EMSG- 03 (EMS Guidelines on Diesel, Oil and Grease Hauling, Transport and Storage) Appendix "E" – EMS Document # EMSG - 12 (EMS Guidelines on Contaminated Water)		 Conduct regular safety lectures, meetings, and pep talks before deployment in assigned working areas to remind workers of safety protocols in the underground mining activities and proper handling of chemicals at the mill.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
 Sawdust is being recycled for firing carbon ash while jsed paper is recycled for printing internal reports and memo. Continuous improvement in mining technologies and innovations and how it can benefit from renewable sources of energy throughout the stages of operation. BGO's logistics and support services, on the other hand, utilize renewable materials such as wood and used packing materials (cartons or box containers made of cardboard). Better planning and forecasting of usage of non-renewable materials in relation to programmed procurement systems can lead to cost efficiencies of the operation. 	Residents in the surrounding communities stand to benefit from cleaner air and water. Employees Operations – cost efficiencies will deliver better profit margins without incremental damage to the environment.	Safety lectures and work briefings before deployment to assigned working areas. Continue to monitor the usage of non- renewable materials to attain reduction year over year without sacrificing production. Implement materials storage, handling, management, monitoring, and disposal of waste/tailings. Continue regular submission of reports to the regulatory body on the use of regulated chemicals. Regular water quality monitoring to ensure water is free from contaminants that are hazardous to human and animal health.

Ecosystems and biodiversity (whether in upland/watershed or coastal/marine)

	Quantity			
Disclosure	BGO	ILP	Units	
Operational sites owned, leased, managed in, or adjacent to, protected areas and areas of high biodiversity value outside protected areas	Crosby Park – 11.0 Has. Virac Timberyard – 6.0 Hectares Keystone – 3.0 Hectares Kelly Plantation - 3.0 Hectares	Plantation = within Irisan tenement 0.3711 Ha.	Ha.	
Habitats protected or restored	0.00		Ha.	
IUCN ⁴ Red List species and National Conservation List species with habitats in areas affected by operations	0.00		Ha.	

⁴ International Union for Conservation of Nature

What are the Risk/s Identified?	Stakeholders Affected	Management Approach		
Illegal cutting of trees and squatting. Illegal cattle grazing. Forest / bushfire	Employees and nearby residents	 Strengthened and frequent foot patrols by the Claims Protection Team to prevent illegal activities such as squatting and small-scale mining. Ongoing surveillance, installation of warning signage, and coordination with local authorities to enhance protection efforts. 		

What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach	
Opportunities identified from these efforts include the development of ecological tourism (such as at Crosby Park), watershed restoration that enhances water security and climate resilience, and community employment through reforestation activities.	Employees and the host and neighboring communities.	BGO will sustain the maintenance and enrichment of Crosby Park to strengthen its role in ecological tourism and biodiversity conservation, while expanding reforestation efforts to enhance watershed functions and support landscape restoration.	
The reforestation and forest maintenance programs continue to provide income opportunities for local families and associations through seedling production, plantation establishment, and forest protection roles.		The Company actively works with nearby communities in maintaining these forest areas, conducting regular patrols to prevent illegal activities such as tree cutting and small-scale mining. Forest enrichment planting and further protection activities are continuously implemented to strengthen ecological integrity.	

Environmental Impact Management Air Emissions

GHG	
0110	

Disclosure	Quantity						
	BGO		ILP		Total		Units
	2023	2024	2023	2024	2023	2024	
Direct (Scope 1) GHG Emissions (Diesel fuel, Gasoline, Kerosene, Bunker fuel)	537	391.78	2,992	3,767.38	3,529	4,159.16	Tonnes CO2e
Energy indirect (Scope 2) GHG Emissions (electricity)	1,422	1,275.28276	63	59.40224	1,485	1,334.685	Tonnes CO2e
Emissions of ozone-depleting substances (ODS)	0.00	0.00		0.00		0.00	Tonnes

Identification of Impact	Stakeholders Affected	Management Approach		
In 2024, the Company recorded a total of 4,159.16 tonnes of direct (Scope 1) GHG emissions, reflecting an increase of approximately 17.84% compared to 3,529 tonnes CO_2e in 2023. The increase was mainly due to higher diesel, gasoline, kerosene, and bunker fuel consumption across operational sites. Meanwhile, energy indirect (Scope 2) GHG emissions related to electricity consumption totaled 1,334.69 tonnes CO_2e in 2024, representing a decrease of approximately 10.11% compared to 1,485 tonnes CO_2e in 2023. The reduction reflects the Company's continuous efforts in improving energy efficiency and reducing electricity use.	Employees and their families Community / IP's Suppliers	 Conduct a comprehensive assessment to identify additional sources of GHG emissions and implement targeted mitigation measures. Optimize energy efficiency by evaluating and right-sizing the horsepower of air conditioning units relative to office floor area, ensuring appropriate cooling capacity while minimizing energy use. Implement a regular preventive maintenance program for all diesel-powered motors and equipment to maintain optimal operating efficiency and reduce unnecessary fuel consumption and emissions. Promote operational best practices and energy-saving behaviors across sites to further minimize the Company's carbon footprint. 		

What are the Risk/s Identified?	Stakeholders Affected	Management Approach		
 A. Lime Kiln Operations Prolonged operator exposure to high temperatures poses significant health risks, including heat stress and related illnesses. Inhalation of dust from raw materials and fumes, particularly during start-up operations, may result in respiratory health issues. B. Underground Mining Operations Failure or breakdown of air compressors could cause operational disruptions, leading to the suspension or slowdown of underground activities. Inadequate ventilation can impair miner performance, decrease productivity, and elevate health risks. Poor ventilation may result in the accumulation of carbon monoxide emissions from diesel-operated locomotives, posing serious health hazards and potential fatality risks to underground personnel. 	Employees - The health of employees is affected which will result in a reduced workforce. Company - reduced ore tonnage	For Lime Kiln Operations, the Company will provide heat-resistant PPE, improve ventilation and conduct regular health monitoring and safety training to protect workers from heat and dust exposure. For Underground Mining Operations, preventive maintenance of air compressors, enhancement of ventilation systems, installation of gas detectors, and regular emergency drills will be enforced to safeguard miner health and ensure continuous operations.		
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach		
 Reduced Scope 1 GHG emissions through lower fuel consumption in BGO and ILP operations, supporting climate goals. Lower operational costs and improved environmental performance from optimized equipment efficiency. Increased kiln product output and sales, driving revenue growth. 	Employees of the company and mining contractors. Residents residing in the camp.	The Company will strengthen coordination among operations and executives to address challenges efficiently. Regular preventive maintenance and monitoring of equipmen running hours will minimize downtime, optimize fuel use, reduce GHG emissions, and suppor increased kiln production and revenue growth.		

Air pollutants

Disclosure	Quantity				
	BGO			Unit	
	2023	2024	2023	2024	
NOx					
Stack emission Ambient	143 8.20	83.00mg/Ncm 13.18 ug/Nm3	132.9,82.20 9.0,9.0,5.33	<21.4 and 13.5 4/1.97/1.18	Mg/Nm3
Sox Stack emission Ambient	10.81 11	50.25 mg/Ncm 10.85 ug/Nm3	9.6,38.3 0.86,0.85,0.71	18.3 and 1.9 0.29/0.57/0.94 (3 sampling stations)	
Carbon Monoxide (CO)	0.00	36.75 mg/Ncm	0.00	121 and 25.2 (stack emission)	mg/Nm ³

Persistent organic pollutants (POPs) e.g. PCB's, PFOs; Biphenols; Phthalates: Atrazine (herbicide)	0.00		0.0	00		kg
Volatile organic compounds (VOCs) Propane, butane	0.00		0.0	00		kg
Hazardous air pollutants (HAPs) (Lead)	0.002745		0.0	00		kg
Particulate matter (PM10)	4.67	25.8 mg/Ncm	9.3	,49.7	8.06/7.27/6.27 (ambient)	mg/Nm ³
CO Stack emission	0.00	36.57 mg/Ncm	133.2,105.4			
What is the impact and where does it occur? What is the organization's involvement in the impact?		Stakeholders Managemen Affected		t Approach		
Cognizant of the impact of mi on the environment particular the company is very a consequences but equal managing it properly. The i sources of air pollution are as 1. Generation of dust development caused by 2. Generated fumes at the during gold smelting w are added to separate impurities; and 3. ILP operation – Kiln plar generation of dust along In 2024, the Company rec improvements in managing Nitrogen oxide (NO _x) sta significantly decreased by 42% at BGO and by over reflecting enhanced operat Ambient NO _x concentration declined across all monitoring Conversely, sulfur oxide (S showed an increase, partic measurements, indicating further emission control e monoxide (CO) emissions monitored, were detected at m underscoring the importance maintenance and equipm improvements. <i>Please refer also to:</i> <i>Appendix "F-" Report CO Greentek Environmental P Source Emission Test Result</i> <i>Appendix "F-1" and "F-</i> <i>Certification of BSI</i> <i>Management Service Provice</i>	ly on-air quality, aware of its ly aware of its ly aware of dentified major follows: during mining blasting; e mill operation here chemicals gold from other at operation and g access road. corded notable air emissions approximately 75% at ILP, ional controls. s at ILP also s at ILP	BC-BGO - Employees/workers, community. ILP -Employees, community/neighbou Puroks of the Plant	ring	maintenance emissions, and preve monitoring stricter com will be e operations to proactive	pany strengthens e of equipment enhance operationa ent breakdowns. of air quality para pliance with emissic inforced. Coordinat and leadership will b ely address air pollu itent timely corrective	to reduc al efficiency Continuou ameters an on standard tion amon oe intensifie tant source

Emission Test Result for ILP and		
Appendix "G", and "G-1" Ambient Air Quality and Noise Monitoring Report of Greentek Environmental Engineering Services for BGO and		
Appendix "G-2" Ambient Air Quality and Noise Monitoring Report of BSI Environmental Management Service Provider on Source Emission Test Result for ILP		

What are the Risk/s Identified?	Stakeholders Affected	Management Approach
 Poor air quality may pose health risks to employees and nearby communities, potentially resulting in complaints filed with regulatory agencies against the Company (BGO and ILP). Exceedance of DENR standards for dust and acid fumes may lead to regulatory penalties, suspension, or even stoppage of operations. 	Employees/workers, adjacent communities ILP- community/ residents of direct impact areas (Purok 10 and 11; employees	 Strengthen air quality monitoring systems to ensure compliance with DENR standards. Implement dust suppression measures and install fume extraction systems at critical emission points. Conduct regular maintenance of equipment to minimize pollutant emissions. Provide PPE and health monitoring programs for employees exposed to air pollutants. Engage with nearby communities through information drives and grievance mechanisms to address concerns promptly.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
 Enhanced employee environmental awareness and commitment to air quality protection. Training on advanced anti-pollution equipment operation, aligned with R.A. 8749. Improved chemical handling practices to reduce workplace exposure risks. Sustained compliance with DENR standards and ECC conditions through effective pollution control. 	Employees/ workers, community	 Continue environmental awareness and pollution control training for employees. Regularly update and maintain antipollution devices and technologies. Strictly enforce safe handling protocols for chemicals and reagents. Conduct periodic air emissions testing to ensure continuous compliance with DENR standards and ECC conditions. Strengthen internal audits and corrective actions to immediately address any emission issues.

Solid and Hazardous Wastes

Disclosure	Quantity				59.104
	BGO		ILP		Units
	2023	2024	2023	2024	
Total solid waste generated	391,226.20	159,323.9	1,152.50	1,653	kg

Reusable (Sawdust, Paper)	411.96	223.90	176	592	kg
Recyclable (used sacks, cartons, pet bottles, cans)	6,606.20	19,500.00	131	254	kg
Composted	(*)	0.00	0.00	0.00	kg
Incinerated	N/A	0.00	0.00	0.00	kg
Residuals/Landfilled	384,660.00	139,600.00	845.50	807	kg

Disclosure	Quantity		
	Total (E	GO and ILP)	Units
	2023	2024	
Total solid waste generated	392,378.7	160,976.9	kg
Reusable (Sawdust, Paper)	587.96	815.9	kg
Recyclable (used sacks, cartons, pet bottles, cans)	6,737.20	19,754	kg
Composted	0.00	0.00	kg
Incinerated	0.00	0.00	kg
Residuals/Landfilled	385,505.50	140,407	kg

What is the impact and where does it occur? What is the organization's involvement in the impact?	Stakeholders Affected	Management Approach
Residents in camps and concession stores are the major source of residual waste. In 2024, the total solid waste generated by both BGO and ILP operations decreased by 59.0% compared to 2023 (from 392,378.7 kg down to 160,976.9 kg). This notable reduction reflects the Company's continuous efforts to improve solid waste management practices. Reusable materials increased by 38.76%, and recyclables rose significantly, from 6,737.2 kg to 19,754 kg, demonstrating better segregation and resource recovery initiatives. Meanwhile, residual waste sent to landfills dropped by 63.56%, supporting the goal of minimizing landfill dependency. This positive trend is the result of a persistent information campaign on the provisions of R.A. 9003 (Ecological Solid Waste Management Act) and the regular collection of garbage in the camps. Increased awareness and practice of proper waste management have now become a sustained culture among the residents and employees, reinforcing the Company's commitment to environmental stewardship.	Employees of Benguet Corporation and workers of solid waste/residual waste hauling contractor. Owners of concession stores.	 Integrated proper waste management into daily housekeeping practices. Enforced strict waste segregation at source in offices and residential areas. Collected and hauled scrap materials regularly to designated depository areas. Sold recyclable materials to DENR- accredited contractors to minimize waste generation. Disposed of residual waste through licensed landfill contractors outside the region. Operated and maintained a Material Recovery Facility (MRF) for recyclables and biodegradables. Ensured continuous compliance with R.A. 9003 (Ecological Solid Waste Management Act) and DAO No. 2001-34. Conducted regular monitoring by the Mine Environment Protection and Enhancement Officer (MEPEO). Reminded contractors to provide PPE and maintain worker health and permit compliance. Institutionalized a culture of waste management through persistent information campaigns.

What are the Risk/s Identified?	Stakeholders Affected	Management Approach
 Health and Environmental Risks: Accumulation of uncollected waste may cause unsanitary conditions, foul odors, and health issues for workers and nearby communities. Regulatory Compliance Risks: Failure to comply with R.A. 9003 could lead to complaints, penalties, or sanctions from regulatory agencies. Contractor Worker Safety: Hauling contractor workers face health and safety risks without proper PPE and management oversight. Water Pollution Risk: Improper waste management could contaminate nearby water bodies, impacting environmental and community health. 	Workers of solid waste/residual waste hauling contractor Employees of the Company Community	 Strict Monitoring and Compliance: Regular inspection of waste segregation, collection schedules, and compliance with R.A. 9003 requirements. Contractor Oversight: Require hauling contractors to maintain valid permits, provide full PPE to their workers, and conduct regular health and safety checks. Immediate Waste Disposal: Ensure timely hauling and disposal of waste to avoid accumulation and unsanitary conditions. Emergency Response Plans: Establish rapid response protocols for waste overflow, missed collections, or accidental spills. Environmental Safeguards: Maintain the Material Recovery Facility (MRF) and enforce strict waste handling procedures to prevent water pollution. Community Engagement: Continue awareness campaigns for employees and residents on proper waste segregation, recycling, and sanitation practices.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
 Sustained cleanliness ensures full compliance with the Ecological Solid Waste Management Act (R.A. 9003) and its IRR (DAO No. 2001-34). A clean, well-maintained environment enhances the quality of life for employees and surrounding communities. Compliance strengthens the Company's environmental reputation and reduces risks of regulatory sanctions. A litter-free, organized community promotes employee pride and fosters stronger community relations. 	Company Hauling contractor Employees	 Sustain compliance with R.A. 9003 through regular waste collection and segregation. Conduct continuous environmenta education for employees and residents. Maintain close coordination with accredited waste haulers. Promote active involvement o employees and communities in maintaining clean surroundings.

Hazardous Waste	aste	И	ous	zaro	Ha	
-----------------	------	---	-----	------	----	--

Disclosure		Qua	antity		Units
	B	30		ILP	1
	2023	2024	2023	2024	1
Total weight of hazardous waste generated: Type of waste generated – Mill tailings Other hazardous waste (lead compounds, busted fluorescent lamps, non- halogenated organic chemicals, clinical waste, oil contaminated materials, Waste electrical and electronic equipment, Mercury and mercury compounds)	28,520.32 28.848	22,638.52 6.540	61.65	0.0855015	MT. MT.
Total weight of hazardous waste transported	0.00	14,450	0.00		Kg.

Disclosure	Qua	Units	
	Total (BG		
	2023	2024	1
Total weight of hazardous waste generated: Type of waste generated – Mill tailings Other hazardous waste (lead compounds, busted fluorescent lamps, non-halogenated organic chemicals, clinical waste, oil contaminated materials, Waste electrical and electronic equipment, Mercury and mercury compounds)	28,521.97 28.848	22,638.52 6.6255	MT. MT.
Total weight of hazardous waste transported	0.00	14.450	Kg.

What is the impact and where does it occur? What is the organization's involvement in the impact?	Stakeholders Affected	Management Approach
Mill tailings is the product from milling the gold-bearing mineral ore to produce said precious metal. The tailings are impounded in the ECC-approved Tailings Storage Facility (TSF) that serves as a treatment facility. In 2024, there was a notable decrease in the total hazardous waste generated, from 28,521.97 metric tons in 2023 to 22,638.52 metric tons. This reduction reflects improved waste management practices, particularly in the handling and disposal of mill tailings and other hazardous substances. Proper maintenance of the tailings treatment facility helped prevent potential soil and water contamination, mitigating environmental risks associated with cyanide and other chemicals present in the waste. For other hazardous wastes, strict protocols on proper labeling, storage, and regular hauling by an EMB-accredited contractor were effectively maintained. Importantly, in 2024, 14.45 kilograms of hazardous waste were successfully transported for proper	Employees of BC- BGO, and ILP Employees of mining contractors and hauler	The Company demonstrates corporate responsibility by strictly adhering to waste management and environmental quality protocols, including compliance with R.A. 9003, R.A. 9275, EMS Guidelines on Hazardous Waste Management, and its Environmental Compliance Certificate (ECC) conditions. Hazardous wastes are properly labeled, stored, and disposed of through a DENR-EMB accredited third-party service provider, ensuring full regulatory compliance. Aligned with the Company's Environmental Policy and Environmental Management System (EMS), continuous monitoring, repair, and maintenance of anti-pollution structures, penstocks, spillways, and tailings dam embankments are regularly carried out. Security personnel are deployed at the Tailings Storage Facility (TSF) to safeguard the structure and prevent unauthorized access.

disposal, compared to zero recorded transport in 2023. This reflects the Company's commitment to regulatory compliance and proactive environmental stewardship. Overall, the Company's adherence to best practices in hazardous waste management, including persistent monitoring and maintenance, resulted in a cleaner operation and reduced environmental risk, ensuring ongoing compliance with Philippine		Management – Used Oil, Oil and Grease Contaminated Items)
environmental regulations. What are the Risk/s Identified?	Stakeholders Affected	Management Approach
 Water contamination of the Ambalanga River if hazardous waste, especially cyanide-laced tailings, is not properly contained and managed. Siltation along the river system due to deposition of non-toxic tailings or sediments from accidental leaks, leading to ecosystem disruption and potential health hazards. Chemical exposure and accidents from improper handling, storage, and transport of hazardous wastes like acids, alkalis, used oils, and organic solvents. Non-compliance with environmental regulations such as R.A. 9275 (Philippine Clean Water Act of 2004) and R.A. 6969 (Toxic Substances and Hazardous and Nuclear Waste Control Act), risking suspension of operations or cancellation of the Environmental Compliance Certificate (ECC). Fines, sanctions, or reputational damage arising from regulatory violations and community complaints. 	Employees of BC- BGO, BC-CHQ and ILP Employees of mining contractors	 Strict enforcement of waste management protocols, especially inside the industrial area, to prevent accidental discharges into the environment. Regular inspection and maintenance of the tailings treatment facility and pipelines to ensure the integrity of impoundment systems and prevent leaks. Proper labeling, safe storage, and secure handling of all hazardous waste materials, with dedicated storage areas designed to avoid spills and leaks. Utilization of EMB-accredited haulers for timely transport and final disposal of hazardous wastes, ensuring compliance with R.A. 6969 and DAO 2004-36. Water quality monitoring programs along the Ambalanga River and other receiving bodies to detect any signs of contamination early and take corrective actions. Implementation of emergency response protocols and spill containment procedures to immediately address accidental releases. Regular employee training on hazardous waste management, chemical handling, emergency response, and environmental protection policies. Strict compliance with the Environmental Compliance Certificate (ECC) conditions and continuous engagement with DENR-EMB to ensure environmental laws and regulations are met. Community awareness programs to maintain transparency and strengthen trust with surrounding communities.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
 Strengthened environmental stewardship by proactively managing hazardous and non-toxic tailings, enhancing the Company's reputation for responsible mining. Continued regulatory compliance (R.A. 	BC-BGO/ACMP, BC- CHQ and ILP employees Employees of mining contractors Suppliers	The Company strengthens its environmental stewardship through strict hazardous waste management, ensuring compliance with R.A. 9275 and R.A. 6969. This protects water bodies like the Ambalanga River, enhances employee safety, fosters community trust, and

 9275, R.A. 6969) ensures uninterrupted operations, avoiding penalties, suspension, or cancellation of permits. Improved environmental quality through effective waste management, maintaining a healthy river system and protecting biodiversity. Enhanced employee skills through regular training on hazardous waste handling, boosting workplace safety and operational efficiency. Increased community trust through transparent environmental practices and the Company's commitment to protecting local water bodies and ecosystems. Support for a circular economy through 	Community.	sustains operational continuity, positioning the Company as a model for sustainable practices. Please refer to Code of Business Conducts and Ethics link <u>http://benguetcorp.com/wp- content/uploads/2020/06/ECode- of- Conduct-of-Business-and- Ethics.pdf</u>
 Support for a circular economy through proper recycling, recovery, and responsible waste disposal practices. Positioning the Company as a model for 		
sustainable operations in the mining and industrial sector		

Effluents

Disclosure	Quantity	Units	
Total volume of water discharges Effluent discharge from the mill	61,860.54	Cubic meters	
Percent of wastewater recycled.	0.00	%	

What is the impact and where does it occur? What is the organization's involvement in the impact?	Stakeholders Affected	Management Approach
In 2024, the mill discharged 50,352.42 cubic meters of effluent — an 18.6% decrease from 61,860.54 cubic meters in 2023 — reflecting improved water management practices. The reduction is primarily attributed to lower ore milling volumes and enhanced containment, recycling, and treatment efforts. Proper TSF operation and maintenance remain critical in minimizing environmental risks and ensuring continued regulatory compliance.	The Company; Employees; Community	 The following are measures that were implemented to mitigate the impacts: Treat wastewater through detoxification using sodium hypochlorite to neutralize harmful substances. Maintain and monitor the Tailings Storage Facility (TSF) to prevent hazardous discharges. Implement water recycling and optimize treatment processes to reduce effluent volume. Regularly monitor water quality to ensure compliance with regulatory agencies and local communities to promote transparency and environmental stewardship. The company adheres to the provisions of R.A. 9275 (Philippine Clean Water Act) and conditions set forth in the Environmental Compliance Certificate (ECC).

		Please refer to Appendix "I" – Environmental Compliance Certificate
What are the Risk/s Identified?	Stakeholders Affected	Management Approach
 Complaints from farmers/residents downstream of the Tailings Storage Facility (TSF). Health and livelihood impacts of downstream communities of livelihood due to water contamination. Fish kills along river systems. Water contamination leading to suspension of operations. Suspension of Environmental Compliance Certificate (ECC) and/or imposition of monetary penalties due to violation of R.A. 9275 (Philippine Clean Water Act of 2004) leading to regulatory sanctions. 	The Company; Employees; Community	 Observe proper maintenance of the Tailings Storage Facilities and other appurtenant structures and implement mitigating measures to prevent accidental wastewater discharge/leaks. Assessment of improvement downstream - keep a database of all improvements for future reference. Strict enforcement and compliance with the provisions of environmental laws & policies and the ECC.
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach
 Increased employee awareness of responsibility and accountability in environmental management. Adoption and application of new technologies to treat wastewater and eliminate or reduce toxicity prior to discharge. Improved environmental performance strengthens corporate image and stakeholder trust. Reduction in water discharge volume demonstrates enhanced operational efficiency and environmental stewardship. Strengthens the Company's reputation for environmental compliance. Opportunity to further improve water recycling rates and sustainable water use. 	Employees, community residents; Mines Environmental Protection and Enhancement Officer; Pollution Control Officer.	 Maintain and monitor pollution control facilities to ensure safe and compliant operations. Conduct regular education and awareness programs for stakeholders. Implement the Environmental Protection and Enhancement Program (EPEP) to promote responsible mining. Ensure full compliance with all environmental laws and regulations. Foster continuous improvement and a strong culture of environmental stewardship within the organization.

Environmental Compliance Non-compliance with Environmental Laws and Regulations

Disclosure	Quantity	Units
Total amount of monetary fines for non-compliance with environmental laws and/or regulations No fines or penalty for violations committed against any provisions of environmental laws, permits and licenses that have been assessed or determined with finality during the period under report (2024).	0.00	PhP
No. of non-monetary sanctions for non-compliance with environmental laws and/or regulations	0.00	#
No. of cases resolved through dispute resolution mechanism	0.00	#

What is the impact and where does it occur? What is the organization's involvement in the impact?	Stakeholders Affected	Management Approach		
Benguet Corporation remains firmly committed to environmental stewardship and regulatory compliance. As a responsible partner of the government, BC fully adheres to all applicable mining, environmental, and social laws and regulations. All required reports and submissions are completed, reviewed, and approved by the relevant government agencies. The Company implements comprehensive environmental and social programs, maintains regular compliance monitoring, and has consistently received certificates of compliance from regulatory authorities, demonstrating its dedication to sustainable and responsible operations.	The Company employees, service contractors, suppliers, investors, community, local and national government, other stakeholders.	Benguet Corporation is committed to full compliance with all environmental laws, permits, and regulations, maintaining its role as a responsible mining company. Environmental safeguards are in place to manage risks, and Benguet Gold Operation upholds an Environmental Policy focused on excellence in sustainable mineral resource development. Continuous monitoring and engagement with regulators ensure ongoing environmental stewardship.		
What are the Risk/s Identified?	Stakeholders Affected	Management Approach		
Failure to submit compliance reports on time, or delays and non-implementation of the approved Annual Environmental Protection and Enhancement Program (AEPEP), Annual Social Development and Management Program (ASDMP), and Annual Safety and Health Program (ASHP) may result in penalties and sanctions from regulatory agencies. Non-compliance with environmental laws and regulations could also lead to legal liabilities and reputational damage.	Benguet Corporation, employees, service contractors, suppliers, investors, community, local and national government, other stakeholders	Benguet Corporation ensures strict adherence to reporting schedules and program implementation. Dedicated teams are tasked with monitoring compliance, promptly preparing and submitting reports, and coordinating closely with regulatory bodies. The Company also continuously strengthens its internal processes and training to maintain high standards of environmental, social, and safety performance. Please refer to link - http://benguetcorp.com/wp- content/uploads/2020/06/OBC- Internal- Audit-Charter.pdf Internal Audit Charter - Defining the Scope of Work of the Internal Audit Office (IAO) - Item V, # 4- 0.2 of the Charter, .		
What are the Opportunity/ies Identified?	Stakeholders Affected	Management Approach		
 Uninterrupted operations through full regulatory compliance. Improved production via continuous mining activities. Stronger environmental management through proactive risk mitigation. 	Management, employees, mining contractors, stakeholders	 Re-assess and monitor pollution control structures regularly. Conduct ongoing IEC activities for stakeholders. Implement and strengthen the Environmental Protection and Enhancement Program 		

 Enhanced reputation from consistent environmental and social compliance. 	 (EPEP). Promote full compliance with environmental laws and regulations. Foster environmental awareness and continuous operational improvement.
	Please refer to Appendix "J"– Registry of Compliance Obligations for C.Y. 2024

SOCIAL PERFORMANCE

Employee Management Employee Hiring and Benefits Employee Data

Disclosure	BGO/CHQ	ILP	TOTAL	Units	
Total number of employees5	294	7	301	Headcount	
a. Number of female employees	63	3	66	Headcount	
 Number of male employees 	231	4	234	Headcount	
Attrition rate ⁶	.32	0		Percent Rate	
Ratio of lowest paid employee against minimum wage (P470 lowest rate / regional min. wage of P470 (CAR) and P645 (NCR)		1:1 - about 4% higher rate than the prescribed minimum wage in the region		Ratio	

Employee Benefits

List of Benefits	Y/N	% of female employees who availed for the year		% of male employees who availed for the year	
		BGO/CHQ	ILP	BGO/CHQ	ILP
SSS (premium)	Y	100%	100%	100%	100%
PhilHealth (premium)	Y	100%	100%	100%	100%
Pag-ibig (premium)	Y	100%	100%	100%	100%
Parental leaves					
Maternity	Y	8%	0	0	0
Paternity	Y	0	0	3%	0
Solo Parent	Y	1.3%	0	0	0
Vacation leaves	Y	100%	100%	100%	100%
Service Incentive Leave	Y	100%	100%	100%	100%
Sick leaves	Y	100%	100%	100%	100%
Medical benefits (aside from PhilHealth))	Ý	100%	100%	100%	100%
Free Housing in camp	Y	100%	100%	100%	100%
Retirement fund (aside from SSS)	Y	1.49%	0	5.5%	0
Tuition Fee Refund	Y	14.2%	0	4.6%	0
Company stock options	Y	0	0	0	0
(Others)	V	100%	100%	40.08/	100%
Insurance (Group life; Accident)	Y Y	100.0	100%	100%	
Birthday Leave	Ť	100%	100%	100%	100%
Mine workers onsite:					
Subsidized water	Y	14.2%	0	8.6%	0

⁵ Employees are individuals who are in an employment relationship with the organization, according to national law or its application (<u>GRI Standards 2016 Glossary</u>)
 ⁶ Attrition are = (no. of new hires – no. of turnover)/(average of total no. of employees of previous year and total no. of employees of current year)

Y	4.7%	0	45.02%	0
Y	30.1%	0	22.07%	0
	Y Y	Y 30.1%	Y 30.1% 0	Y 30.1% 0 22.07%

What is the impact and where does it occur? What is the organization's involvement in the impact?	Management Approach			
Rising inflation and labor costs pressured operations, leading to manpower rationalization despite high sales. Intense competition for skilled workers post-pandemic increased employee turnover risks. However, BC maintained an 81% local employment rate and upheld competitive benefits to support workforce stability.	 Maintained a lean but skilled workforce through strategic hiring and rationalization. Strengthened employee retention through competitive compensation and benefits. Focused on local hiring and continuous skills development. Prioritized workforce stability as part of broader debt-free growth and diversification plans. 			
What are the Risk/s Identified?	Management Approach			
 Rising Operational and Labor Costs: Inflation pressures could strain profitability, requiring strict cost control and efficient workforce management. Talent Retention Challenges: Increased competition for skilled employees, with risks of poaching and attrition to higher-paying opportunities locally and abroad. Lean Workforce Pressure: Maintaining productivity with fewer employees could cause operational gaps if skills and competencies are not properly managed. Potential Talent Pipeline Gaps: Without strong succession planning, key leadership and technical roles may face future shortages. 	 Control Costs: Maintain a lean, efficient workforce and optimize operations to manage rising expenses. Strengthen Talent Retention: Enhance employee engagement through competitive pay, career growth opportunities, and a positive work environment. Develop Internal Talent: Invest in succession planning, training, and upskilling to secure critical roles and ensure workforce adaptability. Reinforce Employer Brand: Promote BC as a stable, growing company to attract and retain skilled employees. Proactive Monitoring: Regularly track employee engagement and turnover to address risks early. 			
What are the Opportunity/ies Identified?	Management Approach			
 Agile and High-Performing Workforce: Streamlining operations creates the opportunity to build a more skilled, efficient, and adaptable team. Employer Branding: Strengthening employee value proposition can position BC as an employer of choice, attracting and retaining top talent. Upskilling and Career Development: Investing in training, leadership development, and internal career growth strengthens workforce loyalty and capability. Expansion of Career Opportunities: Diversification strategies can offer employees new roles and growth paths, enhancing retention and engagement. 	 Invest in Workforce Development: Expand training program career pathways to build a highly skilled and loyal workforce. Enhance Employee Value Proposition: Strengthen compen benefits, and work-life balance initiatives to position BC employer of choice. Promote a Culture of Excellence: Foster innovation, collaboratic continuous improvement through strong leadership and em recognition. Build Talent Pipelines: Partner with educational institutior implement succession plans to ensure a steady flow of future t Strengthen Safety and Operational Excellence: Integrate compe based training and promote a strong safety culture to productivity and minimize risks. 			

Employee Training and Development

Disclosure	Quantity (2023)	Quantity (2024)	Units
Total training hours provided to employees	2,385	1,679	hours
a. Female employees	780	775	hours
b. Male employees	1,605	904	hours
Average training hours provided to employees	5.32	12.34	hours

a. Female employees	10.26	11	hours
b. Male employees	4.30	14	hours

What is the impact and where does it occur? What is the organization's involvement in the impact?	Management Approach
Manpower rationalization in 2024 led to a 30% reduction in total training hours compared to 2023. However, with a leaner workforce, there was a strategic shift towards more targeted and intensive employee development. This is aimed to maintain a skilled, versatile workforce capable of adapting to operational challenges and supporting strategic objectives. Safety and environmental risks remain critical focus areas, necessitating continuous training to ensure a safe and compliant working environment.	Management prioritizes maintaining a competent, adaptable workforce through focused training and skills development, delivering 1,679 training hours in 2024. Average training hours per employee increased, reflecting the shift towards quality over quantity. Safety, Health, and Environmental (SHE) training remains a core, ongoing initiative, embedded in daily operations to cultivate a culture of safety environmental stewardship, and risk mitigation. Training efforts are tailored to address operational needs, employee well-being, and environmenta protection, ensuring alignment with the Company's broader sustainability goals.
What are the Risk/s Identified?	Management Approach
The loss of skilled employees and insufficiently trained personnel could lead to operational inefficiencies, increased safety incidents, project delays, and regulatory non-compliance. External competition for talent heightens the risk of employee turnover, while inadequate training compromises productivity, workplace safety, and adherence to standards.	 BC Management prioritizes retaining skilled employees and ensuring continuous workforce development to safeguard operational efficiency, safety, and compliance. A strong succession plan for critical roles is maintained, alongside initiatives promoting an inclusive, engaging, and trust-based workplace culture. Leadership development, regular monitoring of turnover, and proactive employee feedback mechanisms support continuous improvement. These strategies collectively aim to minimize talent loss, address skill gaps, and sustain a resilient and high-performing workforce.
What are the Opportunity/ies Identified?	Management Approach
BC has a strong opportunity to build a highly skilled, engaged, and loyal workforce by investing in employee development, offering competitive rewards, and fostering a positive, inclusive work environment. By strengthening retention and training strategies, BC can position itself as an "Employer of Choice" in the mining sector and beyond, attracting top talent while enhancing productivity, innovation, and operational efficiency. A continuous focus on safety, health, and environmental (SHE) training will reinforce a robust safety culture, minimize risks, and improve regulatory compliance. Additionally, boosting employee morale through growth opportunities and recognition will drive engagement and collaboration. By developing local talent and maintaining effective succession planning, BC can ensure a sustainable talent pipeline.	BC Management is committed to proactively leveraging identified opportunities to strengthen its workforce and drive sustainable growth. Talent development and retention are embedded into the Company's core strategy, supported by dedicated resources for training, competitive compensation, and employee engagement initiatives. Competency-based training, with a strong focus on Safety, Health, and Environment (SHE) standards, underpins operational excellence. BC also prioritizes an inclusive, thriving workplace through diversity, well-being programs, and regular feedback mechanisms. Strong partnerships with educational institutions and industry groups further enhance the talent pipeline. Through these actions, BC aims to transform talent management into a key driver of success, resilience, and competitive advantage.

Labor-Management Relations

Disclosure	Quantity	Units
% of employees covered with Collective Bargaining Agreements	0	%
Number of consultations conducted with employees concerning employee-related policies		%

What is the impact and where does it occur? What is the organization's involvement in the impact?	Management Approach	
BC maintains a non-unionized environment, focusing on fostering harmonious relationships between management and employees. This approach directly impacts morale, productivity, and workplace stability within its primary operations. Labor-related policies are developed, reviewed, and communicated through the Policies and Procedures Committee and the HR Department, with structured mechanisms in place for addressing employee grievances.	 BC fosters a positive, stable, and engaged workforce in a non-unionized environment through proactive management practices. Labor-related policies are developed and regularly reviewed with a focus on fairness, transparency, and employee input. Open communication is promoted via accessible grievance mechanisms and leadership training in employee relations. Competitive compensation and benefits are benchmarked to industry standards and clearly communicated. The Company upholds fair labor practices, full legal compliance, and ethical management conduct. Employee relations are monitored through turnover rates, grievance tracking, engagement surveys, and regular policy audits to ensure continuous improvement. 	
What are the Risk/s Identified?	Management Approach	
Erring employees may seek attention from aggressive militant trade unions or organizations, which could disrupt the harmonious relationship and potentially lead to labor unrest. This risk is heightened if employees feel their concerns are not being adequately addressed through internal channels.	BC proactively fosters a positive, inclusive work environment by strengthening internal communication and grievance mechanisms. Through active listening, transparent processes, and daily leadership practices, the Company builds trust, addresses concerns early, and mitigates the risk of external disruption, ensuring a stable and engaged workforce.	
What are the Opportunity/ies Identified?	Management Approach	
By strengthening internal communication, grievance mechanisms, and leadership practices, BC can further enhance employee trust, engagement, and workplace stability, reducing the risk of external labor disruptions.	Management ensures that good leadership is maintained, there is competitive compensation package and established employee engagement strategies	

Diversity and Equal Opportunity

Disclosure	Quantity (2023)	Units	Quantity (2024	4)	Units
% of female workers in the workforce	17%		%	21.9%		%
% of male workers in the workforce	83%		%	78.%		%
Number of employees from indigenous communities and/or vulnerable sector*						
	Elderly	16	#	Elderly	22	#
	Solo Parent	0	#	Solo Parent	5	#
	PWDs	2	#	PWDs	1	#
	Indigenous Peoples	198	#	Indigenous Peoples	118	#
	Approximately 90% of workforce are Indigeno people.		%	Approximately 40% of workforce are Indigen people.		%

Workforce Distribution by Region

Region	No. of Employees (2023)	No. of Employees (2024)
National Capital Region (NCR)	52	55
CARAGA	1	0
Region 1	116	63
Region 2	7	6
Region 3	27	39
Region 4A (CALABARZON)	13	4
Region 4B	1	0
Region 5	5	4
Region 6	1	6
Region 7	8	0
Region 8	1	0
Region 11	4	2
Cordillera Administrative Region (CAR)	212	122
Total	448	301

What is the impact and where does it occur? What is the organization's involvement in the impact?	Management Approach t?		
The Company's operations at Benguet Gold Operation (BGO) and Irisan Lime Project (ILP) have directly influenced employment levels and workforce composition in Benguet and nearby provinces. As of 2024, 81% of the workforce consisted of local residents, reflecting the Company's commitment to	BC prioritizes local hiring and upholds a non-discriminatory employment policy, prohibiting bias based on vulnerability, sex, or religious affiliation. The Company is committed to providing equal employment opportunities to qualified candidates from impact and nearby communities, achieving an 81% local employment rate as of 2024.		
community employment and socio-economic development. Efforts to promote gender equality also increased female representation from 17% in 2023 to 21.9% in	Department Heads are responsible for enforcing hiring policies, while Medical and Safety teams monitor workplace conditions for persons with disabilities and underlying health concerns. Safety and HR departments jointly manage employee behavior regarding safety practices, with policy development empedded by the UP department and the Patience and		
2024. However, a manpower rationalization program initiated in early 2024, due to continued financial losses	development supported by the HR department and the Policies and Procedures Committee.		
at BGO, resulted in a 30% workforce reduction, negatively impacting employment opportunities despite maintaining a high proportion of local hires.	Key initiatives include local hiring preference, programs to increase female employment, succession planning with local employee inclusion, monitoring of vulnerable employees, and reinforcement of behavioral safety practices through disciplinary measures.		
What are the Risk/s Identified?	Management Approach		
 Vulnerable employees (elderly, persons with disabilities, female workers) may face restrictions in hazardous areas. Productivity may decline if a large portion of the workforce is from vulnerable groups. Accident rates may rise if vulnerable employees are not adequately trained. 	Departments identify hazardous jobs during hiring, ensuring proper PPE is provided. Succession planning for elderly managers and close monitoring by Medical and Safety teams help maintain a safe and healthy work environment for vulnerable employees. Behavioral safety is strongly emphasized, with Safety and HR teams enforcing discipline for safety violations.		
What are the Opportunity/ies Identified?	Management Approach		
1. Knowledge and Skills Transfer: Seasoned employees can transfer knowledge to younger generations, benefiting both the company and the employee (though potentially with initial costs).	Management maintains its approach of giving equal opportunities in the workplace and in the communities where the Company operates. The Company will continue to uphold its Hiring Policy, strengthen safety protocols, and actively promote an inclusive culture that values the contributions of all employees. Management will also explore structured		

- Self-Actualization: Providing work opportunities for the vulnerable sector (PWDs and retirees) can lead to self-worth and actualization.
- 3. Equal Competence: Women have proven to be equally capable and competent as men.

mentorship programs to facilitate knowledge transfer and ensure that our commitment to equal opportunities translates into tangible career advancement for all segments of our workforce.

Workplace Conditions, Labor Standards, and Human Rights Occupational Health and Safety

	Quantity (2024)	Quantity (2024)		
Disclosure	BGO-CHQ	ILP	Units	
Safe Man-Hours	2,431,040	87,449	Man-hours	
No. of work-related injuries	8	0	#	
No. of work-related fatalities	2	0	#	
No. of work related ill-health	0	0	#	
No. of safety drills:				
1. Fire Evacuation & Rescue Drill	3	1	#	
2. Evacuation & Response Earthquake Drill/Nationwide Simultaneous Earthquake Drill	5	3	#	
3. Chemical Spill Drill	1	0	#	

What is the impact and where does it occur? What is the organization's involvement in the impact?	Management Approach	
During the 2024 reporting period, BGO unfortunately recorded two (2) work-related fatalities due to a cave-in and cardiac arrest, and eight (8) work-related injuries consisting of minor abrasions, wounds, and one fracture. No cases of work-related ill-health were reported at BGO. While operations at BGO continued without suspension, the Company acknowledges the significant impact of these incidents on workforce well-being and operational integrity. A thorough review and continuous improvement of safety management systems remain a key priority. In contrast, the ILP site, with a total of 87,449 safe man-hours, reported zero (0) work-related fatalities, injuries, or cases of work- related ill-health in 2024, indicating strong safety performance. This commitment to safety was further recognized with the SAFEST MINERAL PROCESSING-CALCINING PLANT CATEGORY 2024 award. To bolster emergency preparedness across operations, both BGO-CHQ and ILP conducted safety drills in 2024. BGO-CHQ carried out three drills: Fire Evacuation & Rescue (3), Earthquake Evacuation & Response (5), and a Chemical Spill Drill (1). ILP also conducted a Fire Evacuation & Rescue Drill (1) and an Earthquake Evacuation & Response Drill (3). These drills are integral to the Company's ongoing commitment to cultivating a proactive safety culture and minimizing operational risks. Further underscoring its commitment to safety, BGO received the 2nd Runner Up award in the Industrial Category and was Champion in the Bucket Relay at the 5th Itogon Fire Olympics. Additionally, the Company utilized 73.39% (₱5,285,148.81) of its allocated ASHP (Annual Safety and Health Program) budget for CY 2024.	Employee safety is a core priority across all operations. We implement comprehensive safety systems, conduct regular emergency drills, and provide ongoing training to ensure hazard awareness and risk mitigation. Incident monitoring and root cause analyses drive continuous improvement. Following 2024 incidents at BGO, we are strengthening safety protocols to further enhance workplace health, resilience, and operational integrity. The Company recognizes that the incidents at BGO-CHQ underscore the need for enhanced safety initiatives. Accordingly, a comprehensive review of safety practices and additional corrective actions are being prioritized to uphold the highest standards of occupational health and safety across all sites.	

/hat are the Risk/s Identified?	Management Approach		
 High-Consequence Hazards: The inherent dangers of mining and milling (strenuous work, perilous conditions) create a significant risk of serious incidents, including fatalities. Persistent Injury Risk: Despite a decrease in injury numbers from 2023 to 2024, the continued occurrence of injuries indicates that hazards are not adequately controlled. Potential for Negative Impacts: Fatalities and injuries can negatively affect employee morale, productivity, legal/regulatory standing, and the company's reputation. 	 Mining and milling operations inherently involve high consequence hazards and persistent injury risks. Th Company is committed to minimizing these risks b maintaining a robust safety management system, focuse on hazard identification, risk assessment, and the implementation of effective controls. Comprehensive safety training, regular emergence response drills, and strict operational protocols ar enforced to ensure all employees are physically prepare and fully aware of workplace hazards. Incident data is systematically analyzed to identify trends and inform continuous improvement initiatives. Following the occurrence of fatalities and injuries at BGG in 2024, the Company is strengthening its safety program through enhanced training, targeted risk mitigation measures, and more frequent safety audits. These action aim to protect employee well-being, sustain productivity and uphold our legal, regulatory, and social license to operate. The Company remains fully committed to fostering a proactive safety culture, preventing serious incidents, and safeguarding both workforce morale and organizationares. 		
/hat are the Opportunity/ies Identified?	Management Approach		
 Replicate best practices recognized through past safety awards. Strive for industry leadership to enhance reputation and stakeholder trust. Implement competency-based training to boost engagement and retention. Strengthen emergency preparedness through ongoing ERT development. Build on ILP's national safety recognition to drive continuous improvement. (The Irisan Lime Project (ILP) is awarded with SAFEST MINERAL PROCESSING-CALCINING PLANT CATEGORY in 2024 by the DENR-Mines and Geosciences Bureau and the Philippine Mine Safety and Environment Association in the pursuit of excellence in safety and health management. 	The Company prioritizes strict compliance with its Occupational Health and Safety Policy, aligned with DENR DAO No. 2000-98, aiming to prevent all work-related fatalities, injuries, and illnesses. A proactive and preventive safety culture is fostered, emphasizing hazard anticipation and early intervention. Employees are empowered to take ownership of safety through active participation in hazard identification and improvement initiatives. The Company aspires to industry leadership in occupational health and safety by continuously improving practices and sharing best standards. Adequate resources are allocated to support these initiatives, the Company utilized 73.39% (P5,285,148.81) of its allocated ASHP (Annual Safety and Health Program) budget for CY 2024 for BGO.		

Labor Laws and Human Rights

Disclosure	Quantity	Units
No. of legal actions or employee grievances involving forced or child labor	0	# of employees

Do you have policies that explicitly disallows violations of labor laws and human rights (e.g. harassment, bullying) in the workplace?

Topic	Y/N	If Yes, cite reference in the company policy
Forced labor	У	Policy contains provisions of RA 10364 – An Act to Institute Policies to Eliminate Trafficking in Persons specially Women and Children, Establishing the Necessary Institutional Mechanism for the Protection and Support of Trafficked Persons, Providing Penalty for Its Violation and for other Purposes
Child labor	У	Policy contains provisions of RA 7610
Human Rights	У	Policy on Sexual Harassment – (see link- Policy on Sexual Harassment) Employees Code of Conduct – (see link http://benguetcorp.com/wpcontent/uploads/2018/05/ECD%20with%20ee%20acknowledgeme nt.pdf)

What is the impact and where does it occur? What is the organization's involvement in the impact?	Management Approach
As a Company, Benguet Corporation does not tolerate forced or child labor and human right violations. It ensures that the Philippine law on such is strictly implemented across the organization.	As evidenced in the manpower profile, no employee in the roster is below 18 years of age. No incident of human right violation has been filed by any employee as of to date. Company Policy on Child Labor is in place.
	(see link http://benguetcorp.com/wp- content/uploads/2023/04/Child-Labor- Policy.pdf) No cases of child labor have been received as of this period.
What are the Risk/s Identified?	Management Approach
Contractors and suppliers may engage in forced labor or employment of minors or below 18 years of age and assign them on hazardous workplaces.	Provision in the contracts that Contractors and suppliers must comply with the Company policies and procedures applicable to them as well as with applicable Philippine laws.
	Stiffer penalty shall apply to those who will be in violation.
What are the Opportunity/ies Identified?	Management Approach
With the formulated policies on forced and child labor and human rights violation, Management and employees are properly guided	Employees are oriented on the Code of Discipline before start of employment and regular update is done as necessary.

Relationship with Community Significant Impacts on Local Communities

Operations with significant (positive or negative) impacts	The Company actively fulfills its commitment to its Social Development and Management Programs (SDMP) by addressing key needs in its host and
on local communities (exclude	neighboring communities. Aligned with the SDMP framework outlined in DAO 2010-
CSR projects; this has to be	21 and DAO 2010-13, the company invested in the following priority areas:
business operations)	1. Human Resource and Institutional Building
	2. Enterprise Development and Networking
	3. Infrastructure Development and Support Services
	Education and Educational Support Programs
	Health Services, Facilities, and Professionals
	Protection and Respect of Socio-cultural Values
	For the 2024 reporting period (January-December), SDMP implementation

	achieved 82.35%, with an expenditure of PhP 3,931,464.35 out of the PhF 4,774,155.24 budget. The main factor contributing to the 17.65% variance was the late submission of project proposals by beneficiary Barangays. The remaining funds will be allocated to the 2025 SDMP initiatives.
Location	Itogon, Benguet & Baguio City
Vulnerable groups (if applicable)	IPs, women, migrant groups, elderly, youth
Does the particular operation have impacts on indigenous people (Y/N)?	Yes
Collective or individual rights that have been identified that or particular concern for the	Right to livelihood; Right to education;
community	
	Right to shelter;
	Right to health;
	Water resource and Infrastructure developments;
Mitigating measures (if negative) or enhancement measures (if positive)	 The Company continues to uphold and respect the rights of Indigenous Peoples (IPs) in the vicinity of its mining operations, actively contributing to poverty reduction and an improved quality of life
	 The Company actively shares the benefits of its operations with vulnerable community members to improve their quality of life. Furthermore, its mining operations and related projects generated significant employment opportunities for local communities.
	3. Recognizing the development challenges in the region, the Company actively partnered with the national government on infrastructure and other key projects. This collaboration involved the proactive promotion of responsible mining practices with the DENR and support for initiatives by the DILG and DA Despite the contributions of bilateral and multilateral projects in sectors like infrastructure, water resources, rural development, and governance strengthening LGU capacity remained a priority.
	The Itogon Municipality and Barangays Virac and Poblacion LGUs are significantly dependent on Internal Revenue Allotment, and limited economic growth perpetuates low-income levels.
	Notably, the approved and well-executed Social Development and Management Program (SDMP) and Environmental Protection and Enhancement Program (EPEP) from BC-BGO and ILP operations have been instrumental in addressing these limitations and strengthening the LGUs' development projects within their operational areas.

What are the Risk/s Identified?	Management Approach		
 The fact that the main reason for the 17.65% variance in SDMP implementation was the delayed or incomplete project implementation due to late submission of proposal by beneficiary Barangays highlights a risk. If this issue persists, it could lead to: Communities may not receive the intended benefits (livelihood, infrastructure, education, health, etc.) in a timely manner, leading to dissatisfaction and erosion of trust. Delays could be perceived as a lack of commitment from the company, fostering negative sentiment and potentially leading to social unrest. Delayed projects can slow down the overall development progress in the host and neighboring communities, 	It is the goal to ensure timely and efficient implementation of Social Development and Management Program (SDMP) projects by addressing the root causes of late proposal submissions from beneficiary Barangays, thereby meeting community needs, fostering trust, and supporting sustainable development. The following are being implemented: 1. Collaborative Engagement: Working in close partnership with the Barangays throughout the project cycle. 2. Capacity Building: Empowering Barangays with the knowledge and resources to develop timely and quality proposals. 3. Clear Communication: Establishing transparent and consistent communication channels.		
What are the Opportunity/ies Identified?	Management Approach		
The following may optimize the timely and effective implementation of SDMP projects through collaborative empowerment, streamlined processes, and continuous learning, thereby maximizing community benefits and strengthening stakeholder relationships: a. Simplifying the proposal submission and review process.	The Company moves beyond simply addressing delays to proactively empowering communities fostering collaboration and learning, to ensure tha SDMP projects are not only timely but also impactfu and sustainable, contributing directly to the long-term development of the host and neighboring areas.		
 b. Defining clear roles and responsibilities for both the Company and the Barangays. 	The Community Relations Department leads the implementation of this management approach providing necessary resources and support		

ï

Certification Preconditions (CPs)	Free and Prior Informed Consent (FPIC) secured and still operational and provide a copy or
Quantity	Units
0	#
0	#
	Certification Preconditions (CPs)

What are the Risk/s Identified?	Management Approach
 Several of BC's upcoming projects (e.g., EXPA on mining claims, Malouf SMP, and BTP) are located in areas with Indigenous Peoples (IPs) and thus require FPIC to proceed with regulatory approvals and operations. The following risks are identified: Denial of permits due to failure to secure FPIC (Free, Prior and Informed Consent) from Indigenous Peoples (IP) communities. Costly and time-consuming FPIC process, limited to 3 years under DENR's Use it/Lose it policy. IP community opposition influenced by anti-mining NGOs, LGUs, and small-scale miners. Potential project cancellation, investment loss, and regulatory delays. Ambiguity in policies and guidelines regarding PPAs (Programs, Projects & Activities) may lead to misinterpretations, disagreement, and implementation delays. 	 Maintain Close Coordination with NCIP and IP Community: Hiring an expert to develop and implement a strategic approach. Continuous relationship-building efforts with IP communities to address concerns and reduce opposition. Acknowledging and acting within the 3-year FPIC limit under DENR policy.
What are the Opportunity/ies Identified?	Management Approach
 Improved Relations: Strengthening relationships with IP communities and NCIP (National Commission on Indigenous Peoples) opens doors to better collaboration Strategic Advisory: Engaging consultants for FPIC-related strategies helps BC proactively navigate the process. Reputation Enhancement: Demonstrating respect for indigenous rights can improve corporate reputation and social license to operate. 	 Uphold IPs' rights through transparent, inclusive, and culturally sensitive consultations. Build trust-based relationships with IP communities through ongoing dialogue, community development projects, and clear communication of project impacts and benefits. Secure long-term community acceptance by aligning development goals with community needs and values. Adhere strictly to FPIC protocols under Indigenous Peoples Rights Act (IPRA) and DENR guidelines.

Customer Management Customer Satisfaction

Disclosure	Score	Did a third party conduct the customer satisfaction study (Y/N)?
Customer satisfaction	100%	N
What is the impact and where does it occur? What is the organization's involvement in the impact?	Management A	pproach
The company has both products and services. Its gold productions are sold and purchased by the Bangko Sentral ng Pilipinas (BSP) based on the prevailing market price. The world market dictates the price of gold. As to the services, the company complied and extended all what is due to the communities. Their desired quantity of PPAs implemented might not have fully satisfied them but all were undertaken based on quality and resiliency standards.	the buyer of our product and abide by its rules and regulation Continued enhanced engagements with the clients/recipier the services. Institutionalized participative approach in all s of coming up with PPAs. For quality assurance, involved the communities from the planning stage up to implementation monitoring.	

What are the Risk/s Identified?	Management Approach
Sudden/abrupt reduction of the price of gold in the world market.	Maintained close monitoring of gold prices while constantly engaging with the BSP.
What are the Opportunity/ies Identified?	Management Approach
Selling BC's gold production to BSP directly contributed to the Philippine economy as opposed to selling the product to foreign buyers.	Continue selling gold produced to Bangko Sentral ng Pilipinas (BSP) and silver to local market.
Maintained or improved the purity of gold sold to BSP.	Provided better service to BSP by selling gold concentrate.

Health and Safety

Disclosure	Quantity	Units
No. of substantiated complaints on product or service health and safety*	0.00	#
No. of complaints addressed	0.00	#

grievance mechanisms as well as complaints that were lodged to and acted upon by government agencies.

What is the impact and where does it occur? What is the organization's involvement in the impact?	Management Approach
Safety of employees during transport and delivery of gold to Bangko Sentral ng Pilipinas (BSP) in Baguio City.	No fixed schedule of transporting the commodity. Security alert must be imposed.
What are the Risk/s Identified?	Management Approach
There is potential possibility of hold-up and kidnap for ransom during delivery of gold to BSP in Baguio City.	Maintain confidentiality of information on gold production and details. No fixed schedule of transporting the commodity. Security alert imposed. Rotation of security escort during transport and delivery of product to Baguio City.
What are the Opportunity/ies Identified?	Management Approach
Accessibility of market – location of BSP is in Baguio City which is about 15 kms, away from the mine site.	Improve intelligence network and regular coordination with Itogon PNP.

Marketing and labelling

Disclosure	Quantity	Units
No. of substantiated complaints on marketing and labelling*		
No complaints received in 2024 from our only customer which is the BSP on quality of our products.	0.00	#
No. of complaints addressed.		
No complaints received/addressed in 2024 from our only customer which is the BSP.	0.00	#
*Substantiated complaints include complaints from customers that went through the organ channels and grievance mechanisms as well as complaints that were lodged to and acted upor		

Identification of Impact	Management Approach
There was no determined impact because there are no complaints received/addressed in 2024 from BC's only customer, Bangko Sentral ng Pilipinas (BSP). Likewise, no complaint was received from ILP clients.	For the year under report, the Company did not receive any complaint from BC's customer, BSP, regarding the marketing and labeling of our gold product. Likewise, no complaint was received from ILP clients. If ever complaints arise in the future, the Company will handle/resolve the issues following the Company's policies and procedures.
What are the Risk/s Identified?	Management Approach
There were no determined risks because the Company delivers its product in accordance with the established guidelines of its sole customer, the BSP.	For the year under report, the Company did not receive any complaint from BC's sole customer, BSP, regarding the marketing and labeling of its product. Likewise, no complaint was received from ILP clients. If ever complaints arise in the future, the Company will handle/resolve the issues following the Company's policies and procedures.
What are the Opportunity/ies Identified?	Management Approach
Increased Gold sales will increase BSP's gold reserve.	Benguet Corporation will continue to maintain or improve further on gold production and purity.

Customer privacy

Disclosure	Quantity	Units	
No. of substantiated complaints on customer privacy*	0.00	#	
No. of complaints addressed	0.00	#	
No. of customers, users, and account holders whose information is used for secondary purposes	Limited only to authorized Company engagement.	#	

*Substantiated complaints include complaints from customers that went through the organization's formal communication channels and grievance mechanisms as well as complaints that were lodged to and acted upon by government agencies.

What is the impact and where does it occur? What is the organization's involvement in the impact?	Management Approach
The gold products are sold only to Bangko Sentral ng Pilipinas. Benguet Corporation caters to a government institution as a customer. Thus, the company strives for confidentiality and accountability in all its public disclosures.	Observed the Data Privacy Policy of the company formulated in accordance with the Data Privacy Act of 2012 (R.A. 10173). This assures the confidentiality of customers' information. Moreover, the Company adopted control measures to prevent the occurrence of data breach incidents. Proactively managed risks to ensure the protection of data privacy at the start and throughout the lifecycle of any transaction. Appointment of Data Privacy Officer (DPO) for Baguio Operation.

What are the Risk/s Identified?	Management Approach				
 Loss of trust by either party (BC or customer) due to privacy breach. Unauthorized processing which includes but not limited to collection, recording, storage, updating or modification, retrieval, consolidation, use, erasure, or destruction of information/data gathered that may result in financial injury to both the company and the customer. 	Security of the data collected from the Bangko Sentral ng Pilipinas is undertaken by limiting access to such information after it's been gathered. Direct and upfront communication with the customers about th information gathered and plans for using it.				
What are the Opportunity/ies Identified?	Management Approach				
Build stronger relationship with the customer.	Give customers an online form or email address for communicating their problems or concerns. Management undertakes to respond to these messages. Such two-way communication can help build trust and loyalty and help avoid potential privacy breaches.				

Disclosure	Quantity	Units
No case of data breaches, including leaks, thefts, and losses of data.	0.00	# of data breaches
There were no reported data privacy incidents, notifiable data breaches relating to cyber security, data governance, or failure in the internal controls, any substantiated complaints concerning breaches of customer privacy and losses of customer data for the reporting period.		

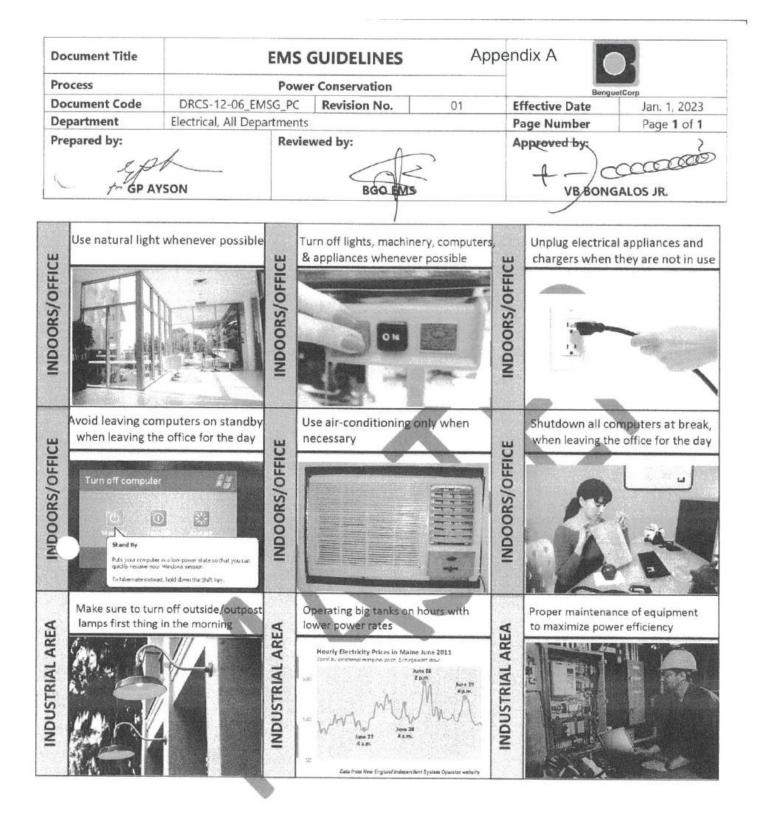
What is the impact and where does it occur? What is the organization's involvement in the impact?	Management Approach				
Benguet Corp has a Data Privacy Policy in place being rolled out to all employees. The penalty for the violation of privacy rights resulting in data breaches are also incorporated in the Employee's Code of Conduct, thus it raises the security and privacy awareness further in the organizational culture. The Company implemented and continuously improved its internal control to minimize the risk of data breaches.	To establish and further reinforce the knowledge about security and data protection, the Data Privacy Policy forms part of the onboarding process of newly hired employees. Moreover, the Company adopts control measures to prevent the occurrence of data breach incidents. BC management also ensures that our stakeholders and those we do business or partner with, including third-party providers, follow the law on data privacy. This year the Company has obtained the seal of registration issued by the NPC as proof of compliance.				
What are the Risk/s Identified?	Management Approach				
The accelerating cyber-attack and continuous changing threat landscape.	We are using several frameworks to improve our concept of layered security and defense i.e. Microsoft Defender, Microsoft 365 security, anti-malware and similar security frameworks. We continuously follow security alerts and related information from our IT environment to be able to respond timely to any incident. The Company is compliant with the Data Privacy Law of 2016. <i>Please refer to link on Data Privacy Policy</i> <u>http://benguetcorp.com/wp-content/uploads/2018/05P7-Data-</u> Privacy-Policy.pdf				

What are the Opportunity/ies Identified?	Management Approach			
More opportunities in the field of training to keep abreast of new regulations and compliance management. Opportunity to be certified on ISO 27001:2013.	To ensure that all applicable NPC regulations are followed, our team continuously monitor NPC circulars like the new registration platform that pursues automation of registration process of personal data processing system, notification regarding automated decision-making or profiling, designation of Data Protection Officer.			
	To obtain certification on ISO 27001:2013- Information and Data Security to develop the capabilities of employees engaged with data protection.			

UN SUSTAINABLE DEVELOPMENT GOALS

Product or Service Contribution to UN SDGs

Key products and services and its contribution to sustainable development.


SDG No. & Key Products / Goal Services SDG 1: Gold & Silver No Poverty Production (BGO)		Societal Value / Contribution	Potential Negative Impact	Management Approach to Negative Impact Partner with LGU, MGB, DENR for regulation; enforce camp rules; reduce environmental footprint	
		Contributes to national economy, BSP gold reserves, employment, taxes, and local commerce	Land degradation due to small-scale miners; IP migrant influx; illegal squatting		
SDG 2: Zero Hunger	Gold & Lime Products	Social Development and Management Program (SDMP); Implements livelihood programs, infrastructure development, and food security initiatives; Supports agricultural sustainability and local productivity; Empowers communities through training and capacity building	Potential conflict or resource competition due to program reach	Sustained community- based development project implementation; Engage local communities during planning; Promote transparency and equal access to resources	
SDG 3: Good Health and Well-being	Medical missions; Medical services to employees and IP communities	Promotes health and safety among workers and local IP residents; Delivers essential medical services to workers and local IPs; Improves health outcomes in isolated and underserved communities	Poor sanitation; improper PPE disposal	Exposure to hazardous materials; Conduct regula IEC campaigns; Implement robust solid waste and hazardous waste management compliant with RA 9003 and RA 9275 Provide PPE and safety training to workers	
SDG 4: Quality Education	Educational scholarships and IT equipment donation	Offers scholarships to indigent but deserving students; Enhances educational access and digital learning capacity in rural areas	Rivalries/envy from neighboring communities; Community tension from perceived favoritism or exclusion	Use objective, community- endorsed criteria for scholarship selection; Promote transparency and community consultation ; Candidate vetting by local officials;	

Clean Water TSF operation		ean Water TSF operations segregation, pollution control and wastewater Ensures water quality in adjacent		Maintain and monitor TSF regularly, stop mill operation if leakage occurs, ISO 14001 compliance; Implement ISO 14001- aligned environmental protocols; Educate communities on waste disposal and sanitation practices	
SDG 8: Decent Work & Economic Growth	All Mining & Support Operations	Livelihood generation, employment opportunities, wealth sharing with vulnerable sectors; Provides income-generating opportunities to local residents; Uplifts local economy through procurement and service contracts; Encourages inclusive economic participation	Limited job reach may exclude marginalized sectors; Fluctuations in demand may affect employment stability	Prioritize locals for jobs and contracts: Promote inclusive hiring policies and skill development	
SDG 12: Responsible Consumption & Production	Procurement and supply chain management	Practices responsible sourcing and supplier partnerships; Ensures quality and timeliness of critical operational supplies; Encourages sustainable practices in logistics; Support to local suppliers	Substandard or delayed supply delivery; High costs of imported materials; Unstable supply chain affecting productivity	Vet suppliers with risk- based assessment; Require ISO certification and compliance; Develop long-term procurement forecasting and planning; Support capacity-building of local suppliers	
SDG 13: Climate Action	Reforestation, Pollution Controls	Maintains reforested areas; Actively sequesters CO2 through tree planting; Minimizes air pollution with scrubbers and emission monitoring	Deforestation, air pollution, landslides, forest fires, underground water depletion	Continue preventive maintenance of equipment; Implement firebreaks and reforestation measures; Collaborate with local communities in disaster preparedness; Engage third-party air quality monitoring firms	
SDG 15: Life on Land	Forest Park, Tree Planting and biodiversity programs	Preserves biodiversity through Crosby Forest Park; Promotes ecological tourism and awareness; Maintains reforestation efforts with tree density goals,	Land encroachment or unsanctioned land use; Loss of tree cover if neglected	Conduct regular forest inspections; Involve employee families in environmental stewardship; Sustain enrichment planting programs	
SDG 16: Peace, Justice, and Strong Institutions	Security Operations and enforcement	Maintains peace and order within operational areas; prevents illegal mining & squatting	Disruption from illegal small-scale mining; Social instability from migrant influx	Partner with law enforcement and barangay units; Enforce rules fairly and transparently	

SDG 17: Partnerships for the Goals		Employment of workforce including IPs; Strengthens cooperation with MGB and other government agencies; Builds inclusive local economies thru business for suppliers and co-ops	reputational risks from non-compliance; Risk of conflict with unregulated	Certification; Align
--	--	---	---	----------------------

LIST OF APPENDICES:

APPENDIX NO.	TITLE
А	Environmental Management System Document No. EMSG-06 (Guidelines on Power Consumption)
В	Certificate of Approval of Annual Environmental Protection and Enhancement Program (AEPEP) given to Bengue Corporation-Acupan Contract Mining Project (ACMP)
B-1	Certificate of Approval of Annual Environmental Protection and Enhancement Program (AEPEP) given to BMC Forestry Corporation-Irisan Lime Project (ILP)
С	DRCS-09 (Summary of Risk and Opportunities)
D	Environmental Management System Document No. EMSG-03 (Guidelines on Diesel, Oil and Grease Handling Transport and Storage)
E	Environmental Management System Document No. EMSG-12 (Guidelines on Contaminated Water)
F	Report of Greentek Environmental Engineering Services on Source Emission Test Result (BC-ACMP)
F-1	Report of BSI on Source Emission Test Result (BFC-ILP)
F-2	Report of BSI on Source Emission Test Result (BFC-ILP)
G	Ambient Air Quality and Noise Monitoring Report of Greentek Environmental Engineering Services (BC-ACMP)
G-1	Ambient Air Quality and Noise Monitoring Report of Greentek Environmental Engineering Services (BC-ACMP)
G-2	Ambient Air Quality and Noise Monitoring Report of BSI (BFC-ILP)
Н	Environmental Management System Document No. EMSG-07-A (Guidelines on Hazardous Waste Management - Used Oil, Oil and Grease, and Contaminated Items)
1	Environmental Compliance Certificate (BC-ACMP)
I-1	Environmental Compliance Certificate (BFC-ILP)
J	Registry of Compliance Obligations
К	Certificate of Approval of Amended 2024 Safety and Health Program (BC-ACMP)
K-1	Certificate of Approval of 2024 Safety and Health Program (BFC-ILP)
L	Certificate of Approval of Annual Social Development and Management Program (ASDMP) of BC-ACMP
L-1	Certificate of Approval of Annual Social Development and Management Program (ASDMP) of BFC-ILP

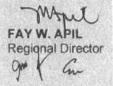
Republic of Philippines Department of Environment and Natural Resources MINES AND GEOSCIENCES BUREAU Cordillera Administrative Region

80 Diego Silang St., Baguio City 2600 Tel. No, 63 74 442 6392; Fax No. 63 74 304 2596; Website: www.car.mgb.gov.ph E-mail: car@mgb.gov.ph; car.mgb@yahoo.com; mgb.cordillera@gmail.com

ANNUAL ENVIRONMENTAL PROTECTION AND ENHANCEMENT PROGRAM (AEPEP)

CERTIFICATE OF APPROVAL No. 2024-02-CAR

BENGUET CORPORATION-ACUPAN CONTRACT MINING PROJECT PC-ACMP-002-CAR


The Mines and Geosciences Bureau - Cordillera Administrative Region (MGB-CAR) as Chair of the Mine Rehabilitation Fund Committee for Benguet Corporation-Acupan Contract Mining Project (MRFC-ACMP) that evaluated and approved the company's 2024 Annual Environmental Protection and Enhancement Program (AEPEP), hereby grants this Certificate of Approval of said AEPEP to **BENGUET CORPORATION-ACUPAN CONTRACT MINING PROJECT (BC-ACMP)** for its Patented Mining Claims-ACMP-002-CAR located at Barangay Virac, Itogon, Benguet after complying substantially with the requirements as mandated under DENR Administrative Order No. 2010-21.

This Certificate is being issued subject to the pertinent provisions of the above-mentioned DAO and to the following conditions:

- This Certificate is valid only for the Programs/Projects/Activities (P/P/As) stipulated in the submitted 2024 AEPEP with a total budget of PhP 18,117,248.00 reviewed and approved by the MRFC-BCACMP;
- The Company shall submit a quarterly accomplishment report within 30 calendar days after the end of each quarter and annual accomplishment report within 30 calendar days after the end of each calendar year to MGB-CAR; and
- Additional conditions may be imposed to implement the approved AEPEP effectively and efficiently should the results of monitoring by the Multipartite Monitoring Team (MMT) for BC-ACMP warrant them.

Non-compliance with the above conditions shall be sufficient ground for the cancellation, revocation or termination of this Certificate or suffer the penalty prescribed in the Penal Provisions of Republic Act No. 7942, the Philippine Mining Act of 1995.

Given this 14th day of December 2023 at MGB-CAR, Baguio City, Philippines.

"MINING SHALL BE PRO-PEOPLE AND PRO-ENVIRONMENT IN SUSTAINING WEALTH CREATION AND IMPROVED QUALITY OF LIFE."

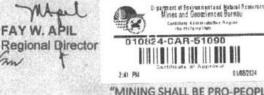
Office of the Regional Director/Finance and Administrative Division – 63 74 442 6392; ICT – 63 74 661 7685; Geosciences Division/Laboratory Section 63 74 304 2500; Mine Management Division - 63 74 304 3068 [Monitoring and Technical Services Section/Mining Tenement Evaluation/Mineral Lands Survey Section]; Mine Safety Environment and Social Development Section – 63 74 304 2595; Social Development Section/Environment 53 74 304 2530

Republic of the Philippines Department of Environment and Natural Resources MINES AND GEOSCIENCES BUREAU **Cordillera Administrative Region** 80 Diego Silang St., Baguio City 2600 Tel. No. 63 74 442 6392; Fax No. 63 74 304 2596; Website: www.car.mgb.gov.ph E-mail: car@mgb.gov.ph; car_mgb@vahoo.com; mgb.cordillera@gmail.com

ANNUAL ENVIRONMENTAL PROTECTION AND ENHANCEMENT **PROGRAM (AEPEP)**

CERTIFICATE OF APPROVAL No. 2024-04-CAR

BMC FORESTRY CORPORATION Mineral Processing Permit No. 01C-2022-CAR


The Mines and Geosciences Bureau - Cordillera Administrative Region (MGB-CAR) as Chair of the Mine Rehabilitation Fund Committee for BMC Forestry Corporation-Irisan Line Project (MRFC BFC-ILP) that evaluated and approved the company's 2024 Annual Environmental Protection and Enhancement Program (AEPEP), hereby grants this Certificate of Approval of said AEPEP to BMC FORESTRY CORPORATION-IRISAN LIME PROJECT (BFC-ILP) for its Mineral Processing Project located at Barangay Irisan, Baguio City under its Mineral Processing Permit No. 01C-2022-CAR, after complying substantially with the requirements as mandated under DENR Administrative Order (DAO) No. 2010-21.

This Certificate is being issued subject to the pertinent provisions of the above-mentioned DAO and to the following conditions:

- This Certificate is valid only for the Programs/Projects/Activities (P/P/As) stipulated in the submitted 2024 AEPEP with a total budget of PhP 2,182,693.00 reviewed and approved by the MRFC BFC-ILP;
- The Company shall submit a quarterly accomplishment report within 30 calendar days after the end of each quarter and annual accomplishment report within 30 calendar days after the end of each calendar year to MGB-CAR; and
- Additional conditions may be imposed to implement the approved AEPEP effectively and efficiently should the results of monitoring by the Multipartite Monitoring Team (MMT) for BFC-ILP warrant them.

Non-compliance with the above conditions shall be sufficient ground for the cancellation, revocation or termination of this Certificate or suffer the penalty prescribed in the Penal Provisions of Republic Act No. 7942, the Philippine Mining Act of 1995.

Given this 18th day of December 2023 at MGB-CAR, Baguio City, Philippines.

an

"MINING SHALL BE PRO-PEOPLE AND PRO-ENVIRONMENT IN SUSTAINING WEALTH CREATION AND IMPROVED QUALITY OF LIFE."

Office of the Regional Director/Finance and Administrative Division - 63 74 442 6392; ICT - 63 74 661 7685; Geosciences Division/Laboratory Section 63 74 304 2500; Mine Management Division - 63 74 304 3068 (Monitoring and Technical Services Section/Mining Tenement Evaluation/Mineral Lands Survey Section); Mine Safety Environment and Social Development Section – 63 74 304 2595; Social Development Section/Environment Section 63 74 304 2530

Appendix C

0-	Document Title		SUMI	MARY	OF RISKS	i		
	Document Code	DRCS-09_EMS_S	SR					
BenguetCorp Revision		09		Effective D	Date March 9		2024	
Prepared By:	ROLYNG	Reviewed by:	BGO EN	s		Approve	d by: VALERIANO B. BONG	Occure ALOS, JR
			J	RISK ID	ENTIFICATION			0 RISK ASSESSMENT
DEPARTMENT	PROCESS	RISK CATEGORY	DESCRIPT	DESCRIPTION		CAUSE		RISK RATING
Claims	Demolition of structures	Security and Safety	Safety being compromised while performing the said activity.		Hostile environment		Physical safety and attending legal issues	Moderate
ComRel	Implementation, monitoring and validation of approved SDMP Projects, Programs and Activities of host and neighboring Barangays	Operational	Failure to comply with		LGU's late submission of SDMP Project proposals and approval of budget		May compromise company operations and lead to penalties, and cancellation of permits and/or ECCs	High
Construction	Infrastructure construction	Financial		Failure in implementing the No materials to be used		The project will be waiting	Moderate	
Finance	Bookkeeping (making entries on various company transactions to come up with financial reports required by management and	Technical & Architectural / Operational/ Technology	Possible loss of stored in cl technolog	of data oud	Emergency and/or unscheduled power interruptions will disrupt the operations of our computerized accounting system; and cyber-attack and/or		No access to own computerized accounting system.	High MAS COP

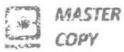
CERTIFIED ISO 14001:2015 Environmental Management System

	Document Title		SUMM	/IARY	OF RISKS			a
0-	Document Code	DRCS-09_EMS_SR					ISD 18001 UKAS	
BenguetCorp	Revision	09	E	ffective D	ate	March 9	2024	EVIDONALITAL MANGEMENT
				RISK ID	ENTIFICATION			RISK ASSESSMENT
DEPARTMENT	PROCESS	RISK CATEGORY	DESCRIPTIO	SCRIPTION CAUSE			CONSEQUENCE	RISK RATING
	external users)				password the (program hack			
GeoEx	Geologic Interpretation and Resource Estimation	Operational	Erroneous resource estimation Inadequate training		If interpretation of geologic data is incorrect, there is a risk of mining unprofitable areas	Moderate		
MEPEO environmental	Implementation of environmental programs	nvironmentation of the est programs Regulatory enviro	Failure to imple the establish environmen programs	tablished onmental	Delayed approv funds	val of	Issuance of Notice of Violation (NOV) from the regulatory agencies, and eventual issuance of Cease-and- Desist Order (CDO)	Moderate
			<u>3</u>		Natural disasters & Pandemic		Imposition of penalties	
					Community resis	tance	Paralle	
Procurement	Processing procurement documents, licenses, and permits	Operational	Lengthy process/metho system	od or	inconsistencie required documents/attach		delayed approval of the required certificate, license and/or permit of explosives to operate.	Moderate
					change/revise aut signatory	thorize	1	Land COPY

CERTIFIED ISO 14001:2015 Environmental Management System

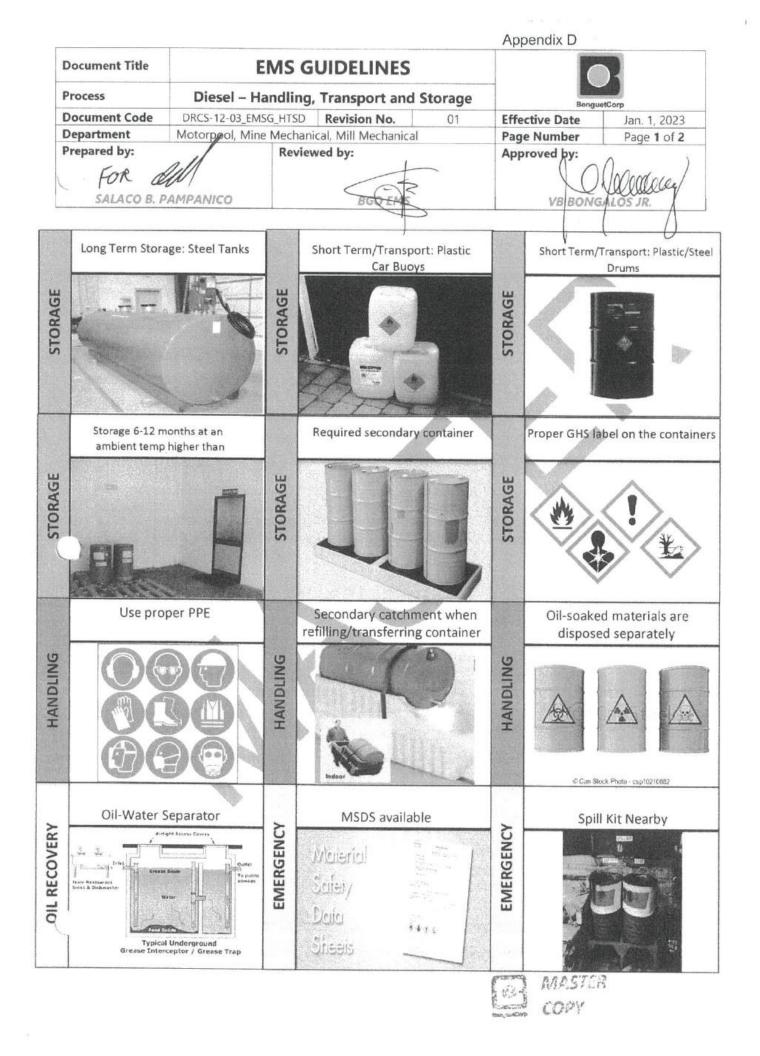
DRCS-09_EMS_SR 2

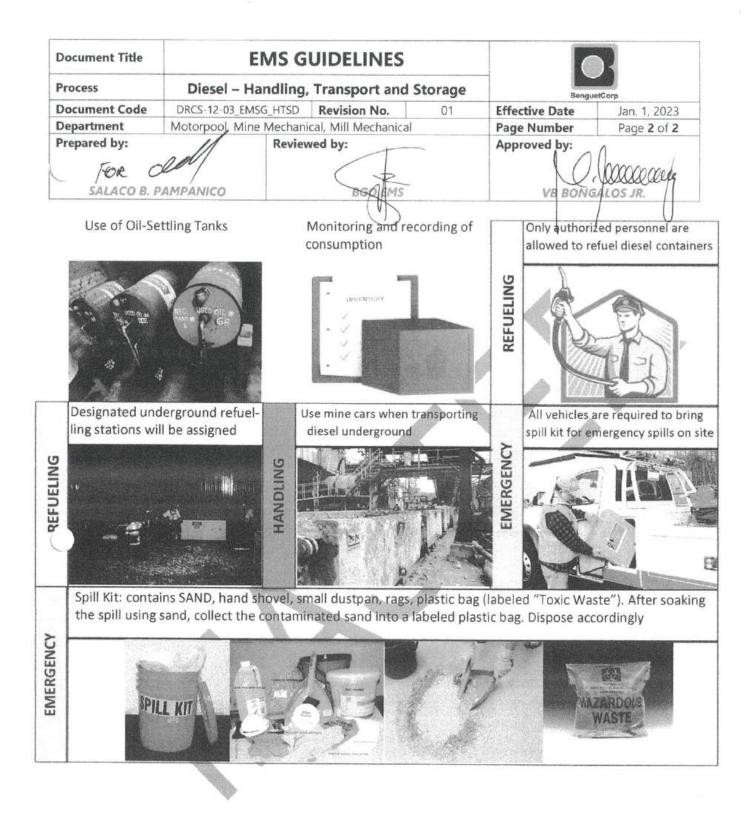
	Document Title		SUMMARY OF RISKS				
	Document Code	DRCS-09_EMS_SR			ISIO 14501 UKAS		
BenguetCorp	Revision	09	Effective Date	March 9, 2024			


DEPARTMENT	PROCESS	RISK IDENTIFICATION				RISK ASSESSMENT	
	PROCESS	RISK CATEGORY	DESCRIPTION	CAUSE	CONSEQUENCE	RISK RATING	
Safety	Underground and Surface Inspection	Operational	Failure to conduct full safety underground and surface inspection	Lack of manpower	Higher incident rate	Moderate	
Salety	Implementation of Safety Policy	Operational	Failure to implement the Company's Safety Policy	Inappropriate standard PPEs	Higher incident rate		
Special Project	Underdrain Tunnel/Penstock	Safety and Risk	Structural failure of the stopper boards leading to piping	Structural Failure	Downstream Community being submerged through tailings	Moderate	
	Failure; Piping	Regulatory	Work Stoppage	Non-compliant	Penalties and cease of operations		

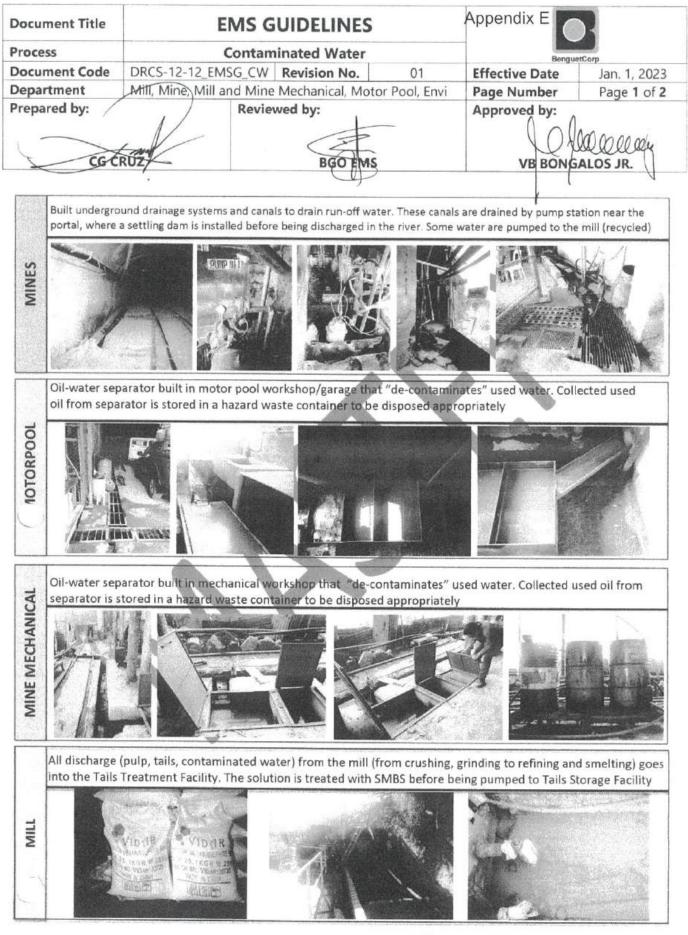
	Document	Inte	SOMMA	ARY OF OPPOR	IUNITIES	
Range	Document	Code DRCS-10	_EMS_SO			
BenguetCorp Revision		07		Effective Date	March 9, 2024	(Recorded)
Prepared By: JS REF				JENS	Approved by: VALERIAN) (1000000000) NO B. BONGALOS /R.
NO.	DEPARTMENT	PROCESS		RIPTION OF		ACTION
1	Assay	Assaying	(The second sec	ssaying services from ernal sources	Excellent	Opportunity shall be pursued immediately
2	ComRel	Development of SDM Projects, Programs an Activities of host and neighboring Barangay	d partnership v implemen	iny can create better with the community in ting environmental programs.	Excellent	Opportunity shall be pursued immediately
		Implementation, monito and validation of approv SDMP Projects, Program and Activities of host an neighboring Barangay	ed Environment ns raised throug nd and	al awareness could be h community projects d programs.	Excellent	Opportunity shall be pursued immediately
		Administrative works	Cost saving m use of ener	neasures from efficient gy, paper and other resource	Excellent	Opportunity shall be pursued immediately
3	Construction & Civil Works	Planning of proposed projects, drafts, and evaluation of project cost construction/ repair/ rehabilitation projects	for		Excellent	Opportunity shall be pursued immediately
4	Electrical	Energy Monitoring	conscious and	be energy conserving d should participate in earth hour	Excellent	Opportunity shall be pursued immediately

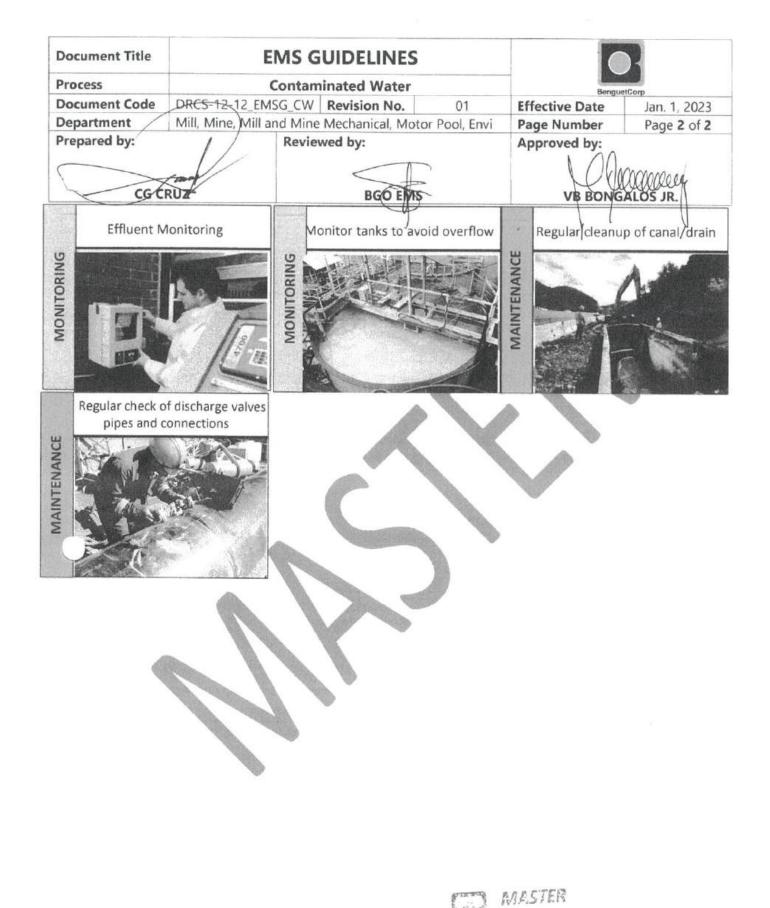
0	Document Title	SU	MMARY OF OPPORT	UNITIES	
M	Document Code	DRCS-10_EMS_SO			
BenguetCorp	Revision	07	Effective Date	March 9, 2024	


NO.	DEPARTMENT	PROCESS	DESCRIPTION OF OPPORTUNITY	OPPORTUNITY RATING	ACTION
5	GeoEx	Mapping	Extend assistance such as geo-hazard mapping to other private and government entities	Excellent	Opportunity shall be pursued immediately
6	Met Lab	Metallurgical Tests	Optimization of plant operating parameters will result to higher gold production with the least operating cost (reagent and power consumption).	Excellent	Opportunity shall be pursued immediately
7	Mill	Carbon-in-Leach	Usage of other leaching reagents that are environmentally friendly and will produce higher gold recovery.	Excellent	Opportunity shall be pursued immediately
8	Mill Mechanical	Enhancement of the filtering of used hydraulic oil 68 for PMS lubrications.	Design a filtering device to be used for the filtering process of hydraulic oil 68.	Excellent	Opportunity shall be pursued immediately
9	Mines	Drilling and blasting	Worn out drill steel can be recycled and fabricated to pinch bars and claw bars	Excellent	Opportunity shall be pursued immediately
		Maintenance of track rails and cleaning at haulage roadways and drainage canal.	Worn out track rails can be used as ground support in underground	Excellent	Opportunity shall be pursued immediately
10	Safety	Emergency response	The company's Emergency Response Team (ERT) acts as volunteers during rescue operations within and nearby communities	Excellent	Opportunity shall be pursued immediately



0	Document Title	SL	JMMARY OF OPPORT	UNITIES	
	Document Code	DRCS-10_EMS_SO			INCOMENTAL UKAS
BenguetCorp	Revision	07	Effective Date	March 9, 2024	


NO.	DEPARTMENT	PROCESS	DESCRIPTION OF OPPORTUNITY	OPPORTUNITY RATING	ACTION
11	Security	Administrative work	Cost saving measures from efficient use of energy, paper and other resources	Excellent	Opportunity shall be pursued immediately
12	Warehouse	Distribution of Inventory lists, Notice of Arrivals, & other documents to concerned department heads & end users (e-mailed instead of duplicating/xeroxing)	Cost saving measures from efficient use of energy, paper & other resources	Excellent	Opportunity shall be pursued immediately



Courses of	2
夏代沙望	
Energiand.	- 6
Mrs. Terto 12	- 94

MASTER COPY

COPY

Appendix F

SOURCE EMISSION TEST REPORT

PARTICULATE MATTER (PM)

One (1) unit 46.58 m³/min Krypton Dust Collection Facility System

PARTICULATE MATTER (PM), SULFUR OXIDES (SOx), NITROGEN OXIDES (NOx) AND CARBON MONOXIDE (CO)

One (1) unit 5,013CFM Verantis Acid Fume Scrubber

Reference No.: GEPC-SST-2406-040

Prepared for:

BENGUET CORPORATION ACUPAN CONTRACT MINING PROJECT Balatoc, Virac, Itogon, Benguet

Sampling Date: June 28 and 29, 2024

Report Date:

July 23, 2024

REPORT CERTIFICATION

BENGUET CORPORATION ACUPAN CONTRACT MINING PROJECT Balatoc, Virac, Itogon, Benguet

SOURCE EMISSION TEST REPORT Reference No. GEPC-SST-2406-040

One (1) unit 46.58 m³/min Krypton Dust Collection Facility System One (1) unit 5,013CFM Verantis Acid Fume Scrubber

The sampling performed for this report was carried out under my direction and supervision. The analytical results that were performed by subcontracted, recognized laboratories have been verified and found to be in order.

Thus, I hereby certify, to the best of my knowledge, that this test report is authentic and accurate.

Prepared and Signed By:

ANGELOV. GUEVARRA QAQC MANAGER SAT No. 2023-152

Date Signed: July 23, 2024

TABLE OF CONTENTS

Section

Description

Pages

1.0	Int	troduction	1					
2.0	Su	ummary of Discussion	2					
	SL	Immary of test Result: Table 2-1 – 2-2	3-4					
3.0	Pr	ocess Description and Operation	5					
4.0	Sa	Sampling and Analytical Procedures						
1.0	4.1	Method 1-2 Stack Velocity	6					
		4.1.1 Sampling Points	6					
		4.1.2 Cyclonic Flow Check	6-7					
	4.1.3 Flue Gas Velocity							
	4.2	Method 3 Flue Gas Composition	7 7					
	4.3	Method 4 Flue Gas Moisture Content	7					
	4.3	Method 5 Particulate Matter and Sulfur Oxides	8					
	4.4		8					
		4.4.1 Sample Collection	8					
		4.4.2 Sample Recovery	8-9					
		4.4.3 Sample Analysis	9					
	4.5	Method 7 Nitrogen Oxides	9					
		4.5.1 Sample Collection	9					
		4.5.2 Sample Recovery	9					
		4.5.3 Sample Analysis	9					
	4.6	Method 10 carbon Monoxide	9-10					
5.0	QA/	QC Procedures and Results	11					
	5.1	Particulate Matter Sampling Procedures	11-12					
	5.2	Particulate Matter Sampling Equipment	12					
		5.2.1 Barometer	12					
		5.2.2 Probe Nozzle	12-13					
		5.2.3 Pitot Tube	13					
		5.2.4 Calibration Meter and Metering System	13					

	5.2.5 Post Test Meter Calibration	13-14
	5.2.6 Thermocouples and Digital Temperature Indicator	14
5.3	Particulate Matter Analysis	14
5.4	Oxygen and Carbon Dioxide	15
5.5	Sulfur Oxides	15
5.6	Nitrogen Oxides	15-16
5.7	Carbon Monoxide	16

.

LIST OF APPENDICES

APPENDICES

TITLE

A	Summary of Results and Example Computations
В	Field Data Sheets
С	Process Data
D	Analytical Data
E	Equipment and Calibrations Records
F	Test Participants
G	Source Specific Test Plan and Facility Permit

SECTION 1.0

INTRODUCTION

Benguet Corporation - Acupan Contract Mining Project contracted Greentek Environmental Phils. Co. to conduct stationary stack emission test on one (1) unit 46.58 m3/min Krypton Dust Collection Facility System and One (1) unit 5,013CFM Verantis Acid Fume Scrubber in their facility located at Balatoc, Virac, Itogon, Benguet. The emission testing involved three runs to measure particulate matter (PM) for the Dust Collection Facility System, while for the Acid Fume Scrubber, it included three runs to measure particulate matter (PM), sulfur oxides (SOx), nitrogen oxides (NOx), and carbon monoxide (CO) emissions. The said activity is part of their environmental program and in determination of the facility's compliance as compared to emission limits defined in the Philippine Clean Air Act of 1999 (PCAA) and Implementing Rules and Regulations (IRR). A list of participants in the project is included in Appendix F.

A summary and discussion of the test results are provided in Section 2. The source description, test procedures, and quality assurance activities are described in the subsequent sections. All supporting field data, analytical reports, calibration records, testing participants, test plans, and a copy of the facility permit are provided in the appendices.

SECTION 2.0

SUMMARY OF DISCUSSION

Tables 2-1 and Table 2-2 present the summary of the test results for the sources tested in comparison to the National Emission Standards identified in IRR Part VII Rule XXV Table 2. Detailed descriptions of the specific run information and the example calculations used to calculate the tabular summary are attached in Appendix A. The raw field data used to prepare the run summary information in Appendix A is included in Appendix B. Emissions have been corrected to the standard conditions of 250°C and 760 mmHg on a dry basis (unless otherwise indicated).

The Greentek monitoring logsheets, filled out by the facility's representative, show that the One (1) unit 46.58 m3/min Krypton Dust Collection Facility System was installed in September 2018 while, the One (1) unit 5,013CFM Verantis Acid Fume Scrubber was installed on 2018, when the Philippine Clean Air Act (PCAA) and Implementing of Rules and Regulations (IRR) were already being implemented. The applicable standards under the PCAA/IRR categorize Dust Collector and Acid Fume Scrubber as *new sources: other stationary source* located in an industrial area under the PCAA/IRR standards.

The results of the testing indicate that the average PM concentrations for the Dust Collector Facility System are within the applicable IRR standards. Similarly, the average PM, SOx, NOx, and CO concentrations for the Acid Fume Scrubber are within the applicable IRR standards. Particulate matter (PM), sulfur oxides (SOx), and nitrogen oxides (NOx) samples were submitted to Ostrea Mineral Laboratories, Inc., while carbon monoxide (CO) samples were submitted to Greentech Laboratory and Allied Services, Inc. An attachment of the laboratory results is included in Appendix D of this report.

A description of any method deviations and quality assurance assessments is included in Sections 4 and 5 of this report. Based on a review of the sampling data, facility operating information, test method description, and quality assurance results, the average of the three test runs is judged to be representative of the source and suitable for comparison to the regulatory limits.

TABLE 2-1

SUMMARY OF TEST RESULTS 46.68 m3/min Krypton Dust Collection Facility System N 16°21'34" E 120°39'31" BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT Balatoc, Virac, Itogon, Benguet

Run Number Sampling Date Sampling Time	RUN 1 28-Jun-24 1323H-1437H	RUN 2 28-Jun-24 1459H-1615H	RUN 3 28-Jun-24 1630H-1743H	Average	CAA Limit mg / Ncm
Source Data					T
Volumetric Flow Rate (dry std), Nomm	47	44	46	46	
Volumetric Flow Rate (actual), Nomin	55	53	55	54	1
Moisture Content, %	27	3.1	3.6	3.1	1
Stack Gas Temperature, "C	35	39	40	38	1
Carbon Dioxide Concentration, %	0.0	00	D.O	0.0	1
Oxygen Concentration, %	20.0	20.0	20.0	20.0	
Process Rate Information					1
Kilograms of Dust Collected	30	30	30	30	
% of Capacity during test	100%	100.0%	100.0%	100.0%	
Hours of operation per year	550	550	550	550	
Particulate Matter (PM) Emissions					
O ₃ Corrected Concentration, mg/Ncm	3	4	3	3	200
Mass Emission Rate, kg/hr	0.00917	0.00942	0.00891	0.00917	200
Annual Emission Rate, MT/yr*	0.00504	0.00618	0.00490	0 00504	
DENR Classification			Stationary Source)	e	

* Annual emissions are presented as metric tons (MT) per year based on the reported plant operating hours per year

Remarks:

a Particulate motter (cs PM) Emissiona

Within the standard of 200 mg/Ncm

 Parameters:
 Sampling Method:
 Analysis Method:

 a Particulate matter (PM)
 USEPA Method 5
 Gravimetric

TABLE 2-2

SUMMARY OF TEST RESULTS 5,013CFM Verantis Acid Fume Scrubber #2 N 16°21'34" E 120°39'32" BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT Balatoc, Virac, Itogon, Benguet

Run Number	RUN 1	RUN 2	RUN 3		CAA	
Sampling Date	29-Jun-24	29-Jun-24	29-Jun-24	Average	Limit	
Sampling Time	1050H-1205H	1242H-1358H	1411H-1525H		mg / Ncm	
Source Data					1	
Volumetric Flow Rate (dry std), Nomm	102	105	109	105	1	
Volumetric Flow Rate (actual), Nomm	117	125	130	124	1	
Moisture Content, %	3.4	3.3	40	3.6	1	
Stack Gas Temperature, "C	27	39	37	34	1	
Carbon Dioxide Concentration, %	0.0	0.0	0.0	0.0	1	
Oxygen Concentration, %	19.0	19.0	19.0	19.0	1	
Process Rate Information					1	
punces of gold produced	22 88	22.88	22.88	22.88	1	
% of Capacity during test	100%	100%	100%	100%	1	
Hours of operation per year	514.85	515	515	515		
Particulate Matter (PM) Emissions					1	
Concentration, mg/Ncm	65	66	73	68	200	
Mass Emission Rate, kg/hr	0.40	0.42	0.47	0.43	200	
Annual Emission Rate, MT/yr*	0.20	0.21	0.24	0.22		
Sulfur oxides (as SO ₂) Emissions					1	
Concentration, mg/Ncm	200	197	185	194	700	
Mass Emission Rate, kg/hr	1.22	1.24	1 21	1.22		
Annual Emission Rate, MT/yr*	0.63	0.64	0.62	0.63	1	
Nitrogen oxides (as NO) Emissions					1	
Concentration, mg/Ncm	262	253	271	262	500	
Mass Emission Rate, kg/hr	1 60	1.59	1 76	1 65	1	
Annual Emission Rate, MT/yr*	0.83	0.82	0.91	0.85	1	
Carbon monoxide (CO) Emissions						
Concentration_mg/Ncm	127	132	134	131	500	
Mass Emission Rate, kg/hr	0.78	0.83	0.87	0.83	300	
Annual Emission Rate, MT/yr*	0.40	0.43	0.45	0.43		
DENR Classification			Stationary Source	e		
			(New Source)			

* Annual emissions are presented as metric tons (MT) per year based on the reported plant operating hours per year

Sampling Method:

USEPA Method 6

USEPA Method 7

USEPA Method 10

Remarks:

Parameters:

- a. Particulate matter (PM)
- b. Sulfur oxides (as SO_)
- c. Nitrogen oxides (as NO -)
- d Carbon monoxide (CO)
- a. Particulate matter (as PM) Emissions Within the standard of 200 mg/Ncm Conversion of a solution of the standard of 200 mg/Nom
 Within the standard of 200 mg/Nom
 Within the standard of 700 mg/Nom
 Within the standard of 500 mg/Nom
 Gerbon monoxide (CO) Emissions

Analysis Method:

- USEPA Method 5 Gravimetric
 - Banum-Thonn Thration Phenoldisultonic Acid Non-Dispensive Infrared (NDIR)

SECTION 3.0

PROCESS DESCRIPTION AND OPERATION

Benguet Corporation - Acupan Contract Mining Project operates and maintains one (1) unit 46.58 m3/min Krypton Dust Collection Facility System and One (1) unit 5,013CFM Verantis Acid Fume Scrubber in their facility located at Balatoc, Virac, Itogon, Benguet. The sources are a Dust Collector and Acid Fume Scrubber as air pollution control device installed in the facility.

The **46.58 m3/min Dust Collection Facility System** manufactured by **Krypton** operated at 100% load, having a temperature of an average of 38°C and uses electricity to power the dust collector. According to the facility representative, the dust collector collected 30 kilograms of dust throughout the entire day of operation. They also indicated that this Dust Collection Facility System typically operates for an estimated 550 hours per year.

The 5,013CFM Acid Fume Scrubber manufactured by Verantis operated at 100% load, having a temperature of an average of 34°C and consumed 153 liters of kerosene as fuel during sampling. According to the facility representative, the generator set produced 22.88 ounces of gold throughout the entire day of operation. They also indicated that this Acid Fume Scrubber typically operates for an estimated 514.85 hours per year.

The monitoring logsheets, process facility data completed by a Benguet Corporation -Acupan Contract Mining Project facility representative during sampling, and the photos for documentation were collected by Greentek Environmental Phils Co. Personnel are included in Appendix C.

SECTION 4.0

SAMPLING AND ANALYTICAL PROCEDURES

All sampling and analytical procedures were those recommended by the Philippines Department of Environmental and Natural Resources (DENR) and the United States Environmental Protection Agency (EPA). This section provides brief descriptions of the sampling and analytical procedures with the focus primarily on any clarifications, deviations, or modifications to the stated test methods.

The test team utilized the following EPA Reference Methods:

- Method 1: Sample and Velocity Traverse Point Locations
- Method 2: Stack Gas Velocity and Volumetric Flow Rate (S-type Pitot)
- Method 3: Gas Analysis for Determination of Dry Molecular Weight
- Method 4: Determination of Moisture Content in Stack Gases
- Method 5: Determination of Particulate Matter Emissions from Stationary Sources
- Method 6: Determination of Sulfur Dioxide Emissions from Stationary Sources
- Method 7: Determination of Nitrogen Oxide Emissions from Stationary Sources
- Method 10: Determination of Carbon Monoxide Emissions from Stationary Sources

METHODS 1-2 - STACK VELOCITY

A Sampling Points

The number and location of the sampling points were determined according to the procedures outlined in EPA Method 1. The pyrolysis reactors and thermal oil heater have two test ports were present in the same horizontal plane, forming two sampling axes at 90° to each other. A total of 24 points were sampled for pyrolysis reactor and thermal oil heater, with 12 points on each axis. Details of the number and location of sample points are included in the field data sheets in Appendix B.

B Cyclonic Flow Check

A type-S pitot tube assembly, a liquid manometer, and a universal protractor (angle finder) were used to determine the rotation angles at each of the sampling or velocity traverse points. The pitot tube was positioned at each point so that the planes of the face openings of the pitot tube were perpendicular to the cross-sectional plane, and

the rotational angles were determined by rotating the pitot tube until a null reading was obtained on the manometer. When the null angle reading was obtained the yaw angle of the pitot tube was recorded, the test location's average absolute value of the rotation angle was less than 20°, which met the Method 1 criteria.

C Flue Gas Velocity

The flue gas velocity and volumetric flow rate were determined according to the procedures outlined in EPA Method 2. Velocity head measurements (delta P) were made using type-S pitot tubes conforming to the geometric specifications outlined in EPA Method 2. Accordingly, each has been assigned a coefficient of 0.84. Differential pressures were measured with an inclined manometer. Flue gas temperatures were measured with chrome-alumel thermocouples equipped with digital readouts.

METHOD 3 – FLUE GAS COMPOSITION

The flue gas composition and molecular weight were determined using the EPA method 3. An integrated flue gas sample was collected from each particulate test point at a constant rate into a tedlar bag during EPA Method 5 and 6 sampling run. The sample was collected using a separate sample line attached to the Method 5 probe and using orsat sample pump, separate from the primary Method 5 pump, located in the Method 5-meter console. A small polyethyene knockout, maintained at ambient temperature, was place immediately before the gas sample entered the sample pump to remove any significant moisture. An fyrite analyzer was used to determine the concentration of oxygen and carbon dioxide in the sample. The same bag sample was also used for the carbon monoxide analysis by Method 10.

METHOD 4 – FLUE GAS MOISTURE CONTENT

The moisture content was determined by EPA Method 4 in conjunction with EPA Method 5 and 6, which was discussed in the following section.

METHODS 5/6 - PARTICULATE MATTER AND SULFUR OXIDES

A Sample Collection

Samples were withdrawn isokinetically from the source using an EPA Method 5 sampling train. The sampling train consisted of a stainless-steel nozzle, a heated 316 stainless steel probe with a type-S pitot tube attached, a heated filter, an unheated sample line, four chilled impingers, and a metering console. The particulate sample was collected on a glass fiber filter maintained at a temperature of $120^{\circ}C \pm 14^{\circ}C$. The sampling probe, a 316 stainless steel liner that is normally used in Method 5 particulate determinations. The liners were rinsed out prior to sampling and indicated no contamination or degradation. The first two impingers each contained 100 ml of 3 percent hydrogen peroxide, the third remained empty, and the fourth contained preweighed silica gel. Three replicate test runs, each approximately 60 minutes in duration of sampling.

B Sample Recovery

Sample recovery was performed inside a clean recovery area. The filter was removed from the filter holder and placed in a petri dish. The volume of water vapor condensed in the impingers and the volume of water vapor collected in the silica gel were summed and entered into moisture content calculations. The nozzle, probe, and front half of the filter holder were rinsed with acetone in a 500ml clear glass. A glass collection flask with a socket was attached to the ball end of the sample probe (opposite the nozzle) to facilitate cleaning the inside of the probe. The interior of the probe and nozzle were brushed repeatedly to remove any adhering PM from the inside surfaces. The brushes and interior surfaces were rinsed again into the flask and then combined with the rinses into the 500ml clear glass bottle.

The impingers were weighed individually, and the contents of impingers 1 to 3 were placed in a 500 ml polyethylene sample bottle. The three impingers connecting glassware were rinsed with distilled deionized (DI) water into the bottle containing the impinger contents. The silica gel was returned to the original container after weighing.

C Sample Analysis

EPA Method 5 analytical procedures were used to analyze the filter and front-half acetone rinse for filterable particulate matter. EPA Method 6 procedures were utilized to determine the mass of sulfur oxides in the impinger contents. Blank samples of the

acetone and peroxide solutions, sufficient to determine potential contamination or bias from the sampling media, were submitted to the laboratory for analysis with the stack samples.

METHOD 7 – NITROGEN OXIDES

A Sample Collection

Nitrogen oxides (composed of both NO and NO2) were determined for each test run according to EPA Reference Method 7, "Determination of Nitrogen Oxide Emissions from Stationary Sources". The sampling train consisted of an evacuated flask connected to a heated glass probe with glass wool at the tip to function as a filter. The evacuated flask contained 25 mL of the nitrogen oxide-absorbing solution. The flask was evacuated to within 75 mmHg (3 inHg) of absolute pressure or less. The initial flask temperature and evacuated pressure were recorded. The probe was placed in the stack and connected to the flask. After purging the probe, a grab sample was drawn into the flask. The flask was shaken for five minutes. Three flasks were collected for each test run.

B Sample Recovery

After a minimum of 16 hours, the flask was shaken for two minutes, and then the final flask temperature and pressure were measured. The contents were transferred to a polyethylene bottle, and the flask was rinsed as per the test method. The pH was adjusted to between 9 and 12.

C Sample Analysis

The samples were prepared for analysis as per EPA Method 7 and then measured colorimetrically using a spectrophotometer.

METHOD 10 CARBON MONOXIDE

The integrated grab sample that was collected per EPA Method 3 for oxygen and carbon dioxide was also used for EPA Method 10 analysis for carbon monoxide. An integrated flue gas sample was collected from each particulate test point at a constant rate into a Tedlar bag during EPA Method 5 and 6 sampling run. The sample was

analyzed in accordance with EPA Method 10 using the non-dispersive infrared (NDIR) analyzer HORIBA PG-350 S/N: 2JFEHYJ2 at Greentech Laboratory and Allied Services, Inc. Samples were analyzed using the 513 ppm analytical span. The analyzer has a built in sample pump and was filtered prior to introduction to the analyzer. Analytical results were recorded on the CO analytical data sheet in ppm from the analyzer display. The value was recorded several minutes after the sample was first introduced, and a stable concentration reading was observed.

SECTION 5.0

QA/QC PROCEDURES AND RESULTS

The objective of an internal quality assurance and quality control (QA/QC) program is to assure that the precision and accuracy of all data generated are scientifically sound and documented to be "in control". To accomplish this, standardized methods or procedures were used. They must be validated for their intended use, rigorously followed, and data reported with quality indicators (precision, accuracy, completeness, representativeness, etc.).

As a guide, Greentek uses the EPA document Quality Assurance Handbook for Air Pollution Measurement System, Volume III (EPA-600/4-77-027b). The Greentek QA/QC plan has incorporated certain considerations into the production of quality data in all its sampling programs, regardless of the scope and purpose of the testing. These considerations include:

- Planning the individual test programs by preparation and submission of a Source Specific Test Plan to (DENR-EMB (included in Appendix G)
- Using reliable and well-maintained calibrated equipment.
- Using appropriate forms for recording sampling data (Appendix B),
- Using calibration and audit gases traceable to the National Institute of Standards and Technology (NIST),
- Controlling errors by checking data input and performing redundant calculations,
- Analyzing audit materials, and
- Adhering to the established Test Plan.

5.1 Particulate Matter Sampling Procedures

Particulate matter (PM) was determined according to EPA Method 5 in "Determination of Particulate Emissions from Stationary Sources". The appropriate performance of this test method includes the performance of EPA Methods 1, 2, 3, and 4. The following items describe the primary quality control measures that The Greentek used to ensure a representative sample that met the method precision and bias criteria, was collected:

- Measurements of the upstream and downstream disturbances (to the velocity at the test location) and selection of the appropriate number of sampling test points to determine a representative stack gas velocity.
- Performance of a cyclonic flow check
- Calibration and QA/QC checks of the dry gas meter, thermocouples, pitot tubes, nozzles, temperature display, and manometer assembly,
- Leak checks of the entire Method 5 sampling train were performed before and after each sampling run. All leak checks and leakage rates were documented on the relevant field test data sheets. The acceptance criteria for the Method 5 train post-sample leak check are a leak rate of <0.00057 m³/minute at the highest vacuum obtained during the test run.
- Maintenance of the chilled impinger system below 20°C (measured at the silica gel outlet),
- Collection of an integrated Tedlar bag sample for oxygen, carbon dioxide, and carbon monoxide
- Maintenance of the isokinetic sampling rate at 90–110% of the actual gas stream velocity.
- Maintenance of the heating system for the filter and sampling probe at 120°C (±14°C),
- Proper recovery of the sample.
- Accurate gravimetric analysis of samples.
- Collection and analysis of representative "blank" samples.

Equipment calibration procedures are described below.

5.2 Particulate Matter Sampling Equipment

A Barometer

Barometric pressure values for the testing period were recorded from a calibrated digital barometer on-site at the platform level. A digital barometer was calibrated in Swichtek Measurements Systems located at 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines. A copy of the barometer calibration form is in Appendix E.

B Probe Nozzle

The probe nozzles used in this test were calibrated initially by the manufacturer and prior to use by the field sampling crew by checking for dimension roundness. This was

done by making three separate measurements using alternative inside diameters and calculating the average. A micrometer with a minimum tolerance of 0.025mm was used for measuring. If a deviation of more than 0.1mm is found between any measurements, the nozzle is either discarded or repaired and re-measured. A copy of the nozzle calibration forms is in Appendix E.

C Pitot Tube

Each pitot tube used in sampling meets the design specifications for Type S pitot tubes in EPA Method 2. Therefore, in accordance with Method 2 procedures, a baseline coefficient (C_p) of 0.84 was assigned to each pitot tube. Calibration at the manufacturer for pitot face-opening alignment included measuring the external tubing diameter (dimension D_t) and the base-to-opening misalignment angles, with all terms as described in Figures 2-2 and 2-3 of EPA Method 2. Pitot tubes were visually inspected at the completion of the test to ensure structural integrity. A copy of the calibration check is included in Appendix E.

D Calibration Meter and Metering System

The meter console dry gas meter calibration was performed in accordance with EPA Method 5, Section 16, using critical orifices. The meter is allowed to warm up and is leak checked using the specifications in Method 5 of no detectable leak for a period of one minute. The dry gas meter is calibrated with five orifices with orifice values that ranged 14.50 to 116.0mm of water. For each critical orifice, the meter coefficient (γ or gamma) and the orifice pressure differential (delta H@) were calculated. The criterion for the gamma difference for each point is not to exceed ±0.02 of the average of all the points. The orifice pressure differential that equates to 0.0212 m3/min at standard conditions (Delta H@) was then calculated for each point and averaged. A copy of the metering system calibration is included in Appendix E.

E Post-Test Meter Calibration

Post-test meter calibrations to determine the γ (or Yqa) were conducted on the dry gas meter after the test to check their accuracy against the original pretest calibration. This post-test calibration was made using the alternative procedure defined by the EPA as ALT-009. This procedure is performed on site using the data collected for each of the test runs. It is preferred by EPA over the post-test procedure identified in Method 5 because it 1) eliminates the question of possible meter damage during transport after the emission test; and 2) because the calibration data are available in the field

immediately following the test, it eliminates the costly travel, remobilization, and scheduling of a retest should the meter fail the post-test calibration. A copy of the post-test calibration is included in Appendix E of this test report. A complete copy of EPA ALT-009 is available on the EPA website.

F Thermocouples and Digital Temperature Indicators

Thermocouples were calibrated by comparing them against an ASTM-3F mercury-inglass thermometer at approximately 0°^C (ice water), ambient temperature, and approximately 100°C (boiling water). A post-test calibration was performed in accordance with EPA ALT-011 using a single point calibration against an ASTM mercury-in-glass thermometer in addition to a continuity check of the thermocouple. The continuity check involved verifying that the thermocouple read-out trended in the appropriate direction when exposed to a temperature change. A copy of the original calibration and the ALT-011 post-test QA check is included in Appendix E. A complete copy of EPA ALT-011 is available on the EPA website.

Digital indicators were checked by introducing a series of millivolt signal strengths to the input and comparing the indicator reading with the actual signal strength. Acceptable calibration error does not exceed 1.5 percent when temperatures are expressed in °K.

5.3 Particulate Matter Analysis

The primary quality control procedures involved in the particulate matter analysis include use of a properly calibrated analytical balance, use of appropriately specified sampling media (filters and acetone) and following the Method 5 analytical procedures. The laboratory followed the procedures specified in the method and calibrated the analytical balance using Class S weights. A routine calibration log is maintained at the laboratory with the analytical balance. The acetone probe rinse was taken to dryness at ambient temperature in a laboratory fume hood. Pre- and post-measurements were made until replicate analysis data sheet presents the final measurement results, while any intermediate measurements are maintained in a sample log at the laboratory.

5.4 Oxygen and Carbon Dioxide Analysis

The primary quality control procedures involved in the analysis of the oxygen (O_2) and carbon dioxide (CO_2) samples include collection of a representative bag sample, use of fresh absorbing solutions. The Fyrite analyzers are checked against the ambient air for oxygen and exhale breath for carbon dioxide prior to sample analysis. The field staff followed the procedures specified in the method.

The Greentek work plan specified that the Fyrite analysis should be performed within 8 hours from the time the bag were collected, the values are considered valid. The O_2 and CO_2 values are used only in calculating for the molecular weights.

5.5 Sulfur Oxides

This sample procedure for sulfur oxides (SO₂) was combined with EPA Method 5 as described. The primary QA/QC procedures utilized during testing were as follows.

- Use of fresh chemical solutions (mixed daily).
- Proper recovery of the sample.
- · Accurate analyses (using barium- thorin titration) of samples.
- · Collection and analyses of representative "blank" samples.
- Calibration and QA/QC checks of the sampling system.
- Analysis of audit samples.

The laboratory followed the procedures specified in the method. EPA quality audit samples for SO₂ were analyzed within 30 days of the field samples using the barium chloride titration solution. The results of the laboratory's audit analyses were within 5% of the audit value as required by the test method. The blank samples from the field test were analyzed with the samples and demonstrated the no contamination was present from the chemical reagents used.

5.6 Nitrogen Oxides

This sample procedure for nitrogen oxides (NOx) is described in Section 4.5. The primary QA/QC procedures utilized during testing and analysis were as follows:

- Use of fresh chemical solutions
- Proper recovery of the samples
- · Accurate analyses (using spectrophotometry) of samples.
- Calibration of the spectrophotometer and verification of linearity

Calibration and QA/QC checks of the sampling system

The laboratory followed the procedures specified in the method. The spectrophotometer was calibrated on the day the samples were analyzed and verified to be linear over the range to be measured.

If any of the three runs of NOx results from each set of sample runs are found to be outliers, the said results are discarded, and the final NOx result is computed from the average of the two remaining good runs. The discarded test trial runs are noted in the nitrogen oxide emission data as part of the Appendix Summary Table in Appendix A.

It should be noted that EPA Method 7 does not clearly specify a certain number of NOx samples for each run. The three NOx samples per run are generally practiced, providing a "spare set" in case one of the samples gets spoiled or becomes an outlier.

5.7 Carbon Monoxide

This sample procedure for carbon monoxide (CO) is describe. The primary QA/QC procedures utilized during the testing and analysis were as follows:

- Collection and analyses of representative gas samples
- · Maintenance of a leak-free bag prior to sampling.
- Calibration of the CO NDIR instrument prior to analysis
- Analysis of samples within three days of collection.
- Strict acceptance of the span and drift criteria (2% and 10%, respectively).
- Use of EPA Protocol 1 calibration gases (although the method allows use of certified rather than Protocol 1 gas standards for calibration)
- Interference check for carbon dioxide (or use of an ascarite trap to remove CO₂)

The analyst in the field equipment office, where the analyzer is maintained, followed the procedures specified in the method. The CO analyzer met the calibration and the drift requirements in the test method. No audit samples, separate from the calibration gas, are specified in EPA Method 10. An interference check was performed on the CO analyzer prior to any analysis as described in EPA Method 20, to ensure there is no interference from carbon dioxide, oxygen, sulfur oxides and nitrogen oxides. The analyzer QA/QC check performed by the vendor also includes both a linearity verification of the 0-1,000 ppm scale and an interference check for carbon dioxide (for 10% and 22% CO₂). Because the analyzer met the acceptance limit for the interference, no ascarite trap to remove CO₂ was used during the analysis.

"APPENDIX A"

SUMMARY OF RESULTS AND EXAMPLE COMPUTATIONS

	P	APPENDIX TABLE TEST RESULTS PARTICULATE MATTER			
	BENGUET CORPORAT			ст	
		toc, Virac, Itogon, Bend		544	
		ypton Dust Collection	and the second sec		
	DUNI MUNDED	DUNIA	DUNIO	DUNA	
	RUN NUMBER	RUN 1	RUN 2	RUN 3	
	RUN DATE	28-Jun-24	28-Jun-24	28-Jun-24	AVERAG
	RUN TIME	1323H-1437H	1459H-1615H	1630H-1743H	
	MEASURED DATA				
(Y)	Meter Box, Y	1.0102	1.0102	1.0102	
(Delta H)	Avg Delta H, mm H ₂ O	12.3	11.6	12.9	
(Pbar)	Barometric Pressure, mm Hg	690.4	690.9	691.1	
(Vm)	Meter Volume,m ³	0.7928	0.7672	0.8084	
(Tm)	Avg Meter Temp, °C	35	38	36	
(Pg)	Static Pressure, mm H ₂ O	-3.0	-3.0	-3.0	
(Ts)	Avg Stack Temp, °C	35	39	40	
(VIc)	Water Collected, mg	14.5	16.0	19.5	
(%CO ₂)	Carbon Dioxide, %	0.0	0.0	0.0	0.0
(%O ₂)	Oxygen, %	20.0	20.0	20.0	20.0
(%N ₂)	Nitrogen, %	80.0	80.0	80.0	
(Cp)	Pitot Tube Coefficient	0.84	0.84	0.84	
(sqrtDeltaP)avg	Avg Sqrt Delta P, (mm H2O)1/2	3.519	3.349	3.527	
(time)	Sample Time, min	72	72	72	
(Dn)	Nozzle Diameter, mm	4.480	4.480	4.480	
	CALCULATED DATA				
(An)	Nozzle Area, m ²	1.58E-05	1.58E-05	1.58E-05	
(Vmstd)	Standard Meter Volume, Ncm	0.7055	0.6760	0.7170	
(Ps)	Stack Pressure, mm Hg	690.2	690.7	690.9	
(%H2Omeas)	Moisture (measured), %	2.7	3.1	3.6	3.1
(%H ₂ Osat)	Moisture (at saturation), %	6.1	7.4	8.0	
(%H ₂ O)	Moisture (actual), %	2.7	3.1	3.6	3.1
(Vwstd)	Standard Water Vapor Volume, Ncm	0.020	0.022	0.026	
(Mfd)	Dry Mole Fraction	0.973	0.969	0.964	
(MWd)	Molecular Weight-dry, gm/gm-mole	28.80	28.80	28.80	
(MWs)	Molecular Weight-wet, gm/gm-mole	28.51	28.46	28.42	
(∀s)	Velocity, m/s	12.9	12.4	13.1	12.8
(A)	Stack Area, m ²	0.07	0.07	0.07	
(%EA)	Percent Excess Air, %	126	126	126	126
Qa (act)	Actual Volumetric Flow, acmm	55	53	55	54
Qs (std)	Standard Volumetric Flow, dscmm	47	44	46	46
(1)	Isokinetic Rate, %	93.7	95.2	96.4	
	PARTICULATE EMISSIONS DATA				
(mg)	Mass, mg	2	2	2	
(mg/Ncm)	Concentration, mg/Ncm	3	4	3	3
(kg/hr)	Emission Rate, kg/hr	0.01	0.01	0.01	0.01

EXAMPLE CALCULATIONS BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT 46.58 m3/min Krypton Dust Collection Facility System RUN 1

VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS

Vmstd =	Y	*	0.392		Vm	Pbar	+	(Delta H	11	13.6)			
¥101010 -	5 K. 10		0.032					(273	+	Tm)			
Vmstd =	1.0102		0.392	*	0.7928	690.4	+	(12.3	1	13.6)	=	0.7055	Ncm
VIIIsia -	1.0102		0.532		0.7520			(273	+	35)			

VOLUME OF WATER VAPOR AT STANDARD CONDITIONS

VWSIG - 0.007330 VIC	Vwsid =	0.001358		Vic
----------------------	---------	----------	--	-----

Vwstd = 0.001358 * 14.5 = 0.020 Ncm

PERCENT MOISTURE, BY VOLUME, AS MEASURED IN FLUE GAS

PLH OF			Vws	td		~	100			
$%H_{2}O =$	(Vwstd	+	Vinstd)	x	100			
% H . D =		0	.020)		U.	100	=	2.7	0/
% H ₂ O =	(0.020	+	0.7055)	x 100 =		4.1	70	

ABSOLUTE FLUE GAS PRESSURE

Ps =	Pbar	+ <u>Pg</u> 13.6			
Ps =	690.4	+	=	690.2	mm Hg

DRY MOLE FRACTION OF FLUE GAS

Míd =	1	- <u>%H₂0</u> 100			
Mfd =	1		Ŧ	0.973	(unitless)

PERCENT EXCESS AIR

% EA =	126		% exce	ss air																	
% EA = (20	•	0.5	•	0.0	14	0.264		80	÷	(20	•	(0.5*	0.0)]	x	100	%	
% EA = (%O2		0.5	*	%CO	$\mathcal{V}I$	0.264	•	%N2	2	(%O2	5	(0.5 *	%CO)]	x	100	%	

DRY MOLECULAR WEIGHT OF FLUE GAS

MWd = (%CO2	*	+	٢	%O2	* <u>32</u>)	+	100.0	·	%CO2	•	%0 ₂ *	<u>28</u> 100
MWd = (0.0	*)	+	1	20.0	* <u>32</u>)	+	100.0	(*)	0.0	×	20.0	<u></u> 100
MWơ =	28.80	g/g-mole											

WET MOLECULAR WEIGHT OF FLUE GAS

MWs =	(MWd		Mfd)	+	fwtH ₂ O	*	H ₂ O/100		
MWs =	l	28.80	•	0.973)	+	18		2.7	=	28.51 g/g-mole

AVERAGE FLUE GAS VELOCITY

$V_S =$	34.97		Cp	(DellaP)avg	Ts	+	273			
v3 -	54.57		Cp	(Dollar Javy	Ps	•	MWs			
Vs =	34,97	4	0.84	3.519	35	+	273	=	12.9	m/s
¥ cy -	54.37		0.04	3.015	690.2		28.51	-	16.3	111/5

VOLUMETRIC FLUE GAS FLOW RATE AT ACTUAL CONDITIONS (wet basis)

Qa(act) =	60	•	Vs	A			
Qa(acl) =	60	•	12.9	0.07	=	55	acmm

VOLUMETRIC FLUE GAS FLOW RATE AT STANDARD CONDITIONS (dry standard basis)

Qs(std) =	60	Mfd	Vs	٠	А		<u>298</u> 273 + 7s	•	Ps Pstd			
Qs(std) =	60	0.973	12.9		0.07	*	<u>298</u> 273 + 35	•	<u>690.2</u> 760	=	47	dscmm

PERCENT ISOKINETIC OF SAMPLING RATE

1 =	Pstd	100	Ts	+	273	2		Vi	mstd		
1-	Pstd Tstd	60		Ps		Vs	•	Mfd		time *	An
1 =	760	100	35	+	273			0.	7055		
/ =	298	60		690.	E.	12.9	*	0.973	•	72	0.000015
/ =	93.7 %										

PARTICULATE CONCENTRATION

mg/Ncm =	ng _{particulata} Ncm			
mg/Ncm =	2.3	=	3.3	mg/Ncm

PARTICULATE MASS EMISSION RATE

kg/hr =	60 10^6	 O _{13%} mg Nam	•	Qs			
kg/hr =	<u>60</u> 10^6	3.3	•	47	=	0.009	kg/hr

APPENDIX SUMMARY TABLE NITROGEN OXIDES (as NO2) EMISSIONS DATA BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT Balatoc, Virac, Itogon, Benguet 46.58 m3/min Krypton Dust Collection Facility System

Sample Collection Information

Sample Recovery Information

Calculated Results

			Barometric Pressu	ure, Pbar ((in Hg):	29.68	Barometric F	ressure, Pbar (in I	Hg):	29.72
Sample ID	Flask Volume (ml)	Evacuated Pressure Pgi (in Hg)	Flask abs. Pressure Initial Pi, Pbar - Pgi (in Hg) ¹	Flask Temp °C	Flask Temp Ti °K	Sample Collection Time ² 24-Hour	Final Pressure Pgf (in Hg)	Flask abs. Pressure Final Pf, Pbar - Pgf (in Hg) ¹	Flask Temp °C	Flask Temp Tf °K
Run 1A	2,212.50	28.33	1.35	32,8	305.8	1142	1.20	28.52	30.5	303.5
Run 1B	2,226.13	28,47	1.21	33.4	306.4	1147	1,16	28.56	30.2	303.2
Run 1C	2.221.18	28.16	1.52	33.5	306.5	1152	1.45	28.27	30.4	303.4

Std. Gas Volume (ml)	Mass Catch Weight, μg (μg)	NOx Concentration as NO2 (mg/Ncm)
1,951	0	0
1,978	0	0
1,929	0	0
	Average	0

		E	arometric Pres	sure, Pbar	Barometric Pr	Barometric Pressure, Pbar (in Hg):				
Run 2A	2.211.35	28.36	1.31	33.4	306.4	1213	1.29	28,43	30.6	303.6
Run 2B	2.210.08	28.25	1.42	33.6	306.6	1217	1.37	28.35	30.5	303.5
Run 2C	2,208.25	28.51	1.16	32.8	305.8	1221	1.10	28.62	30.2	303.2

,932 0		0
,969 0	0	

		E	arometric Pres	sure, Pbar	(in Hg):	29.66	Barometric Pr	29.72		
Run 3A	2.196.25	28.27	1.39	32.7	305.7	1339	0.99	28.73	30.4	303.4
Run 3B	2,206,38	28.41	1.25	33.6	306.6	1342	1.23	28.49	30.3	303.3
Run 3C	2,201.00	28.19	1.47	33.7	306.7	1346	1.4	28.32	30.2	303.2

		-
1,920	0	0
1,952	0	0
1,949	0	0

2-1 46.58 m3min Krypton Dust Collection Facility System Method 7

			ACT MINING PROJEC		
	RUN NUMBER RUN DATE	RUN 1 29-Jun-24	RUN 2 29-Jun-24	RUN 3 29-Jun-24	AVERAGE
	RUN TIME	1050H-1205H	1242H-1358H	1411H-1525H	
	MEASURED DATA				
(Y)	Meter Box, Y	1.0102	1.0102	1.0102	
(Delta H)	Avg Delta H, mm H ₂ O	16.6	17.6	18.5	
(Pbar)	Barometric Pressure, mm Hg	690.4	690.6	690.9	
(Vm)	Meter Volume,ma	0.8986	0.9516	0.9536	
(Tm)	Avg Meter Temp, °C	35	38	36	
(Pg)	Static Pressure, mm H ₂ O	-2.0	-2.0	-2.0	
(Ts)	Avg Stack Temp, °C	27	39	37	
(VIc)	Water Collected, mg	20.5	21.0	26.0	2000000
(%CO ₂)	Carbon Dioxide, %	0.0	0.0	0.0	0.0
(%O ₂)	Oxygen, %	19.0	19.0	19.0	19.0
(%N ₂)	Nitrogen, %	81.0	81.0	81.0	
(Cp)	Pitot Tube Coefficient	0.84	0.84	0.84	
	Avg Sqrt Delta P, (mm H2O)1/2	2.104	2.200	2.288	
(time)	Sample Time, min	72	72	72	
(Dn)	Nozzle Diameter, mm	6.090	6.090	6.090	
	CALCULATED DATA				
(An)	Nozzle Area, m ²	2.91E-05	2.91E-05	2.91E-05	
(Vmstd)	Standard Meter Volume, Ncm	0.7980	0.8381	0.8449	
(Ps)	Stack Pressure, mm Hg	690.2	690.5	690.7	
(%H ₂ Omeas)	Moisture (measured), %	3.4	3.3	4.0	3.6
(%H ₂ Osat)	Moisture (at saturation), %	3.8	7.7	7.0	
(%H ₂ O)	Moisture (actual), %	3.4	3.3	4.0	3.6
(Vwstd)	Standard Water Vapor Volume, Ncm	0.028	0.029	0.035	
(Mfd)	Dry Mole Fraction	0.966	0.967	0.960	
(MWd)	Molecular Weight-dry, gm/gm-mole	28.76	28.76	28.76	
(MWs)	Molecular Weight-wet, gm/gm-mole	28.39	28.41	28.33	
(Vs)	Velocity, m/s	7.6	8.2	8.5	8.1
(A)	Stack Area, m ²	0.26	0.26	0.26	
(%EA)	Percent Excess Air, %	116	116	116	116
Qa (act)	Actual Volumetric Flow, acmm	117	125	130	124
Qs (std)	Standard Volumetric Flow, dscmm	102	105	109	105
(1)	Isokinetic Rate, %	95.1	97.4	94.7	
	PARTICULATE EMISSIONS DATA				
(mg)	Mass, mg	52	56	61	
(mg/Ncm)	Concentration, mg/Ncm	65	66	73	68
(kg/hr)	Emission Rate, kg/hr	0.40	0.42	0.47	0.43
	SULFUR OXIDES (as SO2) EMISSIONS D	ATA			
(100.0)			105	150	
	Mass, mg	159	165	156	101
(mg/Ncm) (kg/hr)	Concentration, mg/Ncm Emission Rate, kg/hr	200 1,22	197 1.24	185 1.21	194 1.22
(kg/m)	Emission Rate, kg/m	1,22	1.24	1,21	1.66
	NITROGEN OXIDES (as NO2) EMISSIONS	S DATA			
(mg/Ncm)	Concentration, mg/Ncm	262	253	271	262
(kg/hr)	Emission Rate, kg/hr	1.60	1.59	1.76	1.65
	CARBON MONOXIDE EMISSIONS DATA				
	Concentration, ppm dry	111	115	117	114
(mg/Ncm)	Concentration, mg/Ncm	127	132	117	114
(kg/hr)	Emission Rate, kg/hr	0.78	0.83	0.87	0.83

EXAMPLE CALCULATIONS BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT 5,013CFM Verantis Acid Fume Scrubber #2 RUN 1

VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS

Vmstd =	Y	0.392	Vm	Pbar +	(Delta F	11	13.6)	10		
vmatu -	3.4.00	0.032	VIII		(273	+	Τm)			
Vmstd =	1.0102	0.392	0.8986	690.4 +	(16.6	1	13.6)	=	0.7980	Ncm
VIII Star	1.0702	0.002	0.0800		(273	+	35)			

VOLUME OF WATER VAPOR AT STANDARD CONDITIONS

VW310 - 0.0073300 VIC	Vwstd =	0.001358		Vic
-----------------------	---------	----------	--	-----

Vwstd = 0.001358 * 20.5 = 0.028 Ncm

PERCENT MOISTURE, BY VOLUME, AS MEASURED IN FLUE GAS

%H 0-			ws			~	100			
% H ₂ O =	(Vwstd	+	Vmstd)	x	100			
%H-0=			028			<u> </u>	100	-	3.4	0/
$%H_2O =$	1	0.028	+	0.7980)		100	171	3.4	10

ABSOLUTE FLUE GAS PRESSURE

Ps =	Pbar	+ Pg			
13-	r bai	13.6			
Ps =	690.4	-2.0	2	690.2	mm Ha
13-	030.4	13.6	- T-	090.2	mm Hg

DRY MOLE FRACTION OF FLUE GAS

Mfd =	1	- <u>%H20</u> 100			
Mfd =	1		=	0.966	(unitless)

PERCENT EXCESS AIR

% EA =	116	Į,	% exces	ss air																	
% EA = (19		0.5	*	0.0)/[0.264		80.989	7	1	19		ſ	0.5 *	0.0)]	x	100	%	
% EA = (%O2		0.5	*	%CO	11	0.264	*	%N2	×	ſ	%O ₂	×	ſ	0.5 *	%CO)]	x	100	%	

DRY MOLECULAR WEIGHT OF FLUE GAS

MWd = (%CO2	* <u>44</u>) 100	+	ſ	%O ₂	*)	+	100.0	%CO2	•	%O2 *	<u>28</u> 100
MWd = (0.0	*	+	ſ	19.0	* <u></u>)	+	100.0	0.0		19.0	<u></u> 100
MWd =	28.76	g/g-mole										

WET MOLECULAR WEIGHT OF FLUE GAS

MWs =	(MWd	•	Mfd)	+	fwtH 2 O	H ₂ O/100		
MWs =	(28.76	•	0.966	j	+	18	<u> </u>	=	28.39 g/g-mole

AVERAGE FLUE GAS VELOCITY

Vs =	34.97	Cn	(DeltaP)avg	121	Ts	+	273			
13-	54.57	Οp	Denar-Javy		Ps	•	MWs			
Vs =	34.97	0.84	2.104		27	+	273	=	7.6	m/s
V.0	34.37	10.04	2.104		690.2		273		1.0	11/5

VOLUMETRIC FLUE GAS FLOW RATE AT ACTUAL CONDITIONS (wet basis)

Qa(act) =	60	•	Vs	•	A			
Qa(act) =	60		7.6		0.26	=	117	acmm

VOLUMETRIC FLUE GAS FLOW RATE AT STANDARD CONDITIONS (dry standard basis)

Qs(std) =	60	•	Mfd	Vs	•	A	190	298 273 + Ts	×	Ps Pstd			
Qs(std) =	60		0.966	7.6	·	0.26	*	<u>298</u> 273 + 27		<u>690.2</u> 760	=	102	dscmm

PERCENT ISOKINETIC OF SAMPLING RATE

1 =	Pstd		<u>100</u> 60	Ts	+	273			V	mstd			
1.000	 Tstd		60		Ps		Vs		Míd	•	time '	1	An
/ =	760		100	27	+	273			0.	7980			
6	<u></u>		60		690.2	2	7,6	•	0.966	•	72	*	0.000029
/ =	95.1 %	6											

PARTICULATE CONCENTRATION

mg/Ncm =	mg _{particulate} Ncm			
mg/Ncm =	51.7	=	64.8	mg/Ncm
angle room	0.7980		04.0	mgritterit

PARTICULATE MASS EMISSION RATE

kg/hr =	60	 0 13% mg	•	Qs			
kg/hr =	10^6 60 10^6	Ncm 64.8	•	102	=	0.397	kg/hr

SULFUR DIOXIDE CONCENTRATION

mg/Ncm =	mg sor			
ingrien.	Ncm			
mg/Ncm =	159		200	and a fill a sec
mg/went -	0.7980	Ξ.	200	mg/Ncm

SULFUR DIOXIDE EMISSION RATE

kg/hr =	60 10^6	O ^{rrm} mg Nom		Qs			
kg/hr =	60 10^6		*	102	=	1.2237	kg/hr

NITROGEN OXIDES (as NO2) EXAMPLE CALCULATIONS, RUN 1a

1.0 INITIAL ABSOLUTE PRESSURE IN FLASK

P _{mmvig} =	PinHg	x 25.4 mi	mHg/in Hg		
Pi =	Pbar(i)	- Pg(i)			
Pi =	27.2	- 26.11 =	1.09 in Hg	= 27.686 mm Hg	
	2.0 FINAL AB	SOLUTE PRES	SURE IN FLASK		
Pf =	Pbar(i)	- Pg(f)			
Pf =	27.12	- 1.02 =	26.1 in Hg	= 662.9 mm Hg	
	3.0 VOLUME	OF DRY GAS S	AMPLED AT STANDARD	CONDITIONS USING FLASK	
Vsc	= (Vf-25) *	Pf (Tf +273	- <u>Pi</u>) 	* 0.392	
Vsc	= (2226.3	- 25)*	662.9 27.7 (* 0.392 = 1,801 n	ni

4.0 CONCENTRATION OF NO , as NO ;

mg/Ncm = (µg/Vsc) * 10⁶ (1,000 ml/1L) * (1,000 L / Ncm) * (1mg / 1,000 ug)

mg/Ncm = (439 / 1,801) * 1,000 = 244 mg/Ncm

NITROGEN OXIDES EMISSION RATE

$$kg/hr = \frac{60}{10^{h}6} \cdot \frac{0^{13%} mg}{Ncm} \cdot Qs$$

$$kg/hr = \frac{60}{10^{h}6} \cdot 243.7 \cdot 102 = 1.493 \ kg/hr$$

CARBON MONOXIDE (CO) CONVERSION, ppm to mg/Ncm (Run 1)

CO_{mgNom} = (CO_{ppm} x MW_{co}) / 24.5 Liters CO/mole

CO_{mgNcm} = 111.0 x 28.01 / 24.45 = 127.2 mg/Ncm

CARBON MONOXIDE EMISSION RATE

$$kg/hr = \frac{60}{10^{6}6} * \frac{0_{13\%} mg}{Ncm} * Qs$$

$$kg/hr = \frac{60}{10^{6}6} * 127.2 * 102 = 0.779 kg/hr$$

APPENDIX SUMMARY TABLE NITROGEN OXIDES (as NO2) EMISSIONS DATA BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT Balatoc, Virac, Itogon, Benguet 5,013CFM Verantis Acid Fume Scrubber #2

Sample Collection Information

Sample Recovery Information

Calculated Results

			Barometric Pressu	ure, Pbar ((in Hg):	27.20	Barometric F	Pressure, Pbar (in H	Hg):	27.12 Flask Temp Tf °K
Sample V ID	Flask Volume (ml)	Evacuated Pressure Pgi (in Hg)	Flask abs. Pressure Initial Pi, Pbar - Pgi (in Hg) ¹	Flask Temp °C	Flask Temp Ti °K	Sample Collection Time ² 24-Hour	Final Pressure Pgf (in Hg)	Flask abs. Pressure Final Pf, Pbar - Pgf (in Hg) ¹	Flask Temp °C	
Run 1A	2,226.30	26,11	1.09	29.2	302.2	1132	1.02	26.10	31.2	304.2
Run 1B	2,247.00	25,79	1.41	28.6	301.6	1137	1.34	25.78	31,6	304.6
Run 1C	2,236.40	25.88	1.32	28.9	301.9	1142	1.25	25.87	31.4	304.4

	Average	262
1,775	485	273
1,769	474	268
1,801	439	244
Std. Gas Volume (ml)	Mass Catch Weight, µg (µg)	NOx Concentration as NO2 (mg/Ncm)

Run 2A		E	larometric Pres	sure, Pbar	(in Hg):	27.18	Barometric Pr	essure, Pbar (ir	n Hg):	27.12
	2,221.30	25.98	1.20	28.3	301.3	1324	1,16	25.96	31.0	304.0
Run 2B	2.211.40	25.74	1.44	29.9	302.9	1329	1.41	25.71	32.6	305.6
Run 2C	2,227.20	26.03	1.15	28.7	301.7	1334	1.12	26.00	32.4	305.4

	Average	253
1,783	437	245
1,728	480	278
1,780	421	236

		E	arometric Pres	sure, Pbar	(in Hg):	i): 27.17 Barometric Pressure, Pbar		essure, Pbar (ir	n Hg):	: 27.12	
Run 3A	2,237.30	25.86	1.31	28.9	301.9	1413	1.27	25.85	32.6	305.6	
Run 3B	2,225.00	25.77	1.40	28.8	301.8	1418	1.36	25.76	32.4	305.4	
Run 3C	2,220.00	25,59	1.58	28.5	301.5	1423	1.58	25.54	32.6	305.6	

1,712	458 Average	268
1,746	485	27
1,768	471	266

2-2 5,013 CFM Verantis Acid Fume Scrubber Method 7

"APPENDIX B"

FIELD DATA SHEETS

METHOD 1

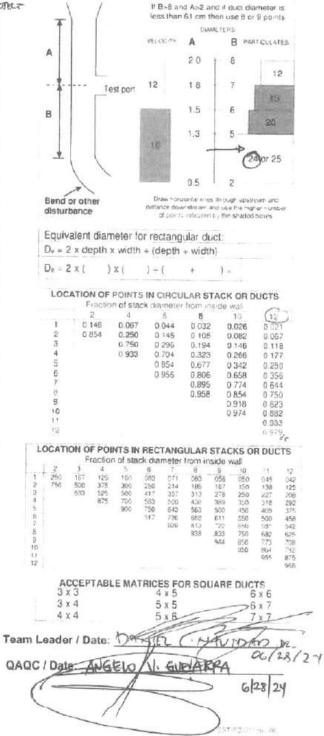
TRAVERSE POINT LOCATIONS

Facility Name	BENGUET LORD ACUPAT CONTRACT MINING APO
Town/Province	ITUGON - AEN GVET
Source Tested	DUST WILLECTION FACILITY IVOTM
Personnel	My, AVI, Mr. my Date 04/25/24

Type of Stack		Circular	1	Rectangle
Ports	No. of ports available No. of ports used			1
				9
	Port ins	ide dia., cm		0

Dimensions	Far wall to end of port, cm (a)	305
	Port length, cm (b)	11.5
Draw a diagram of the test location on the back of the sheet	Stack Dia. or depth, cm (a-b)	30
	Stack width (if rectangle), cm	-
	Equivalent Stack Diameter, cm	-
	Area of stack, m ²	(1.07)

Distance to flow disturbance	Meters	Diameters
Upstream (A)	1.0.4	2.470
Downstream (B)	15	2 830


Minimum # of trav	erse points	required:	
		Particulate traverse	24
		Velocity traverse	24
# of ports used	2	# points/port	12
1	lumber of t	raverse points used	24

Point #	Fraction of stack diameter	Dist. From inside wall	Port Length	Dist, From edge of por
1	6.021	.30	8.5	G. 8
2	0 047	2.0	85	10 5
3	0.118	3.54	1.5	12 0
4	UTT	5.31	8.5	13.8
5	0.250	7-50	8.5	6.0
Ç	0-356	10.62	3.5	19.2
7	0 6 19	19.32	8.5	27.8
8	0.750	27 5	8.5	71.0
Dy.	9.823	20.69	8-5	33.2
1.0	J. \$\$2	2.6.96	8.5	31-96
11	0-933	27.99	8.5	36.5
12	0-979	28.7	8.5	37.2
	onia bel 30 in 61 ear. ea le			

Note: When using 4 points in a circular duct, the probe is marked with only the points for the first half of the full diameter traverse.

Sarce Emission Testing Firm SAT No. 2019-115 SAT No. 2021-93

Det File such

EPA METHOD 1 & 2

GAS VELOCITY and CYCLONIC FLOW CHECK

Facility	BENEVET CORP-AWAR CU	MTRAG MINING PEDJ	FUT	Assume Values
Town/Province	TOGON, BEY GUET			
Source	DUST COLLECTION PACIN	LITY SULLEM		%BWS = 7 0
Personnel	PLN, AUG, MPC, AMC	Bar. Pressure	a, inHg 2.7 18	MD = 30.
Date / Time	04/28/24, 1306	Pitot Coeffici	ent 0 89	TM = 35.1
Pitol Tube I	Leak Check, mmH2O	230/86		
Static Press	sure, mmH2O	- 3.0		
Measured a	at which traverse point	A.0		
Traverse Point Velocity Pressure (mmH ₂ O)		Temperature (°C)	Angle Which Y (Degree	
A - 12	15.0	26		9
11	15-0	26	11	
0	16.0	26	17	
G	16 3	27	16	3
8	150	27	14	
Ŷ	(5.0	22	11	
6	15.0	260	12	
5	14.0	26	11	
1	14.5	26	/ •	
3	15.0	26	10	
1	5.0	25	9.	
1	18.0	25	/1	
13-12	18.5	2G	12	
11	19.0	26	10	
0	< . 0	24	12	
9	(5.0	18	12	-
\$	150	28	1 *	
	19.0	29	17	
G	14.5	24	13	
5	19.7	24	12	
9	14.2	30	11	
3	15.2	30	17	
2	15.2	32	12	
Average:	15.2	34	12	-
Ave 1:	15.0917	27.3	11.9	

a/23/29

Team Leader / Date: Martel CPALIDAS N.

DENR ACCREDITED Source Emasion Testing Firms SAT No. 2019-115 SAT No. 2021-93

6/28/24 QAQOTDATE: AN GED T. GUBLARPA Electric de la state de la ser-

METHOD 3

FYRITE ANALYSIS FIELD DATA

Facility	BENGUET CORP-ALUMAN CONTRACT MINING P	Euel Type	Electricity
Town/Province	ITUGON, BENCUET	Fyrite ID	QBE-TUI
	DUST LOLUE CTION FACILITY SYTTEM	Analysis Location	OH-SITE

Run No I	Bag ID:	Opera	tor (name & sign):	DLY
Q Run Date	Date of Analysis	% CO2	% O2	% N2
Run Time	Time of Analysis	Reading (A)	Reading (B)	100-(A+B)
Start (323	Start 1470	0	20.0	
		0	10.0	
Stop (937	Stop 143	0	220	
Leak check 🗸				
Leak check	Average	0	20.0	80,0

Run N	o. <u>2</u> Ba	ag ID:	-	Opera	tor (name & sign):	Ma /
	Run Date		of Analysis	% CO2	% O2	% N2
	Run Time	Time	of Analysis	Reading (A)	Reading (B)	100-(A+B)
Start	1159	Start	617	D	20-0	
				0	20 2	
Stop	1015	Slop	1620	0	20.0	
l oak c	heck					
LOARC	INECK [*]		Average	6	700	80.0

Run No. 3 B	ag ID;	5	Opera	tor (name & sign):	124
Run Date		of Analysis	% CO2	% O2	% N2
Run Time		of Analysis	Reading (A)	Reading (B)	100-(A+B)
Start 1670	Start	17-99	0	2010	
			0	200	
Stop (793	Stop	1717	0	20.0	
Leak check					
		Average	0	20.0	80.0

d. Team Leader / Date : DANIM LADDATIVAR M? Die/28/24 OPENR AGGRED TECTING FIRM Source Emission Tecting Firm SAT No. 2010 116 SAT No. 2021-93

6/28/24 . anac Bate: ANGELO V. GUD ARRA $SSTT^{(1)}(\mathrm{dist})(p) = 0$ we use the $p = 1, \dots, p$:

.

.

METHOD 4

MOISTURE ANALYSIS DATA SHEET

Town/Province	Benguet Corp-Acupan Itogon, Benguet	contract mining th	Recovery Location	5
Source		Eld Brits d	Personnel	On-site
,	Dust Collection Faci	ing system	Fersonnei	AVG. DLN, MRCIAMC
Run Number	1	1 0 .	3	MINOTAML
Fest Date	alial 1	a laplast		
Recovery Date	62824	6 28 21	6 28 24 .	
Recovered By	6/28/24	. 6/28 24 AVG	6 28 24	
	DJ H20	AVG	AVG	
Pine Weight, g	the second state of the se	632.5	C 110 F	
Initial Weight, g	636 · O 629 · O	625.5	642-5	
Net Weight, g			632.5	
	0 ·7·0	9.0	10.0	
mpinger 2 100m L ·	and the second sec	1.1		
Final Weight, g	634-0	630.0	637.5	
Initial Weight, g	632.0 .	627.0	635-5	
Net Weight, g		. 3.0	2-0	
mpinger 3 Empty	Comment of the second se			
Final Weight, g	509.5	. 389.5	.511.5	
Initial Weight, g	0.00	588-D	. 509 5	
Net Weight, g	1.0	1-5	2-0 .	
mpinger 4 2000 - ;	200g silica Gel			
Final Weight, g	776.0	795-0	781-0	
Initial Weight, g	771.5	790.5	2-344	
Net Weight, g	• 4-5	4-5	5.5	
mpinger 5				
Final Weight, g				
Initial Weight, g				
Net Weight, g				
mpinger 6				
Final Weight, g				
Initial Weight, g*				
Net Weight, g	•			
mpinger 7				
Final Weight, g				
Initial Weight, g				
Net Weight, g				
otal Catch, g	14-5	6-0	19.5	
ilica Gel Spent, %	51.	5%	5%	
ilter ID #	03245159	12235247	03245145	
ilter Wt.	0.2527	0 2456	0.2533	
eam Leader / Date:	the de	1 28/24	DC / Date: ANGE	V. GUENKRA

ISOKINETIC FIELD DATA SHEET

	F	ROJEUT			
Facility Name	BENGUET COKP - ACUPAN CONTRACT MINING	Run Number	1		
Town/Province	ITOGAN-RENGUET	Type of APCD Installed	Petreciano		
Source	DUST COLLECTION FAULTY SYSTEM	TION FALLITY SYSTEM Test Date			
Test Personnel	PUT, AUG, MIZE, AMIC	Operator Signature	- Second		

	the second s	Pressure	1 12	155070							NORTH FLADE	Probe
131.95159	0-2527	(In Hg)		mHg)	ID #	Ga/mna	Data H@	ID#	Diameter	iD #	Cp	Material
		27.18	-	3.0	GMC-01	1.0102	17.66	GATT	-01 9.98	612-09	0.81	32
		a Bal			Sample	Train Leak Chad	2	Fyrites				
				Initial		in biecirn				Time	%CO2	%O,
K Factor	6.987	Vacuum inHg	11	5.0		1	1	/	2.5	1312	0	120.0
Pilot Loak C	Contraction of the second s	Look Rain, m ³ /m	A	O	/	/		/	0	-		-
230/26	Pre-lest	Start Volume	421	. 1110	///	/			122.2012	Fyrite System L	esk Check	OK
230/001	Post-test	Stop Volume				/			12 9.052	provide a state agoing the photo-children and state and sta	1	-

Port &	Clock	me Test	DGM Reading	Pitol	Della H	Della N	Gauge		Te	mperature "C		_
Point	(24-hr)	(mins)	(cu. Meter)	Reading (mmHgO)	cala. (QeHmm)	Actual (mmHGO)	(In Hg)	Stack	DGM	Probe	Filler	Exit
1.15	1323	0	421. 9132	15.0	14.8	14.3	2.0	32	32	121	115	16
11	1276	3	121-9602	15.0	14 8	19.8	2.0	32	72-	120	118	1/=
12	1379	6	121. 1900	15.0	19.2	19-8	2.0	32	32	120	118	13
4	1332	9	121. 5250	17.0	17.3	19.8	2.0	33	37	120	119	11
8	1375	12	421 5600	15.0	19.3	10 %	2.0	33	33	120	120	11
2	338	15	121 5922	5-0	14. 8	19.8	2.0	32	34	1100	121	111
6	1392	18	121.6292	17.0	19.8	14-8.	20	33	31	120	123	9
9	1394	171	121. 6689	19.0	13 6	19.3	2.0	33	34	0 1200	108	9
2	1210	29	121 7032	10.0	13.8	1. 7. 1	20	33	7 72	120	120	10
2	1350	27	421. 2000	12.9	11.8	11.9	2.0	35	35	120	12-0	17
- 1	353	30	121 7698	12.0	11.7	(1, &	2.0	35	35	120	118	12
-17	1000	- 32	121 12 200	12.0	11.3	11.2	2:0	35	36	120	120	1/3
11-	1404	da	10. 5104	12	1.3	11.2	2.0	37	36	121	121	18
11	1	21	11 8910	16.0	1.57	11.8	2.0	37	36	120	120	1/6
	1904	12	and the second se	11.0	10.9	11.0	2.0	37	36	119	121	14
8	19/3	al	La i da la	11.0	10.9	11	20	37	32	120	(20	13
1	416	41	16 1998	11.0	10.9	1	7	3.9	36	120	121	13
1	1419	된	121.9904	11.0	0 9	11	2.0	37	36	120	122	N.
T	1422	51	122. 05.84	11.0	104	1	1.0	37	36	120	1200	16
3	1925	60	922. 0929		10.9	10	2.3	36	13	120	118	14
1	19295	63	22 1202	10.0	99	10		76	20	121	122	18
1	1431	56	12 1022	10.0	99	10	2.0	36	27	120		12
I	1939	65	922. 12GA	10.0	9.9	10	20			120	122	13
0	112	The	427. 2060					36	75	1 -0	102	1
	1111		Life F									-
												-

Run RMS Delta H Total Volume High Vac. To Ave. THE AVE. lookinese % Time Delta P AVE 9 2 10 54 72 3.5193 ð 0.7978 39.60 359 93.7 12.34 24/28/24 Team Leader / Date: DENIET LE HAND M QAQE Date: ANGEO V-GUBJARRA 06/28,24 D DHR AG DREDTTED Starts E statum test DRT No. 2010 116 SAT No. 2021-02

ISOKINETIC FIELD DATA SHEET METHOD(S) 5

Facility Name	BENGI	AT COLP	ACUPA	J CONTRA	Julian tra	PHOSE	Run Num	ber	1	2	
Town/Province		ON, BAN					Type of APCD Installed a DE COUR				
Source				PRILITY J	NOT-T		Test Date (xe/38)				
Test Personnel		AND MP					Operator	Signature		1200	
Fitter ID Tare(s)	Berometric	Static I									
1010101	Prossure	Pipicsure		Meterbox		N	bizde	Pitot T	uberProbe	Probe	
12624 0.190	(In Ho)	(menHe)	ID #	Gamma	Delta H@	ND8	Diameter	ND M	Co	Metorial	

		27.20	- 3.0	GAC OF	0102	17.40	GN7-	02 9-93	GP-04	0.89	55
_				Sample To	win Leak Chuck	46				Fyntea	
			linitial		Indonin	11		Final	Time	%CO2	%O2
K Factor	1.035	Vacuum, inHg	15.0	1	-	/	1	20	1110	0	20.0
Pilot Loak (Chacks	Loak Rate, m ³ /m	0	/	/		/	0		~	-
220/8/10		Start Volume	122.216	A /	1/	/		722 9856	Fyrite System L	oak Check	On
128/90	Post-lest	Stop Volume	122 2160	1	1	1/		122.9856		1	-

Port &	Clock	Test	DGM Roading	Pitot	Dolta H	Delta H	Gauge		Te	emperature *C		
Point	(24-hr)	(mins)	(cu. Meter)	Reading (mmHyO)	cala. (nvnH ₂ O)	Actual (mmHzÖ)	(In Hg)	Stack	DGM	Probe	Filtor	Exil
9-12	1959	0	1227182	1.2.0	12 9	12.4	2.0	36	36	122	127	15
11	1502	1	122-2530	20	12.4	12.4	2.0	36	36	120	122	19
10	15.5	Ę	922 12 93	11.6	20	12.0	2.0	36	36	119	122	15
9	508	9	422. 3224	11.6	12.0	12.0	20	3,6	36	120	123	14
2	(511	12	122 3522	11.4	120	12 3	2.0	76	36	120	119	15
7	1514	15	122 7839	11.0	(2-2)	12.3	2.0	20	36	120	120	119
6	1517	1B	122 ABO	1-0	11.4	11.4	17.0	34	38	120	122	19
5	1520	61	922. 9564	11.0	11.9	11.4	20	38	38	122	113	14
2	1523	24	922. 4896	(1-0	1.1	11.4	2-0	36	38	120	120	15
2	1526	77	922.5292	11.0	11 4	1.4	2.0	38	28	118	120	14
6	1529		412.5518	2-0	12 4	17.9	2.0	38	38	120	120	14
1	232	393	122. 4896	12.0	2.9	17.1	210	78	38	120	120	13
13-12	525	and the second se	422 6060	12.0	13.9	12.1	2.0	38	38	120	120	12
11	1592	39	922.6317	12.0	12.1	12.4	2.0	38	38	118	120	13
10	1512	12	177.6689	12.0	12-9	12.9	20	3.8	TO	120	120	19
8	1512	45	12: 200	10.0	10.7	10.4	2-0	70	40	120	118	19
7	524	51	4n.7689	10.0	1	10.4	1.0	AD I	50	120	122	16
6	1337	20	422. 9986	10	103	10.0	L	10	10	120	0	10
C	1600	C1	12. 3290	11.0	11 1	1. 11	2.0	10	the second se	123	118	14
1	1603	60	122. 1581	10	11.4	11.4	2.0	41	38 38	120	16	13
1	606	63	12. 8 76	11.0	1:3	1.1	2.0	1	38		11 -	12
5	1609	66	pz. 902	11.0	11:1	Ti d	2-0	\$1		120	170	18
1	slin	69	127.9500	11.0	1. 1	11. 1	1.2	41	38	120	120	
0	1615	72	422,6959	4	1. 1	11. 1	1.0	7.1	27	100	100	13
-	1-1-1	1										

Run RMS Dolta H Total Volume High Vac. Ta Aye. Tim Avia. Isohinetic % Time Delta P Ave 11.63 0.7672 3.3988 2-0 72 352 37.9 95.2 ζ > 6/28/24 QAQC Date: ANGELO Team Leader / Date: MANIEL L. WASHING St. V-GUEVARPA 06/28/24 Dense ACCREATER Source Exhibition Testing from EAT No. 3550-115 547 No. 3550-115 A

ISOKINETIC FIELD DATA SHEET

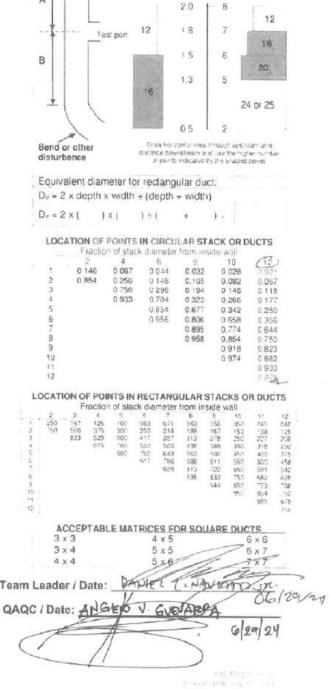
Facility Name	PENGUET CUPP AWPAN CUNTRAGE LINNING PAL	Run Number	2
Town/Province	MUGUL, BENGUET	Type of APCD Installed	S S 1 2 12 12 12 12 12 12 12 12 12 12 12 12
Source	DUST COLLE CTION PACILITY SYSTEM	Test Date	06/28/34
Test Personnel	Dur, AND MIRC. ANC	Operator Signature	C C C

Filter 10	Tarq(s)	Barometric	State		Meterbox		N	ande	Pitot Tube/7	noba 2	-
3293195	2951915 (2533 (In Ha)		Pressure (mmHg)	10.#	Gamma	Delta High	100	Diameter	10.#	Cp	Probe Materia
,		22.21	-3.0	CMIC-UI	1.0102	47.66	GATLO	89.98	617-04	021	37
				Sample	Sample Train Leak Checks			-	Fyntax		
			Initial		lasteri	196		Firsal	Timo	KGD-	5.0,
KEactor	-027	Vacuum, inHg	1 15.0	F	1	1	/	2.0	1617	0	20.
Pitot Leak C	Herchis	Loak Rate, m ⁴ /m	0	/	/		/	20	1. 17	-	-
130/00	Pra-best	Start Volume	122.98	23	1	/	1	17 -200	Fynte System L	alik Charth	06
01-17	Post-lest	Stop Volume	972.420	10/	1	1	1	the second s	Eag 1D		1

Hort &	Clock	Test	DGM Reading	Filtot	Delta H	Cielta H	Giluge		7	2" orutanoquita	115	17.
Foint	(24-1#)	(mins)	(cu Meter)	Roading (mmH2D)	Optimity)	Actual (mmH=O)	Vacuum (în Ho)	Stack	DGM	Prube	FEIO	Exit
4-12	1430	0	472-490 8	4.0	11.3	11.1	2.0	29	35	121	123	16
11	6 73	3	-123 039 2	11.0	1.3	11.9	2.0	39	35	120	120	14
10	636	6	1730602	11.0	1.3	1).4	2.3	39	75	120	120	14
G	1634	7	mi Oby 2	11.0	11.3	11.4	3.0	74	35	120	118	174
8	1192	12	123.1170	13.0	13 3	17-9	2.0	39	35	120	120	110
7	1615	19	173 550	13.0	13 3	13 9	2.0	79	36	120	118	14
6	164%	121	423 1881	13.0	173	17.4	2.0	39	34	1.22	120	1/2
- 1	1051		123.2204	17.0	13.3	12.9	2.0	29	30	120	120	1/3
	651	24	923 2590	12.0	12.3	17.9	2:0		35	120	120	1/3
	657	27_	923 2910	120	12 3	12.1	20	TU	35	120	120	1-
2	1700	30	123.3240	12 0	12 3	12.9	2.0	90	35	123	120	1/4
1	703	33	123-3560	12.0	123	12.4	2.0	1 90	35	120	113	111
13 17	130507	34	123 388 1	1.0	12.3	12.4	2.0	10	76	120	120	15
11	1310	19	923 4214	14.0	[94]	11.4	2.2	to	36	121	171	15
142	1713	1.	123. 1570	19.0	19.1	14.4	2.0	(TV	36	120	118	1/2
8	17:16	15	123 410	14.0	(4.1	14.4	2-0	(TD	36	120	120	14
3	1719	14	923. 5292	12.0	17.3	12.9	2.0	9D	36	120	120	19
r.	1722	21	923 5692	12-0	12.3	12. 4	2-0	91	37	120	130	11
5	17-29	57	123 6034	12.0	12 3	17.4	2.0	71	77-	120	113	14
-7	1971	6	123 6306	13-0	13 3	13.9	20	TI	37	120	120	19
3	1 1	()	15 1 6661	13.0	33	GY	2.0	71	37	120	120	11
7	1734	- 4-3-	923.7002	13.0	133	13.1	2.0	1	32	120	120	13
	1737	66	723 7362	13.0	13-3	13-1	20	12	38	120	120	13
6	1 1	64	923 7640	13.0	13-2	18.9	2.0	27	38	120	120	10
0	1313	44	923 7992						_			

R.m RMS Cielta F Total Volume 15 Ave High Vac. Ten Ave. Isokinetic %. Time Delta P Avu. 3.5273 2.9 2.0 72 8089 10-0 m. 36 96.5 0 6/28/24 12 D PARET Date: ANGER Team Leader / Date: Tavita toger (Cano dr. V- GUEVARILA 0 C6/18/21 BENR ACCREDITED Texana 2 research Texang 1 Fer EXT Viel 2010 115 5.51 Viel 2010 1

METHOD 1


TRAVERSE POINT LOCATIONS

Facility Na	me	Bino	NET CARE AC	MAN CO	STRACT MININ	A PROPERTY 1
Town/Prov	a set of the set of th	IN	GON BENGU	ET		
Source Te	ested	ACDI	WINE CHA	BETZ NH	MBEIZZWA	DETAILS 1
Personnel		DW	ANS, MIEC, 1	Apr Date	104/24/21	SURUBIAN # 2
				1	10 1 0 1 101	A
Type of St	tack		Circular	V Re	ctangle	1 L
Ports		No. 0	f ports availabl	6	2	Tost po
		No. o	f ports used		2	
		Port	nside dia., cm		7.5	в
(States)	0.02				1 6	,
Dimension	15		I to end of port	, cm (a)	67	
			ngth, cm (b)	1.13	12	- + .
Draw a diagr			Dia. or depth, c	and the second se	57	
the test local the back of	the	Description of the local division of the loc	vidth (if rectang	and the second	-	
sheet		president distantion of the	ent Stack Dian	neter, cm	0 200	Bend or other
		Area of	stack, m²		0295	disturbance
Distance	e to flo	w disturt	ance N	/leters	Diameters	
		Contraction of the first of the second of		2 30	4-9115	Equivalent diamete
		Downstr		.15	2020	De = 2 x depth x wi
						$D_e = 2 \times () \times ($
Minimum	# of tra	averse po	pints required:			a management and
			Particulate		29	LOCATION OF POI
# of porte	un ad	1 -	and the second se	/ traverse	29	Fraction of
# of ports	usea	Number	r of traverse po	oints/port	12	1 0146 01
		Muniper	or traverse pu	uns usep	29	2 0.854 0: 0 0
	Frac	tion of				1 4 0!
Point #		ack	Dist. From	Port	Dist. From	5
		meter	inside wall	Longth	edge of port	7
1		021	1.30	10	11.3	в
2	0 6	167	3.81	10		9
2	0.1				13.8	11
17 F	and the second second		6.73	10	16.7	12
		177	10:09	10	20.1	LOCATION OF POINTS
5		250	(4.25	10	24.3	Fraction of
6	0.	356	2079	10	30.3	1 250 167 125 1
7		694	36 - 21	10	40.7	2 150 500 375 3 3 533 525 50 4 875 1
-	and the second	750	42.75	10		875 n 5 9
2	0.9	and the second s	1. 1	1	52.8	6
4		and the second	16.91	10	56 9	h
10	0.1	39,7	50-27	10	60.3	9 10
11	0.0	533	53.20	18	632	12
12		979	55.7	10	65.7	
10	Y	17-1	1.1		6 7.7	ACCEPTABLE I 3 × 3
						3×3
- for stocks top-live	dia bei 3	10 to 61 cm. cm.1	Towns white all all to us	his 1 from of the sta	ork wells	4 x 4
- For stacks having	dia. groet	er than 63cm, n	provene points alvall te wit o traverae point shell te w	thin 2.5cm of the st	lock walk	
Note Whe	en usin	g 4 points	In a circular duc	t, the probe	s marked with	Team Leader / Date:
only	the poi	ints for the	first half of the f	ull diameter	traverse.	
						QAQC / Date: ANGE

DENR ACCREDITED Source Emission Testing Film SAT No. 2019-115 SAT No. 2021-93

If B>6 and A>2 and I duct diameter is less than 61 cm then use 8 or 9 points CARPTERS

B PAPPICULATES

VELOCITY A

EPA METHOD 1 & 2

GAS VELOCITY and CYCLONIC FLOW CHECK

Facility	BENGUETLORF-ANDAN (UNTRACE MINING PRODE	X Assume Values
Town/Province	ETUGUN, MENGUET		J. J
Source	ACIDIFYING CHAMBERH-	WALL PUTE SURVISION	\$1-2 %BWS = ++
Personnel	DW, ANG, MEC, AMC, P		Hg -2.18 MD =30.
Date / Time	06/29/24, 092		0.81 TM = 39
Pitot Tube	Leak Check, mmH2O	290/08	
Static Pres	sure, mmH2O	. 7.0	
Measured	at which traverse point	A · 6	
Traverse Poir	t Velocity Pressure (mmH ₂ O)	Temperature (°C)	Angle Which Yields Null (Degrees)
A - 12	4-0	22	(Degrees)
11	4.0	22	1-2
0	2.0	23	/2
4	3.6	ez 12	13
λ	3.6	23	14
7	3.6	22	10
5	4.0	21	12
5	6.0	21	12
1	6.0	21	14
3	6.7	22	12
2	6.~	22	13
1	6.2	Z 3	
3-12	38	23	In
11	3.8	23	12-
10	3.8	29	10
C ₁	7.8	29	G
8	d-0	24	G
2	0.6	20	1
6	d- b	20	12 In
5	4/16	20	12
4	4.6	51	11
2	5.0	21	14
2	5.0	21	(4 3
1	5.2	21	13
Average:	4.5733	21.9	12.0
Ave. V:	2.1190		F. 6/29

DENR ACCREDITED

DENR ACCREDITED Source Emission Testing Firm SAT No. 2019-115 SAT No. 2021-93

QAQC PDATE: ANGLE O V. BUEVAKPA

METHOD 3

FYRITE ANALYSIS FIELD DATA

DUETCORP AW SAME CUNTRACT MIMINE PROSED	ri boi i ypo	FERENSINE
WW. BEVGUET	Fyrite ID	GBC - TO1
	Analysis Location	OY-SITT-
)	win, BENGUET	

Run Date		Date of Analysis		% CO2	% O2	% N2	
R	un Time	Time of	f Analysis	Reading (A)	Reading (B)	100-(A+B)	
Start	1050	Start	228	0	19.0	2	
				0	19.3		
Stop	1205	Stop	1231	Ö	14.0		
lesk ch	nock [7]						
Leak check 🗸 Average		0	19 0	G. 1.0			

Run Date		of Analysis	% CO2	% O2	% N2
Run Time		of Analysis	Reading (A)	Reading (B)	100-(A+B)
Start 1292	Start	1702	e	19.0	
			Q	190	
Stop 1358	Stop	1405	0	190	
Leak check 🔽					
Leak theck		Average	0	19.0	81.0

Run Date		te of Analysis	% CO2	% O2	%-N2
Run Time	Tin	ne of Analysis	Reading (A)	Reading (B)	100-(A+B)
Start /-11	Start	1520	0	19.0	
			0	19.0	
Stop 1575	Stop	(524	6	19.0	
Leak check √					
FOR CLOCK [V]	Average		0	19.0	81.0

Team Leader / Date : Day The T- BUTY Longes Jm. 06/29/24 DEMR ACCREDITED Source Emission Testing Firm SAT No. 2019-115 SAT No. 2021-95

6 29/24 Zant PAQC (Date: ANGELO V. GUERRA

GREEN

METHOD 4

MOISTURE ANALYSIS DATA SHEET

Town/Province	manavea corport	on Contract Mining	Sample Method	6
	ITOGON, DERDOCT	an pro-anneos	Recovery Location	on-site
Source	Acidipying Chamber	(2) w/ Acid	Personnel	AVG, DLN, MP
	Funke schubbor	(c) /		AMC, RMC
Run Number	Moistue Run	1	2	3
Fest Date	6 29 24	6 29 24	6 29 24	6/20/24
Recovery Date	6/29/24	6/29/24	4/20/24	6/29/24
Recovered By	Ava	AVG	AVG	AVG
mpinger 1 100ml		8. J. m. C. J.		
Final Weight, g		622-0	640.5	623.0
Initial Weight, g	636.5	611.0	629.0	611.5
Net Weight, g	3.0	11.0	11.5	11.5
mpinger 2 100mL	31. 1202		1.1	
Final Weight, g	642-0	641-0	644.0	641-5
Initial Weight, g		638.0	639.5	636.0
Net Weight, g	5.5	G.E	4.5	5.5
mpinger 3 Emphy			1.	0.0
Final Weight, g	530.5	588.5	334.5	593.5
Initial Weight, g		587.5	533.5	590.5
Net Weight, g	2.0	1.0	1.0	3.0
mpinger 4 200a -		1.0		5.6
Final Weight, g	776.5	831-0	781-0	631 E
Initial Weight, g	771.0	825-5	774-0	836.5
Net Weight, g	5.5	5.5	5.0	\$3b. 5
mpinger 5	v	0.5	0.0	6.0
Final Weight, g				
Initial Weight, g				
Net Weight, g				
npinger 6				
Final Weight, g				
Initial Weight, g				
Net Weight, g				
mpinger 7				
Final Weight, g	-			
Initial Weight, g				
Net Weight, g				
a contract of the second se		1		
otal Catch, g	14.0	20.5	21-0	26.0
illica Gel Spent, %	io %.	10.1	10.1.	10.1.
ilter ID #	-	0424579	0424678	0424561
		2 0-2482	0-2470 A	0.2495
ilter Wt.		1 0.2102	0.1410	

Facility Name	RENGUET BORP-AUOPON CONTRACT MINING PROJE	Run Number	MULTURE FUTS
Town/Province	ITUGON BEYBUET	Type of APCD Installed	ALID FUME SCAUBBER
Source	ACIDIPYING CHAMBER AZ WAUDENNE SURVER		06/29/29
Test Personnel	DLN. AVG MKC, AMC, RMC	Operator Signature	ay circi

Filter ID	Tare(s)	Barometric Pressure	Static Pressure		Meterbox			Nazzla	Pitot Tube/Prote		Probe
-	-	- (In Hg)		1D#	Garnina	Deita Hige	ID:#	Diameter	1D#	Cp	Material
		27.19	- 2.0	GML OF	1.0102	17.66	~	-	GD DY	0 29	12
				Sample	Sample Train Leak Chocks			FyrZęs			1 4 5
			Initial		linteri	m	1	Final	Time	%CO)	16O2
K Factor	~	Vecuum, inHg	150		Y	1	/	17.0	0948	0	19.0
Pitet Leak (Loak Rate, m ³ /m	0		/ /	/ /		127	same	-	
2/84	Pre-test	Start Volume	123 200	6	1/	/	2	129.6202	Fyrite System Las	ek Check	Ok
20/10		Stop Volume	123.80	2/	1			129.6207			

Pon &	Clock	Test	DGM Reading	Pitot Reading	Delta H	Dalta H	Gauge		Τe	mperatura 10		
Point	(24-12)	(murch)	(cu Meter)	(main:20)	calc. (mmit_C)	Actual (mmHyOf)	(In Hg)	Stack	DGM	Probe	Filter	imp Exit
4-(-	0994	0	127. 8070	5.0		\$8	2.0	20	30	122	12+	116
A-6	OTA	3	123 8712	50	-	18	2.0	20	30	120	120	19
14-6	0950	6	122 902	5.0	-	98	2.0	20	30	120	118	19
A-To	0953	-1	124 0090	5.0		98	2.0	20	35	120	120	13
1-6	096	12	124 0562	5.0	-	48	2.0	22	35	120	120	13
		15	474 428	5.0	-	18	200	22	2.5	120	118	12
A-6	Concernance of the second	13	929 2396	5.0	*	18	2.0	22	35	120	120	12
4-6-	1005	71	929 n356	50	-	98	2 -0	22	35	120	118	13
A.6	1006	11	121 3960	5.0	-	SIR	20	70	24	122	122	13
A-6	1011	2.7	429.9180	50	-	98	2-0	20	34	1200	118	12
A.C.	1017	30	1129 5000	5.0	-	13	2 0	20	3.4	120	120	12
A-G	1217	32	424.5622	5.0		93	20	2-0	254	120	120	13
A.P	1020	34	929.6200									
		_										-
						1						
_												
					1	1						
												1
						1						

Run RMS Deita H Total Volume Типо High Vac Ts Ava Tm Ave. leovinetic % Deita P AVE. 26 0.8180 98 2361 2.0 20.7 32 <1 QAQCTORIE: ANGELO V. GUDIARA 6/29/24 Team Leader / Date: DAPIER 1. NAN DAG m. 26/2a/24

ISOKINETIC FIELD DATA SHEET

Facilit	y Name	BOYGUE	T CORP P	entral 1	WTRATI I	MINING PR	Ru	Nu	mber			1
Town/	Province	170604	, BENG	UFT			Run Number Type of APCD Installed				Aus	PUTE SCA
Source	e				2 W/ACIPA							19/21
Test F	Personne			Ame .					or Signa	lure	1	
											1-	/
Filter ID	Tara(6)	Barometric Pressure	Static		Meterbox			Noz	254	Pitot Tube	Proby	/
HZASZA	0.2482	(In Hg)	(mmHg)	iD #	Geenma	Della H@	IDA	1	Diameter	1D ø	00	Probe Materiai
SILL STREET		17-18	-2.0	6196-01	1.0102	97-65	GNT	-03	6-09	612.01	0.89	55
				Sample	Train Leak Check	5					Fyritas	
			Initial		linte rin	ĺ.	-		Final	Time	%CO2	%D2
K Factor	3.706	Vacuum, InHg	15.0		a	1		1	10	10011	0	19.0
Pitcl Leak	Checks	Leak Rate, m³/m	0	1			/		-	****	-	-
20/80	Pre-lesi	Start Volume	929 62	24 /	/		/	125	. 5226	Fyrite System	Leak Check	OL
78/80	Post-test	Stop Volume	\$25.62	20/	/	/		no	5 5716		BLACH	7-5-193/2

Port&	Clock		DGM Reading	Pilot	Delta H	Delta H	Gauge		Ter	nperature *G		
Point	(24-hr)	Test (mins)	(cu. Meter)	Reading (mmHeO)	calc. (mmHrO)	Actual (mmH ₂ O)	(In Hp)	Stack	DGM	Probe	Filter	imp. Exit
442	1050	0	129-62.94	3. 1	12.6	12.6	2.0	20	3 10	123	1/2	1/8
11	10531	3	129 Clo12	. 7.4	12.6	24	20	20	30	123	122	118
10	1056	ç	424. 4022	2.1	12.4	12.6	2.0	20	20	122	122	117
9	1259	7	129. 7302	3.9	12 4	12-6	2.3	2-2	32	120	120	175
8	1102	12	979 7550	21	12.6	12.6	2.0	25	32	172	120	76
7	1/05	15	929 3076	5.2	19:3	19.9	2.0	22	34	120	118	16
6	1103	18	121 8352	5-2	193	19.4	2.0	23	35	120	120	13
5	111	21	124,8804	58	215	21.6	2.0	23	34	120	118	13
4	1114	24	129 9120	5.8	21.5	216	9.0	23	37	120	120	13
3	117	67	129 9610	5.8	21.5	21-6	5.0	23	31	120	118	12
7	(120	30	125 0000	51	21 5	21.6	2.0	25	36	120	120	12
	1123	33	425.0420	5.8	215	21.6	200	25	34	118	119	1/5
-12	12the	36	125.0300	4.4	16.3	16.9	20	25	36	120	127	15
11	132	39	125 1214	< 1	161	64	2-0	27	38	120	121	11
10	1135	The	125. 622	1.4	16.3	16.4	2.0	23	38	120	11.8	14
3	1138	17	in was	9.9	16.3	164	2-0	30	38	120	121	15
7	141	48	925. 7169	4.1	16.5	16.4	2.2	70	38	120	120	14
-+	1104	51	1-1-14/4	4.5	15.6	15.6	2.0	32	32	120	118	14
8	1197	1.	925.3092	4'2	15 6	15:2	5.0	32	38	120	120	17
4	1150	57	115. 3796	412	1 1 10	15.19	20	32	38	120	118	15
4	151	63	127 1101	90	15.6	15 6	20	34	38	120	120	15
3	1156	66	925 9592	10	100	14'8	2.0	5	38	122	118	15
ĩ	INL	69	925 4370	1.0	19.8	1 0	2 0	20	38	120	100	K
0	INE	72	129 5234	1 -	11-3	193	2.0	39	58	120	118	13
v	+ 44.7	4.5	1-1 7674									-

Run PONES Dolta H Total Volume High Vac. Te Ave. Tm Ava. Isokonetio % Time Dolla P Ave 0.8986 2-1093 72 16.6 2.0 25.4 95 21 6/29/24 1 QAQCHDATE: ANGEN V GUEVARPA 1- NATURAD In. Team Leader / Date: PANTEL DE/20/21 DENIE ACCREDITED S-ARCH Economics 1 and BAT No. 2019 1 No. BAT No. 2019 1 No.

ISOKINETIC FIELD DATA SHEET

Facility Name	BENGULTING AWPEN WHERACT MINING BAD	Run Number	2
Town/Province	BENGUTTLIND AWPEN WHTPACT MINING POOD STUDION BENGUET	Type of APCD Installed	ALIDPUNESCENSI
Source	ANDUFVING ONAMISER # 2 WACHD FUME SCAN	Test Date	der 29/28
Test Personnel	DW, ANG, MRC. AM, PRAYS	Operator Signature	aspart

Filter ID	Tare(s)	Barometria Prosaure	Statut		Motorbox		1	Nozzle	Fillot Tube	Probe	F	
CA LA SAR	0 2000	(In Hg) (minHg)		ID# Gamton		Detta H@	ID#	Dumoter	DO C	Cp	Probe Material	
		2719	-20	GMC-01	1.0102	17-66	GNTT	01 6 09	GP. ON	1 0.84	11	
				Sample	Train Look Che	des				Fyritos		
			Initial		inte	rim		Final	Timo	96000	501	
K Factor	3.600	Vacuum, inHg	5.0		A	/	/	2.0	1228	0	19.0	
Pirct Leak (Checks	Loak Rate, m370	0	/		/	/	0		*	-	
1.30/41	Pro-test	Start Volume	625 51	72/	17	7		126. 930	Fyrite System	Leak Check	OL	
20192	Post-test	Stop Volume	425 57	72/	1			R.G. 9865	Bag ID	BLACH	25-11/191	

Port 8	Ta Clock		DGM Reading	Pilot	Delta H	Delta H	Gauge		Ter	mperature *C		-
Point	(24-hr)	Test (mins)	(cu. Meter)	Reading (mmH ₂ O)	cale. (mmi/teO)	Actual (mmHeO)	(In Hg)	Stack	DGM	Probe	Filter	Exit
4-17	1292	0	425 5288	40	19-9	14-4	2.0	32	38	122	122	10
11	11.15	3	925.5689	90	14.4	11:7	2-3	38	38	120	123	18
10	1290	6	125.6012	d'U	19.4	19-4	2-0	38	38	120	118	16
9	1251	9	425.6372	418	17-3	17 4	2.0	38	38	120	122	14
8	1254	12	15 6722	8.9	17.3	17 1	2-2	35	38	115	122	14
7	297	15	129.7196	4.8	17-3	17.9	20	38	38	120	120	175
Ç.	1300	13	725.7522	× 12	(7.3	17.4	2.0	28	28	12.	120	15
5	1303	21	125.7984	52	18.7	13 3	2.0	38	38	120	121	15
21	1306	27	725 8339	5.7	14 7	18.8	2-0	38	39	120	122	19
3	1309	27	Mr. 8270	5.2	18.7	18. 8	20	3-7	39	120	120	14
2	1312	30	15 9100	2.0	25.2	25-2	2.0	29	39	120	120	15
1	1315	33	725.9690	7'0	29.2	25.2	20	39	39	120	120	15
2-12	12/222	36	126.0156	5.0	17.9	150	2.0	N	39	108	115	16
11	1325	301	416.0964	50	17 7	120	20	po	39	115	118	14
10	328	42	426 1302	5.0	12.5	180	2.0	40	34	120	120	14
9	1331	15	16 352	5.0	1914	19 0	2.0	N	39	120	118	13
3	1334	93	174 1738	9-8	123	12.1	2.0	41	32	120	113	13
ž	1337	51	172 2084	98	2.3	17.7	20	11	38	120	120	17
6	1340	54	126 2590	1.8	17.5	17.14	2.0	41	38	120	112	11
5	342	57	126. 2930	4.8	173	17-4	2.0	-71	37	122	120	13
9	139760	60	426. 3750	92	152	15 2	2 -	(T)	37	120	120	13
3	1349	63	174 3698	92	152	15.2	2.0	10	37	120	118	13
L	1352	64	126. 1030	4.2	152	152	20	P	37	120	118	12
1	1355	69	14. 440	12	152	152	2.0	10	37	120	1.20	14
0	1358	72	940 4800									
		1										

RMS Delta P Z ZOO Run filme Delte H Avel 3 · 6 Total Volume High Vac. TS AVG. Tm Ave. Inckinetic % 9516 72 975 2.0 39.3 38.1 0 0/29/24 -> Team Leader / Date: Provit Ct. Non mo ve DAGC / Date: ANDEW V. GUEWAREA 96/24/20

ISOKINETIC FIELD DATA SHEET METHOD(S) 5/6

Facility	/Name		BENGUE	TCORP-	AW PAN	CONTRA	A MIN	NG PROTI	11	Run Nun	nber		1	2	
Town/I	Province			P, BEN						Type of /	the second se	stalled	MIT	MUDFUME S.	
Source	9	1			AN13E12-1	12.0/11	PFUMES	LAUBRON	7 1	Test Date	е			120	
Test P	ersonnel				PR. AT					Operator	Signat	Jre		1	R
Filter ID	Tare(s)	Braz	orostric	Static									/	2	
1.965,10		Pr	05/5U/0	Pressure		Meterbox	_		No	zze	PA	at Tube/Pro	be (M	fobe
HZA SEL	0.299		n Hg)	(mmHg)	10#	Gamma	Delta I	48 ID	¥	Diameter	1D #		Cp	Ma	kona
		27	. 20	-2.0	GMC-01	1.0102	47.6	ac 41	-03	609	CP.C	O P	31	5	3
					Sample	Train Leak Ch	ooka					1	Fyrites		
				Initial		Inti	arim		L	Finsl	Time		NCO.	9	60p
K Factor	3.984	VACU	um, in Hg	15.0		\wedge	/	/	1	2.0	14	12	0	F	70
Pitot Laak	Checks	Look R	lata, m ³ Am	0	/			/	1	0			-	-	-
223/04	Fre-lest	\$4	art Volume	426.48	29	/		/	14	27 9917	Fyrite Synt	erri Leak Ch	eck	C	ile.
20/72	Post-icst	SN	op Volume	426 -18C	19/	/	X			7. 9997	Bag ID	BC	ACMP-	5-13	MINT
Port &	Time		- DGI	I Reading	Pitot	Delta H	Delto H	Gauge			To	moorature *	0		
Point	(24-hr)	Test (mins)		J. Mater)	Reading (mmHgD)	calc. (ramHeO)	(mmHaO)	(In Hg)		Stack	DGM	Filible	F	itter	limp. Exit
A-12	(41)	0	174.	4910	3.4	11.9	12 3	2.1		34	31	123	13	0	16
(1	1914	3	the.	5234	9- 4	11.9	120	2.2			31	1191	-	27	M
12	1177	6	1000	. 5546	34	119	12.0	2-0	2	1	2<1	120	1/2		151
9	120	9	196.	5890	31	11.9	12.0	2.0	-	1-4	31	TIR		4	75
8	1177	12	120	6204	0 3	17. 1	12 -4	2.0		36	24	120	> 1/2		18

													1.1.1
12	107	Ģ	The.	5546	34	119	12.0	2-0	34	2-1	120	123	15
9	120	9	pp.	5890	31	11.9	12.0	2.0	34	34	TIR	119	72
8	112	12	126	6204	50	7.1	12 -4	2.0	36	34	120	120	113
7	116	15	1926	6560	50	17.9	174	2.0	36	36	120	120	174
G	154	1%	120.	6957	5-0	17.0	17.41	20	36	36	120	118	13
5	1432	21	124	7308	6.0	17.1	174	1.0	38	36	120	120	1/2
4	1035	29	Rr.	7782	5.0	17.9	17.4	2.0	38	36	[18	118	13
3	14138		no	8180	5.0	17-1	17.4	2.0		36	120	120	12
2	1941	20	176.	86.00	7.2	251	25.2	2.2	29	37	120	122	(7
1	1914		146	8940	22	251	751	2.0	3 %	37	120	120	111
-n	12/199	34	426.		7.2	251	25.2	2.0	38	37	120	120	17
11	1452	301	540	9920	+. 5	251	25.2	2.0	7,8	37	120	118	11
0	1955	n.	177	0330	6.0	2059	210	2.0	38	37	120	1/20	17 4
9	1152	95	122	0269	6.0	20.9	210	2.0	28	22	120	118	1<
3	1501	48	423	(184	6.0	20.9	21.0	2.0	38	37	120	120	14
	1504	51	17.7.	1630	6.0	20.9	21.0	20	38	37	120	1/8	14
Ć	1507	54	127.	2-69	5.2	181	18.2	2.0	39	37	120	1-20	120
5	1510	9	427		5.2	18-1	18:2	2.0	39	38	120	120	10
1	1513	60	477		52	18 1	182	20	. 79	3%	120	120	1/7
3	1516	67	127.	3309	5.2	18 1	18.1	2.0	39	38	120	122	110
7	1519	66	927	3650	5.0	17.1	13 1	2.0	29	32	120	120	14
1	1522		127		50	17.1	17-4	2.0	39	38	120	120	111
0	1525	72	977.	=1996									1

Run RMS Delta H Total Volume High Vac. Ts Ave. Tris Ava. Isokinetic % סרתיד Detta P Ave 2-28 0.9536 72 185 37.4 2.0 36 4 94.7 QAQCIDATE: ANGERO V. GUDTABRA 6/29/24 Team Leader / Date: Deputy be Luborizar m 04/29/24 DENR ACCREDITION Inclose Extension: Teaming Ferr RAT No. 2016 115 EAT No. 2021-50

33 러

METHOD 7 FLASK SAMPLE AND RECOVERY DATA

Facility	IDENGUET LORPORATION - KCUDAN CONTRACT MINING
Town/Province	BALATOC, VIRAC, ITO USON IDENKLIET
Source	ACIDIF-INU CHAMBER NO.2 W/ACID FUME
Personnel	AVU, MRC, DLN, AMC, RMC
Test Date	le 29 /24

Absorbing Solution, Volume, ml	25
Heated Probe? (check) Yes 🧹	No_
Filter Used? (check) Yes No	

Remarks

"If no, explain in "Remarks" "If no, explain in "Remarks"

				Bar, Presbury, 4 Onle Pattornied	1 27.20 U 20 124	Salegile Califord St U	ion Information ntient Lease Chin y (Info Info C)	MAC POS	<u> </u>
Run Namber	Simple ID (From Sample Label)	Flask ID Number	Flask Volums (mL)	Leax Check dQ.4 (InHg/min)	Evacuated Pressure Pgi (inHg)	Flask Abs Press Initia Pi, Pbar - Pgi (inHg)	Flask Temp (*C)	Sample Collection Time ² (24-Hour)	Shakon For Smina?
1	10CAUM125-177 - 1212	let 11	2224.50	OK	20.11	1.09	29.2	1132	les
	BGCMP-5 · M7-RIB	147 12	2247.00	OK	28.79	1-4	28.4	1137	tes
	Mcaunp - 5 - M7- RIC	let 19	2294.40	OK	25.88	1.52	289	1142	Yes
	F			Bar, Pressure, (Date Performed	1 Ha 27/18	<u>54</u> 81	nsami Lauk Chie V (hills AMC -	Pro _ Post	~
Run No.	Sample ID	Flast ID	Vol. (mL)	Leak Chk.	(inHa)		Temp. ("C)	Tiene	Shakan
2	NOCACMP-5 - M7-K2A	100 H	2221.30	DU	28.98	1.2	28. 9	1324	Yes

OK

DK

Leak Chk

00-

DH

DR

221 40

2227.20

Vol. (mL)

2207 70

2225.00

222D, 10

Shaken for 2mine?	Sample Recovery Time ⁹ (24-hour)	Final Pressure Pgl (inHg)	Flask Abs Press Initial Pf, Poer- Fgf (InHg)	Flask Temp (*G)
Yrs	1003	1.02	26.10	31-2
VES	1000	1.34	29.78	31.6
YES	(007	1-25	25.8F	31.4

Sample Recovery Information

YES	1-12	(.16	25.96	31.0
YEZ	1015	1.41	25.71	32-
Yes	1018	1.12	26.0	22-

YOK	124	1-22	25.85	32-6
Yes	1021	136		32.9
YA	1027	1-58	25.54	

6/29/24

Source Oxygen % Concentration?

DCACMP- 5

IbcAcamp_ (

IDCACANP - S

IBCACINP - S

Run No

3

1

14

19%

06/20131

1.46

1.15

1-51

1.4

1.58

25.74

26.03

(inHa)

26.86

25. 77

25.59

19-04.

Ber. Prespure. (In Her) 27. 19. Date Parkstreed: 6/29/1-4

29.9

28.7

BY CHAR ATT C - REMAC

Temp. (*C)

28.9

28.8

2815

Yes

1379

1334

Timo

143

1418

1423

LANGELO ANGELO

No

Post -

tes

les

Shaken

143

tes

V.GOVARRA

Was Additional Oxygen Introduced to the Plasi(? (circle)

Sample ID

DCACAPP - [- M7-RBA

Pigs, the mittal flaak pressure, mast be evacuated to within 3 incress of rearcary (Invig) of the absolute pressure (Biometric Pressure), Additional oxygen should be introduced to the flask II the Bousce 0₇ to below 2%.

WF 15

10F 14

Flask ID

18

4F 17

LPP

12P 19

'Flack must be stand for 19hours or gealet after sampling before recovery can be performed.

DENU ACCIPIED/TEC Station Establish Techy Patri SAT No. 2015-115 BAT No. 3014-63

A

- M7- R213

- M7 - K2C

- M7-RAB

- M7- KBC

Team Leader / Date: Dato C. NAV 19/An

"APPENDIX C"

PROCESS DATA

GREENTEK MONITORING LOGSHEET

Facility Information

FACILITY NAME LOCATION PCO NAME TELEPHONE/FAX NUMBER EMAIL ADDRESS DATE OF SAMPLING STACK TEST PERSONNEL

SAT No. 2021-93

Source Description

SOURCE TESTED (ID or NAME used by Facility) SOURCE TYPE (Genset, Boiler, etc.) BRAND (Made by) RATED CAPACITY (with units: BHp, MW, MT/hr., etc.) DATE CONSTRUCT STARTED (on source) month/year DATE OF ANY MODIFICATION (that increased emissions) HAS THE SOURCE BEEN MOVED (Specify Date) EXISTING (const. before 11/25/00) or NEW (or modified) SOURCE OPERATION (estimated hours per year for source) TYPE OF APCD* (baghouse, ESP, cyclone, scrubber, etc.) DATE OF APCD INSTALLED TOTAL STACK HEIGHT (m, ft., etc.) STACK ORIENTATION * APCD - Air Pollution Control Device * This item is critical for determining the standards that apply to the emission point

Benquet Corporation - Acupan Contract Mining Project (BC-ACMP ASBY Laboratory & Mill Refinery)

Palatoc	Virac, Hom, Benavet
NS. Jer	Virac, Hogon, Benguet imah R. Silayog 136 - 1496
- FIRO	136 - 1496

June 28, 2024 AVG, DLN, MPC, ADM

(1) Jaw Gusher, (2) Poller Childrens, (2) Waizers

	stunetaut	BILL
0.06 MT/hr ,	0.06 Mt Mr	, 0.041 MI/hr
VUTEPT 2	012	·
YES/NO If Yes,	Date Moved:	
	URCE / NEW SOU	RCE
VISCOMIS	1 YEAR	
pust scillable	r	
VCEPT. 20,	18	
VERTICAL / HORE		w/o Cover

Fuel Information TYPE OF FUEL USED, %S (during sampling) lectricity ORIGINAL FUEL USED, %S that DATE FUEL CHANGE? ACTUAL FUEL CONSUMPTION DURING SAMPLING (liters, kg, etc.) * Provide Certificate of Fuel Analysis for strict compliance with DENR **Process Information** 100% **OPERATING RATE DURING TESTING?** IS THE APCD OPERATING DURING SAMPLING? ES / NO IS PROCESS LOGSHEET PROVIDED BY THE PLANT? YES / NO PRODUCTION OUTPUT DURING SAMPLING KLOGRAM NOTES tomu t \$MB - CAR Representative aymynoti N

EME Information recorded/gathered by Information supplie ALAYOG EM11 GUOLARPA Name and signature of GEPC personnel on site Name and signature of facility representative DENR ACCREDITED Source Emission Testing Firm SAT No. 2019-115 SST-FD-D01 my 06

illimclivity Date Feb. 01. 2023

GREENTEK MONITORING LOGSHEET

Facility Information

FACILITY NAME LOCATION PCO NAME TELEPHONE/FAX NUMBER EMAIL ADDRESS DATE OF SAMPLING STACK TEST PERSONNEL

Source Description

SOURCE TESTED (ID or NAME used by Facility) SOURCE TYPE (Genset, Boiler, etc.) BRAND (Made by) RATED CAPACITY (with units: BHp, MW, MT/hr., etc.) DATE CONSTRUCT STARTED (on source) month/year DATE OF ANY MODIFICATION (that increased emissions) HAS THE SOURCE BEEN MOVED (Specify Date) EXISTING (const. before 11/25/00) or NEW (or modified) SOURCE OPERATION (estimated hours per year for source) TYPE OF APCD* (baghouse, ESP, cyclone, scrubber, etc.) DATE OF APCD INSTALLED TOTAL STACK HEIGHT (m, ft., etc.) STACK ORIENTATION * APCD - Air Pollution Control Device * This item is critical for determining the standards that apply to the emission point

Balator.	Jlogon, Benquet
MS. Jem	imah R. Chauga
0017 1	36-1496
	14-14 -
Itime no	, 2024
IVA MIL	MPC, AMC, RNC
AVEL DIN	1 MACIANICI AND
AcidiFuin	g Chamber # 2 w Acid Fume Scubber
	Grabber
	Imber
Fabricat	
+ apricar	<i>aq</i>
MM	
2003	
NA	
YES / NO)	If Yes, Date Moved:
EXIST	NG SOURCE / NEW SOURCE)
	85 MALS.
ENA CEAL Y	lematic Aris Energy a street of
SUSCEM	remarkis Acid tume enubber system No
2013	

Benquet corporation - Awpan contract Mining Project

VERTICAL / HORIZONTAL w/√ w/o Cover

Fuel Information TYPE OF FUEL USED, %S (during sampling) KEROJENE ORIGINAL FUEL USED, %S KEROSENE DATE FUEL CHANGE? ACTUAL FUEL CONSUMPTION DURING SAMPLING (liters, kg, etc.) ITERS * Provide Certificate of Fuel Analysis for strict compliance with DENR

Process Info	mation
--------------	--------

OPERATING RATE DURING TESTING? IS THE APCD OPERATING DURING SAMPLING? IS PROCESS LOGSHEET PROVIDED BY THE PLANT? PRODUCTION OUTPUT DURING SAMPLING

		10	0%	-		
_				ES / N		
1	1		١	ES/	9	
~	82	.88	02	OF	6000	-

NOTES:

Information recorded/gathered by: Information supplied by 1EMIMAG ANGELO ALAYOG GUEVAREA N. Name and signature of GEPC personnel on site Name and signature of facility representative DENR ACCREDITED Source Emission Testing Firm SAT No. 2019-115 SST-FD-001 rev.06 Effectivity Date: Feb. 01. 2023 SAT No. 2021-93

intertek Total Quality. Assured.

TEST REPORT

Customer: Location:

CHEVRON PHILIPPINES, INC. Batangas Terminal

Sample Description As Declared:				
Product:	Kerosene			
Tank	110			
Batch Number:	5			
Sample Type:	Composite (U, M, L			

Reference:	0060-0424-CVX
Sample No.:	87-0089-04/24
Date Received:	April 14, 2024
Date Tested:	April 14, 2024
Date Released:	April 14, 2024
Sampling Date:	April 14, 2024
Sampling Time:	53 BO (2000) 200 BB (2000) 10

The above sample was tested in accordance with the test method(s) stipulated, with the result(s) as follows:

TEST CONDUCTED	METHOD	UNIT	SPECIFICATION	RESULT
Appearance	Visual Inspection		Clear and Bright	Clear and Bright
*Burning Quality	ASTM D187	-	Pass	Pass
Color, Saybolt	ASTM D156	-	+16 Min	+24
Density at 15°C	ASTM D4052	kg/L	Report	0.7934
*Distillation, Recovered Basis		100		
Initial Boiling Point	ASTM D86	°C	Report	148.0
10% Recovered	ASTM D86	°C	205 Max	168.0
50% Recovered	ASTM D86	°C	Report	194.0
90% Recovered	ASTM D86	°C	Report	240.0
Final Bolling Point	ASTM D86	°C	300 Max	262.0
Flash Point, TCC	ASTM D56	°C	38 Min	39.5
*Smoke Point	ASTM D1322	mm	20 Min	24.0
*Sulfur Content	ASTM D4294	% mass	0.30 Max	0.209

Remarks:

1. The above results are descriptive of the sample tested and will be descriptive of the entire batch if the sample token is fair and the proper

procedures have been followed.

2. "The result indicated is traceable to Certificate of Quality with Report No. VLN4-20027053-D (MIT San Jack Voyage Number 90015).

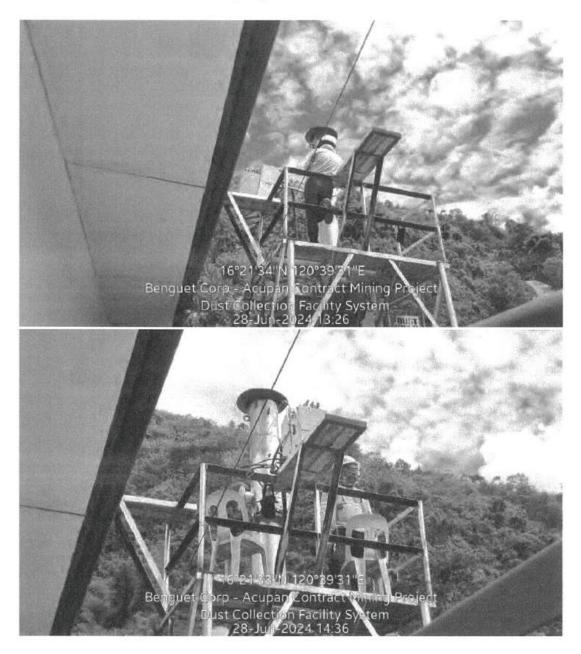
PREPARED BY:

Annuar 24/4/1024 Raffy M. (Manga Registered Chemist PIC Usense No. 0013859

APPROVED BY:

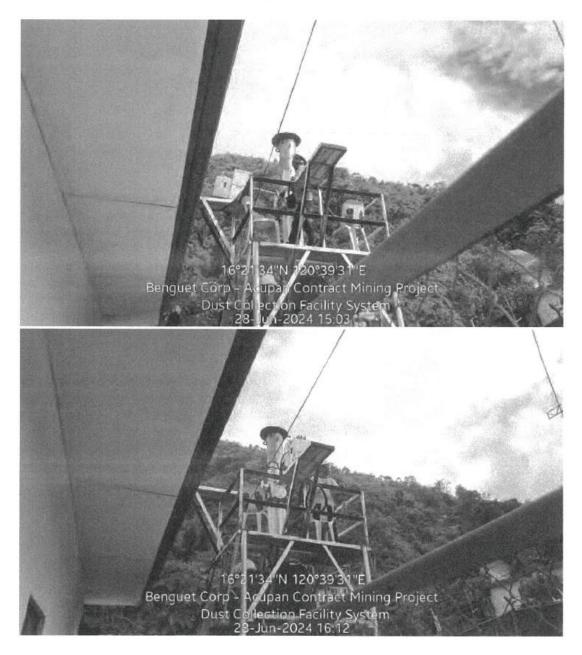
Original Capy Signed Manuel A. Bringuela, Jr. Registered Chemist PRC Lionue No. 0005645 RECEIVED BY/ DATE:

und ARVIN Lead DAD Oil May

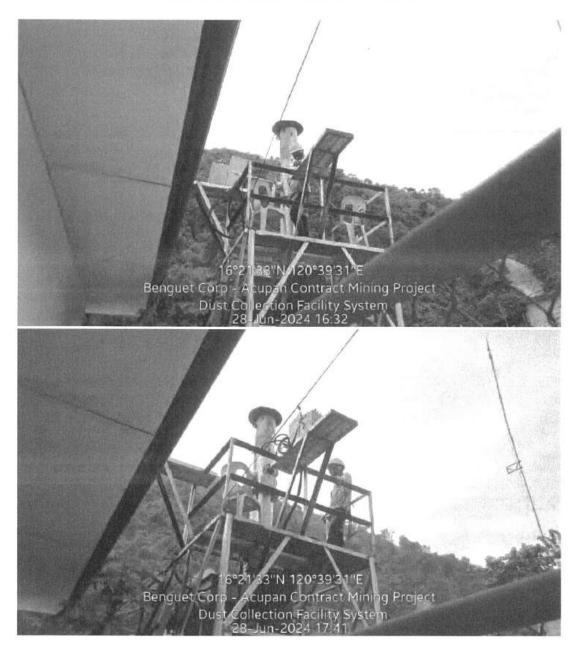

This report (including any enclosures and attachments hereof) has been prepared for the exclusive use and benefit of the addressee(s) and solely for the purpose for which it is interded. Unless Intertek Philippines provide or express prior written consent, no part of this report should be reproduced, distributed, or communicated to any third party. We do not accept any liability if this report has been used maliclously or used for purpose other than it was originally intended or stated, nor do we owe any duty of care to anywe t efit third party in respect of this report.

Attention is drawn to the terms and conditions which was agreed and signed upon together with the proposal or test application form.

Intertek Testing Services Philippines, Inc. Intertek Building, 2907 Chino Roces Ave. Extension, Makati City, 1231 Philippines Tel +63 2 8819 5841 to 47 / +63 2 8887 3920 to 23 / +63 2 8894 4151 Fax +63 2 8813 1850 Intertek.com

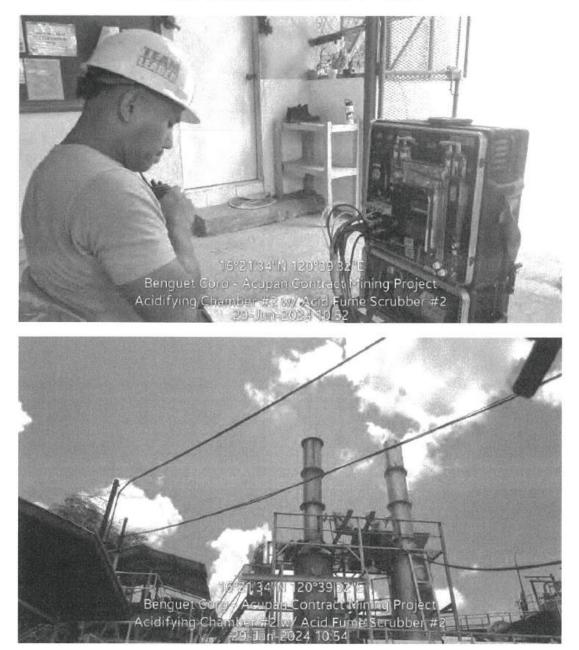


One (1) unit 46.58 m3/min Krypton Dust Collection Facility System Stack Sampling for Methods 5 – Run 1

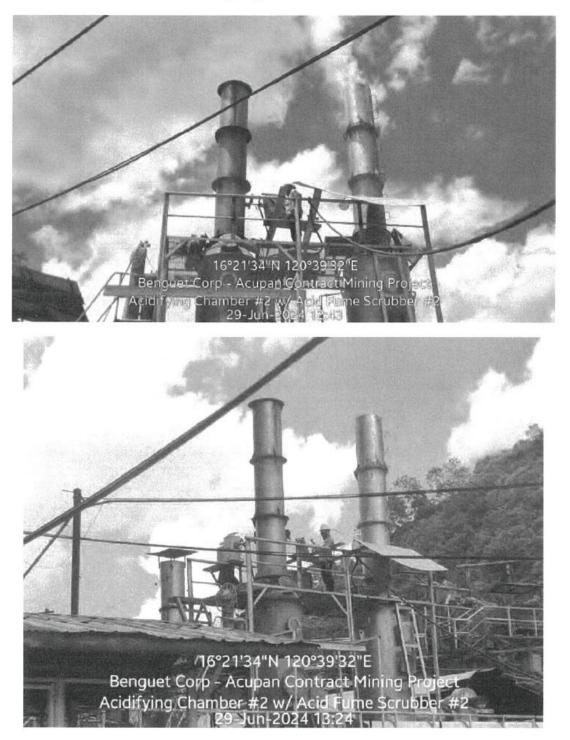


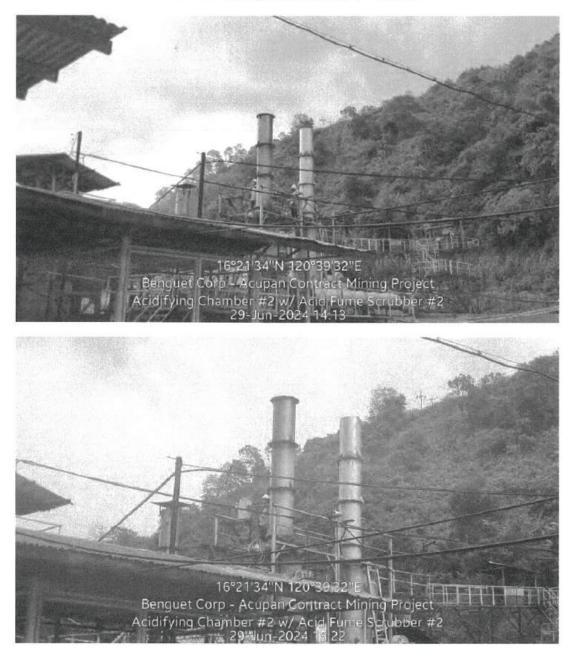
One (1) unit 46.58 m3/min Krypton Dust Collection Facility System Stack Sampling for Methods 5 – Run 2

One (1) unit 46.58 m3/min Krypton Dust Collection Facility System Stack Sampling for Methods 5 – Run 3



One (1) unit 5,013CFM Verantis Acid Fume Scrubber





"APPENDIX D"

ANALYTICAL DATA

ostrea inneral laboratores, nc.

Assaulting entel Environmental Testing Specialist

Berangey Roed. Bc. Manpletan, Biflan, Lagure, Philippines 4024 Telefax (02) 655-9058; (049) 538-0102; (02) 848-6951 Ernik customer service@estsalabs.com.ph

USEPA METHOD 5 ANALYTICAL DATA SHEET

Source: 46.58 m3/min Krypton Dust Collection Facility System RAN No.: <u>B-27924</u> Date Analyzed: July 5 - 12, 2024

Analytical Balance: KERN & Sohn ABJ 220-4NM Sensitivity: 0.1mg

SAMPLE ID	Units	Run 1	Run2	Run 3
FILTER ANALYSIS			And a second second state of the second s	
Filter ID		03245159	12235247	03245145
Filter appearance/observations			Off white	
Initial weight	g	0.2527	0.2456	0.2533
Final weight	g	0.2552	0.2482	0.2559
Farticulate Mass filter, m ,	9	0.0025	0.0025	0.0026
ACETONE RINSE ANALYSIS			And the second s	
Dried PM rinse appearance			Off white	
Acetone rinse, volume, A ,	mL	65	72	66
Beaker ID		SP29	SP28	SP30
Initial weight, beaker	9	76.7210	76,7441	76.2114
Final weight, beaker	g	76.7211	76.7442	76.2114
Particulate Mass, acetone rinse, m a	g	0.0001	0.0001	0.0000
ACETONE REAGENT BLANK			and the second	
Acetone blank volume, A a	mL	83	83	83
Acetone blank mass. A "*	g	65.2131	65.2131	65.2131
Beaker ID		SP04	SP04	SP04
Initial weight, beaker	g	77.7721	77.7721	77.7721
Final weight, beaker	g	77.7724	77.7724	77.7724
Particulate Mass, blank, m b	9	0.0003	0.0003	0.0003
C _b = m _b /A _b	g/mL	3.61446E-06	3.61446E-06	3.61446E-06
Acetone blank, W b = C b x A r	9	0.0002	0.0003	0.0002
Acetone Residue, <0.001	%	0.0005	0.0005	0.0005

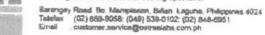
* Density of acetone 0.7857 g/mL

** Acetone residue chould be less than 0.001% otherwise apply corresponding correction factor from Total PM.

Acetone residue, % - m _{in} / a _{in} x 160

Tabel DM	The second secon	And in case of the local division of the loc	And in case of the local division of the loc	
Total PM = m ₁ + m ₃₁ - W _b	mg	2.3	2.4	2.3
	A REAL PROPERTY AND A REAL	and the second	the second s	8.0

Analyzed by: Lyka S. Diab


Reviewed by: Kemberly M. Carain

Certified correct by Ma. Cristina F. Reference

OSTREAMONETAL LABORATORES, nc.

Associng and Environmental Testing Specialist

USEPA METHOD 5 ANALYTICAL DATA SHEET

Source: 5,013CFM Verantis Acid Fume Scrubber #2 RAN No.: <u>B-27925</u> Date Analyzed: July 5 - 12, 2024

Analytical Balance: KERN & Sohn ABJ 220-4NM Sensitivity: 0.1mg

SAMPLE ID	Units	Run 1	Run2	Run 3
FILTER ANALYSIS				- Hun b
Filter ID		0424579	0424578	0424561
Filter appearance/observations			Gray particulates	1 0.0000
Initial weight	g	0.2482	0.2470	0.2495
Final weight	g	0.2922	0.2970	0.2982
Particulate Mass filter, m ,	g	0.0440	0.0500	0.0487
ACETONE RINSE ANALYSIS				0.0401
Dried PM rinse appearance			Gray particulates	
Acetone rinse, volume, A ,	mL	66	69	67
Beaker ID		SP31	SP32	SP33
Initial weight, beaker	g	76.7210	76.7441	76,2114
Final weight, beaker	9	76.7290	76,7500	76.2244
Particulate Mass, acetone rinse, m a	9	0.0080	0.0059	0.0130
ACETONE REAGENT BLANK			and the state of t	0.0100
Acetone blank volume, A b	mL	83	83	83
Acetone blank mass, A m *	g	65.2131	65.2131	65.2131
Beaker ID		SP04	SP04	SP04
Initial weight, beaker	g	77.7721	77.7721	77 7721
Final weight, beaker	9	77.7724	77.7724	77.7724
Particulate Mass, blank, m b	g	0.0003	0.0003	0.0003
C _b = m _b /A _b	g/mL	3.61446E-06	3.61446E-06	3.61446E-06
Acetone blank, W b = C b x A r	g	0.0002	0.0003	0.0002
Acetone Residue, <0.001	%	0.0005	0.0005	0.0005

* Density of acetone 0.7857 g/mL

** Acetone residue should be less than 0.001% otherwise apply corresponding correction factor from Total PM.

Acctone reaided, % - $m_{\rm h}$ / e $_{\rm p}$ x 100

Total DU - m i - 101	1	the second s	and the second			
Total PM = m , + m _{ar} - W _b	mg	51.7	55.6	61,4		
		the second state of the se	of the local data was shown in the local data and t			

Analyzed by: Kyla S

1 Reviewed by: Kemberly M. Caralo

Certified correct by Ma. Cristina F. Referente

OSTREA MINERAL LABORATORES, IC.

Barrangey Roed Bo. Mampilanan, Bilian, Laguna, Philippines 4024 Telefiax (02) 889-9059; (049) 539-0102; (02) 848-6851 Email customer.service@ostrealabs.com.ph

USEPA METHOD 8 ANALYTICAL DATA SHEET

Source: 5.013CFM Verantis Acid Fume Scrubber #2 RAN No.: <u>B-27925</u> Date Analyzed: July 8, 2024

SAMPLE ID		Volume, mi						
OF WILLE ID	Sample V _{soln}	Aliquot V.	Titrant (T1)	Titrant (T1)	Titrant Vave	Titrant Vpl	Mass SO ₂ ,mg	
Run 1	1000	10	5.4	5.3	5.35	0	159.4	
Run 2	1000	10	5.6	5.5	5.55	0	165.3	
Run 3	1000	10	5.2	53	5.25	0	156 4	

Mass SO 2, mg - (32.03)(N _{BaCl2})(V _{ave}-V _{blk})
$$\left(\frac{V_{solar}}{V_{a}}\right)$$

Trial No.	Volume, mi H ₂ SO ₄	Normality. H ₂ SO ₄	Volume, ml BaCl ₂	Normality BaCl ₂
1	25	0.0109	29.1	0.009364
2	25	0.0109	29.2	0.009332

Analyzed by: Lika S. Diaz

Reviewed by: Kemberly M. Caraig

Certified correct by Ma. Cristina F. Referente

OSTREA MINERAL LABORATORES, IC.

Assisting and Environmental Testing Specialist

Berengey Roed. Bo. Marriplasan, Billan, Laguna, Philippines 4024 Telefax (02) 689-9058; (049) 539-0182; (02) 848-6951 Email customer.service@ostraalabs.com.ph

USEPA METHOD 7 ANALYTICAL DATA SHEET

Source: 5.013CFM Verantis Acid Fume Scrubber #2 RAN No.: 8-27925 Date Analyzed: July 9, 2024

SAMPLE ID	Sample absorbance, A	Blank adjusted absorbance, A1	Dilution factor, F	Total Mass Nox as NO; in sample, m (ug)
Run 1A	0.245	0.245	1	439
Run 1B	0.265	0.265	1	474
Run 1C	0.271	0.271	1	485
Run 2A	0.235	0.235	1	421
Run 2B	0.268	0.268	1	480
Run 2C	0.244	0.244	1	437
Run 3A	0.263	0.263	1	471
Run 3B	0.271	0.271	1	485
Run 3C	0.256	0.256	1	458

Total NO2 / sample, ug = 2 Ke A1 F

Blank Absorbance 02 Aliquot Factor **Galibration** Factor

894.95

Note: If other than 25 ml aliquot is used for analysis, the factor 2 must be replaced by a corresponding factor

Analyzed by: Lika S. Diaz

Reviewed by: Kemberly M. Carelo

Certified correct by Ma, Cristina F. Referente

3F. Hizon Building, #29 Quezon Ave., Quezon City, Metro Manila Tel: No.: (02) 7341-0352 | Mobile No.: +693173248176 Email: greentechtab/@yshoo.com

ENVIRONMENTAL LABORATORY DEPARTMENT Doc No. E-001

Certificate of Analysis

Client Name	Greentek Environmental Phils, Co.					
Address	2353 RJ Place Bldg. Unit 3A, Selya St. Pandacan, Manila					
Sample Source	Stack	COA No.	GLAS-24-253			
Date of Sampling	June 29, 2024	RAN No.	RAN-24-059			
Date of Analysis	July 5, 2024	Laboratory Nos.	A-24-0902 to A-24-0904			

	F	Pre-Test Calibration	Check	
Time: 1244H	Gas Value (ppm)	CO Response (ppm)	%Difference (% span)	Status (≲2% span
Zero Gas	0	0	0	Passed
CO Gas	513	513.2	0.0	Passed

Note: % Difference = (Gas Value - CO Response)/Gas Value x 100

		Results		
Parameter	Laboratory No.	Sample ID	Run No.	Result (ppm)
	A-24-0902	BCACMP-S	1	111
CO A-24-0903 Concentration (ppm)	A-24-0903		2	115
	A-24-0904		3	117

_	P	ost-Test Calibration	Check		
Time: 1532H	Gas Value (ppm)	CO Response	% Drift (% span)	Status (≤10% span	
Zero Gas	H I	(ppm)			
CO Gas	513	512.8	0	Passed	
00 000	010	012.0	0.1	Passed	

Note: % Drift = CO response (pre-lest) - CO response (posi-lest)/Gas Value x 100

REMARKS

1 Method of Analysis used: USEPA 40 CFR Appendix A-4 to Part 60 Method 10

2. The gas analyzer used throughout the analysis is HORIBA PG-350 S/N 2.JFEHYJ2.

3. The result values shown are based only upon the samples collected and submitted by Greentek Environmental Phils. Co. on July 5, 2024

4. The test results shall be reproduced only in full and with approval of the laboratory.

Analyzed by:

Ruth Kathleen L. Telada Laborefory Analyst PRC License No. 0001417

Certified by: Alma A Hascual-Ferareza

Leboratory Head PRC License No 0004984 Approved, by: — Thumhum Engr. Wilma/R Uvaco Managing Director

Page 1 of 1

GREENTEK ENVIRONMENTAL PHILS. CO.

Name of firm GREENTEK ENIVIRONMENTAL PHI	Tested by QAQC & Team Leader: Angelo V Guevarra						
Address. 2353 RJ PLACE BLDG. UNIT 3A. SELYA	Type of fuel used by the facility during sampling ELECTRICITY						
Source:46-58 m3/min Krypton Dust Collection Fa	ionny Syntem						
Sample ID	Sample ID No & Description						Analysis
	Sample Method	Run #	Train Fraction	Sample Date	Sample Type	Type of Container	Requested
BCACMP - D - R1	M5	7	FH ACETONE	28-Jun-24	ACETONE	PE BOTTLE	PM
BCACMP - D - M5 - FILTER - R1	M5	1	FILTER	28-Jun-24	FILTER	PETRI DISH	PM
Filter Id: 0324S159 Filter Wt. 0.2527							
BCACMP - D - R2	M5	2	FH ACETONE	28-Jun-24	ACETONE	PE BOTTLE	PM
BCACMP - D - M5 - FILTER - R2	M5	2	FILTER	28-Jun-24	FILTER	PETRI DISH	PM
Filter Id: 1223S247 Filter Wt. 0.2456							
BCACMP - D - R3	M5	3	FH ACETONE	28-Jun-24	ACETONE	PE BOTTLE	PM
BCACMP - D - M5 - FILTER - R3	M5	3	FILTER	28-Jun-24	FILTER	PETRI DISH	PM
Filter Id: 0324S145 Filter Wt: 0.2533							
BCACMP - D - BLANK	M5	1.2.3	FH ACETONE	28-Jun-24	ACETONE	PE BOTTLE	PM
BCACMP - D - M5 - FILTER - BLANK Filter ID Filter Wt	M5	1, 2, 3	FILTER	28-Jun-24	FILTER	PETRIDISH	PM

o be assigned by the laboratory staff RAN# (Request for Analysis Number)		
Submitted by:	JAMINE DELENA OF 105/2024 Signature and Date	Received by:

CHAIN OF CUSTODY, RECORD AND SAMPLE LOG

GREENIER ENVIRONMENTAL PHILS. CO.

CHAIN OF CUSTODY, RECORD AND SAMPLE LOG

Name of firm GREENTEK ENIVIRONMENTAL PHILS CO Address 2353 RJ PLACE BLDG, UNIT 3A, SELYA ST, PANDACAN, MANILA

Tested by QAQC & Team Leader: Angelo V. Guevarra Type of fuel used by the facility during sampling. KEROSENE

Source's 013 CFM Verantis Acid Funds Scrubber

Sample ID	Sam	Sample ID No. & Description					Analysis
	Sample Method	Run #	Train Fraction	Sample Date	Sample Type	Type of Container	Requested
BCACMP - S - R1	M5	1	FH ACETONE	29-Jun-24	ACETONE	PE BOTTLE	PM
BCACMP - S - M5 - FILTER - R1	M5	1	FILTER	29-Jun-24	FILTER	PETRI DISH	PM
Filter Id: 0424579 Filter Wt: 0.2482							
BCACMP - S - R2	M5	2	FH ACETONE	29-Jun-24	ACETONE	PE BOTTLE	PM
BCACMP - S - M5 - FILTER - R2	M5	2	FILTER	29-Jun-24	FILTER	PETRI DISH	PM
Filter Id: 0424S78 Filter Wt: 0.2470							
BCACMP - S - R3	M5	3	FH ACETONE	29-Jun-24	ACETONE	PE BOTTLE	PM
BCACMP - S - M5 - FILTER - R3	M5	3	FILTER	29-Jun-24	FILTER	PETRI DISH	PM
Filter Id. 0424861 Filter Wt 0.2495							
BCACVIP - S - BLANK	M5	123	FH ACETONE	29-Jun-24	ACETONE	PE BOTTLE	PM
BCACMP - S - M5 - FILTER - BLANK	M5	1.2.3	FILTER	29-Jun-24	FILTER	PETRI DISH	PM
Filter ID Filter Wt.							

To be assigned by the laboratory staff RAN# (Request for Analysis Number)				
Submitted by	JANINE DELENA Signature and Date	stas ey	Received by	Signature and Date

GREENTER ENVIRONMENTAL PHILS. CO.

ne of firm: GREENTEK EN/VIRONMENTAL PHILS CO.			Tested by QAQC & Team Leader: Angelo V. Guevarra Type of fuel used by the facility during sampling: KEROSENE				
ress 2353 RJ PLACE BLDG. UNIT 3A, SELYA ST. PANDACAN, MANILA							
Sample ID		pie ID No. 8	Description	Sample Date	Sample Type	Type of Container	Analysis Requested
	Sample Method	Run #	Train Fraction				
BCACMP - S - R1	M6	1 1	IMPINGER	29-Jun-24	3% H2O2	PE BOTTLE	SOx
BCACMP - S - R2	MG	2	IMPINGER	29-Jun-24	3% H2O2	PE BOTTLE	SOx
BCACMP - S - R3	M6	3	IMPINGER	29-Jun-24	3% H2O2	PE BOTTLE	SOx
BCACMP - S - BLANK	M6	BLANK		29-Jun-24	3% H2O2	PE BOTTLE	SO ₃

To be assigned by the laboratory staff RAN# (Request for Analysis Number)			
Submitted by:	JANINE DELENA 07/05/2024	Received by	Jn 07/05
	Signature and Date		Signature and Date

GREENTER ENVIRONMENTAL PHILS. CO.

CHAIN OF CUSTODY, RECORD AND SAMPLE LOG

Name of firm: GREENTEK ENIVIRONMENTAL PHILS. CO.

A Type of fuel used by the facility during sampling KEROSENE

Address, 2353 RJ PLACE BLDG, UNIT 3A, SELYA ST, PANDACAN, MANILA

	Samp	ple ID No. 8	Description				Analysis
Sample ID	Sample Method	Run #	Train Fraction	Sample Date	Sample Type	Type of Container	Requested
BCACMP - S - R1A	M7	1	FLASK	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - R1B	M7	2	FLASK	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - R1C	M7	3	FLASK'	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - R2A	M7	1	FLASK	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - R2B	M7	2	FLASK	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - R2C	M7	3	FLASK	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - R3A	M7	1	FLASK	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - R3B	M7	2	FLASK	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - R3C	M7	3	FLASK	29-Jun-24	Absorbing Solution	PE Bottle	NOx
BCACMP - S - BLANK	M7	1.2.3	FLASK		Absorbing Solution	PE Bottle	NOx

o be assigned by the laboratory staff RAN# (Request for Analysis Numb	per)	
Submitted by	JANINEL DELETIA OPTOS/24	Received by: 07/05
	Signature and Date	Signature and Date

ame of firm GREENTEK ENIVIRONMENTAL		Tested by QAQC & Team Leader Angelo V. Guevarra					
53 RJ PLACE BLDG UNIT 3A, SELYA ST F	ANDACAN, MANIL	A		Type of fuel used by the f			
aurce 6,013 CFM Verantis Acid Fume Schu	bhei						
	Sample ID No	B Description				Analysis	
Sample ID	Sample Method	Run #	Train Fraction	Sample Date	Sample Type	Type of Container	Requested
BCACMP - S - M10 - R1	M10	1	TEDLAR BAG	29-Jun-24	GAS	TEDLAR BAG	CO
BCACMP - S - M10 - R2	M10	2	TEDLAR BAG	29-Jun-24	GAS	TEDLAR BAG	со
BCACMP - S - M1D - R3	M10	3	TEDLAR BAG	29-Jun-24	GAS	TEDLAR BAG	co

Submitted by

JANINE OFLERA Signature and Date

07/05/2024

17/05 Signature and Date

"APPENDIX E"

EQUIPMENT CALIBRATION RECORDS

METER BOX POST TEST CALIBRATION CHECK BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT Balatoc, Virac, Itogon, Benguet 46.58 m3/min Krypton Dust Collection Facility System

Calculate Yqa for each test run using the following equation:

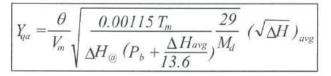
0.00115 Tm	29	(JAH)
$\Delta H_{(a)} \left(P_b + \frac{\Delta H_a}{12.6} \right)$	$(\frac{wg}{M_d})$	$(\sqrt{\Delta H})_{avg}$

where:

Yqa	dry gas meter calibration check value, dimensionless.
θ	total run time, min.
Vm	total sample volume measured by dry gas meter, dcm.
Tm	absolute average dry gas meter temp., °K.
Pb	barometric pressure, mm Hg.
0.00115	= (760/298)(21.2/1000) ² (mm Hg/°K) m ³ /min ²
ΔHavg	average orifice meter differential, mm H20.
$\Delta H_{@}$	orifice meter calibration coefficient, mm H2O.
Md	dry molecular weight of stack gas, gm/gm-mole.
29	dry molecular weight of air, gm/gm mole.
13.6	specific gravity of mercury.

After each test run series, do the following:

Average the three or more Yqa's obtained from the test run series and compare this average with the dry gas meter calibration factor, Y. The average Yqa must be within 5 percent of Y.


If the average Yqa does not meet the +/- 5 percent criterion, recalibrate the meter over the full range of orifice settings, as detailed in Section 5.3.1 of Method 5. Then follow the procedure in Section 5.3.3 of Method 5.

	RUN 1	RUN 2	RUN 3	Average
Meter Box	GMC 01	GMC 01	GMC 01	
time	72	72	72	
Vm - total	0.7928	0.7672	0.8084	
Tm avg, deg C	35	38	36	
Tm, degrees K	308	311	309	
Barometric, mm Hg	690.4	690.9	691.1	
DH _{avg} , mm H ₂ O	12.3	11.6	12.9	
DH@, mm H ₂ O	47.7	47.7	47.7	
Md stack gas, g/g-mole	28.80	28.80	28.80	
Md Air, g/g-mole	29.00	29.00	29.00	
Meter Box Gamma	1.0102	1.0102	1.0102	1.0102
QA Gamma	1.0462	1.0569	1.0179	1.0403
Difference:	-3.6%	-4.6%	-0.8%	-3.0%
Average Difference within +/-5%				PASS*

*The difference is based on the average QA gamma of the three test runs

METER BOX POST TEST CALIBRATION CHECK BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT Balatoc, Virac, Itogon, Benguet 5,013CFM Verantis Acid Fume Scrubber #2

Calculate Yqa for each test run using the following equation:

where:

Yqa	dry gas meter calibration check value, dimensionless.
θ	total run time, min.
Vm	total sample volume measured by dry gas meter, dcm.
Tm	absolute average dry gas meter temp., °K.
Pb	barometric pressure, mm Hg.
0.00115	= (760/298)(21.2/1000) ² (mm Hg/°K) m ³ /min ²
∆Havg ∆H _@	average orifice meter differential, mm H20. orifice meter calibration coefficient, mm H2O.
Md	dry molecular weight of stack gas, gm/gm-mole.
29	dry molecular weight of air, gm/gm mole.
13.6	specific gravity of mercury.

After each test run series, do the following:

Average the three or more Yqa's obtained from the test run series and compare this average with the dry gas meter calibration factor, Y. The average Yqa must be within 5 percent of Y.

If the average Yqa does not meet the +/- 5 percent criterion, recalibrate the meter over the full range of orifice settings, as detailed in Section 5.3.1 of Method 5. Then follow the procedure in Section 5.3.3 of Method 5.

	RUN 1	RUN 2	RUN 3	Average
Meter Box	GMC 01	GMC 01	GMC 01	1.0102 1.0451 -3.5%
time	72	72	72	
Vm - total	0.8986	0.9516	0.9536	
Tm avg, deg C	35	38	36	
Tm, degrees K	308	311	309	
Barometric, mm Hg	690.4	690.6	690.9	
DH _{avg} , mm H ₂ O	16.6	17.6	18.5	
DH@, mm H ₂ O	47.7	47.7	47.7	
Md stack gas, g/g-mole	28.76	28.76	28.76	
Md Air, g/g-mole	29.00	29.00	29.00	
Meter Box Gamma	1.0102	1.0102	1.0102	1.0102
QA Gamma	1.0710	1.0466	1.0179	1.0451
Difference:	-6.0%	-3.6%	-0.8%	-3.5%
Average Difference within +/-5%				PASS*

*The difference is based on the average QA gamma of the three test runs

CERTIFICATE OF CALIBRATION GREENTEK ENVIRONMENTAL PHILS. CO. DRY GAS METER 5 POINT CALIBRATION

Meter Console Model: Meter Console ID Number : Dry Gas Meter Model Dry Gas Meter Serial Number:

GMC-01	
SK25EX	

Pressure Side Leak Check : OK Vacuum Side Leak Check OK Date and Time of Calibration . Entical Onfice Model Number . Theo. Critical Vacuum For Orifice : Barometric Pressure :

DH@->

47.660

&

07-May-24	1300H
ST 40-73	
15	in Hg
752.602	mmHg
the second s	0

IMPORTANTI III

**For the individual dry gas meter calibration factor, Yi, the allowed variation is 0.02 from the average value. **For the individual Dh@ values, the orifice setting that equates to 21.2 ipm, the allowed variation is 0.2 in (5.1mm) from the average value. **Acceptable range for the average Dh@ value is 46.7±6.4 mmH20 (1.84±0.25 inH20).

Run No	Orifice ID No.	Dry Ga	s Meter Volume	(m ³)	Dry C	Gas Meter Temp	T _m (°C)	Amb. Temp.	Time Or	fice Rdg.	Pump Vac.
		Initial	Final	Diff , Vm	Initial	Final	Ave ^O K	Termb, ^O K	min.	mmH,O	in Hg
1	ST40	332,3020	332.3452	0.0432	30	30	303	298.6	5.0	8.4	15
2	ST48	332.3510	332.4260	0.0750	30	30	303	298.6	6.0	17.0	15
3	ST55	332.4340	332.5522	0.1182	30	30	303	298.4	7.0	30.0	15
4	ST63	332 5640	332.7428	0.1788	30	30	303	298.4	8.0	50.0	15
5	ST73	332 7550	333.0290	0.2740	30	30	303	298.2	9.0	92.0	15
							RESULT	5			Т
Run No	Orlfice ID No.	K' Factor		Vmstd	Verstd	DGM Calib. Fa	actor	Variation	Dh@	Variation	-
		X 10 -*		dscm	dscm	١	6	(< ± 0.02)	mmH ₂ O	(≤±5.1)	
1	ST40	1.9790		0.0421	0.0431	1 03	235	-0.013	49.7	-2.0	
2	ST48	2.8501		0.0732	0.0745	1.0	180	-0.008	48.6	-0.9	
3	ST5.5	3.8204		0.1155	0.1165	1.00	092	0.001	47.8	-0.1	
4	5T63	5.0531		0.1750	0.1761	1.00	065	0.004	45.7	2.0	
5	ST73	5.8217		0.2693	0.2676	0.99	938	0.016	46.5	1.2	

I certify that the above Dry Gas Meter was calibrated in accordance with EPA Method 5, Paragraph 7.2 CFR 40, Part 60, using Critical Orifice as calibration standard. From these results, I assign a value for the following parameters :

1.0102

---->

As the average value of the individual results.

3-107/24 Calibrated by:

Baniel Navidad Team Leader

Noted by ANGELO V. GUEVARRA Angelo V. Guevarra QA/QC Manager

mmH,0

GREENTEK ENVIRONMENTAL PHILS. CO. CRITICAL ORIFICE COEFFICIENT CALCULATION

Dry Gas Meter Model Number : SK25EX Dry Gas Meter Serial Number : 2344 Critical Orifice Model Number : ST 40-73 Critical Orifice Calibration Factor, Ye 1.0000					Calibration D Barometric P	ate and Time ressure		07-May-2 752.602	1300H in Hg		
			ST 40-73			Theo, Critical Vacuum For Orifice:				in Hg	
			1.0000			Leak Check :			OK		_
Run No	Orifice ID No.	Dry	Gas Meter Volum	ne (m³)	Dry Ga	s Meter Temp	.T _m (°C)	Amb. Temp	Time	Onfice Rdg	Pump Vac.
		Initial	Final	Diff., Vm	initial Final Ave ⁰ k		Tamb, ^D K	min.	mmH ₂ O	in.Hg	
1	ST 40	331.1110	331.1542	0.0432	23	23	296.0	299.5	5	8.40	15
2	ST 40	331.1580	331.2012	0.0432	24	24	297.0	299.5	5	8.40	15
1	ST 48	331.2070	331.2820	0.0750	25	25	298.0	299.5	6	17.0	15
2	ST 48	331.2890	331.3642	0.0752	26	25	299.0	299.5	6	17.0	15
1	ST 55	331.3730	331.491Z	0.1182	27	27	300.0	298.9	7	30.0	15
2	ST 55	331.4940	331.6122	0.1182	28	28	301.0	298.9	7	30.0	15
1	ST 53	331.6240	331.8028	0.1788	29	29	302.0	298.6	8	50.0	15
2	ST 63	331.8100	331.9888	0 1788	29	29	302.0	302.0	8	50.0	15
1	ST 73	332.0130	332.2870	0.2740	32	32	305.0	298.4	9	0.0	1 10
2	ST 73	332.2882	332.5622	0.2740	32	32	305.0	298.4	9	92.0	15

	RESULTS						
Run No.	Orlfice ID No.	K Factor X 10 ⁻⁴	Average X 10 ⁻⁴	Variation (< + 0.5%)			
1	ST 40	1.9823	1.9790	-0.17%			
2	ST 40	1.9755	1.9790	0.17%			
1	ST 48	2.8511	2.8501	-0.03%			
2	ST 48	2.8491	2.8501	0.03%			
1	ST 55	3.8267	3.8204	-0.17%			
2	ST 55	3.8140	3.8204	0.17%			
1	ST 63	5.0388	5.0531	0.28%			
2	ST 63	5.0674	5.0531				
1	ST 73	6.8217	5.8217	0.00%			
2	ST 73	6.8217	5.8217				

IMPORTANT III

** For valid results, the actual vacuum should be 1 to 2 in. Hg greater than the theoretical critical vacuum.

**The average value for the K* FACTOR should not vary by more than $\pm 0.5\%$ from the individual results.

**The times should not differ by more than 3 seconds for each run.

**The unit for critical orifice coefficient is in m^3*K^0.5/(mmHg*min).

05/09-120 1.th Calibrated by: Daniel L. Navidad

Feam Leader

CERTIFICATE OF CALIBRATION GREENTEK ENVIRONMENTAL PHILS. CO. TEMPERATURE DISPLAY CALIBRATION

Meter Console No.:	GMC - 01	Operator:	DLN
Model:	XC - 572 - OV	Calibration Date:	May 07, 2024
Serial No.:	1703043	Calibration Due:	November 6, 2023

TC Channel ID	Reference Temp 1.°C	Temp Reading 1.°C	Critena	Criteria Met	Reference Temp 1,°C	Temp Reading 1,°C	Criteria	Criteria Met
Probe	0	0	0	YES	50	51	-0.309	YES
Filter	0	0	0	YES	50	51	-0.309	YES
Exit	0	0	0	YES	50	51	-0.309	YES
Stack	0	0	0	YES	50	51	-0.309	YES
Stack	200	198	0.425	YES	250	248	-0.384	YES

TC Channel ID	Reference Temp 1,*C	Temp Reading 1.°C	Criteria	Criteria Met	Reference Temp 1.*C	Temp Reading 1.°C	Criteria	Criteria Met
Probe	100	100	0	YES	150	151	-0.236	YES
Filter	100	100	0	YES	150	151	-0.236	YES
Exit	100	100	0	YES	150	151	-0.236	YES
Stack	100	100	0	YES	150	151	-0.236	YES
Stack	350	348	0.322	YES	450	448	-0.277	YES

Criteria: Percent difference between the Reference temperature and the Average Temperature can be only ±1.5% *K [[Ref. Temp. + 273] - [Temp. Reading + 273]] × 100 [Ref. Temp. + 273]

Reference used in calibration						
Туре	Model	Serial No.	Calibration Date	Certificate No.	Issuing Lab/Traceability	
Thermocouple Simulator	ALTEK Series 22	9330065	August 17, 2023	23-08-106-2	Acculab Calibration Laboratory Inc.	

Calibrated by: Checked by: 54/24 05/7/01 Angelo V. Guevarra QA/QC Manager Daniel L. Navidad, Jr. Team Leader ć

GREENTEK ENVIRONMENTAL PHILS. CO. PITOT TUBE INSPECTION DATA SHEET

Pitot Number:	GP-04A	Date:	March 13, 2024
Diag	gram 1	Level? =	YES
		Obstructions? =	NO
() Aur		Damaged? =	NO
az		Diagram 1	
-		-10° < 🗆 1 < + 10° =	0°
Degree indicating level po for determining α ₁ and α ₂ .		-10° < 🗆 ₂ < + 10° =	1°
Diag	ram 2	Diagram 2	
		$-5^{\circ} < \beta_1 < +5^{\circ} =$	1°
		$-5^{\circ} < \beta_Z < + 5^{\circ} =$	0°
Degree indicating level positive for determining β_1 and β_2 .	withon	Diagram 3	
		γ =	0°
Dia	gram 3	θ =	0 °
√ Di		A =	2.46
1 \\v =		$1.05 D_t < P_a < 1.5 D_t =$	1.23
		1.05 Dt < Pb < 1.5 Dt =	1.23
Degree indicating level ($0.48 \text{ cm} \le D_1 \le 0.95 $	= 0.94
determining y then calcu	Nate 2	A tan Υ < 0.32 cm =	0
		A tan $\theta < 0.08$ cm =	0
DW		P _a = P _b =	1.23
Degree indicating lavel positive for determining 0.		Comments:	

The pitot tube/probe meets or exceeds all specifications criteria and/or applicable design features and is hereby assigned a pitot tube calibration factor of **0.84**.

Equipment used in calibration							
Туре	Model	Serial No.	Calibration Date	Certificate No.	Issuing Lab/Traceability		
Digital Caliper	MITUTOYO CD-6" ASX	A22099212	July 30, 2023	10 0000.01-8588- 1.23	Switchtek Measuremen Systems		

Calibrated by: 4 2 Daniel L. Navidad Jr. Team Leader

Reviewed by: Angelo V. Guevarra QA/QC Manager

CERTIFICATE OF CALIBRATION GREENTEK ENVIRONMENTAL PHILS. CO. TEMPERATURE SENSOR CALIBRATION

Thermocouple No.	GP-04C	Date:	March 14, 2024
Ambient Temperature:	20.6 °C		

Reference Point Number	Source (Specify)	Reference Thermometer Temperature °C	Thermocouple Display Temperature °C	Absolute Temperature Difference %
1	COLD WATER	3.4	2.7	0.3
2	TAP WATER	26.8	27.6	-0.3
3	HOT WATER	98.4	100.2	-0.5

Percent difference between the Reference temperature and the Criteria: Average Temperature can be only ±1.5% °K Equation: [(Ref. Temp. + 273) - (Temp. Reading + 273)] x 100 (Ref. Temp. + 273)

Reference used in calibration							
Туре	Model	Serial No.	Calibration Date	Certificate No.	Issuing Lab/Traceability		
Digital Thermometer	SUPCO	EM02	June 3, 2023	100.10-8227-2.23	Switchtek Measurement Systems		

Calibrated by: Team Leader

Checked by: QAQC Manager

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro,Quezon City, 1300, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@pwitchtek.com.ph www.switchtek.com.ph

Certificate No.: Identification:	4000.23-5342-1.23 GREENTEK ENVIRONMENTAL PHILS., CO	Calibration of	3 INES (berr	ometer function)	
Job: Fin.acc:	P1 32	Test and Verili Certificate of (
Done Categories Cal Officer	Nevember 22, 2023 Calibration	Initials Men 2	CAC Neurs 1.00	Tatel cost	Type Certificate

CERTIFICATE OF CALIBRATION - 3 IN 1 (Barometer Function)

This report of calibration shall document that the instrument herein was examined and tasted in compliance with ISO/IEC 1702S against NIST traceable reference standards and its co-equal standards.

ssued to:	GREENTEK ENVIRONMENTAL PHILS., CO	0	
Address	2353 RI PLACE UNIT 3A SELVA STREET B	RISY.860 PANDACAN, MANILA,	PHELIPPINES
JNIT UNDER TEST (UU	T):	CALIBRATOR INFORM	STICK-
Instrument:	3 IN1 (barometer function)	Instrument:	Barigo, precision barometer
Brand:	LUTRON	Instrument:	Druck, pressure calibrator
Model No.:	PHB-318	Instrument:	Lumel temp and humidity transmitter
Serial No.:	No record	Instruments	Temperature and Humidity chamber
ID code:	No record		reading and reading the second constraints
Ranges	Temp. (0-50 Deg. C)	Model No.:	XB-015-34
	Mumidity (10 to 95%)	Surial No.:	20130503
	Dewpoint (-25.3 to 48.9 Deg. C)	Traceability:	CNAS
	Barometer (10 to 999.9 hPa)		
Resolution:	Temp. (0.1 Deg. C)		
	Humidity (0.1 %)		
	Dewpoint (0.1 Deg. C)		
	Barometer (1 hPa)		
Accuracy:			
Temperature:	±0.8/1.5°C°F		
96R84	≥ ± (3% reading + 1% RM).		
	< 70% RH - 3% RH.± 3% RH.		
Barometric	10.0 to 999.9 (± 1.5 hPa)		
pressure	1000 to 1100 (± 2 hPa)		
Calibration Data:	November 20, 2023		
Collbration Dus:	November 19, 2024		
nvironmental Conditis	an:		
Conditions	DRY/BASIC/NEUTRAL	Ambient Temp. (Der C	- 74.4+2
Relative Humidity:	55.6 ±5%, 1007 hPa	www.com.realthr. (DSE C	F, 29.922

Calibration Method:

By comparison technique, unit under test was placed in a Chamber with a Standard precision barometer, Temperature and Humidity calibrator. Procedures of calibration and test conform to the requirements of NPL, NIST and ISO/IEC Guide 17025. Data were gathered and plotted against an ideal curve.

Standard error and uncertainty of measurement, are written on the attached sheet.

Remarks:

All data perturn only to the unit described obtained at the time of test. This certificate is not valid w/out seal and signature. Unauthorized

Inegorative Teerand' Sandt (Ea Dati davidea ny 1975). Normal' Weight Ret Sh' Cadadaan Statistic Tentandy, 1975, 2015 (Anglish Andress (Frankress), 1975). See Signal (Sandt Davidea) (Sandt Da

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro,Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694

email Address: admin@swkchtek.com.ph

Certificate No.: Identification: Address:

4000.23-9142-1.23 Calibration of 3 IN1 (berometer function) GREENTEK ENVIRONMENTAL PHILS., CO 2353 RJ PLACE UNIT 3A SELVA STREET BRGY.860 PANDACAN, MANILA, PHILIPPINES

CERTIFICATE OF CALIBRATION - 3 IN 1 (Barometer Function)

This report of calibration shall document that the instrument herein was examined and tested in compilance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

UNIT UNDER TEST (UUT):

Instrument:	3 IN1 (barometer function)		
Brand:	LUTRON	Calibration Date:	November 20, 2023
Mødel No.:	PHB-318	Calibration Due:	November 19, 2024
Serial No.:	No record	Calibrated By:	C.A. CASADO
Range:	Temp. (0-50 Deg. C)		Ch unhou
	Humidity (10 to 95%)		
	Dewpoint (-25.3 to 48.9 Deg. C)		
	Barometer (10 to 999.9 hPa)		
Resolution:	Temp. (0.1 Deg. C)		
	Humidity (0.1 %)		
	Dewpoint (0.1 Deg. C)		
	Barometer (1 hPa)		
ID code:	No record		

Results:

Barometer

REPERENCE READING (hPa)	UNIT UNDER TEST READING (hPa)	ERROR IN READING (hPa)	STANDARD DEVIATION	REMARKS
1009.0	1003.0	6.00	4.2426	1
1005.0	1000.0	5.00	3.5355	The user should determine the
1000.0	995.0	5.00	3,5355	suitability of the instrument fo
990.0	984.0	6.00	4,2426	its intended use

Stationic Ertor. ± 7.76 ht/a

Uncertainty: 2 6.09 hPa

Compositions - Research Source Carlo Devices Annual Strangers and Annual Compositions - Research Source - Research Source - Research Source - Research Source - Research - Resea

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.:84420560 / 89282869 / 83517471 Fax No.:89282869 email Address: admin@switchtek.com.ph

www.switchtek.com.ph

Certificate No.: Identification:	200.13-9142-1.23 Greentek environmental PMLS, 00	Calibration of	Digi	tal Vacuum Gaug	
Job: Fin.acc: Done: Categories Cal Officar	P1 32 November 25, 2023 Calibration	Test and Veri Certificate of Initials Mem 1		Total cost	Type Certificate

CERTIFICATE OF CALIBRATION - PRESSURE

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/EEC 17025 against NIST traceable reference standards and its co-equal standards.

Issued To:	GREENTEK ENVARONMENTAL PHILS., CO
Address:	2853 RI PLACE UNIT SA SELVA STREET BRGY. 860 PANDACAN, MANILA, PHILIPPINES
	The second

UNIT UNDER TEST (UUT):

Instrument:	Digital Vacuum Course	CALIBRATOR INFORMATION:		
Brand: Brand: Model No.: Serial No.: Range: Rasolution : Calibration Date: Calibration Due:	Digital Vacuum Gange DWYER DPGA-00 No record 30 InNg to 0.0 in Hg 0.01 In Ng November 24, 2023 November 23, 2024	Instrument: Brand: Model No.: Serfal No.: Range: Accuracy: Calibrated Against:	Master gauge LA No record E8090001 0 to 30.0 in Hg 0.25% ASME B40.1, UKAS	

Environmental Condition:

Condition: Relative Humidity:	DRV/BASIC/NEUTRAL 52 ± 5%, 1010 hPa	Ambient Temp. (Deg C):	23 ±2
nearive numidity;	52 ± 5%, 1010 hPa	1	2.0.24

Calibration Method:

By comparison technique, test pressures were applied at the port, at planned intervals, by a Standard Pressure Calibrator. Procedures of test conducted conform to the requirements of URAS and NIST in compliance with IEC/ISO Guide 17025. Data were gathered and tabulated.

During calibration, the unit was found to have a standard error of ± 0.15 InHg with a confidence level of not less than 95%. Uncertainty of measurement.is ± 0.31 In Hg. Calculations were taken using the Standard Deviation Formula.

Reading:

APPLIED PRESSURE (inHg)	UNIT UNDER TEST READING (in Hg)	ERROR IN READING	STANDARD DEVIATION
0.00	0.0	0.000	0.0000
10.00	9.85	-0.150	0,1051
14.93	14.83	-0.100	0.0707
29.50	29.33	-0.170	0.1202

Remarks: All date pertain only to the unit described obtained at the time of test. This certificate is not valid without seal and signature. Unauthorized reproduction is

Calibrated By: Date-

C.A. CASADO November 24, 2623

Certified IV. Date 24 367 25 2073

rgenik of Normer Senerge Gel Derete Normer From Tances Wayne. Bet Pol Generatorik Testikon (Connectorik) Vallage Vangere Testikon (Polganity Contesting Polganity Polganity Contesting Polganity Conte 5.0. "Crass" Information in "With" Unit: The information of "With" Unit: The end of the optimal of the optim 68.204

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.:84420560 / 89282869 / 89287769 Fax: No.:84537694 email Address: switchteldbilers@yahoo.com www.switchtek.com.ph

SPRI, Standard Platinum resistance thermometer

Process Calibrator

FLUKE

3266078

726

NIST

Certificate No.: Identification:	100.10-9142 -2.23 GREENTEK ENVIRONMENTAL PHILS., CO	Calibration of	Probe P	looter Temperat	tore Comb	roller
Job:						
Fin.acc	PI	Test and Calibratic				
Done	32	Certificate of Callb	nation			
Categories	November 28, 2023	Initials CAC	122			
Cal Officer	Calibration	Nien	Hours	Total cost		Type
		1	1.0		24	Contilicate

CERTIFICATE OF CALIBRATION - TEMPERATURE

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against MIST traceable reference standards and its co-equal standards.

issued To:	GREENTER ENVIRONMENTAL PHILS., OD
Addresss	7252 01.8t APE 10.02 04 00000 00

ISB RU PLACE UNIT BA SELVA STREET BRIEV, 860 PANDACAN, MANUA, PRILIPPINES

UNKT UNDER TEST (UUT):

Instruments	Probe Heater Temperature Controller
Manufacturer:	CAL CONTROLS
Model No.:	CAL 3200
Sorial Nes.:	3712212190
Code:	2022TCT2A
Range	200 to 1800.0 Dec. C
Resolution:	1 Deg. C
Calibration Date:	November 27, 2023
Othbration Due:	November 26, 2024

Environmental Condition:

Condition: DRV/BASIC/NEUTRAL Robative Hamidity: 52.3 ±5%, 1011 hPa

Ambient Temp. (Dag C): 25 22

CALIERATOR INFORMATION:

instrument:

Instrument:

Model No.:

Serial No.:

Tenceshillow-

Manufacturer:

Otherstion Method:

By comparison technique, test temperatures were measured from the unit under test at fixed point method in reference with a Mutti-function Calibrator, SPRT. NIST and ITS 1990. Procedures of test conform to the requirements of ISO/IEC Guide 17025. Data were gathered and tabulated.

During calibration the unit under test was found to have a standard error of ± 6 °C with a confidence error of not less than 95%. Uncertainty of unceasurement is ±2.88 °C. Calculations were taken using the standard deviation formula.

REFERENCE READING (ACTUAL TEMP.)	ULIT SETTING	CORRECTION	STANDARD DEWATION	1
T	7		REMARKS	
30:00		τ	°C	_
	27	-3.000	2.1213	
50.00	47	+3.000	the same of the second s	-
80.00	77	-3.000	2.1219	
100.06	97	and the second se	2.1213	The user should determine
120.00		-3.000	2.1213	the suitability of the
150.00	117	-3.000	2.1213	instrument of its intended
and the second se	147	-3.000	2.1213	
00.081	177	-3.000	the second se	utse.
200.00	197		2.1213	
		-3.000	2.1213	7

names All data partain only to the unit described obtained at the time of test. This certificate is not valid without seal and signature. Unauthorized reproduction is prohibited.

Charles Calibrated By: November 27, 2023 Date:

Certified By: Date:

an "Anna Court Person (Anna - Flan "Northan " Northan fair Fair Contact story Person of "Court out "Morant Manager ("Buha Anna Anna - Manager Manager Manager ("Buharante" (Sam an annar "Morant and annar "Samatan Samatan" Batarana (Sa manufact first *Example *These dut *Topy - three * Colorenses *C energie - American and analysis - Marka Telescon, Marka names - Baranta and a langut angle advance - Sa analysis - Valanta and Derformer & Marka - Telescon anglescon - Marka - Sa - Marka - Sa - Anglescon - Sa - Sa in the Construction of the State of the State of the State of the State of Construction of the State of State of Construction State of the State of State of

SM	IS	A Division of Switch 4 th Floor Nonthridge Pi Bahay Toro, Que Tel Nos.02 426/593 / 92 email Address	chtek ent Systems htek Construction Corporation stat, Annez A. 12 Congressional Ave., con City, 1100, Philippines B2269 / 9287769 Fax No.45337694 admin@switchtek.com.ph			×回 第 37
Certilicate No.: Identification: Job:	100.08-5142- <u>1.23</u> Greentek enverdementa P1	IL PHILES., CO	Calibration of	Digital them	ometer	an tai in .
Fin.acc: Done: Categories Cat Officer	32 Navember 28, 2023 Calibration		Test and Calibration Certificate of Calibration Initials: Men 1.	CAC Hours 1.0	Total cost	Type
CIE	DTTELCATE	OFOATT	THE A PROPERTY OF THE OWNER			

CERTIFICATE OF CALIBRATION - TEMPERATURE

This report of calibration shall document that the instrument horain una examined and tested in compliance with ISO/IEC 17025 against NIST traceshine reference standards and its co-equal standards.

	THE REPORT OF THE PARTY OF THE				
Address:	2430 LAURA STREET BRGY. 862 PANDAN MANULA, PHILIP	PHNES			
LINIT UNDER TESY (UUT): Instrument: Brand: Blodal No.2 Scriel No.2 Location: Range: Resolution: Calibration Date: Calibration Dute:	Digital thermometer SUPCO EM02 No record No record -No record -No 200.0 Drg. C 0.1 Deg. C November 20, 2023 November 19, 2024	CALIBRATOR INFORMU Instrument: Brand: Niodel No: Serial No: Instrument: Brand: Niodal Na: Rango:	NTION: Uquid Bath Calibrator TECHNO TB-30 A275 Standard platfinum resistance thermometer Neraeus SPH-03 -40 to 420.0 Dec. C	Brand: Model No: Serial No: Instrument:	Liquid Bath Calibrator TECHNO TB-30 A275 Froness meter FLUKE 726 3266078 NEST
		Connection: Traceability:	Four (4) wires INMETRO, UKAS		

Environmentel	Condition:	
and the state		

Identification:

Condition:	DRY/BASIC/NEUTRAL	Amblant Young Days Ch.	
Relative Humshity:	54.2 ± 5%, 1007 hPa	Amblent Temp. (Dag C):	11.2 ±2

GREENTEK ENVERONMENTAL PHES. CO.

Calibration Method:

By comparison rechnique, temperature values were simulated at planned intervals, using fived point method in reference with a Temperature Bath Calibrator, Multifunction Calibrator, SPRT and ITS-1990. Span and errors were checked and tabulated. Procedures of tests conform to the inquirements of ISO/REC Guide 12025 and NIST.

During calibration the unit under test was found to have a standard error of ± 4.33. Deg. C with a confidence level of not less than 95.0 % Uncertainty of measurement is ± 2.41 Deg. C. Calculations were taken using the standard deviation formula.

Results:

IGEM ARDIS	STANDARD DEWATION	ERBOR IN READING	UNIT LINDER TEST READING	REFERENCE READING
		-2.000	-32.0	-30.00
	1.4142	and the second s	-11.0	-10.00
	0.7071	-1.000		0.00
	0.7071	-1.000	-1.0	and the second se
The user should determine	the second se	-0.200	9.8	10.00
the suitability of the	0.1414	0.100	49.9	50.00
instrument for its intende	0.0707	and the second s	97.0	100.00
use.	2.1213	000.E-		150.00
	3.5355	-5.000	145.0	
	3,5355	-5.000	195.0	200.00

Distabular

All data pertain only to the unit described obtained at the time of tast. This certificate is not valid without seal and signature. Unsuthorized reproduction is prohibited.

Calibrated By: Date:

C.A. CASADO November 20, 2023

Curtified By: A.R. CASHDOC Date: November 29, 2023

Sevence Prove Place Barrier Model and Barrier Barr

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro,Quazon City, 1100, Philippinas Tel Nos.84420560 / 89287769 / 89287759 Fax No.:89282869 email Address: admin@switchtel.com.ph

www.switchtek.com.ph

Certificate No.: Islemtification: Job: Fin.ace: Done.....: Categories Cal Officer 200.06-9142-1.23 GREEPITEK ENVIRONMENTAL PHILS., CO P1 32 November 25, 2023

Calibration of D Test and Calibration Certificate of Calibration Initials... C

CALIBRATOR INFORMATION: Instrument:

Manufacturer

Model No.:

Serial No.: Traceability:

Men

1

Total cost Type

Digital Manumeter

1.0

Digital Pressure Calibrator

DRINCY

DPI 104 SMS/ DPI 104

NIST

CAC

Certificate

CERTIFICATE OF CALIBRATION - PRESSURE

This report of calibration shall document that the instrument herein was examined and tasted in compliance with ISO/IEC 1702S against MIST traceable reference standards and its co-equal standards.

lasued To:	GREENTEK ENVIRONMENTAL PHILS., CO
Address:	2353 RJ PLACE UNIT SA SELVA STREET

2353 RJ PLACE UNIT 3A SELVA STREET BRGY, 860 PANDACAN, MANILA, PHILIPPINES

UNIT UNDER TEST (UUT):

Instrument:	Digital Manometer
Brand:	No record
Model No.:	HT-1890
Serial No.:	No record
Range:	± 4.072 in Hg
Graduation:	0.001 In Hg
ID code;	No record
Calibration Date:	November 24, 2023
Calibration Duc:	November 23, 2024

Environmental Condition:

Condition:	DRY/BASIC/NEUTRAL	Ambient Temp. (Deg C):	22.4 ±2
Relative Humidity:	51.6 ±5%, 1006 hPa		

Calibration Method:

By comparison technique, test pressures were applied at the port, at planned intervals, by a Standard Pressure Calibrator. Procedures of test conducted conform to the requirements of ASME 840.1 and NIST in compliance with IEC/ISO Guide 1702S. Data were gathered and tabulated.

During calibration the unit under test was found to have a standard error of ± 0.02 initig with a confidence level of not less than 95.0 %.

Uncertainty of measurement is ± 0.018 in Hg. Calculations were taken using the standard deviation formula.

Results:

(in Hg)	UNIT UNDER TEST READING (in Mg)	CORRECTION	STANDARD DEVIATION	REMARKS
0.000	0.000	0.000	0.0000	
0.100	0.099	0.001	0.0007	The user should determine the suitability of the instrument for its intended use.
0.500	0.507	-0.007	0.0049	
1.000	1.013	-0.013	0.0092	
2.000	1.997	0.003	0.0021	
3.000	3.026	-0.025	0.0184	
4,000	4.01.9	-0.915	0.0100	1

Remarks:

All data pertain only to the unit described obtained of the time of test. This certificate is not valid without seel and signature. Unauthorized reproduction is prohibited.

Calibrated By: C.A. CASADO Date: November 24, 2023

ヘハ Certified By: CAIN Date 2023

International Provides Sciences County of Concernent Count of the Concernent Count of the Count

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.: 84420560/ 89282869 /8 9287769 Fax No.:84537694 email Address: switchtekboilers@yshoo.com

www.switchtek.com.ph

100.10-9142-3.23 Calibration of Digital thermometer w/ dual leput GREENTEK ENVIRONMENTAL PHILS., CO P1 Test and Verification 37 Certificate of Calibration November 28, 2023 Initials ... Man Hours Total cost Type 2 8.0 Certificate

CERTIFICATE OF CALIBRATION - TEMPERATURE

This test report shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against MIST traceable reference standards and its co-equal standards.

Issued To:	GREENTEK ENVIRONMENTAL PHILS CO
Address:	2353 RJ PLACE UNIT 3A SELVA STREET BRITY.860 PANDACAN, MANTLA, PHILIPPINES

UNIT UNDER TEST (UUT):

Certificate No.:

Identification:

Fin.acc:

Done

Categories

Cal Officer

ioh

ONTE ORDER TEST (OUT)	E Contraction of the second seco	CALIBRATOR INFORM	ULTRONG-
Instrument:	Digital thermometer w/ dual input	Instrument:	Pn
Brand:	FLUKE	Brand:	FU
Model No.:	52	Model No:	72
Serial No.:	5505853	Serial Ne:	
ID code:	No record		32
Meter range:	-200.0 to 760.0 Deg. C, type J	Traceability:	NES
	-200.0 to 1372.0 Deg. C, type k		
Resolution:	0.1 °C		
Calibration Date:	November 24, 2023		
Calibration Due:	November 23, 2024		

Emvironmental Condition:

Condition:	DRY/BASIC/NEUTRAL
Relative Humidity:	51.2 ±5%, 1011 hPa

Amblent Temp. (Deg C): 22.3 ±2

Calibration Method:

By comparison technique, the temperature was simulated at planned intervals, using fixed point method in reference with a Temperature Process calibrator and ITS-1990, Procedures of test conform to the requirements of ISO/IEC Guide 17025. Data were gathered and tabulated.

Standard error and uncertainty of measurement were indicated on the attached sheet.

Remarks:

All data pertain only to the unit described obtained at the time of test. This certificate is not valid without seal and signature. Unauthorized reproduction is prohibited.

Callbrated By: Date:

A. CASADO

November 24, 2023

Certified By: Dete 78

Process meter FLUKE 726 3266078 NIST

temperature: "Pressure" Sound: Gaz Detector/Arabjes: "How "Volume: Weight" Bh" for Conductiony "Bestering "Conductivery "Conductive" Howevers: "Enclavore: Controller "Hypouries: "Clauses: "Alace & lateral Demonster" Physics - The *Teles Value "Research: "Theoremetal "Tension Weight" Bh" for Conductivery "Bestering "Conductivery "Mailed: "Mailed Physics & Store "Solger-announces: "Alace & lateral Demonster" Physics Biock: Role: "Organization: "Dependent "Conductivery Physics & Store" Physics & Store "Solger-announces: "Deal Test Gouge "Solger Solger Solge

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.: 84420560/ 89282869 /8 9287769 Fax No.:84537694 email Address: switchtekboilers@yshoo.com

Digital thermometer w/ dual input

www.switchtek.com.ph

Certificate No.: Identification: Address:

100.10-9142-3.23 Calibration of **GREENTEK ENVIRONMENTAL PHILS., CO** 2353 RJ PLACE UNIT 3A SELVA STREET BRGY.860 PANDACAN, MANILA, PHILIPPINES

CERTIFICATE OF CALIBRATION - TEMPERATURE

This test report shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against MIST traceable reference standards and its co-equal standards.

UNIT UNDER TEST (UUT):

Instrument:	Digital thermometer w/ dual input		
Brand:	FLUKE	Calibration Dete:	November 24, 2023
Model No.:	52	Calibration Due:	November 23, 2024
Serial No.:	5505853	Calibrated by:	C.A. CASADO
ID code:	No record		

TYPE K

Results: T1

REFERENCE READING (°C)	UNIT UNDER TEST READING (°C)	ERROR IN READING	STANDARD DEVIATION	REMARKS		
-10.0	-10.2	-0.200	0.1414			
0.0	0.0	0.000	0.0000	-		
10.0	10.2	0.200	0.1414	The user should determine th		
50.0	49.7	-0.300	0.2121			
100.0	100.0	0.000	0.0000	suitability of the instrument fo		
300.0	300.0	0.000	0.0000	its intended used.		
500.0	499.8	-0.200	0.1414			
700.0	699.8	-0.200	0.1414	-		
0.000	999.6	-0.400	0.2828			

Uncertainty: ± 0.22 °C

Results: 12

REFERENCE READING (°C)	UNIT UNDER TEST READING (°C)	ERROR IN READING (*C)	STANDARD DEVIATION	REMARKS	
-10.0	-10.4	-0.400	0.2828		
0.0	-1.0	-1.000	0.7071	_	
10.0	10.1	0.100	0.0707		
50.0	49.4	-0.600	0.4243	The user should determine the suitability of the instrument for its intended used.	
100.0	99.7	-0.300	0.2121		
300.0	299.7	-0.300	0.2121		
500.0	499.9	-0.100	0.0707		
700.0	599.6	-0.400	0.2828		
1000.0	999.9	-0.100	0.0707	-	

Uncertainty: ± 0.45 °C

Consensuse* Pressure* Sound* Say Detector/Analyter "How * Values* Weight Ant Pa* Consension" Conductivity "Devaluative Values * Analytics * Pressure* Submitted * Second and the second * T

A Division of Switchtek Construction Corporation 4th Floor Worthridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Queron City, 1100, Philippines Tel Nos.: 84420560/ 89282869 /8 9287769 Fax No.: 84537694 email Address: switchtekboilers@yshoo.com

www.switchtek.com.ph

Certificate No.: Identification: Address:

100.10-9142-3.23 GREENTEK ENVIRONMENTAL PHILS., CO 2353 RJ PLACE UNIT 3A SELVA STREET BRGY.860 PANDACAN, MAMILA, PHILIPPINES

Calibration of

Digital thermometer w/ dual input

CERTIFICATE OF CALIBRATION - TEMPERATURE

This test report shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

UNIT UNDER TEST (UUT):

Instrument:	Digital thermometer w/ dual input		
Brand:	FLUXE	Calibration Date:	November 24, 2023
Model No.:	52	Calibration Due:	November 23, 2023
Serial No.:	5505853	Calibrated by:	C.A. CASADO
ID code:	No record	Calibraties by:	C.M. CHOADU

L 34YT

Results: T1 REFERENCE READING UNIT UNDER TEST READING ERROR IN READING (°C) STANDARD DEVIATION REMARKS ("C) (°C) 200.0 -199.7 0.300 0.2121 -100.0 -99.9 0.100 0.0707 0.0 0.0 0.000 0.0000 50.0 49.6 0.400 0.2828 The user should determine the 100.0 99.9 -0.100 0.0707 suitability of the instrument for 200.0 199.6 -0.400 0.2828 its intended used. 300.0 300.1 0.100 0.0707 400.0 399.9 -0.100 0.0707 750.0 759.7 -0.300 0.2121 Standard error: ± 0.42 °C

0.25 °C Uncertainty: ±

Results: TZ

REFERENCE READING ("C)	UNIT UNDER TEST READING ("C)	ERROR IN READING ("C)	STANDARD DEVIATION	REMARKS	
-200.0	-199.5	0.500	0.3536		
-100.0	-99.8	0.200	0.1414	-	
0.0	0.0	0.000	0.0000	The user should determine the sustability of the instrument for its intended used.	
50.0	49.4	-0.600	0.4243		
	\$00.0	0.000	0.0000		
200.0	199.7	-0.300	0.2121		
300.0	300.0	0.000	0.0000		
400.0	399.9	-0.100	0.0707		
760.0	759.8	-0.200	0.1414		
tandard error: ± 0.45	°C			1	
ncertainty: ± 0.30	ъ.				

the first for the "Fun Test Gelege "Gouge Block " Rain" (hygen Motar" Psychismeser" Vibriation" Dielectrical Adotor" Traditioner Turni Radio" HT Fot Metar' Lapaditioner Distignition

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No. 4537694 email Address: switchtek@pldtdsl.net

www.switchtek.com.ph

Certificate No.:	100.10-9142-1.23	Calibration of	-		
Identification:	GREENTEK ENVIRONMENTAL PHILS., CO		Inemnecou	ple, TC source cali	brator
Job:	P1	Test and Verifi			
Fin.acc:	32				
Done:	November 28, 2823	Certificate of C Initials:			
Categories	Test and Calibration		CAC		
Cal Officer		Nien	Hours	Total cost	Type
San Strifter		2	1.0	× .	Certificate

CERTIFICATE OF CALIBRATION - THERMOCOUPLE TC SOURCE CALIBRATOR

This test report shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

issued to:	GREENTEK ENVIRONMENTAL PHILS., CO
Address:	2353 RJ PLACE UNIT 3A SELVA STREET BRGY. 860 PANDACAN, MANILA, PHILIPPINES
	and a summary industry industry with the party

UNIT UNDER TEST (UUT):

.

NIT UNDER TEST (UL		CALIBRATOR INFOR	MATION:
Instrument: Brand: Model No.: Serial No.: ID code: Ranges:	Thermocouple, TC source calibrator ALTEK SERIES 22 107173 No record Thermocouple TYPE K -200 to 1371 Deg. C	Instrument: Brand: Model No: Serial No: Traceability:	Process meter FLUKE 725 3266078 NIST
Calibration Date: Calibration Due:	November 26, 2023 November 25, 2024		

Environmental Condition:

Condition: DRY/BASIC/NEUTRAL Relative Humidity: S4.5 ± 5%, 1008 hPa

Ambient Temp. (Deg C): 22.1 +2

Calibration Method:

By comparison technique, electrical values/magnitudes were measured at the terminals in milliampere DC at planned intervals as a function of electrical values. Data gathered were referenced to a Standard Multimeter. Data were gathered and tabulated.

Standard error and uncertainties (u) of measurement, were indicated on the attached sheet with a coverage factor of k-2 and with a confidence level of not less than 95%. Calculations were taken using the Standard Deviation Formula.

Remarks:

All data pertain only to the unit described obtained at the time of test. This certificate is not valid without seal and signature.

	Sacut
Calibrated By;	CA. CASADO
Date:	November 26, 2023

Themperature' Precure' Sound" (in: Datactor/Analyzer * Now "Volume" Weight" 80* "Ph" Conductivity "Resolveity "Conductivity "Voltage "Angel"s "Livergetet "Frequency Controller "Hygrometor "Gass & B. Meta Themperature' Pay "Silv "Thy "Help-Volus" Recorder "Thermostat "Torque Wrench "Caloeinader "Caloein" Garanteer "Guroneter "Rutactometer "Nutricoller" Hybrometer "Capoctance Media" Association Metar *Solvy commonwear "Low Over motor "Dist Test Grage Block" Role" Regen Motor" Psychometer' Vibration" Dialocte IV Meter* Transformer Tornet - Ends of Distorteer Capacteneeds Distortion

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No. 4537694 email Address: switchtek@pldtdsl.net

www.switchtek.com.ph

Calibration of

Thermocouple, TC source calibrator

Certificate No.: 100.10-9142-1.23 Identification: GREENTEK ENVIRONMENTAL PHILS., CO Address: 2353 RJ PLACE UNIT 3A SELVA STREET BR

2353 RJ PLACE UNIT 3A SELVA STREET BRGY. 860 PANDACAN, MANILA, PHILIPPINES

CERTIFICATE OF CALIBRATION - THERMOCOUPLE TC SOURCE CALIBRATOR

.

This test report shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

UNIT UNDER TEST (UUT):

Instrument:	Thermocouple, TC source calibrator		
Brand:	ALTEK	Calibration Date:	November 26, 2023
Model No.:	No.: SERIES 22 Calibration Due: Novemb		November 25, 2024
Serial No.:	107173 Calibrated By: C.A		C.A. CASADO
ID code:	No record		
Ranges:	Thermocouple TYPE K		
	200 to 1371 Deg. C		

Results:

REFERENCE READING (Deg. C)	UNIT UNDER TEST READING (Deg. C)	ERROR IN READING	SATNDARD DEVIATION
-54.10	-50.000	4.100	2.8991
0.10	0.000	-0.100	0.0707
50.30	50.000	-0.300	0.2121
100.10	100.000	-0.100	0.0707
200.00	200.000	0.000	0.0000
300.00	300.000	0.000	0.0000
399.90	400.000	0.100	0.0707
499.90	500.000	0.100	0.0707
600.00	600.000	0.000	0.0000
700.00	700.000	0.000	0.0000
800.00	800.000	0.000	0.0000
900.00	000.000	0.000	0.0000
1000.00	1000.000	0.000	0.0000

Temperature* Pressure* Sound* Gas Disector Analysis *Door *Usiano* Weight* Bit %* Candidations* Best Unity *Conserver #* *Weight* Records* *Door *Door *Door *Door *Door * *Door *Do

Switchtek

Measurement Systems

A Division of Switchtek Construction Corporation 4th Finor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippings email Address: admin@switchtek.com.ph www.switchtek.com.ph

Certificate No.: 600.01-8585-1.28 Calibration of Set of Weights Identification: GREENTEK ENVIRONMENTAL PHILS., CO Job: Test and Verification 32 Finance Cerdificate of Calibration Done August 2, 2023 Initiab CAC Categories Calibration Hours Total cost Type Cal Officer 1.0 Туре Certificate

CERTIFICATE OF CALIBRATION - SET OF WEIGHTS

This report of calibration sh t that the testrument berein was essentined and bastud in compliance with BO/REC 17025 against NIST traceable reference standards and its co-equal standards.

Iscued To:	PREFE WITH FUR DESCRIPTION AND ADDRESS AND ADDRESS AND
REPERT FOC	GREENTER ENVIRONMENTAL PHILS, CO

Gelebrary-2353 RI PLACE UNIT 3A SELVA STREET URGY 850 PANDACAN, MANILA, PHILIPPINES

UNIT UNDER TEST (UUT):

CALIBRATOR INFORMATION: Set of Weights Instrument: Instrument: Analytical Balance Instruments Digital weighing Brand: No record Brand: KERN scale Model No.: No record Model No.-AES 200 4C Brand: KERN Sorial No.: G.201501 Sedal No.: WL170025 Model No.: EG4200-2NM Ranger 10g;20g (2pcs.); 50 g, 100g (2 pcs.) Ronge: 220.0 g Serial No.: 5/054200 200g; 500 g 8 1000.0 Graduation: 4200.0 g Range: ID code: G50W-01 Traceability: NIST Traceability: NIST Calibration Date: July 29, 2023 Calibration Date: July 28, 2024

Environmental Condition:

Condition: DRY/BASIC/NEUTRAL Amblent Temp. (Deg C); 23.3 ±2 Relative Humidity: 58 ±5%, 1008 hPa

Calibration Method:

Donalter

By comparative technique, calibration was done in reference with a Calibrated precision scale at planned intervals. Procedures of test conform to the requirements of MIST. Data were gathered and tabulated.

NO.	REFERENCE READING	CAPACITY (g)	ERRIOR IN READING (g)	UNCERTAINTY OF MEASUREMENT (mg)	REMARICS
1	10.0030	10.0	-0.0030	1.587	
2	20.0005	20.0	-0.0005	1.16	
3	20.0060	20.0	-0.0060	3.21	
6	50.0027	50.0	-0.0027	1.76	The user should determine the
5	100.0064	100.0	-0.0064	3.39	suitability of the instrument of
6	100.0052	100.0	-0.0062	3.30	its intended use.
7	200.0127	200.0	-0.0127	5.40	
8	500.0040	500.0	-0.0040	2.17	

Remarks:

All data pertain only to the unit described obtained at the time of test. This continents is not used without and and classes is prohibited

Colibrated By: Elabe:

CA DA July 29, 2023

Cortified By flab Am

Televation 1 - Secret Second Therapy New Yorks (1997) 10 10 10 0 - Second 10 10 10 0 - Second 10 0 - Se nev *Data all & Metal Removator * 787 any management for the other series

A Division of Switchtek Construction Corporation 4¹⁵ Floor Northridge Plaza, Annex A, 17 Congressional Ave., Bahay Toro, Queron City, 1300, Philippines Tel Nos.02 4267593 / 9282669 / 9287769 Fax No.4537694 email Address: admin@pwitrittel.com.oh

www.switchtek.com.ph

Calibration of 200.08-8142-1.23 Digital thermonyeter GREENTER ENVIRONMENTAL PHILS., CO P1 **Test and Calibration** 32 Certificate of Calibration February 2, 2024 Initiate_: CAC Calibration Men Hours Total cost Туре 1 1.0 Certificate

CERTIFICATE OF CALIBRATION - TEMPERATURE

This report of culturations shull document that the luninument horein was examined and tested in compliance with ISO/IEC 17025 against NIST tracesple nce standards and its co-equal standards.

CALIERATOR INFORMATION:

TECHNO

Horabus

5PH-01

Standard platinum

-40 to 420.0 Deg. C

Four (4) mires

INMETRO, LIKAS

resistance thermometer Brand:

TB-30

A775

Instrument: Brandt

Model No:

Sorial Mor

Brand:

Range:

Model No:

Connection:

Traceability:

Instrument:

HORIGING BOOKS	1.0	÷18	-	*1-	
	FLORING		RC4	80	48.

Certificate No.:

Identification:

Fin.acc:

Done____

Categories

Cal Officer

Job:

GREENTER ENVIRONMENTAL PHILS., CO 2430 LAURA STREET DRGY, 362 PANDAN MANUA, PHILIPPINES

UNIT UNDER TEST FUUTE

Instrument:	Digital thermometer
Brand:	LUTRON
Model No.:	FT 816
Serial No.:	No record
Locationz	No record
Range:	-10.0 to 230.0 Deg. C
Resolution:	0.1 Deg. C
Calibration Duto:	February 1, 2024
Calibration Duc:	January 31, 2025

Environmental Condition: Condition: DRY/BASIC/NEUTRAL Relation Hamilding 55.2 ± 5%, 1020 hPs

Ambient Temp. (Deg C): 25 ±2

Calibration Method:

By comparison technique, temperature values were satulated at planned intervals, using fixed point method in reference with a Tomperature Bath Calibrator, Multifunction Calibrator, SPRT and ITS-1990. Span and errors were checked and tabulated. Procedures of tests conform to the requirements of ISO/IEC Gaide L7025 and NST.

During calibration the unit under test was found to have a standard error of ± 1.08 Dag, C with a confidence level of not less than 95.0 %. Uncertainty of measurement is ± 0.51 Deg. C. Calculations were taken using the standard deviation formula.

Results:

REFERENCE READING (*C)	URIT UNDER TEST READING	ERROR IN READING	STANDARD DEVIATION	REMARKS
-25.00	-24.2	0.800	0.5657	1
-10.00	-9.2	0.800	0.5657	
0.00	0.2	0.200	0.1414	The user should determine
10.00	9.8	-0.200	0.1414	the mitability of the
40.00	40.2	0.209	0.1414	Instrument for its Intended
100.00	99.2	008.0-	0.5657	use.
150.00	149.7	40.300	0.2121	_
200.00	199.2	-0.600	0.5657	

Branafer

All dots pertain only to the unit doe thed altained at the time of test. This certificate is set valid althinut and und algositary, Uncertained suproduction is problem.

Liquid Bath Calibrator Nestrument: Liquid Bath Calibrator

Mariel No: TB-30

Sertal Res A775

Model No: 726

Traceability: NIST

Serial No: 3265078

Instruments Process meter

FALRE

TECHNO

Rend-

Transmanial Presson Schelle Bastersterferster Pressent in State et al. State of the service of t ency Control of Congratements No. 213 & C. Dallar Braze etan "N o. Inst Congr. " Encycl. Proc. N. S. C. M. Dagger 1 sy tensory twenters taken "Reich Value "Molence" "Richmostal "Tarow Rolla[®] H Put Write[®] Capacitance E (c.p.a)ter

Certificate No.:

Identification: Labe

Financ

Done.....

Categories

Cal Officer

Switchtek Measurement Systems

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Balaay Toro, Quezon City, 1100, Philippines Tel Nos.:84420560 / 89282869 / 89287769 Fax No.:8453769email Address: switchtekbilers@yahoo.com www.switchtek.com.ph

100 104990-1 24 Calibration of Probe Heater Temperature Controller GREENTEK ENVIRONMENTAL PHILS., CO Test and Calibration **P1** Certificate of Calibration 32 Initials...: CAC February 2, 2024 Men Total cost Type Calibration Certificate 1

CERTIFICATE OF CALIBRATION - TEMPERATURE

This report of calibration shall document that the instrument herein uses examined and tested in compliance with ISO/IEC 17025 against WIST traceable reference standards and its co-equal standards.

Issued To: GREENTER ENVIRONMENTAL PRILS., CO Address:

2353 RI PLACE UNIT 3A SELVA STREET BRGY.860 PANDACAN, MAJIILA, PHILIPPINES

UNIT UNDER TEST (BUT):

instrument: Probe Hoster Temperature Controller Manufacturer: CAL CONTROLS Model No.: CAL 3200 Serial No.: 69928554089 2022TCT3A, TEAM 3A Codet -200 to 1808.0 Det. C Rature Resolutions 1 Deg. C Colibration Date: February 1, 2024 Calibration Due: January 31, 2025

CALIBRATOR INFORMATION: Instrument: SPRT, Standard Platinum resistance thermometer Instrument: Process Calibrator Manufacturate FILTE 5.0odel Bio -726 Serial No.+ 3266078 Traceability: NIST

Environmental Candition:

Condition DRY/BASIC INFORMA Relative Humblity: 55 ±55, 1011 hPa

Ambient Temp. (Deg C): 23.5 ±2

Calibration Method:

By comparison technique, test temperatures were measured from the unit under test at fixed point method in reference with a Multi-function Calibratur, SPRT, NIST and ITS 1990. Procedures of test conform to the requirements of ISO/IEC Guide 17025, Data were gethered and tabulated.

During calibration the unit under test was found to have a standard error of ± 0.26 'F with a confidence error of not less than 95%. Uncertainty of unceasurement is ± 0.69 %. Colcutations were taken using the standard deviation formula

(ACTUAL TEMP.)	UUT SETTING	CORRECTION	STANDARD DEVIATION	REMARKS	
Ŧ	7	7	76	-	
0.00	1	1.000	0.7071		
50.00	50	0.000	0.0000	-	
100.00	100	0.000	0.0000	The user should determi	
150.00	150	0.000	0.0000	the suitability of the	
200.00	200	0.000	0.0000	instrument of its intended	
250.00	250	0.000	0.0000	use.	
300.00	300	0.000	0.0000	-	

Remarks

All data pertain only to the unit described official at the time of test. This certificate is not solid without seal and signature. Unauthorized reproduction is prohibited.

ane Calibrated By: C.A. CASADO Date: February 1, 2024

Certified By Date Febru

energiane "Reserve Land Respective Construction of Magnet 2019 Construction (Section 2019) Construction (Section 2

Temperature(°C):

CERTIFICATE OF CALIBRATION GREENTEK ENVIRONMENTAL PHILS. CO METHOD 7 – FLASK CALIBRATION

Relative Humidity: 80.8% - 80. %

Date Calibrated <u>March 01, 2024</u> Date of Next Calibration: <u>August 31, 2024</u> Flask Measurement with Valve? Yes <u>No</u>

30.4 - 30.9

Graduated Cylinder 1000mL, 500mL, 100mL Pipette/Syringe 10mL, 5mL

Volume (mL) Average Volume (mL) Flask ID / Valve ID Trial 1 Trial 2 (mL)50 GF-11/V-11 2,226.20 2,226.40 2,226.30 Meniscus GF-12/V-12 2,247.00 2,247.00 2.247.00 2,236.60 2,236.40 GF-13/V-13 2,236.20 40 2,221.30 GF-14/V-14 2,221.20 2,221.40 2,227.20 2,227.20 GF-15/V-15 2,227.20 2,211.60 2,211.40 GF-16/V-16 2,211.20 2,237.60 GF-17/V-17 2,237.00 2,237.30 2,225.00 2,225.00 2,225.00 GF-18/V-18 2,220.20 2,220.10 GF-19/V-19 2,220.00

Note: The flask volumes were measured within +/- 10mL All calibrations are done in a room temperature Glassware used during calibration are within ± 2 0mL telerance for Graduated Cylinder (TC) and ± 0.02mL telerance for Pipette (TD);

Reference used in calibration						
Type	Model	Serial No.	Calibration Date	Certificate No.	Issuing Lab/Traceability	
Graduated Cylinder	Pyrex 100mL	No. 70075	April 10, 2023	2000.05-8004-3.23	Switchtek Measurement Systems	
Graduated Cylinder	Pyrex 500mL	3025	April 11, 2023	2000.05-8004-2.23	Switchtek Measurement Systems	
Graduated Cylinder	Pyrex 1000mL	3025	April 11, 2023	2000.05-8004-1.23	Switchtek Measurement Systems	
Plpette	Pyrex SmL	No. 7085	April 12, 2023	2000.07-8004-2.23	Switchtek Measurement Systems	
Pipette	Pyrex 10ml	No. 7085	April 12, 2023	2000.07-8004-1.23	Switchtek Measurement Systems	

QA/QC Check: Completeness 🖌 Legibility: 🖌 Accuracy: 🖌 Specification: 📈 Reasonableness: 📈 ADAO M. Calibrated by I-MA Checked By AN Team-Leader Manager

CERTIFICATE OF CALIBRATION GREENTEK ENVIRONMENTAL PHILS. CO. NOZZLE CALIBRATION

Date of Calibration: March 13, 2024

Calibration Due: September 12,2024

Nozzle Box ID:	GGN-T1	Calibrated By:	AJRR
Nozzle Type:	GLASS NOZZLE		

Nozzle ID	D1 (mm)	D ₂ (mm)	D ₃ (mm)	D (mm)	Average (mm)
GGNT1-01	4.64	4.61	4.62	0.03	4.62
GGNT1-02	4.80	4.80	4.81	0.01	4.80
GGNT1-03	6.40	6.41	6.41	0.01	6.41
GGNT1-04	7.80	7.81	7.83	0.01	7.81
GGNT1-05	9.58	9.57	9.57	0.01	9.57
GGNT1-06	11.10	11.13	11.11	0.02	11.11
GGNT1-07	12.79	12.78	12.80	0.02	12.79

Note: D_1 , D_2 , and D_3 = Nozzle Diameter, measured different diameter. Tolerance = 0.0125mm D = maximum difference in any two measurements. Tolerance = 0.1mm Average = Average of D_1 , D_2 , and D_3 .

Equipment used in calibration						
Туре	Model	Serial No.	Calibration Date	Certificate No.	Issuing Lab/Traceability	
Digital Caliper	MITUTOYO CD-6" ASX	A22099212	July 30, 2023	10 0000.01-8588-1.23	Switchtek Measurement Systems	

Calibrated by:

đ, Daniel L. Navidad Jr. Team Leader

Checked by: Angelo V. Guevarra QA/QC Manager

CERTIFICATE OF CALIBRATION GREENTEK ENVIRONMENTAL PHILS. CO. BALANCE CALIBRATION

Date of Calibration: March 13, 2024

Calibration Due: September 12, 2024

Instrument:	Top Loading Balance	Brand:	Tanita
Instrument ID:	Team 1	Model No.	KD-321

Environmental Conditions:

Temperature (C°): 20.8 - 22.2

Relative Humidity (%): 47.0

Test Point	Reference Weight (g)	Trial 1 (Reading) (g)	Trial 2 (Reading) (g)	Difference < 0.5g (g)	Remarks
1	10	10	10	0	OK
2	20	20	20	0	OK
3	50	49.9	49.9	0	OK
4	100	100	100	0	OK
5	200	199.8	199.8	0	OK
6	400	400	400	0	OK
7	500	499.5	499.5	0	OK
8	700	699.5	699.5	0	OK
9	800	799.5	799.5	0	OK
10	900	899.5	899.5	0	OK

Note:

Trial 1 and 2 shall be less than 0.5g difference. The instrument was left standby for a minimum of 30-mins before calibration. Reference weights used for the calibration of this instrument complied with ISO/IEC 17025 against NIST traceable reference standards and its co- equal standards.

Reference used in calibration						
Type	Model	Serial No.	Calibration Date	Certificate No.	Issuing Lab/Traceability	
Set of Weights	No Record	G.201501	July 29, 2023	600 01-8588-1.23	Switchtek Measurement Systems	

Calibrated by:

Daniel L. Navidad Jr. Team Leader

Checked by: Arigelo V. Guevarra QA/QC Manager

CERTIFICATE OF CALIBRATION GREENTEK ENVIRONMENTAL PHILS. CO. NOZZLE CALIBRATION

Date of Calibration: March 13, 2024

Calibration Due: September 12, 2024

Nozzle Box ID:	GN-T1	Calibrated By:	AJRR
Nozzle Type:	STAINLESS STEEL		

Nozzle ID	D1 (mm)	D ₂ (mm)	D ₃ (mm)	D (mm)	Average (mm)
GNT1-01	3.11	3.12	3.11	0.01	3.12
GNT1-02	4.48	4.48	4.49	0.01	4.48
GNT1-03	6.08	6.08	6.10	0.02	6.09
GNT1-04	7.74	7.71	7.73	0.03	7.73
GNT1-05	9.60	9.60	9.59	0.01	9.60
GNT1-06	10.88	10.86	10.89	0.03	10.88
GNT1-07	12.32	12.34	12.33	0.02	12.33

Note: D_1 , D_2 and D_3 = Nozzle Diameter, measured different diameter. Tolerance = 0.0125mm D = maximum difference in any two measurements. Tolerance = 0.1mm Average = Average of D_1 , D_2 and D_3 .

Equipment used in calibration					
Туре	Model	Serial No.	Calibration Date	Certificate No.	Issuing Lab/Traceability
Digital Caliper	MITUTOYO CD-6" ASX	A22099212	July 30, 2023	10 0000.01-8588-1.23	Switchtek Measurement Systems

Calibrated by:

Daniel L-Navidad Jr.

Team Leader

Checked by:

Angelo V. Guevarra AAAA Manager

"APPENDIX F"

TEST PARTICIPANTS

TEST PARTICIPANTS

BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT

Ms. Jemimah R. Salayog - Pollution Control	Officer
--	---------

DENR EMB REPRESENTATIVE

Mr. Garth Raymundo - EMB CAR EMED Representative

GREENTEK ENVIRONMENTAL PHILS. CO.

-	Technical & QA/QC Manager
-	Technical Head & QA/QC Manager
-	Team Leader / Safety Officer
1	Senior Field Technician / Driver
-	Field Technician
-	Field Technician
-	On Call Field Technician / Welder

Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU Visayas Avenue, Diliman, Quezon City

SAT No. 2023 - 151

CERTIFICATE OF ACCREDITATION

Pursuant to DENR Administrative Order No. 26 Series of 2013 of the Department of Environment and Natural Resources having substantially met all the requirements prescribed therein,

GREENTEK ENVIRONMENTAL PHILS. CO.

#2430 Laura St., Pandacan Manila

is hereby duly accredited as

SOURCE EMISSION TESTING FIRM

As such, the following are authorized as:

QA/QC Manager Danilo M. Palaypay, Jr.

Team Leader Aaron Jonathan R. Regilme

This certification shall allow the above firm and personnel to conduct stack testing limited to the following methods and parameters:

- 1. US-EPA Method 1 to 5 PM
- 2. US-EPA Method 6/8 SO₂
- 3. US-EPA Method 7 NOx
- 4. US-EPA Method 10 CO

Granted this _____ December 22, 2023 and valid until _____ December 22, 2026

GILBERT C. GONZALES, CESO III

Director and concurrent Assistant Secretary for Field Operations

Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU Visayas Avenue, Diliman, Quezon City

SAT No. 2023 - 152

CERTIFICATE OF ACCREDITATION

Pursuant to DENR Administrative Order No. 26 Series of 2013 of the Department of Environment and Natural Resources having substantially met all the requirements prescribed therein,

GREENTEK ENVIRONMENTAL PHILS. CO.

#2430 Laura St., Pandacan Manila

is hereby duly accredited as

SOURCE EMISSION TESTING FIRM

As such, the following are authorized as:

QA/QC Manager Angelo V. Guevarra

Team Leader Daniel L. Navidad, Jr.

This certification shall allow the above firm and personnel to conduct stack testing limited to the following methods and parameters:

- 1. US-EPA Method 1 to 5 PM
- 2. US-EPA Method 6/8 SO₂
- 3. US-EPA Method 7 NOx f
- 4. US-EPA Method 10 CO/

Granted this _____De

December 13/2023 December 13, 2026 valid until

GILBERT C. GONZA/LES, CESO III

Director and concurrent Assistant Secretary for Field Operations

"APPENDIX G"

SOURCE SPECIFIC TEST PLAN AND FACILITY PERMIT

05 June 2024

ENGR. JEAN C. BORROMEO OIC, Regional Director Environmental Management Bureau Cordillera Administrative Region DENR Compound, Gibraltar Road, Baguio City

Dear Director Borromeo:

We have contracted **GREENTEK ENVIRONMENTAL PHILS. CO.** to conduct Source Emission Test of the following:

- 1. ONE (1) UNIT 5,013 CFM VERANTIS ACID FUME SCRUBBER
- 2. ONE (1) UNIT DUST COLLECTION FACILITY SYSTEM
- THREE (3) STATIONS AMBIENT AIR (TSP, NO2, SO2 & NOISE LEVEL MEASUREMENT)

The facility plant is located at Benguet Corporation – Acupan Contract Mining Project (BC-ACMP Assay Laboratory and Mill Refinery), Balatoc, Virac, Itogon Benguet. The purpose of this test is for our compliance to the terms and conditions of the issued Permit to Operate.

We therefore submit the attached source specific test plan which was prepared by GREENTEK ENVIRONMENTAL PHILS. CO. for your review and approval that the test will be accepted by EMB for the above purposes.

The proposed date of testing is on June 28 & 29, 2024, and each of the unit will be tested with a load of at least 90% of our rated capacity.

Thank you for your consideration on this request.

JEMIMAH R. SALAYOG Pollution Control Officer VALERIANO B LOS R VP / Resident Manager Benguet Gold Operation

Respectfully yours.

CERTIFIED ISO 14001:2015 Environmental Management System Balatoc, itogon, Benguet PO Box 100 Bagulo City, 2600 Philippines www.benguetcorp.com

SITE SPECIFIC STACK EMISSION TEST PLAN

Facility Name:	BENGUET CORPORATION – ACUPAN CONTRACT MINING PROJECT (BC-ACMP Assay Laboratory and Mill Refinery)	
Facility Address:	Balatoc, Virac, Itogon, Benguet	
Sources to be tested:	1 unit Acid Fume Scrubber & 1 unit Dust Collection Facility System	

INTRODUCTION:

GREENTEK ENVIRONMENTAL PHILS. CO. was contracted by **BENGUET CORPORATION** – **ACUPAN CONTRACT MINING PROJECT (BC-ACMP Assay Laboratory and Mill Refinery)** to conduct source emission testing at their facility located on the mentioned address.

The purpose of the test is to determine the compliance of the above sources with the emission standards. This test plan is prepared for review and approval by the **DENR-EMB – CAR** so that the results of the emission tests can be used as basis of their Permit to operate compliance to conditions.

The said sources will be tested of the following.

1. One (1) unit 5,013 CFM Verantis Acid Fume Scrubber - PM SOX NOX & CO

- Particulate Matter (PM), Sulfur Dioxide (Sox), Nitrogen Oxides (NOx), Carbon Monoxide (CO)
- 2. One (1) unit Dust Collection Facility System
- Particulate Matter (PM)

The test will be conducted in three (3) runs per unit source.

FACILITY INFORMATION:

The above testing activity will be performed at the facility specified below with the following contact information:

BENGUET CORPORATION – ACUPAN CONTRACT MINING PROJECT (BC-ACMP Assay Laboratory and Mill Refinery)

Contact Person:	JEMIMAH R. SALAYOG POLLUTION CONTROL OFFICER	VALERIANO B. BONGALOS JR. VP/RESIDENT MANAGER BENGUET GOLD OPERATION

Contact Number: 0917-136-1496

BRIEF DESCRIPTION OF THE SOURCE TO BE TESTED:

BENGUET CORPORATION – ACUPAN CONTRACT MINING PROJECT (BC-ACMP Assay Laboratory and Mill Refinery, is a mining company and has maintains and One (1) unit 5,013 CFM Verantis Acid Fume Scrubber & One (1) unit Dust Collection Facility System.

Emission testing will be conducted with a load of at least 90% for each of the unit source.

TEST METHODOLOGIES:

The sampling will be conducted in three sampling runs per source. The following DENR Standard Procedure (US-EPA Reference Methods) will be used in this stack- sampling program. These procedures are based on the US-EPA 40 CFR 60, Appendix A – Reference Methods for Emission Testing of Stationary Sources:

- Method 1 Sample and velocity traverses
- Method 2 Stack gas velocity and volumetric flowrate
- Method 3 Gas analysis for O2 and CO2 and dry molecular weight
- Method 4 Determination of moisture content
- Method 5 Determination of particulate emission
- Method 6 Determination of sulfur dioxide emission
- Method 7 Determination of nitrogen oxides emission
- Method 10 Determination of carbon monoxide emission

Methods 1 to 4 will be conducted in conjunction with Methods 5 and 6 which requires isokinetic emission sampling. **GREENTEK ENVIRONMENTAL PHILS. CO.**, will use stainless steel probe liner and sampling nozzle which is an accepted alternative of the USEPA (DENR approved) methods.

In addition to PM and SO_x sampling, the NO_x testing will be conducted using three samples per test run where one result may be disregarded if they are found to be an outlier from other values. CO samples will be collected in a tedlar bag and will be analyzed using a non-dispersive infra-red analyzer.

The table below describes the implementation of the above sampling procedures:

Parameter	Abbr.	Test Method	Test Duration	Notes
Volumetric Flow VFR Rate		EPA Method 1-4	Minimum of 60 minutes per run (3 Runs)	Performed concurrent with M5 test run
Particulate Matter	PM	EPA Method 5	Minimum of 60 minutes per run(3 Runs)	Performed concurrent with M5 test run
Sulfur Oxides	SOx (as SO2)	EPA Method 6	Minimum of 60 minutes per run (3 Runs)	Performed concurrent with M5 test run
Oxygen	02	EPA Method 3Fyrite	Minimum of 60 minutes per run (3 Runs)	Integrated Tedlar bagsample during M5 test run
Carbon Dioxide CO2		EPA Method 3Fyrite	Minimum of 60 minutes per run (3 Runs)	Integrated Tedlar bag sample during M5 test run
Nitrogen Oxides	NOx (as NO2)	EPA Method 7	Minimum of 60 minutes per run (3 Runs)	Grab Sampling during M5 test run
Carbon Monoxide	СО	EPA Method 10	Minimum of 60 minutes per run (3 Runs)	l integrated Tedlar bag sample during Method 5, same tedlar bag for CO2/ O2

TABLE	1 -	Sampling	Matrix
-------	-----	----------	--------

The facility should operate each unit source continuously during the actual testing. In case the unit is operating intermittently, or the stack test ports did not comply with the Method 1 requirements, only gaseous pollutants will be tested such as SOx, NOx and CO including gas analysis of CO2 and O2. Three replicate test runs, about 30minutes in duration shall be performed when the boilers are intermittently.

TEST SCHEDULE AND IMPLEMENTATION PLAN:

Table 2 – Sampling Schedule

Date	Source	Test Run	Notes
June 28 & 29, 2024	One (1) unit 5,013 CFM Verantis Acid Fume Scrubber & One (1) unit Dust Collection Facility System.	Runs 1, 2 & 3	Duration of testing is 7 to8 hours includes set up to actual test per unit source.

The actual run date and time may vary based on the facility process conditions, weather and testing logistics. The Test Team leader will coordinate the specific run plans with the designated facility representative.

TEST PERSONNEL:

Any of the following persons will be involved in the testing:

Danilo M. Palaypay Jr.	-	QA/QC MANAGER
Aaron Jonathan R. Regilme	-	TEAM LEADER
Angelo V. Guevarra	-	QAQC MANAGER
Daniel L. Navidad Jr.	-	TEAM LEADER

Sampling Personnel (any of the following)

Manny Cruz Anthony M. Cabuncal Rodel M. Castante Reynaldo S. Pile Ronnie S. Basa Kristoffer Camarillo

Prepared by:

DANILOM. PALAYPAY JE QA/QO MANAGER

ANGELO V. GUEVARRA

QA/QC MANAGER

SAT NO: 2021-93 / 2023-151

SAT NO: 2023-152

Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU Cordillera Administrative Region Baguio City

 Permit No.
 : 2007-POA-B-141105-043

 Date Issued
 : March 11, 2020

 Validity Period
 : February 17, 2020 to February 16, 2025

PERMIT TO OPERATE AIR POLLUTION SOURCE AND CONTROL INSTALLATION

Pursuant to Rule XIX, Part VI, of the Implementing Rules and Regulations of the Clean Air Act (Republic Act 8749), this Permit to Operate is hereby issued to:

BENGUET CORPORATION – ACUPAN CONTRACT MINING PROJECT Balatoc, Virac, Itogon, Benguet ECC CAR 1012-174-2110 (Amended)

for the emission, discharge or release of air pollutants from the following facilities/equipments (16.359434, 120.658985) installed at the MIII Plant Refinery:

Two (2) units Kerosene-fired Flame Torches of the Acidfying Chamber No. 2 which is connected to the One (1) unit 5,013 CFM "VERANTIS" Acid Fume Scrubber System (No. 2)

and are subject to the conditions specified on the attached two (2) pages.

Recommended by:

Approved by:

NESTOR M. DONAAL OIC-Chief, Clearance & Permitting Division

N032020 12052 PM

MA. VICTORIA V. ABRERA Regional Director

Permit Fee	:	PhP	1,900.00			4702000		January		
		PhP	5.000.00	0.R. N	o.:	4702496	Date:	March January	21, 2020	
Pres. Decree 1856 Fee Documentary Stamp Ta			10.00 30.00			4702000 4700883		January January		
				Page 1 of 3		RECC	RDSU	NITEM	B-CAR	A. 195
0.000	4	0.0		*).		- 12	27 E	5	он <u>-313</u> 015 и/и	ally.
2020	9	00	U		āc:			1	ON:	1 4 22

CONDITIONS:

- This Permit is issued for the permittee to operate two (2) units Kerosene-fired Flame Torches of the Acidifying Chamber No. 2 which is connected to the one (1) unit 5,013 CFM "VERANTIS" Acid Fume Scrubber System (No.2) at the permittee's establishment, Benguet Corporation – Acupan Contract Mining Project, located at Balatoc, Virac, Itogon, Benguet.
- This Permit shall be valid until <u>February 16, 2025</u>, as indicated in the validity period on page 1 of this Permit, unless suspended or revoked by the Bureau.
- The Bureau may modify the Permit by amending any existing condition or imposing any new or additional condition during the period of validity, subject to the provisions of DENR Administrative Order No. 2004-26 (Amending Rule XIX of DENR Administrative Order No. 2000-81, the Implementing Rules and Regulations of RA 8749).
- An application for <u>renewal</u> of this Permit shall be filed not less than <u>thirty (30) days</u> <u>before the expiry date</u> indicated on page 1 of the Permit.
- Page 1 of this Permit shall be posted in a conspicuous location at the premises and shall be adequately framed or otherwise protected against damage.
- 6. The operation of any installation, process activity at this establishment that produces, generates, captures, treats, reduces, controls, emits, releases or disperses air pollutants without a valid Permit to Operate, or in a violation of any of the conditions of this Permit, shall be subject to penalties of not less than ten thousand (10,000) pesos and not more than one hundred thousand (100,000.00) pesos, pursuant to Rule LVI of the Implementing Rules and Regulations of RA 8749.
- 7. The installations, processes or activities at this establishment shall be operated, conducted and managed by the permittee, and the associated plant and equipment shall be properly maintained and operated by the permittee, so that emissions of air pollutants from the establishment, including fugitive or uncontrolled emissions or releases of air pollutants from abnormal or unexpected events, do not cause air pollution in the surrounding air environment or have adverse effects on persons in that environment.
- Without limiting the generality of the previous condition, the permittee shall ensure that the emissions from the regulated installations or processes comply with:
 - The National Emission Standards for Source Specific Air Pollutants as specified in Rule XXV of the IRRs of RA 8749; and
 - The National Ambient Air Quality Standards for Source Specific Air Pollutants from Industrial Sources/Operations as specified in Rule XXVI of the IRRs of 8749.
- The permittee shall submit Self-Monitoring Reports to the Bureau on a quarterly basis in accordance with DENR Administrative Order No. 27 (Series of 2003) and any written instructions by the Bureau based on the following schedule:

Quarter	Coverage	Submission	Quarter	Coverage	Submission
First	Jan Mar.	1-15 Apr.	Third	Jul Sept.	1-15 Oct.
Second	Apr. – Jun.	1-15 Jul.	Fourth	Oct Dec.	1-15 Jan.

- 10. The permittee shall at all times have an appointed or designated Pollution Control Officer (PCO) who shall be the day-by-day contact person between the Bureau and the establishment. The permittee shall ensure that the PCO is familiar with the operations and activities undertaken at the establishment, and the relevant emission sources and air pollution control devices and equipment. The permittee shall give the PCO the authority to implement corrective action in the event of a malfunction, accident, breakdown or other abnormal event that results in emissions that do not comply with emission standards or ambient air quality standards.
- 11. The permittee shall report in writing to the Bureau any malfunction, accident, breakdown, leak, spill or other abnormal or unexpected event which results in emissions to atmosphere that do not comply with the emission standards or ambient air quality standards, or in any other abnormal or unexpected releases of air pollutants. The report shall indicate the nature of the incident or event, its impact on emissions, the time period involved, and any actions or measures taken to control the emissions or releases, remedy any air pollution problems that may have occurred, and minimize the probability of a reoccurrence of the event the release.
- 12. The permittee shall at all times allow entry by the Department or the Bureau an access to any part of the establishment to conduct inspections, gather information, test emissions or take samples. The permittee and its personnel shall not obstruct such officers in the performance of these functions, and shall furnish pertinent information or materials requested from them. The permittee shall comply with any lawful instruction or direction given by the Department or the Bureau at all times.
- 13. The permittee shall not make or allow any alterations or modifications to operations, activities, installations, processes, plan or equipment at the establishment that may substantially change the nature or quantity of the associated emissions without obtaining the approval of the Bureau, including obtaining any necessary Permit to Operate.

WK

Appendix F-1

31 July 2024

Ref. No.: LT-24-241-1-68

MR. FRANCISCO O. FLAVIER Resident Manager BMC FORESTRY CORPORATION Irisan Lime Project., Irisan, Baguio City

ATTN: NARHY C. POMILBAN Pollution Control Officer

Subject: Source Emission Monitoring Report

Dear Mr. Flavier:

We are pleased to submit the final report of the source emission monitoring as a result of our visit to your facility in Irisan, Baguio City on May 28, 2024.

We hope that this report addresses your requirements.

Very truly yours,

EXECUTIVE Vice President

ERA/mla

2nd Floor, VAG Bidg Ortigas Ave. Greenhills San Juan, Motro Manila, Philippines Tel No. (632) 860-6129- Fax (632) 727-9831 Email: Info@bsienv.com Department of Environment and Natural Resources (DENR) ENVIRONMENTAL MANAGEMENT BUREAU

ACCREDITED THIRD PARTY TESTER Certificate No: SAT NO. 2022-72 OSHC-DOLE ACCREDITED WEM PROVIDER

SOURCE EMISSION MONITORING REPORT

one (1) Unit 1.08 MT/hr Vertical Shaft Kiln

BMC FORESTRY CORPORATION

Irisan, Baguio City

DENR SOURCE EMISSION TESTING FIRM ACCREDITATION NO: SAT NO. 2022-72

2nd Floor, VAG Building Ortigas Avenue, Greenhills, San Juan, Metro Manila, Philippines

SOURCE EMISSION MONITORING REPORT (May 28, 2024)

BMC FORESTRY CORPORATION Irisan, Baguio City

Prepared for:

BMC Forestry Corporation Km. 5, Naguilian Rd., Irisan, Baguio City Tel. No.: 445-7177

Prepared by:

BSI 2nd Floor VAG Building, Ortigas Avenue Greenhills, San Juan, Metro Manila Tel. No.: (02) 863 6129; Fax. No.: (02) 727 9831

.

TABLE OF CONTENTS

CONTENTS

PAGE

1

1. INTRODUCTION		4
1.1 PROCESS DESCRIPTION AND OPERAT	10N	4
1.2 REASON FOR TESTING		4
1.3 FACILITY OPERATING CONDITIONS D	DURING THE TEST	4
2. SUMMARY OF RESULTS		5
2.1 CONCLUSIONS		7
3. SAMPLING AND ANALYTICAL PR	OCEDURES	7
3.1 METHODS 1 AND 2 - TRAVERSE POI	NT AND STACK VELOCITY	7
3.1.1 Sampling points		7
3.1.2 Cyclonic Flow Check		8
3.1.3 Flue Gas Velocity		8
3.2 METHOD 3 - FLUE GAS COMPOSITIO	۱۹	8
3.3 METHOD 4 – FLUE GAS MOISTURE C	CONTENT	9
3.4 METHOD 5/6 (MODIFIED) - PARTICU	ILATE MATTER AND SULFUR OXIDES	9
3.4.1 Sample Collection	······································	9
3.4.2 Sample Recovery		9
3.4.3 Sample Analysis		θ
3.5 METHOD 7 - NITROGEN OXIDES		0
3.5.1 Sample Collection		0
3.5.2 Sample Recovery		0
3.5.3 Sample Analysis	I	1
3.6 METHOD 10 - CARBON MONOXIDE.		L
3.6.1 Sample Collection		1
3.6.2 Sample Recovery		1
-		
4.1 PARTICULATE MATTER AND SULFUL	R OXIDES (AS SO2) I	1
4.1.1 Sampling Procedure		1
4.1.2 Sampling Equipment		2
4.1.3 Analysis		3
4.2 NITROGEN OXIDES (AS NO2)	1	3
4.3 CARBON MONOXIDE		4

LIST OF TABLES

TABLE 1.	EQUIPMENT INFORMATION	
TABLE 2.	OPERATING CONDITIONS	
TABLE 3.	VERTICAL SHAFT KILN NO. 1 EMISSION TEST RESULTS	

TABLE OF CONTENTS

LIST OF ANNEXES

- ANNEX A SOURCE EMISSION MONITORING SUMMARY OF RESULTS
- ANNEX B SOURCE EMISSION MONITORING FIELD DATA
- ANNEX C PERMIT TO OPERATE AND FACILITY PROCESS DATA
- ANNEX D ANALYTICAL DATA
- ANNEX E EQUIPMENT CALIBRATION CERTIFICATES
- ANNEX F DENR ACCREDITATION
- ANNEX G TEST PARTICIPANTS
- ANNEX H TEST PLAN
- ANNEX I PHOTO DOCUMENTATION

Z YENVI-SPECIALISTIPROJECTS/1 2024 PROJECTS/PJ-24 201 TO 300/PJ-24 241 BWC FORESTRY/STACK/REPORTS/FR-24-241-1 08 1 DOCX

Emission Test Report Certification

The emission sampling reported herein was performed under the direction and supervision of Mr. Edindo C. Fernando of BSI. The analyses of samples were conducted under the direction and supervision of Mr. Renato M. Gofredo, Jr. of ELARSI, Inc., a DENR-recognized Environmental Laboratory

I certify that the information contained in this report is authentic and accurate to the best of my knowledge.

Signed: Edindo C. Fernando BS1 DENR Accredited QA/QC Manager

Date: 0.7. AUG. 2024

1. INTRODUCTION

This report presents the procedures and results of the source emission monitoring conducted on May 28, 2024 at BMC Forestry Corporation situated in Irisan, Baguio City. BSI was commissioned to conduct the monitoring wherein Mr. Halcy Lemon P. Orquina led the team that administered the source emission sampling with Mr. Edindo C. Fernando as QA/QC Manager. Meanwhile, Mr. Francisco O. Flavier, Resident Manager of BMC Forestry Corporation, served as site contact person during sampling.

The pollutants considered for the source emission monitoring were: particulate matter (PM), sulfur oxides (as SO₂), nitrogen oxides (as NO₂) and carbon monoxide (CO) at one (1) unit 1.08 MT/hr vertical shaft kiln exhaust stack. The source was tested for three runs.

1.1 Process Description and Operation

BMC Forestry Corporation – BC ILP is an enterprise in the Philippines, with the main office in Baguio City. It operates in the Crop Production Industry (https://www.emis.com/php/companyprofile/PH/Bmc_Forestry_Corporation_en_3256166.html) and a producer and supplier of burnt lime. Its Kiln plant located at Km. 5 Naguilian Road, Irisan, Baguio City operates three (3) vertical shaft kilns, three (3) gas scrubbers, two (2) cyclone dust collectors and one (1) jaw crusher.

One (1) unit of 1.08 MT/hr Vertical Shaft Kiln No. 2 was operated at 100% operating rate was tested during sampling, and used low sulfur fuel oil as fuel source.

This report covers the source emission monitoring of the vertical shaft kiln no. 2 only.

1.2 Reason for Testing

The purpose of the monitoring was to verify the company's compliance with the source emission standards of the Department of Environment and Natural Resources (DENR) Administrative Order No. 81 Series of 2000 (Implementing Rules and Regulations of the Philippine Clean Air Act of 1999).

1.3 Facility Operating Conditions during the Test

The equipment information and operating conditions of the facility monitored were summarized in *Tables 1* and 2, respectively.

Source Emission Monitoring Report

Stationary Sou	rce Information	Vertical Shaft Kilh No. 2		
Brand	Name	N/A		
Rated C	apacity	1.08 MT/hr		
Year Installed		No information provided		
	Diameter	- 40 cm		
Exhaust Stack	Height*	14 m		
	Orientation	Vertical		
Air Pollution 0	Control Device	Wet Gas Scrubber		
GPS Coo	ordinates	16°25'9.012"N; 120°33'28.542"E		

Table 1. Equipment Information

*Measured from the ground to the tip of the stack

Stationary Source Information Vertical Shaft Kiln No. 2				
Load During Sampling	100%			
Fuel Used	BFO / IFO			
Fuel Sulfur Content	No information provided			
Fuel Consumption	No information available			
Annual Operating Hours	8760 hours			

Table 2. Operating Conditions

2. SUMMARY OF RESULTS

Table 3 presents the summary of test results of the vertical shaft kiln no. 2 exhaust stack. The test results were compared with the National Emission Standards identified in IRR Part VII Rule XXV Table 2. A detailed description of the test run information and sample calculations used to derive the values in the tabular summary were attached in Annex A.

Three test runs were performed to collect: PM, SOx (as SO₂), NOx (as NO₂) and CO at vertical shaft kiln no. 2 exhaust stack. Three trial tests per run were conducted to collect samples of nitrogen oxides (as NO₂). The raw field data used to prepare the summary reports in *Annex A* was included in *Annex B*. Emissions have been corrected to the standard conditions of 25°C and 760 mmHg on dry basis (unless otherwise indicated). Moreover, in accordance with EMB Memorandum Circular No. 2021-15, the pollutant concentrations from the Vertical Shaft Kiln were not corrected with standard oxygen correction factor since the PTO of the unit was issued before the effectivity of the mentioned EMB memorandum.

BSI-2022-72-24-025

Source Emission Monitoring Report

		Run 1	Run 2	Run 3		
Sampling date		28-May-24	28-May-24	28-May-24	and a subscription of the	
Begin sampling time		1030H	1300H	1505H		
End sampling time		1135H	1410H	1610H		
Parameter	Units				Average	DENR Standard
Average stack temperature	°C	219.7	264.7	281.7	255.3	
CO2 measured in stack gas	%	8.5	8.5	8.5	8.5	
Oxygen measured in stack gas	%	12.0	12.0	12.0	12.0	
Stack gas moisture content	%	6.77	6.94	6.62	6.78	
Flue gas velocity	m/s	15.86	16.42	16.70	16.33	
Actual volumetric flow	m³/min	119.6	123.8	125.9	123.1	
Dry volumetric flow at STP	dsm ³ /min	58.0	54.8	54.1	55.6	
Isokinetic flow rate	%	101.1	100.8	101.2		
Particulate matter data						
Concentration	mg/Nm ³	31.9	27.0	20.7	26.5	150
Annual emission rate	tons/yr	1.0	0.8	0.6	0.8	
Sulfur oxides data						
Concentration (as SO ₂)	mg/Nm ³	24.0	16.4	14.5	18.3	1500
Annual emission rate	tons/yr	0.7	0.5	0.4	0.5	-
Nitrogen oxides data						
Concentration (as NO ₂) *	mg/Nm ³	< 23.6	< 20.4	< 20.3	< 21.4	1000
Annual emission rate	tons/yr	< 0.7	< 0.6	< 0.6	< 0.6	
Carbon monoxide data						×
Concentration	mg/Nm ³	121.4	113.4	128.2	121.0	500
Annual emission rate	tons/yr	3.7	3.3	3.6	3.5	

Vertical Shaft Kiln No. 2 Emission Test Results Table 3.

Annual emission rates were based on one (1) year continuous operation. * Average of three (3) trial tests

2.1 Conclusions

A description of any method deviations and quality assurance assessment was included in *Sections* 3 and 4 of this report. Based on a review of the sampling data, facility operating information, test method description and quality assurance results, the concentration values presented in *Table 3* have passed the criteria to be considered as representative emission test results of the source and are suitable for comparison with the regulatory limits.

Under the Implementing Rules and Regulations of the Clean Air Act (CAA), the standards applicable to vertical shaft kiln no. 2 are as "existing fuel-burning equipment; other stationary source".

In conclusion, the test results indicate that the average emissions from vertical shaft kiln no. 2 exhaust stack:

- comply with the applicable standard for PM emissions;
- comply with the applicable standard for SOx (as SO₂) emissions;
- comply with the applicable standard for NO_X (as NO₂) emissions; and
- comply with the applicable standard for CO emissions.

3. SAMPLING AND ANALYTICAL PROCEDURES

All sampling were undertaken in accordance with US EPA standard methods, viz:

Method I	Sample and Velocity Traverse Point Locations
Method 2	Stack Gas Velocity and Volumetric Flow Rate (S-type Pitot Tube)
Method 3	Gas Analysis for Determination of Dry Molecular Weight
Method 4	Determination of Moisture Content in Stack Gases
Method 5	Determination of Particulate Matter Emissions from Stationary Sources
Method 6	Determination of Sulfur Dioxide Emissions from Stationary Sources
Method 7	Determination of Nitrogen Oxide Emissions from Stationary Sources
Method 10	Determination of Carbon Monoxide Emissions from Stationary Sources

3.1 Methods 1 and 2 - Traverse Point and Stack Velocity

3.1.1 Sampling points

For the vertical shaft kiln no. 1 exhaust stack, the number and location of the sampling points were determined using the procedures of US EPA Method 1 since the equivalent stack diameter was measured to be greater than 30 cm.

7

BSI-2022-72-24-025

Source Emission Monitoring Report

The vertical shaft kiln no. 1 was sampled at a total of twenty-four (24) traverse points. Having two (2) available portholes that are 90° apart, twelve (12) traverse points were sampled for each.

Some of the traverse points of the exhaust stack were less than the criterion of Method 1 for allowable distance from the stack wall of stacks with diameter less than 0.61 meters. These points were relocated 1.3 cm (0.5 in) away from the stack wall.

3.1.2 Cyclonic Flow Check

For each sampling point, the rotation angle was determined using an "S-type" pitot tube assembly, liquid manometer and angle finder in accordance with section 2.4 of US EPA Method 1.

For each test point, the average absolute value of the rotation angle was less than the 20 degrees criterion of Method 1.

3.1.3 Flue Gas Velocity

The procedures of US EPA Method 2 were employed to determine the flue gas velocity and volumetric flow rate using an "S-type" pitot tube in making velocity head measurements (Δp). The "S-type" pitot tube conforms to the geometric specifications of Method 2 and has therefore been assigned a coefficient of 0.84. An inclined manometer built onto the meter console box was used to measure the differential pressures, while flue gas temperatures were measured with chromel-alumel thermocouples equipped with digital readouts.

3.2 Method 3 – Flue Gas Composition

US EPA Method 3 procedures were used to determine the flue gas composition and molecular weight. An "Orsat" sample pump was operated continuously at a constant rate during each Method 5/6 (Modified) sampling run to collect an integrated flue gas sample into a tedlar bag through a separate sample line attached to the probe. Moisture was removed from the sample by passing it through a small impinger charged with silica gel.

The content of each tedlar bag was analyzed using a Fyrite analyzer to determine the concentration of oxygen and carbon dioxide in the sample.

The same bag samples were also used for the carbon monoxide analysis by Method 10.

BSI-2022-72-24-025

Source Emission Monitoring Report

3.3 Method 4 -- Flue Gas Moisture Content

The moisture content of the flue gas was determined using the US EPA Method 4 procedures in conjunction with Method 5/6 (Modified).

3.4 Method 5/6 (Modified) - Particulate Matter and Sulfur Oxides

3.4.1 Sample Collection

A US EPA Method 5/6 (Modified) sampling train was used to extract samples isokinetically from the stack which comprised the following elements:

- a stainless steel nozzle;
- a heated stainless steel probe with "S-type" pitot tube;
- a glass fibre filter maintained at 120°C ± 14 °C;
- four chilled impingers:
 - 1st and 2nd containing 100 mL 3% H2O2;
 - 3rd left empty; and
 - 4th containing 200 to 300 grams of silica gel; and
- a metering console.

Each of the impingers was labeled and weighed.

Three test runs were conducted at the available sampling ports. The actual sampling time was 60 minutes per run.

3.4.2 Sample Recovery

Sample recovery was undertaken at the sheltered area near the source of emission. The filter was removed from the filter holder and placed on a petri dish. The volume of water vapor condensed in the impingers was measured to determine the volume of water vapor collected.

The nozzle, probe and front half of the filter holder were rinsed with acetone, and the interior of the probe and nozzle were rinsed and brushed repeatedly to remove any adhering PM from the inside surfaces. All rinses were collected into a 250 mL glass bottle.

The contents of the impingers 1, 2 and 3 were transferred to a 1000 mL polyethylene sample bottle. The glass sample line between the heated filter holder and the first impinger, the first three impingers and connecting glasswares were all rinsed with distilled deionized water and the rinse was added into the sample bottle.

9

BSI-2022-72-24-025

Source Emission Monitoring Report

3.4.3 Sample Analysis

The filter and sample bottles, together with the blank samples of acetone and H_2O_2 , were submitted to a DENR-recognized laboratory.

The mass of filterable particulate matter collected on the filter and in the acetone rinse was determined in accordance with US EPA Method 5 analytical procedures.

The mass of sulfur oxides in the impinger contents and rinse water was determined in accordance with US EPA Method 6 analytical procedures.

3.5 Method 7 - Nitrogen Oxides

3.5.1 Sample Collection

The sampling of the flue gas to determine the concentration of nitrogen oxides was undertaken in accordance with US EPA Method 7 using a nominal 2 L glass collection flask containing 25 mL of NOx absorbing reagent (Sulfuric Acid-Hydrogen Peroxide) connected to a Borosilicate glass probe sufficiently heated to avoid condensation and equipped with a glass wool filter at the end for particulate matter screening.

During the Method 7 testing, a flask was evacuated to an absolute pressure of 76 mmHg (3 inHg) at most less than the barometric pressure, and the initial flask temperature and pressure were recorded. The sampling train was then checked for leakage not exceeding 10 mmHg (0.4 inHg) in 1 min. The probe was inserted into the stack, connected to the flask and after purging the probe, a sample was drawn into the flask. The flask was then shaken for five minutes. This procedure was carried out thrice for three test runs resulting in the collection of nine samples for the exhaust stack.

3.5.2 Sample Recovery

The NO_x flasks were set at least 16 hours, shaken for two minutes and then the final flask temperature and pressure were measured. The contents of each flask were transferred to a leak-free polyethylene bottle and rinsed twice with 5 mL portions of deionized distilled water, and the rinse water was added into the bottle. Prior to analysis, the pH was adjusted to a value within 9 to 12 by adding 1N NaOH.

BSI-2022-72-24-025

Source Emission Monitoring Report

3.5.3 Sample Analysis

The sample preparation procedures of US EPA Method 7 were applied and each sample was then subjected to colorimetric analysis.

3.6 Method 10 - Carbon Monoxide

3.6.1 Sample Collection

The integrated samples that were collected into tedlar bags were used for the determination of CO in accordance with US EPA Method 10.

3.6.2 Sample Recovery

The tedlar bags were sealed and transported for analysis.

3.6.3 Sample Analysis

The sample was analyzed using a non-dispersive infrared (NDIR) analyzer. The analyzer was flushed with nitrogen and zero setting confirmed. The tedlar bag was attached to the sample input and the gas sample was introduced at a flow rate of about 0.5 L/min by applying gentle pressure to the tedlar bag. The concentration was recorded when the value indicated on the display stabilized.

4. QA PROCEDURES

The US EPA "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III Stationary Source-Specific Methods" was used as a guide to achieve the quality assurance objectives of producing data that are complete, representative and of known precision and accuracy.

4.1 Particulate Matter and Sulfur Oxides (as SO₂)

4.1.1 Sampling Procedure

US EPA Method 5/6 (Modified) was employed to determine the concentration of particulate matter in the gas stream. This method requires the use of Methods 1 to 4 to determine sampling port locations, sample traverse points within the stack, as well as the flow rate, molecular weight and moisture content of the flue gas.

Source Emission Monitoring Report

The quality of the emission test was assured by:

- Ensuring that the test port is located sufficiently distant from both upstream and downstream flow disturbances (such as bends and changes in stack diameter).
- Ensuring that stack gas flow is essentially parallel to the stack walls by conducting a cyclonic flow check.
- Determination of a representative stack gas velocity by the selection of sampling test points appropriate to the stack diameter in accordance with the method.
- · Leak testing of the sampling train before and after each sampling run.
- Testing and calibration of the dry gas meter, thermocouples and temperature displays, pitot tubes, nozzles, and manometer assembly.
- · Ensuring that the temperature of the impinger system is maintained below 20°C.
- Maintaining the filter and sampling probe temperature at 120°C (±14°C).
- Sampling at between 90 110% of the actual gas stream velocity (isokinetic sampling).

The procedure for sampling SOx (as SO₂) was combined with US EPA Method 5 as described in *Section 3.4*. The quality of the test was assured by:

- · The use of freshly-prepared chemical solutions;
- · Care in the recovery of the sample;
- Attention to detail in the analysis of samples in accordance with the US EPA Method 6;
- · The collection and analysis of representative "blank" samples; and
- · Proper calibration and QA/QC checks of all elements of the sampling system.

4.1.2 Sampling Equipment

Copies of various calibration and test certificates were included in Annex E.

Barometer

A calibrated digital barometer was used to measure atmospheric pressure at the platform level.

Probe Nozzle

The probe nozzles were calibrated by the manufacturer and were inspected and checked for roundness before use to ensure that they met the specifications of the method.

Pitot Tube

The pitot tube meets the EPA Method 2 design specifications for "S-type" pitot tubes and was therefore assigned a baseline coefficient of 0.84. After each test, the pitot tube was visually inspected for damage.

BSI-2022-72-24-025

Source Emission Monitoring Report

Metering System

The meter box was leak checked and a calibration was carried out using five (5)-point calibrating orifices in accordance with EPA Method 5.

Post-Test Meter Calibration

A post-test meter calibration was made using the data collected for each of the test runs in accordance with the procedure set out in EPA ALT-009.

Temperature Sensors

An ethanol-filled thermometer with NIST traceable calibration was used to calibrate thermocouples at approximately 0°C in iced water, ambient temperature and approximately 100°C in boiling water. At the completion of each test, the thermocouples were compared to the ethanol-in-glass thermometer at ambient temperature and a continuity check was performed to ensure that the thermocouple read-out trended in the correct direction when subjected to a temperature change.

4.1.3 Analysis

Filters and acetone used in the emission test met the required specifications and Method 5 analytical procedures were employed using a properly calibrated analytical balance.

The mass of sulfur oxides in the impinger contents and rinse water were determined in accordance with US EPA Method 6 analytical procedures.

4.2 Nitrogen Oxides (as NO₂)

The procedure for sampling NO_X (as NO_2) was described in *Section 3.5*. The quality of the test was assured by:

- The use of freshly-prepared chemicals;
- Care in the recovery of the sample;
- Attention to detail in the analysis of samples in accordance with the US EPA Method 7;
- Calibration and verification of linearity of the spectrophotometer; and
- Proper calibration and QA/QC checks of all elements of the sampling system.

BSI-2022-72-24-025

Source Emission Monitoring Report

4.3 Carbon Monoxide

The procedure for sampling CO was described in *Section 3.6*. The quality of the test was assured by:

- Care in the collection of the gas samples to ensure that they are representative of the emission;
- Maintenance of a leak-free bag at all stages of sampling and analysis;
- · Calibration of the analytical instrument prior to analysis; and
- Attention to detail in the analysis of samples in accordance with the US EPA Method 10.

ANNEX A

SOURCE EMISSION MONITORING SUMMARY OF RESULTS

		MISSION TEST RES	OL 10 GOMMAN			
		BMC FORESTRY	CORP. ILP			
		IRISAN, BAGU	JIO CITY			
		VERTICAL SHAFT	FKILN NO. 2			
	Sampling date		Run 1	Run 2	Run 3	
	Begin sampling time		28-May-24	28-May-24	28-May-24	
	김 양양에서 한 동안 김 방송한 것 때 귀엽에 다 가슴이다.		1030H	1300H	1505H	
Symbol	End sampling time Parameter	11-11-	1135H	1410H	1610H	
Y	Meter box gamma	Units	0.0001			Average
ΔH	Average ΔH	none	0.9884	0.9884	0.9884	
Pbar	Barometric pressure	mm H ₂ O	63.5	58.0	52.3	
Vm		mm Hg	652.7	651.5	650.5	
	Metered sample gas volume	m ³	1.6272	1,5420	1.5294	
Tm	Average meter temperature	°C	29.8	30.5	29.9	
P _g	Static pressure	mm H ₂ O	10.0	10.0	10.0	
Τ,	Average stack temperature	°C	219.7	264.7	281.7	255
Ds	Stack diameter	cm	40	40	40	
Vic	Volume of water collected	mL	73.4	71.1	67.0	
%COz	CO2 measured in stack gas	%	8.5	8.5	8.5	8
%O ₂	Oxygen measured in stack gas	%	12.0	12.0	12.0	12
Cp	Pitot tube coefficient	none	0.84	0.84	0.84	
VAP	Average of square roots of ΔP	(mm H₂O) [%]	3.350	3.316	3.321	
θ	Sampling run time	min	60	60	60	
D _n	Nozzle diameter	mm	7.89	7.89	7.89	
An	Nozzle area	m ²	4.89E-05	4.89E-05	4.89E-05	
V _{m(std)}	Metered gas volume at STP	Nm ³	1.3684	1.2904	1.2799	
Ps	Stack pressure	mm Hg	653.44	652.24	651.24	
Bws	Stack gas moisture content	%	6.77	6.94	6.62	6.7
Vw(sid)	Water vapour volume at STP	Nm ³	0.100	0.096	0.091	0.1
Mid	Dry mole fraction of flue gas	none	0.932	0.931	0.934	
Md	Dry molecular weight	g/g-mole	29.84			
Ms	Wet molecular weight			29.84	29.84	
10000	Flue gas velocity	g/g-mole	29.04	29.02	29.06	
A ₅	Stack area	m/s	15.86	16.42	16.70	16.3
S	1008 11 N. 1107 83	m ²	0.126	0.126	0.126	
Q _{a(act)}	Actual volumetric flow	m ³ /min	119.6	123.8	125.9	123.
Q _{s(sid)}	Dry volumetric flow at STP	dsm ³ /min	58.0	54.8	54.1	55.
100	Isokinetic flow rate	%	101.1	100.8	101.2	
AOH	Annual operating hours	hrs/yr	8,760	8,760	8,760	
	Particulate matter data					
Mpart	Measured mass	mg	43.6	34.8	26.5	
Cpat	Concentration	mg/Nm ³	31.9	27.0	20.7	26.
	Mass emission rate	kg/hr	0.11	0.09	0.07	0.0
	Annual emission rate	tons/yr	1.0	08	0.6	0.
	Sulphur oxides data			para mana ao	n second	
Msox	Measured mass	mg	32.78	21.22	18 57	
CSOX	Concentration	mg/Nm ³	24.0	16.4	14.5	18.
	Mass emission rate	kg/hr	0.08	0.05	0.05	0.0
	Annual emission rate	tons/yr	0.7	0.5	0.4	0.
	Nitrogen oxides data			- Contraction - Contraction		
CNOx	Concentration	mg/Nm ³	< 23.6	< 20.4	< 20.3	< 21
	Mass emission rate	kg/hr	< 0.08	< 0.07	< 0.07	< 0.0
	Annual emission rale	tons/yr	< 0.7	< 0.6	< 0.6	< 0
	Carbon monoxide data				0.0	- 0
COppm	Concentration	ppm	106.0	99.0	112.0	
	Concentration	mg/Nm ³	121.4	113.4	128.2	121 (
	Mass emission rate	kg/hr	0.42	0.37	0.42	0.40
	Annual emission rate	tons/yr	3.7	3.3		
		, and fr	M.T	23	3.6	3.5

Notes: Italics indicates calculated value

 \mathbf{x}

Annual emission rates were based on one (1) year continuous operation.

NITROGEN OXIDES (as NO₂) EMISSIONS DATA BMC FORESTRY CORP. ILP IRISAN, BAGUIO CITY VERTICAL SHAFT KILN NO. 2

Sample Co	lection			e	WICH THE	20 Mar 10	2	Sample Re-	covery	: 문도		일을 가락을 망망했다.		Concentratio	on Calculation	1991 A 3
Barometric Pressure, Ptuer (in Hg) 29.69						Barometric	Barometric Pressure, Ptarth (in Hg), 29.70						-			
Sample ID	Flask	Flask Volume	Evacuated Pressure	Initial Absolute Pressure	Flask Temp	Flask Temp	Collection Time	Sample ID	Flask ID	Final Pressure	Final Absclute Pressure	Flask Temp	Flask Temp	Volume at STP	Mass Catch	NO _z Cont
	1.112	V,	Pa	P,		T,				Pol	Pr	Temp	T,	Vsc	M _{NO2}	C _{NO2}
4.1.		mL	in Hg	(in Hg)	°C	۴K				in Hg	in Hg	°C	٩ĸ	mL.	рg	mg/Nm ³
SIRITI	BSI T2-F19	2315	23.30	6 39	27.6	300.75	1035H	S1R1T1	95: T2-F19	0.30	29 40	28 7	301.85	1736.8	< 40.4	< 23.3
	BSI T2-F20	2250	23 20	6 49	28.4	301.55	1045H	S1R1T2	BSI T2-F20	0.50	29 20	28.5	301.75	1667.4	< 40.4	< 24.2
SIR1T3	B\$I T2-F21	2310	23.40	6 29	28.3	301.45	1055H	\$1R1T3	BSI T2-F21	0.50	29.20	28.1	301.25	1731.0	< 40 4	< 23.3
Date Collec		28-May-2024		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				Date Rocov	ered	29-May-2024		1.1.1 C		<i>M</i> .	Average	< 23.6

RUN 2

Sample Co	lection							S
Barometho	Pressure, Pber	(in Hg):		25.65			0.000	в
Sample ID	Flask ID	Flask Volume	Evacuated Pressure	initial Absolute Presaure	Flask Temp	Flask Temp	Collection Time	s
		V,	Ρ,	P,		Τ,		
		mL	in Hg	(in Hg)	°C	°K		
S1R2T1	BSI T2-F22	2250	23 20	2.45	27 7	300.85	1304H	
S1R2T2	85I T2-F23	2235	23.30	2 35	27.8	300.95	1314H	
S1R2T3	851 T2-F24	2285	23.30	2 35	28.2	301.35	1324H	
Date Collec	ted 2	28-May-2024	1					D

Sample Re	covery	I. HILL				Concentratio	on Calculation	
Barometric	Pressure, P _{be}	(in Hg)	29.70					
Sample (D	Flask ID	Final Pressure	Final Absolute Pressure	Flask Temp	Flask Temp	Volume at STP	Mass Catch	NO, Cond
	100	Par	Pr	Temp	Tr	Vec	M _{NO2}	C _{NO2}
	-	in Hg	in Hg	°C	٩K	mL	64	mg/Nm ³
S1R2T1	BSI 12-F22	0.40	29.30	28.3	301.45	1973.4	< 40.4	< 20.5
S1R2T2	8SI T2-F23	0.60	29.10	28.2	301 35	1953 5	< 40.4	< 20.7
S1R2T3	BSI T2-F24	0.40	29.30	28.2	301 35	2012 9	< 40.4	< 20.1
Date Recov	recect	29-Mev-2024					Average	< 20.4

Sample Col	liection	10.00	12 1.4.			Sample Recovery							
Barometric Pressure, Press (in Hg) 25.61								Barometric	Pressure, P _{te}	(in Hg)	29.70		
Sample ID	Ftask ID	Flask Volume	Evacuated Pressure	Initial Absolute Pressure	Flask Temp	Flask Temp	Collection Time	Sample ID	Flask ID	Final Pressure	Final Absolute Pressure	Flask Temp	Flask Temp
		V,	Pa	P,		Τ,				Pa	P ₄	Temp	Τ,
		mL	in Hg	(in Hg)	°C	°K				ın Hg	in Hg	°C	۳ĸ
\$1R3T1	BSI 12-F25	2250	23.30	2 31	27.0	300.15	1510H	S1R3T1	BSI T2-F25	0.40	29 30	28.5	301 65
	BSI 72-F26	2230	23.50	2.11	27.0	300 15	1520H	S1R3T2	8SI T2-F26	0.60	29 10	28.6	301.75
	BSI 12-F27	2280	23 50	2.11	27.2	300.35	1530H	S1R3T3	BSI T2-F27	0.50	29.20	28.4	301 55

ourseau and	on Calculation	1
Volume at STP	Mass Catch	NO, Cont
Vec	M _{NO2}	CNO2
mL	pg	mg/Nm ^a
1981 9	< 40.4	< 20.4
1963.4	< 40.4	< 20 6
2016.9	< 40.4	< 20.0
	Average	< 20.3

SAMPLE CALCULATIONS

BMC FORESTRY CORP. ILP

IRISAN, BAGUIO CITY

VERTICAL SHAFT KILN NO. 2

VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS

$$V_{m(std)} = Y \times 0.3921 \times V_{m} \times \frac{P_{bar} + (\Delta H - 13.6)}{(273 + T_{m})}$$

$$V_{m(std)} = 0.9884 \times 0.3921 \times 1.6272 \times \frac{652.7 + (63.5 + 13.6)}{(273 + 29.8)} = 1.3684 \text{ Nm}^{3}$$
VOLUME OF WATER VAPOUR AT STANDARD CONDITIONS

 $V_{w(std)} = 0.001356 \text{ x} V_{lc}$

 $V_{w(std)} = 0.001356 \text{ x} 73.4 = 0.100 \text{ Nm}^3$

PERCENT MOISTURE IN FLUE GAS

$$B_{wn} = \frac{V_{w(std)}}{(V_{w(std)} + V_{m(std)})}$$
$$B_{ws} = \frac{0.100}{(0.100 + 1.3684)} = 6.77 \%$$

ABSOLUTE FLUE GAS PRESSURE

$$P_s = P_{bar} + \frac{P_g}{13.6}$$

 $P_s = 652.7 + \frac{10}{13.6} = 653.44 \text{ mm Hg}$

DRY MOLECULAR WEIGHT OF FLUE GAS

 $M_{d} = (\%CO_{2} \times 0.44) + (\%O_{2} \times 0.32) + ((100 - (\%CO_{2} + \%O_{2})) \times 0.28]$

$$M_d = (85 \times 0.44) + (12.0 \times 0.32) + [(100 - (8.5 + 12.0)] \times 0.28] = 29.84$$
 g/g mole

WET MOLECULAR WEIGHT OF FLUE GAS

$$M_{s} = M_{d} \times \left(1 + B_{ws} \right) + \left(\frac{mol.wl}{H_{2}O} \times B_{ws} \right)$$

$$M_s = 29.84 \times (1 - 0.0677) + (18 \times 0.0677) = 29.04 g/g mole$$

AVERAGE FLUE GAS VELOCITY

$$v_{s} = 34.97 \times C_{s} \times \sqrt{\Delta P} \times \sqrt{\left\{\frac{T_{s} + 273}{P_{s} \times M_{s}}\right\}}$$
$$v_{s} = 34.97 \times 0.84 \times 3.350 \times \sqrt{\left\{\frac{219.7 + 273}{653.4 \times 29.04}\right\}} = 15.86 \text{ m/s}$$

ACTUAL WET FLUE GAS FLOW RATE

$$Q_a = 60 \times v_s \times A_s$$

 $Q_a = 60 \times 15.86 \times 0.126 = 119.6 \text{ m}^3/\text{min}$

DRY, NORMAL FLUE GAS FLOW RATE

$$Q_{s} = Q_{s} \times M_{fd} \times \frac{298}{273 + T_{s}} \times \frac{P_{s}}{760}$$

$$Q_{s} = 119.6 \times 0.932 \times \frac{298}{273 + 219.7} \times \frac{653.4}{760} = 58.0 \text{ dsm}^{3}/\text{min}$$

SAMPLE CALCULATIONS

BMC FORESTRY CORP ILP IRISAN, BAGUIO CITY VERTICAL SHAFT KILN NO. 2

ISOKINETIC FLOW RATE

310	-	P _{std}	× -	100		Ts	+	273				١	/tstd)				
		T _{atd}	^ -	60	- ^ -		Ρ,		- X	vs	х	Mrd	×	θ	×	An		
	=	760		100		219.7	+	273				1	368	4				101 10/
104.5	-	298.15	χ -	60	- x ·	6	53.4	4	- x	15.86	x	0.932	×	60	×	4 89E-05	=	101.1%

PARTICULATE MATTER CONCENTRATION

$$\begin{split} C_{part} &= \frac{M_{part}}{V_{m(std)}} \\ C_{part} &= \frac{43.6}{1.3684} = - - 31.9 \quad mg/Nm^3 \end{split}$$

SULPHUR OXIDES CONCENTRATION Concentration of SO_x as SO_2

$$C_{SOx} = \frac{M_{SO2}}{V_{m(std)}}$$

C_{SOr} = 24.0 mg/Nm³

NITROGEN OXIDES CONCENTRATION Concentration of NO_x as NO₂

$$C_{NOx} = \frac{M_{NO2}}{V_{se}} \times 1000$$

CONVERSION OF CO IN ppm TO mg/Nm³

$$C_{CO(mg)} = \frac{C_{CO(ppm)} \times \text{mol wt CO}}{24.5}$$

$$C_{CO(mg)} = \frac{106.0 \times 28.01}{24.5} = 121.4 \text{ mg/Nm}^3$$

ANNEX B

SOURCE EMISSION MONITORING FIELD DATA

MONITORING LOGSHEET

Facility Information

Facility Name Facility Address Name of Pollution Control Officer Maintenance Supervisor / Engineer **Telephone and Fax Number**

OPPOTR Y BAGVIO CIT KOA IMM

YES

YES

NO

NO

Source Description

Source Type Source ID Manufacturer / Brand of Equipment / Serial No. Equipment Capacity (BHp,MW,MT/hr) Date of Installation (month/year) Date of Modification (that may increase	VERTICAL SHAFT KILN #2 PJ24 241 ST 1.08 MT/HR
emissions) Operational Hours per Year (hrs/year) Operating rate (%)	V 8,760 hrr: 1/ear V 100°16

Air Pollution Control Device

Is there an Air Pollution Control Device (APCD)	attached (to the
source?	499 - 1949 - 940		
Type of APCD			
Date of Installation		-	

APCD parameters (flowrate,gpm,delta P,etc) Is the APCD operating during emission sampling

Fue	Analysis / Information
Type of Fuel used during emission sampling (%S)	U BUNNET FUEL OIL/Industrial Fuel OIL
Original Fuel used	J BFO
Date of Fuel change	
Daily Fuel Consumption (Liters/day)	
Is the Fuel Analysis Available?	YES NO
Will the company provide the Fuel Analysis	YESNO
Please attach the following -Fuel Analysis	x x

Please attach the fol -Fuel Analys -Permit to Operate -APCD Process Logsheet -Source Process Logsheet

liboth Representative

 δ_{i}

METHOD 1 - TRAVERSE POINT LOCATIONS

Facility	Nome	- RIVICIENTE	Warm I	Plath Rear	If more than 8 and 2 diameters and if duct
Address	1	- INKEVILLAN	ROAD,	RISAN, BAGULO	
Bource		1208M1/DR	VERICAL	SHAFT KILN H	
Person	nel / Date	IEUE, MPD, K	Mr. CAS.	MOL JET	JIAMETERS Velocity A a Particulate
Stack / P	onis	Type of Stack	Circular	Rectangle	
		No. of Ports Available		ng	
		No. of Parts Used Port Inside Dismaler, cm		R	Tust Pert 1.6
Dimensio		Far Well to Outside of Port	m(m)	49	
Demanan	200	Part length, cm (b)		9	
	lingram of test	Stack Dlameter or Depth.cm			
kooeb	on (s) on bask	Stack Width (if reclangie), c Stack Length (if rectangle),	the second s		24 or 25
0	f this sheet	Equivalent Stack Diameter,	Contraction of the second s		
		Area of Steck, cm ²			DISTURDANCE DRAW HORIZONTAL LINES THROUGH UPSTREAM AND DOWNSTREAM
Distance	to Flow Distu		Distance,		CHAMETERS AND USE THE HIGHER HUMBER OF POINTS
		Upstream (A) Downstream (B)	185		-
					Equivelant Diamoter (for ractangular ducts):
Number	of Traverse Po		anticulate Traverse.	Minimum # Require 2-4	De = 2 * Depth * Width / Depth + Width)
		F	Vetocity Theverae	16	D5=2*()*()/()+()=
1	# of Ports used	2	# Pohb / Port	te Used 24	
		Number o	Traverse Pol		LODATION OF POINTS IN STRULAR STACTS OR DUCTS
Paint	Fraction of	Dist. From	Port Length	Dist, From Edge of Port	(Fraction of stack disublet from inside web to traveree polys) 2 4 5 6 10 12
No.	Stack Cla.	0,84	9	9.24	1 .148 .097 .044 .032 .028 .021 2 .854 .260 .148 .108 .062 .567
1	0.021		4		3 760 298 194 146 118 4 933 764 223 226 117
2	0.047		9	11.42	5
3	0.113	4 72	-	13.72	7 .045 .774 .844
.4	6.77	7.09	9	16.08	
5	0.250	10 . 0	9	11 e	0
6	0.362	14.24	9	13 .24	319
7	0.649	X .74	9	34 n	LOCATION OF PONTS IN RECTANGULAR STACKS OR DUCTE
6	6.70	30 0	9.	39.0	(Fraction of et.ok diameter from inside wall to traverse point) 2 3 4 5 9 7 8 9 10 11 12
9	0-827	72.94	9	41. 92	1 250 .167 .125 .100 .963 .071 963 .058 .060 .045 .042
10	0.802	35.78	9	49 28	3 .633 .628 .500 .417 .367 .313 .270 .250 .227 .409
11	0 953	37 . 12	9	46.32	5 500 750 843 583 500 410 499 375
12	0.974	39 .14	9	48.14	7 929 813 322 550 591 542
			1		8
13			1		10 11 11 11 10 10 10 10 10 10 10 10 10 1
14					12
15					talgest of pt-
18					
17					Notea/Remarks:
18					
19					
20					- to
21					Team Leader / Date: H4 OFWINA 124 MAY
22	1				Tealit reader i hate 10.1 Alter 10.1 10.1
23	1		T		
	1.		1		
24					OMOGIDANE EI CI FERNANDO 1261149
	1				
25		h e circular duct, the probe is			///

ł

San Juan City, Matro Manila, Philippine Tels. 853-6129= Fax (632) 727-5831

....

1

.1

1

. :

EPA METHODS 1 & 2 GAS VELOCITY and CYCLONIC FLOW CHECK

	Pitot T	ube Leak Check	40/130	daard daarda daaraa ahaa ahaa ahaa ahaa
	Static P	ressure, mm H ₂ O	60	-
Me		at which Traverse Pt	130 130 120 CAS	- - -
Traverse Po	pint	Velocity Pressure (mm H₂O)	Temperature (Pegrees C)	Angle Which Yields Null (degrees)
A -	19	0.6	180	12
	11	10.4	180	12
	10	10.6		10
	9	110	185	/>
	8	1.0	190	7
	7	11.0	AU	8
	6	1124	190	8
	5	11.4	1 ja ?	l)
	4	11:0	185	/0
	3	160	185	10
	2	10-6	130	In .
	1	10-6	190	12
B -	12	10.6	180	12
	11	(orlo	186	12
	10	11.1	135	10
****	9	11.0	185	10
	B	4.4	190	3
	7	11:4	195	8
	6.	1.4	140	3
	9	11.0	195	10
	4	11.9	Br	18
	3	66	195	10
	2	[0.4	190	12
	1	[0.y	(3=	<u> </u>
Average		NAME 3.204	185.0	
		5 (02= 80 ; BWS=	1 (63, -	present ly choise The

ű,

ISOKINETIC FIELD DATA SHEET METHOD(s) 4

ł

Facility Na	me	BM.						Test Date		57	18m	
ddress		Bag						Job Numbe		1024	-ay/	
Source		5,0	1					YearInstalk	ed			
Control de	vice		/					Field Perso		1		
Contact Pe	erson			PD Multical Inc.			Contraction of the Charter	Operations	Signature	10	AND DESCRIPTION OF A DE	an annound survice August
Filter ID	Tan	e(s)	Barometric (mm	Static	Notice and the second s	Meterbox	nit en columpion de la color	No	zzle	Pilot Tub	98	Proba
365-67	4 0-3	215	Hg)	(mm H ₂ O)	ID#	Gamma	DeltaH @	IDi¥	Dia.	1D#	Ср	ID#
		in the second	652.2	-10.0	BITY	6.9834	47.1744			PARTO	0-84 000	TAN
					Sample T	rain Leak Ch	ecks			1	Fyrites	
Run No.				Initial		Int	erim		Final	Time	%02	%CO2
K Factor			Vacuum, mm Hg	150					pas	09/4/T	120	20
Pitot Leak (Leak rate, m³/m	Ø					0	0936 4	1 20	8.0
Pretes	st /98	110	Start Volume	83. 224	10			. 3	7.8990	ORSAT Leak Cheo	dr	ole
Post-t	est /2	2/140	Stop Volume	83. 22 · 33 no	10			8	3. 2990	Ci gs8 relbe?		81 M4
Porte &	Ti	THE	1	ent at all a forfici families and	Delta H	Delta H	Gauge	1	and a contract of Table			and good and survey of
Points	Clock	Test	DGM reading	Pitot Reading	Calc.	Actual	Vacuum	1	1 martin	Temperature 4		
	(24-hr)	(min)	(n13)	(mm H ₂ O)	(mm H ₂ O)	(mm H ₂ O)	(mm H ₂ O)	Slack	DGM	Probe	Filter	Imp. Exit
TAC	09/04	0	83.2500	120		40	60	126	24	no	110	18
4			-						1			
	09/54	5	22 .3390	120		- gr	6.0	176	24	120	In	18
								1	,			
	64 2014	10	83 + 44.20	12.0		40	40	134	24	120	200	1/2-
			2									
	onn.	71	181 . 44 410	12.1		40	64	h.	Zy	mo	po	17
		/						100000		1 12:		1-1-7-
	04324	.20	13. Co	92-0		40	4.0	126	4	126	121	177
			18	12					20	++	1.	10
	oggnu	W	13.7620	12.0		40	6.0	185	29	117	116	18
		30	8									
Arte	69404	20	9.8546									
					ļ					+		
						h						
										++		
										+		+
										++		
•····								+				
						1.	1			++		
			+							++		
							1	1				1
• • • • • • • • •			+		1		1	1		1		
										1		
						1	1	1				
			1				1	-		1		
	1		1			1	1	1		1		T
			1		1		1	1.	1			1
and the second second			محمد محمو محمول	COLOR FOR COLOR	hoopmanyses	desetament in routing	approximate and	of the matter second	levenese restance data	adus anarapate	and the second	NOC & A PRINT OF BRIDE
		Run Tim	Total Values	RMS Delta P	1	Delta H	High Vac.	TS Stack	Tmətər	٦ /		
		Run Tim				4AX9	1	Avg	Avg	- /	1	
		30	0. 6196	3,469		Louw we ment of a	18.0	185.83	24	1/1	/	9

ENANTOI [Jary QA/QC / Date: Yun Team Leader / Date: Department of Environment and Natural Resolutors (DENR) ENVIRONMENTAL INANAGEMENT BUIEAU ACCREDITED THARD PARTY TESTER

2nd Floor, VAS Bldg. Onlgas Ava., Graenbills San Juan Gry, Metro Manifa, Philippiwa

Tels. 863-6123 + FOH (682) 727-9831

FYRITE ANALYSIS DATA SHEET

Facility	BAC		Fuel Type	FB-IZ LSF
Town/Province	18 a quio lite	<	Fyrite ID	FIP-12
Test Location	s, s		Analysis Location	IN SIN

Run No.	1	Date: 22 May 24	Bag ID Sim	Operator (Signature)	10
		-	% CQ 2	%O2	% N 3
Run Time		Time of Analysis	Reading (A)	Value (B-A)	Value (100-C)
Start	105014	11384	3.5	124	
		114219	8.5	1240	
Stop 113C1-1		114774	2.5	1240	
Leak Chec	k 🗌				
		Avg	8.0	trie	79.5

		% CO 2	% O 2	% N 2
Run Time	Time of Analysis	Reading (A)	Value (B-A)	Value (100-C)
Start 1800 A	141412	8.0	2.0	
	14171+	8.5	120	
Stop 1410H	14224	2.5	(2.0	
Leak Check 🖾			1	
	Avg	8.5	12-0	79.5

1		% CO 2	%02	% N 2	
Run Time	Time of Analysis	Reading (A)	Value (B-A)	Value (100-C)	
Start / 50.94	16144	8.5	120		
	14174	8-5	12.0		
Stop / 1/0/1	1624	85	12.1		
Leak Check		and the second			
	Avg	9.5	1200	79.5	

Team Leader/Date:

-

May my QA/QC / Date:

2nd Floor, VAS Bids, Orsigas Awe., Greenhills Sen Juan City, Metra Manila, Pielippinos Tela, 263-5529 - 622 (552) 727-9531

Department of Environment and Habuni Researche (DBNR) ENMRUNNDITAL LANAGENENT BURBU AGCREDITED YKIRD PARTY TISTER

 $\mathbf{a}^{\mathbf{i}}$

-

METHOD 4 - MOISTURE ANALYSIS DATA SHEET

Facility	IBMG FOREST	RY CORPORATIO		PROJECT (ILP)
Address	IKM 5, NAGILIAN		BAEVIO CITY	
Source	1.08 MT/AR V		VIN NO.2.	
Recovery Loaction	INSITU (SER	NRE VEHICLE)		na kanala sa
Run Number	MOISTIRE RIN	PM-1	PM-2	PM-3
Test Date	28 MAY 2024	28 MAY 2024	28 MAY 2024	NAY 2024
Recovery Date	28 MAY	MAY 2024	MAY 2024	MAY 2124
Recovered By	ECF HPD			
Impinger 1_100 ML	D, I, H20	38 H202	3% H9 D2	3/4 H202
Final Weight, g	725.5	741-1	799.3	742.7
Initial Weight, g	719,0	7/515	713. 4	£14,8
Net Weight, g	11.5	25.4	31,2	27.8
Impinger 2 100 ML	D. L. HOD	3% 4202	3% H2A2	37 4209
Final Weight, g	7043	7221	217.4	720 11
Initial Welght, g	694 5	691.4	693.1	6927
Net Weight, g	4,7	31.5	ery, c	27.4
Impinger 3 EMPTT	EMPTY	Empty	EMPT9	EMPTY
Final Weight, g	4168	415.7	2.213	6104
Initial Weight, g	607.9	610.3	610.0	Gell.
Net Weight, g	4.0	5.4	5.4	9,5
Impinger 4 2019+3010g	L'ILLA GEL	SILL GA GEL	ISLUCA GEL :	A. SILICA GEL
Final Weight, g	933.9	9447	949.6	9480
Initial Weight, g	927.9	933.8	9 39.7	940.7
Net Weight, g	6.2	10.9	9.9	7-3
Impinger 5				14 ₁
Final Weight, g			5 	1
Initial Weight, g			200 - 100 100 - 100 100 - 100	
Net Welght, g			Construction of the Person of	and the second
Impinger 6			· · · · · · · · · · · · · · · · · · ·	
Final Weight, g				
Initial Weight, g				
Net Weight, g			Particular spectrum and as Social and Aligo is Disasting	
Impinger 7				<u>а</u> .
Final Weight, g	l			
Initial Weight, g				
Net Weight, g	L			
Total Catch, g	The s	73.4	L714	> (70
Silica Gel Spent, %		CONTRACTOR OF CONT	Edit	

2ed Root, VAG Bløg, Drugas Ave., Greenhills San Juan Gry, Metro Manile, Philippines Tols, 883-6123+ Fox (632) 727-9831

The second se

Department of Environment and Natural Persones (DE123) ENVIRONMENTAL MARAGEMENT (VIREAU ACCREDITED THIRD PARTY TESTER

÷

+

÷

ISOKINETIC FIELD DATA SHEET METHOD(s) <u>ち/G</u>

1.1		1 ALIVI	O FOFFS	1157 14	DRPIL	U.F.		Test Date		128 MA	7 2024		
ddress		IKM 5	M.S. NAGULIAN ROAD, IRISAN, BARING CITY						Job Number		A1.51	RUNI	
ource		1.08 N	17/hr. VERT	ILAL SHAF	T KILN	I NO.	2	Year Instal	led		0		
control de	evice		<u></u>	A				Field Perso	onnel	E/F. HPD	ALK MS	L.CAC.T	
Contact Person IMS. NARTY C. LOMILBAN					4	Operati		Operations	Operations Signature		A A A A A A A A A A A A A A A A A A A		
Filter ID	and the second se	re(s)	Barometric (mm	Static	1	Materbox	NEA HOUSE AND PERFORMANCE	N	ozzie	Pilot Tu	be	Probe	
603	St 0,	3410	Hg)	$(mm H_2O)$	ID#	Gamma	DeltaH @	1D##	Dia.	1D# /	Ср	ID#	
			452.7	10.0	BS1-T2	6.9884	42. 1824	TIMY	7.75	Dicon	1.87 5	PAGAN	
					Sample T	rain Leak Ch		4-6-6	In tradition	1	Fyrites		
un No.	1			Initial		In	lerim	- Participation - A grade	Final	Time	%Oz	%CO2	
Factor	1	.CPN	Vacuum, mm Hg	15,0					120	109374	1 APO	120	
tot Leak (Checks		Leak rata, m³/m	ø					0	1236	pi	Concession of the Owner water of the Owner o	
Prete	- W	9	Start Volume	83. 2008				2	5.646	ORSAT Leak Che	and the second s		
Post-1	test	18/14	Stop Volume	83. 20 98 83 90 8				1	5.6430	Tedler Bag ID	E124	241 5181	
Ports &	T T	ime	Concernance of the second	V	Della H	Delta H	Gauge			a mang mpang ang mpang mpan Pang mpang	nannaisleiteitein Istreveisen jass	Conference of the second s	
Points	Clock	Test	DGM reading	Pilot Reading	Calc.	Actual	Vacuum	1		Temperature	°C		
10.5453657	(2.4-in)	(min)	(°m)	(mm H ₂ 0)	(mm H ₂ O)	(mm H ₂ O)	(mm H ₂ O)	Stack	DGM ·	Probe	Filler *	Minp. Exil	
1 12	10300	0	8.0110.	10.6	6012	60	6.0	190	Ve :	116	1/0	12	
11	1		A 10748	10.10	60.12	60	6-2	40	Ro	17	110	M	
10	(374	5	84, 1426	10.4	G6.12	20	60	AD	He '	17	ile	10	
q			84.2004	11.0	6237	62	6.0	200	26.	126		15	
8	10404	110	89. 2914	11.0	(2.37	a	6.9	200	200 .	127	hall 8	16	
Ÿ.			84 - 39R	11.0	62.7	632	6.0	205	28.	127	17	16	
6	(041711	115	84.4090	12:0	lindy	68	70	20	28	14	112	19	
Š			84.4710.	12.0	43,06	48	8.7	220	28.	122	116	172	
4	10204	20	94-368	120	18.0	48	8.5	ars	29	hi	170	11	
3			84-6160	11.0	62.39	62	25	2.20		102	118	11	
2	fosalt	25	94- 6964	11.0	62.79	62	- 8.5	228	30	119-	130	11	
1			89. 7790	11.0	62.97	62	.10	278	31.	m	125	12	
0	1 out	30	84. 3304									1	
					· · · · ·								
- 12	1001	30	848304.	11.0	42.73	ca .	10	220	31	11.2	179	14	
11		- 0	89.9006	11.0	62.23	42	10	no	31.	114	125	19	
10	11011	35	84,94:32	11.2	42.7	62	10	225	31.	ho	125	1.3'	
-2	200	11 31	85.092	11.2	63.52	64	10	227	31.	ne	110-	13	
<u> </u>	11100	.40	85.1190	11c	63.1	the second se	10	230	31.	1/21 -	117	14	
	110	Ar	25.7824	1/12	47.12		10	234	72".	120	120	13	
6	112010	45	A.25 20	2.0	(8.04	.68.	105	236	32:	://7	122	19	
5		EA	20.9244	12.0	48-04	42	10-5	236	32-	17	129	14	
- 4	liste	50	85.3966	2.9	68.06		10.5	234	32.	116	122	19	
3	lindi	22	25.4054	11.0	laz-17	62	10.5	230	73 .	m	127.	1cz	
	11304	55	20.4770	11:0	6237	52	10.5	2.80	33	120	110	15-	
-1	112-	0	05.5000	lin	67-33	62	16.5	210	33	122	116	K	
	11304	60	85. 4382		State of Street or other							the state	
												-	

Delta H TS Stack Trapter Run Time Total Volume RMS Delta P High Vac. Ava 219.67 *Avg Avg 6230 60 3-35 63,5 10.5 . 29.79 Team Leeder / Date: H.P. ORDUINA / 29 MAY 24 E.C. TERMANOD 29 MAT 24 QAVQC LDate:

2nii Floor, VAS Bidg, Orliga Ave, Greenhiis Son Juan City, Metro Manio, Philipphyos Tels, 865-0129+ Fax (692) 727-3831 ţ

ISOKINETIC FIELD DATA SHEET

acility Nar	ne	DMI	FORESTA	St. P.P.I.	and an	LUL	[]	Test Date		20, M	1 41	Am
ddress			URISAN RI		ULLAN,	PAGU	1 Lity	Job Numbe		1J1A	24151	KVN 2
ource		1109 N	17/MR. VERT	ICAE SHA	PT KILA	1 NO.	2	Year Install		CAP TH	N DELVEL	1000
ontrol dev	vice							Field Perso		EETIH	DEMEN	IST CAT
ontact Pe	rson	Ms.	NARHY CI	POMILISA	J			Operations	Signature	A		
Filter ID	Tar	e(s)	Barómetric (mm	Static .		Meterbox		No	zzie	Pilo	Tube	Probe
565 0	5 0	3610	Hg)	(mm H ₁ O)	ID#	Gamma	DeltaH @	1D#	Dia.	ID#	Ср '	1D#
			641.5	100	BSIJZ	0984	43.1704	1713-4	7.25	pr-GATTA	20.84 5	177 418
					Mr. M. L L	ain Leak Ch				T	Fyrites	
un No.	2			Initial		ากเ	erim		Final	Time	%O ₂	%CO2
Factor	57	44	Vacuum, mm Hg	15.0					140	12041	1/20	1,00
itot Leak C	hecks		Leak rate, m³/m	0			*		0	13474	120	8-0
Protes	170	1.114	Start Volume	85.69	00			2-	7.7014	Fyrite System		
Post-te	1111	1126	Stop Volume	85.65	and the second se			8	2.2014	Tedlar ID	PJ24241	SIRIC
		- and the second	4			Dolta U	Course	T				
Ports &		me Test	DGM reading	Pitot Reading	Delta H Calc.	Delta H Actual	Gauge Vacuum	1	Te	mperature	C	
Points	Clock (24-hr)	(min)	(m ³)	(mm H ₂ O)	(mm H ₂ O)	(mm H ₂ O)	(mm H ₂ O)	Stack	DGM	Probe	Filter	Imp. Ex
5-19	(3DH	Λ	125.6530	10.6	55.24	54	6.0	254	28.	IK	116	14
17	1 Jurpa	9	85 7110	10.6	(S.H.	CL.	6.0	234	23	m	119	h
- 101	13077-	15	85-7740	10.4	5024	N	6.0	255	78.	120	120	10
-18	1.2011-		85, 2504	11.0	57.55	\$8	60	160	28'	m	\$109	9
A	BIOF	10	851: 9240	11.0	57.35	13	6.5	260	28-	124	119	9
	19100	1 le	85:9960	11.0	5735	B	8.0	240	28	In	117	9
	111	15	35.0682	11.4	59.44	60	.8.0	Not	29	124	114	8
<u> </u>	13171	1.2	86 320	11.4	\$9.44	60	8.0	165	301	12	The	9
		20.	24: 1994	11.0	57.35	38	1	No	30.	12c	123	8
-4	Mels	120.	10 11.50	11.0	5735		- 0	260	30.	W7	120	10
~ 7		25	26-3270	1.9	\$7.75	3	9.0	243	80	118	120	10
	1324	12	84.4083	1	CAR	1	9.0	- Nes	72	120	h	10
STOP	13307+	30	86.4704	1.0	~ 790	28	10	-er		100	1-1-1	11
STUP	101014	24	80.4704									T
5-11	13454	30	34.4704	10.4	\$5.76	54	07,0	Ver	31	112	119	14
B-12	124UN	100	26,5720	104	55.7	186	92	248	35	1/18	119	11
	augh	25	the opposite the second s		152		9.0	24.3	24	124	115	60
1	Burt	100	36.6119	12.6	574	18	10.2	170	32.	m	116	9
2	In	40	36.7996	110	5745	18	100	270	32	1 ng	117	14
	32014	112		114	52.44	40	10	270	3v'	123	IN	10
. 6	13201	45	86. 8118	1114	C9.94	60	10.	000	92 "	129	In	1p
6	1944/	- I-i-i-	869.104	11.9	59.94		10	200	32.	this	m	
	KIROM	50	86.960	11.9		100.	10	7-200	32.	1/21	119	1
- 3	Marry	20	87.0096	- 11.0	57.94		10	270	32.	120	114	11
	The	th	71 1001	11,0	57-17	58	10	269	33 .	The	115	h
	1420	55	87.1096	10	57.31		10	24.9	33 · 33 ·	117	115	D
en	ture	60	87 1920		5771	- 40	100	07.2		11 2		1º
END	14/061	100	1.87 1750					-				1

Run Time Total Volume RMS Delta P - 5920 60 3.314 28 MAY 24

Delta H TS Stack Trnster High Vac. "Avg Avg 244 Avg 39.54 38 10 4 ERNANDO 28 MAY 24

1

QA/QG-/ Date:

Team Leader / Date: HI KOROWNA and Roor, VAG Bids, Orligon Ave., Greenhills

San Juan City, Metro Manila, Philippints -Tels. 863-6129+ For (632) 727-9831

í

ENVIRONMENTAL MANAGEMENT BUREAU A CCREDITED THIRD PARTY TESTER

ISOKINETIC FIELD DATA SHEET METHOD(S) 5/6

Idress	17	4.5. NAGULHA	RY CORF	1 CAN	BAGUID	UTY	Job Numbe	r	PITA	141.51	PTIN
urce	1.	19 Miller VER		line Com	the second se	y	Year Install	ad	IVEL	ET LUL	Rup.
ntrol de	vice	so how were	and all		AV MON	. Led	Field Perso		FREHR	ARMEM	CECA
ntact P		S. NARHY C	POMILO	1851			Operations		AD	HUNE 10	SLU
	And the second sec	TUNNUT IN	LEMILE	DAIN.	Contractor (1) Seller Jones	ferrere etc. Ball to an	operations	cignaturo -	f		-
itter ID	Tare(s)	Barómetric (mm	Static		Meterbox		No	zzle	Pito	t Tube	Prot
5-02	2 6.358	R Ho)	(mm H ₂ O)	ID#	Gamma	DeltaH @	. IO#	Dia	ID#	Ср	10
		100-7	· 10-0	BS1-12	5-9884	43.174	TASC	7.89	PT-GATT	20345	Rep
				Sample T	rain Leak Ch	ecks				Fyrites	
n No.	3		Initial		Int	erim		Final	Tame	%O2	%G
actor	4.78	Vacuum, mm Hg	15:0					140	KIZH	120	180
t Leak (surger and a second	Leak rate, m³/m	-					0	15471	ten	8.1
Pretes	1/30/10	Start Volume	\$7.2/10				2	74	Fyrite System	the second s	1 3
Post-I		A Stop Volume	101				3	1. 12 50	Tedia: ID	1024 241	CIRO
1	100-11	6 1	27 2110				¥I	1. 19 20		116761	- Cpa
orts &	Time			Delta H	Delta H	Gauge		Ter	nperature º	С	
Points		est DGM reading	Pilot Reading	Calc.	Actual	Vacuum					1
10	the second se	nin) (m ³)	(mm H ₂ O)	(mm H ₂ O)	(mm H ₂ O)	(mm H ₂ O)	Stack	DGM	Probe	Filter	Imp.
- 12	15074 () 87.2350	and the second s	49.73	50	60	295	78	127	119	
11		87,3006	10.4	49.73	57	4.2	275	28	12	117	12
10	1004	57.367	1.0	52.60	52	6.5	280	28	124	117	1
g		87.9250	ILP.	5260	52	6.5	202	2/8 .	122	115	10
8	ROB4 1	0 87- 4404	11.0	\$2.60	52	70	980	22.	121	119	D
1		87.5500	11-4	922	54	80	285	· 12 ·	124	120	1.15
6	1204	5 8.4144	11.9	54.2	C4	3-2		-78-	120	m	1 1
5		87.4798	11.9	59.02	14	8.0	785	78.	126	120	11
4	152024	0 57. 7420	1.4	59.0	54	8.0	785	78.	127	107	11
3		37.8104	110	2.60	52	20	280	29.	124	1/8	1
T)	1006 1	5 37.8746	14.0	2.6		9.0	285	29.	nu	1/18	14
- 4		\$7.9784	11.0	52.60	and a second second second	9.0	220.	20	126	122	h
thp	Kana 3	0 87.9460	1.100						1		100
*U1	1 your x	V D/ IIV									
5-12	10494	0 57.9960	10.4	50.68	50	8.5	275	90 .	120	1/-	n
-17	-/Smills		Pit	50-62		0	m	30.	100	120	12
-10	10000 0	5 8.1240	1.0	Dileo	12	3.5	230	30	127	1/4	- Aler
- 18	10491	5 8.1740	11.0	52.6:	Contraction in the second second	9.0	280	30	116	107	R
0	imi 1	and the second se	110		52	9.0		30.	117	118	1-
	1504 6	- Care to Martine and the second		5.60	Conception of the law have	9.4	780				1
	in 1	80 9260	11.4	64.52 54.02	54	Construction of the Automation	235	32.	124	119	B
6		5 87 8292	- 44	1 17.02	54	.9.5	285	32:	120	123	13
5	1	6029 19	11.4	54.00	54	10	285	32	m		4
4	16ary S	0 88.5714	11.0	526		10	30	33.	12	10	1 1.
3		88' \$840	11.0	3.60		10	285	33.	120	117	1/
1	1607-1 5	5 98,0412	11.0	\$2.60		10	280	33 .	117	118	11:
a 1		198.7010	11.0	5240	45	NO	788	33	11.6	112	12
ND	16104 G	0 83.7444									

Run Time Total Volume RMS Delta P 5099 GD 3.321 Team Leader / Date: H.P. ORBITINA 28 MAY 24

. Delta H 'Avg \$2.7 TS Steck Tringter High Vac. Avg A 281.46 10 D QA/QC / Date FERMANDO 28 MAY 2024 DESTMENT OF LANCOMMENT AND ANALYSI REQUEST FOR AND ENVIRONMENTAL MANAGEMENT BUREAU A CCREDITED THIRD PARTY TESTER

Ind floor, VAG Blog. Onigas Ave., Greenhills Sais Jubit City, Malino Manita, Philippines

Tols. 863-6129+ Fax (631) 727-9831

METHOD 7 FLASK SAMPLE AND RECOVERY DATA

Facility	BAC
Address	Bagup cta
Source	Si (14/2
Personnel	ELA HOD, MEL MUS, COS
Test Date	28 Meres 24

Monappersont Ser

Heated Probe?	(check)	Yes <	2110	*If No, explain in "Remarks"
Filter Used?	(check)	Yes	No	*If No, explain in "Remarks"
Remarks				

				Barometric Pri Date Performe	essure, Pba	nple Collect ar (in Hg)	25.4	9/25	· 45/2	15.61	Barometi Date Per	ric Pressure, F formed: 2 9	bar (in Hg)	By: 54		mszil	me
Sample ID	Run Number	Flask ID Number	Flask Volume (ml)	Leak Check (<0.4°Hg/min)	Evacuated Pressure Pgi (in Hg)	Flask abs Press Initial Pi, Pbar-Pgi (in Hg) '	1.	Flask Temp, Ti (⁶ K)	Sample Collection Time ² 24hour	Shaken for 5min	Shaken for 2min	Sample Recovered Time ³ 24hour	Final Pressure Pgf (m Hg)	Flask abs.	Flask	Flask Temp Tf ⁶ K	Sample pH Adjusted (9
P	SIRT	KS (SP.	णभार	1	23.30	2.39	275	30.70	103174	-	-	OBISH	5.30	79.40.	8.7	201 .20	-
7	. 14	P.	nso	~	29.20	3.49	28.4	201.5	109974	/	1	622014	0.50	29.20	-	31 7	1
2	6	· Pas	2310	1	37.40	2.29	28-3	807.4	1 10554	/	-	OTR	0.50	29:20	The second	501 72	-
4	BA	F	ngo	~	23.20	24 40	27.7	300 81	1304 H	~	-	0235/2	2.40	29.30	R.3	301 .4	-
-	Ť4	4	nzs	~	23.30	2:30	27:8	30.91	131464	1	-	OR 35H	0.40	29.10	28.2	301 3	c /
2	33	t'n	mor	/	23-30	2:35	28.2	801 .30	13244		-	08 40 11	6.40	29.30 2	5.2	301 .9	6-
9-	BA	FX	no	6	23.30	2.31	27.0	300-15	100H	-	-	R 484	040	99.30	28.5	9.10	8-
1	120	pn		2	23.50	3.21		300,10	ALL DESCRIPTION OF ALL DESCRIPTI	-	-	OR Joh	0.60	29.10	78.6	307.7	r -
	n	Fr	nzo		29. 30	2.21	373	0.30	15306	/		08-15M	250	19.70	28.4	301 .54	1/

Source Oxygen Concentration? 30== 120

Was additional oxygen introduced to the Flask?

Yes No_

 1 Pr \sim Pbar - Pgi, Flask must be evacuated to within 3 inches of mercury (Hg) of the absolute pressure (barometric pressure). 2 Additional oxygen should be introduced to the flask if the source O_{2} is below 3% 3 Flask must stand for 16 hours or greater after sampling before recovery can be performed.

al at

Checked By:

 Ind Past, VKS Bidg, Oxlgas Jun, GrootAlls See Jun Ob., Netto Munila, Philosoet , Tels. 103-6125- Fee (622) 323 5421

14

MAR

DEFINITION OF ENVIRONMENTAL MANAGEMENT SUREAU ENVIRONMENTAL MANAGEMENT SUREAU ACCREDITED THIRD PARTY TESTER

1

QA/QC / Date: ..

ANNEX C

PERMIT TO OPERATE AND FACILITY PROCESS DATA

Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU Cordillers Administrative Region (CAR) Cordillers Administrative Region DENR Compound,Gibrater Beguio City Tel Nc: (074) 448-84-40

Permit No: PTO-OL-CAR-2021-09103-R Application Type: Renewal

Date Issued: 30 Oct 2021 Date Expiration: 30 Oct 2026

PERMIT TO OPERATE Air Pollution Source and Control Installations

Pursuant to Part IV, Rule XIX of the Rules and Regulations of R.A. 8749, authority is hereby granted to:

BMC Forestry Corporation (Irisan Lime Kiln)

Km. 5 Naguillan Road, Irisan, Baguio City, Benguet

subject to the following terms and conditions:

TERMS AND CONDITIONS

- This Permit is issued for the permittee to operate the following facilities/equipment described below at the permittee's establishment located at the above-mentioned address (geolocation of entrance gate: 16,419336°, 120.557358°);
 - · Air Pollution Source Installations/Equipment:
 - Three (3) units Vartical Shaft Kiln (Cap.: 1.08 MT/hr; Fuel used: Regular Fuel Oil or Bunker Oil) for the purpose of calcinations of limestones (geolocation of kiln plant building 16.419198", 120.557922");
 - · One (1) unit Jaw Crusher (Cap.: 1 MT/hr; With Conveyors) for the purpose of pulverizing the quickilmes;
 - One (1) unit Lime Storage Silo (Cap.: 90 MT);
 - One (1) unit Aboveground Fuel Storage Tank (Cap.: 60,000 liters; Fuel: Regular Fuel Oil or Bunker Oil; Vertical Cylinder);
 - Seven (7) units Aboveground Fuel Storage Tanks (Cap.: 15,000 liters each; Fuels: Regular Fuel Oil of Bunker Oil; Horizontal Cylinders);
 - One (1) unit Standby Generator Set (Cap.: 200 kW / 250 kVA; Make: SEALEY; Model: SLC250GF; S/N: 151118001; P.F. = 0.8; Silent-type): Alternator/Generator (Make: MBH; Model: XN274G; S/N: 31512006; Cap.: 180 kW / 225 kVA, continuous; P.F. = 0.8) primed by Diesel Engine (Make Chongqing Cummins; Model: NT855-GA; S/N: 41226017; Cap.: 257 kW @ 1800 RPM, max);
 - One (1) unit Standby Generator Set (Cep.: 75 kW; Open-type): Alternator/Generator (Make: Caterpillar) primed by Diesel Engine (Make: Isuzu; Model: E120; S/N: 202587); and
 - One (1) unit Standby Generator Set (Cep.: 200 kW / 250 kVA; Make: DCA; Model: 200DC; S/N: 8221-002; P.F. = 0.8; Open-type): Alternator/Generator (Make: DCA; Model: 200DC; S/N: A73281AC; Cep.: 200 kW / 250 kVA, standby; P.F. = 0.8) primed by Diesel Engine (Make: Cummins; Model: NT-855-G; S/N: 30104629) - all generator sets are installed in the Powerhouse with geolocation of 16.419050°, 120.557808°; and
 - Air Pollution Control Facilities:
 - Three (3) units Gas Scrubber Systems (Cap.: 66 m3/min; Wet-type; 1-unit scrubber is exclusively connected to 1-unit shaft kiln); and
 - One (1) unit Dust Collector and Scrubber System (Cap.: 505.84 m3/m/n; composed of 1-unit 12,850 CFM Cyclone Dust Collector interconnected to 1-unit 5,000 CFM Cyclone Dust Collector with their bottom open and submerged on Water-bed Scrubber) - for the purpose of controlling the airborne particulates/dusts from the sorting, crushing and loading areas (geolocation: 16.419132°, 120.557396°).

This Permit shall be valid until <u>SEPTEMBER 19, 2026</u> (PLEASE DISREGARD THE EXPIRATION DATE INDICATED ABOVE) unless suspended or revoked by the Bureau.

 The Bureau may modify the Permit by amending any existing condition or imposing any new or additional condition from the date of issuance (as indicated above) until its expiration on SEPTEMBER 10, 2026, subject to the provisions of Rule XIX of the Implementing Rules and Regulations (IRR) of the Republic Act No. 8749.

Filing Fae	: Php 600.00	O.R. No.: 1809914 & 1810468	Date : Oct. 11, 2021
Permit Fee	: Php 47300.00	O.R. No.: 1809914 & 1810468	Date : Oct. 11, 2021
PD1856	: Php 10.00	O.R. No.: 1809914 & 1810468	Dale : Oct. 11, 2021
Documentary Stamp Tax	: Php 30.00	O.R. No.: 1809914 & 1810468	Date : Oct. 11, 2021

This is a computer generated certificate. To verify the suthervicity of this file, kindly scen the generated QR Code using your QR Code scenned/youter or visit the OPMS website for detells.

Protect the environment Protect life ...

- An application for renewal of this Permit shall be filed not less than thirty (30) days before the expiry date + SEPTEMBER 10, 2028.
- This Permit shall be posted in a conspicuous location at the premises and shall be adequately framed or otherwise protected against damage.
- 6. The operation of any installation, process activity at this establishment that produces, generates, captures, treats, reduces, controls, emits, releases or disperse air pollutants without a valid Permit to Operate, or in violation of any of the conditions of this Permit, shall be subject to penalties pursuant to Rule LVI of the IRR of RA 8749.
- 7. The installations, processes or activities at this establishment shall be operated, conducted and managed by the permittee, and the associated plant and equipment shall be maintained and operated by the permittee, so that emissions of air pollutants are kept to a practicable minimum. The permittee shall be responsible for ensuring that any emissions of air pollutants from abnormal or unexpected events, do not cause air pollution in the surrounding air environment or have adverse effects on persons in that environment.
- Without limiting the generality of the previous condition, the permittee shall ensure that the emissions from the permitted installations or processes comply with;
 - the National Emission Standards for Source Specific Air Pollutants as specified in Rule XXV of the IRR of RA 8749; and
 - the National Ambient Air Quality Standards for Source Specific Air Pollutants from Industrial Sources/Operations as specified in Rule XXVI of the IRR of RA 8749.
- The permittee shall submit Self-Monitoring Reports to the Bureau on a quarterly basis in accordance with DENR Administrative Order No. 27 (Series of 2003) and any written instructions by the Bureau based on the following schedule:

Quarter	Coverage	Submission	Quarter	Coverage	Submission
First	Jan Mar.	1-15 Apr.	Third	Jul Sep.	1-15 Oct.
Second	Apr Jun.	1-15 Jul.	Fourth	Oct Dec.	1-15 Jan.

- 10. The permittee shall at all times has an accredited Pollution Control Officer (PCO) who shall be the day-by-day contact person between the Bureau and the establishment. The permittee shall ensure that the PCO is familiar with the operations and activities undertaken at the establishment, and the relevant emission sources and air pollution control devices and equipment. The permittee shall give the PCO the necessary authority to take or to direct corrective action in the event of a malfunction, accident, breakdown or other abnormal event that results in excessive emissions or emissions that do not comply with relevant Permit conditions, emission standards or ambient air quality standards.
- 11. The Permittee shall seek accreditation of his/her appointed/designated PCO pursuant to Section 8 of DAO 2014-02 (Revised Guidelines for Pollution Control Officer Accreditation).
- 12. In case of the resignation or termination of the services of the PCO, the Managing Head shall appoint/designate a new PCO. He/she shall inform, in writing, the concerned EMB Regional Office within fifteen (15) days and seek accreditation for the new PCO within thirty (30) days from the date of resignation or termination.
- 13. The permittee shall report in writing to the Bureau any malfunction, accident, breakdown, leak, spill or other abnormal or unexpected event which results in emissions to atmosphere that do not comply with relevant Parmit conditions, emission standards or ambient guality standards, or in any other abnormal or unexpected releases of air pollutants. The report shall indicate the nature of the incident or event, its impact on emissions, the time period involved, and any actions or measures taken to control the emissions or releases, remedy any air pollution problems that may have occurred, and minimize the probability of reoccurrence of the event or the release.
- 14. The permittee shall at all times allow authorized or accredited officers of the Department or the Bureau entry to the establishment and access to any part of the establishment to conduct inspections, gather information, test emissions or take samples. The permittee and its personnel shall not obstruct such officers in the performance of these functions, and shall furnish any information or materials requested by them that is reasonable for them to have. The permittee shall obey any lawful instruction or direction given by the Department or the Bureau at all times.

Filing Fee	: Php 600.00	O.R. No.: 1809914 & 1810468	Date : Oct. 11, 2021
Permit Fee	: Php 47300.00	O.R. No.: 1809914 & 1810468	Date : Oct. 11, 2021
PD1856	: Php 10.00	O.R. No. : 1809814 & 1810468	Date : Oct. 11, 2021
Documentary Stamp Tax	: Php 30.00	O.R. No. ; 1809914 & 1810468	Date : Oct. 11, 2021

This is a computer generated contribute. To verify the authentidity of this file, kindly scen the generated QR Code using your QR Code scenner/reader or visit the QPMs website for details,

Protect the environment ... Protect life ...

15. The permittee shall not make or allow any alterations or modifications to operations, activities, installations, processes, plant or equipment at the establishment that might substantially change the nature or quantity of the associated emissions without obtaining the approval of the Bureau, including the obtaining of any necessary Permit to Operate.

SPECIFIC CONDITION

ENGR. MARIE/PINA L. RODAS

OIC-Chief, Clearance & Permitting Division

.

16. The permittee shall <u>conduct emission testing</u> for the three (3) units Vertical Shaft Kilns through a DENR accredited third party Source Emission Testing Firm <u>twice each year for each year of operation</u> with three (3) sampling runs to verify its compliance pursuant to Memorandum Circular No. 2007-003 (Policy on Compliance and Permitting for Industrial Facilities Relating to Air Quality). However, considering that each kiln is operated in a period of six (6) to eight (8) months, <u>each kiln shall be subjected to two (2) emission testing within that period</u>. The Test Reports will be a part of the requirements for the renewal of this Permit.

Recommended by:

.

.

Approved by:

VICTORIA V. ABRERA ATA Regional Director

Filing Fee Permit Fee PD1858 Documentary Stamp Tax : Php 600.00 : Php 47300.00 : Php 10.00 : Php 30.00 O.R. No. : 1809914 & 1810468 Date : Oct. 11, 2021 Date : Oct. 11, 2021

This is a computer generated certificate. To vanity the authenticity of this file, kindly acan the generated QR Code using your GR Code scenter/reader or visit the OPMS website for details.

Protect the environment ... Protect life ...

 \tilde{k}

Annex

÷ . . .

			Fuel Burning		
ID	APSI	Capacity	Brand name	Type of Fuel	APCD
130795	Vertical Shaft Kiln No. 1	1.08 MT/hr/equipment	N/A	Regular Fuel Oll	Gas Scrubber No. 1 (66.0 m ³ /min)
130797	Vertical Shaft Kiln No. 2	1.08 MT/hr/equipment	N/A	Regular Fuel Oll	Gas Scrubber No. 2 (66.0 m ³ /min)
130799	Vertical Shaft Kiln No. 3	1.08 MT/hr/equipment	N/A	Regular Fuel Oll	Gas Scrubber No. 3 (66.0 m ³ /min)
140793	Standby Generator Set	250.0 kVA	DCA/CUMMINS	Diesel	~
140794	Standby Generator Set	200.0 kW	SEALEY/Cummins	Diesel	
140795	Standby Generator Set	75.0 kW	Caterpillar/Isuzu	Diesel	

Non Fuel Burning								
ID	APSI	Capacity	Brand name	Material	APCD			
30801	Jaw Crusher	1.0 MT/hr/equipment	N/A		Dust Collector Collector System (505.84 m ³ /min)			
40796		90.0 MT	N/A					
	Aboveground/Overhead Fuel Storage Tank		N/A					
140800	Aboveground/Overhead Fuel Storage Tank	15000.0 Liters	N/A					
140801	Aboveground/Overhead Fuel Storage Tank	15000.0 liters	N/A		<u>0.00</u> 5			
140802	Aboveground/Overhead Fuel Storage Tank	15000.0 liters	N/A					
140803	Aboveground/Overhead Fuel Storage Tank	15000.0 liters	N/A		-			
140804	Fuel Storage Lank	15000.0 mers	N/A		-			
	Aboveground/Overhead Fuel Storage Tank		N/A					
140805	Aboveground/Overhead Fuel Storage Tank	15000.0 liters	N/A					

APCD-APSI Mapping						
ID	APCD	Connected APSIs (<name> (id))</name>	Connected APCDs (<name> (Id))</name>			
19030	Gas Scrubber No. 1 (1)	Vertical Shaft Kiln No. 1 (4)				
19907	Gas Scrubber No. 2 (8)	Vertical Shaft Kiln No. 2 (5)				
19908	Gas Scrubber No. 3 (9)	Vertical Shaft Kiln No. 3 (6)				
19909	Dust Collector Collector System (10)	Jaw Crusher (7)				

Filing Fee	: Php 600.00	O.R. No. : 1809914 & 1510468	Date : Oct. 11, 2021
Permit Fee	Php 47300.00	O.R. No. : 1809914 & 1810468	Date : Oct. 11, 2021
P01856	: Phip 10.00	O.R. No. : 1809914 & 1610468	Date : Oci. 11, 2021
Documentary Stamp Tax	: Php 30.00	O.R. No. : 1809914 & 1810468	Date : Oct. 11, 2021

. .

9

ŧ

This is a computer generated certificate. To verify the authenticity of this rife, kindly acan the generated QR Code using your QR Code ecementreader or visit the OPMS website for details.

Protect the environment Protect life ...

April 13, 2024

ENGR. JEAN C. BORROMEO OIC, Regional Director DENR – Environmental Management Bureau Cordillera Administrative Region (CAR) DENR Compound, Gibraltar Road, Baguio City

Dear Director Borromeo:

We are pleased to submit the BMC Forestry Corporation – Irisan Lime Project's CY 2024 First Quarter Self-Monitoring Report (SMR).

For your information and perusal.

Thank you.

Respectfully yours,

BMC FORESTRY CORPORATION By:

miltan NARHY C. POMILBAN Pollution Control Officer

Approved by:

3

FRANCISCO O. FLAVIER Resident Manager/Managing Head

P.O Box 105 Insan, Baguio City *Tel No (074) 445 - 7180 email.toflavier@yahoo.com, npomilban@benguet.com

MODULE 1: GENERAL INFORMATION

Reference No. :26831

Year :2024 Quarter: 1

Name of Plant : BMC FORESTRY CORPORATION - IRISAN LIME PROJECT

Notes :

The Plant/Project has a land area of 18,541 square meters covered by MPP No. 01C-2022-CAR issued by MGB-CAR on March 22, 2022, renewable for five years. The Company maintains its stockyard of about 12,000 metric tons of raw feed for a year of processing. The Plant's projected production is 19,420 MT per year as per the Company's ECC-OL-CAR-2016-0058 issued by EMB-CAR on September 15, 2016. Total production for the first quarter of CY 2024 is 1,620.475 MT. The Plant has three (3) kilns; each kiln is designed to produce 20 metric tons per day. Stack#1 is in operation for the first quarter of CY 2024. Discharge Permit for the Settling Tank with DP No. DP-CAR-23-01505 which is valid until February 13, 2024 was renewed and was issued with DP No. DP-CAR-24-02323 valid until February 13, 2023.

DENR Permits/Licenses/Clearances

Environmental Laws	Permits	Date Issued	Expiry Date
RA 9275			
DP No. 0	DP-CAR-22-06621	2022-09-10	2024-09-10
DP No. 1	DP-CAR-23-05923	2023-06-09	2024-06-09
DP No. 2	DP-CAR-23-05924	2023-06-09	2024-06-09
DP No. 3	DP-CAR-23-05925	2023-06-09	2024-06-09
DP No. 4	DP-CAR-24-02323	2024-02-13	2026-02-13
PD 1586		1.020	
ECC/CNC No	ECC-OL-CAR-2016-0058	2016-09-15	
RA 6969			
DENR Registry ID	0L-GR-CAR-11-008852	2021-04-13	2000-01-01
Transporter Registration	N/A	2000-01-01	2000-01-01
TSD Registration	N/A	2000-01-01	2000-01-01
CCO Registry	N/A	2000-01-01	2000-01-01
Importation Clearance No.	N/A	2000-01-01	2000-01-01
Permit to Transport	N/A	2000-01-01	2000-01-01
Small Quantity Importation	N/A	2000-01-01	2000-01-01
Priority Chemical List	N/A	2000-01-01	2000-01-01
PMPIN	N/A	2000-01-01	2000-01-01
RA 8749			
PO No	PTO-OL-CAR-2021-09103-R	2021-10-30	2023-10-30
PO No	PTO-OL-CAR-2022-02437-R	2022-03-25	2027-03-25

Operation

	Operating hours/day	Operating days/week	# of shift/day
Average	24 hours/day	7 days/week	3 shifts/day
Maximum	24 hours/day	7 days/week	3 shifts/day

Operation/Production/Quality

Average Daily Production Output	17.807
Total Water Consumption this Quarter cm3	181
Total Output this Quarter	1,620,475
Total Electric Consumption	53466

- 1

MODULE 2: RA 6969

A. CCO Report

CCO Item No.	CCO Substance	Common Name/IUPAC/CAS Index Name	CAS No.	Trade Name	Intended Use	Quantity Issued (in CCO)
No records found						

For importers only

CCO Item No.	Importation Clearance No.	Quantity Issued (in IC)	Quantity Imported	Date of Arrival	Port of Entry	Country of Manufacture	Total Quantity Received (annual)
No records found							

For Distributors (importers/non-importers)

CCO Item No.	Name of Client	License No.	Quantity	Date of Distribution	Country of Origin	Country of Manufacture	Total Quantity Distributed
No records found							

For non-importer users

CCO Item No.	Name of Distributor	Quantity	Date of Purchase	Total Quantity Purchased from Distributor
No records found				

For Producers

CCO Item No.	Average Daily Production Output		Quantity of Stock Inventory (Start of Quarter)	Quantity of Stock
No records found				
CCO Item No.	Name of Buyer	Quantity	Date of Purchase	Total Quantity Sold
the second second second				

Used in Production (please fill up only if chemical/substance is not main product)

CCO Item No.	Average Daily Production Output	Total Output this Quarter	Average Quantity Used	Total Quantity Used this Quarter
No records found				

Describe any changes in Production/Process/Operations

Stock Inventory/Waste Chemical Generated

CCO Item No.	Average Quantily of Waste Chemical Generated per month	Quantity of Stock Inventory(Start of quarter)	Quantity of Stock Inventory(End of quarter)
No records found			

Other Information

Manner of Handling Hazardous Wastes	Changes in Safety Management System	Chemical Substitute Plan

B. Hazardous Wastes Generator

HW Generation

HW No.	HW Class	HW Nature	HW Cataloguing	Quantity	Unit	Quantity	Unit
D407	Mercury and mercury compounds	Solid	Toxic (T)	0.00025		0.008	
1104	oil-contaminated materials	Solid	T/F	0.059		0.023	
J201	Containers previously containing toxic chemical substances	Solid	Toxic (T)	0.0014		0.008	
M506	waste electrical and electronic equipment	Solid	Texic (T)	0.001		0.0035	
1101	Used industrial oil	Liquid	T/F	0		0.017	

Waste Storage, Treatment and Disposal(please fill-up one table per HW)

HW Details HW No.: D407	Qty of HW Treated :0.00	Unit :
Storage Name : ILP Hazardous Waste Storage Facility	Method Provided with secondary containment (drums) to prevent breakage with proper label and placard.	
Transporter Name . : Treater Name . : Disposal	Date : Method :	Date .
ID	Name:	Method:
HW Details HW No.: 1104	Qty of HW Treated :0.00	Unit :
Storage Name : ILP Hazardous Waste Storage Facility	Method Provided with secondary containment (drums) to prevent leakage with proper label and placard	18
Transporter		

	Name	Date :		
Treater	Name . :	Method :	Date	
lisposal ID		Name	Method.	
W Details	HW No. J201	Qty of HW Treated :0.00	Unit :	
Storage Name⊹IL	^p Hazardous Waste Storage Facility	Method :Provided with secondary containment (drums) to prevent leakage with proper label and placard.		
Fransporter	Name			
Treater	Name .:	Oate :		
Disposal	Name . :	Method :	Date :	
- spear	ID .:	Name	Method:	
HW Details	HW No.: M506	Qty of HW Treated :0.00	Unit	
Storage Name : ILf	HW No : M506 ^D Hazardous Waste Storage Facility	Qty of HW Treated :0.00 Method :Provided with secondary containment (drums) to prevent breakage with proper label and placard.	Unit .	
Storage Name : ILf Fransporter	² Hazardous Waste Storage	Method Provided with secondary containment (drums) to prevent breakage	Unit :	
Storage Name : ILf Fransporter Freater	⁹ Hazardous Waste Storage Facility	Method :Provided with secondary containment (drums) to prevent breakage with proper label and placard.	Unit : Date :	
Storage Name : ILf Transporter	⁵ Hazardous Waste Storage Facility Name	Method :Provided with secondary containment (drums) to prevent breakage with proper label and placard. Date :		
Storage Name : ILf Fransporter Freater	⁵ Hazardous Waste Storage Facility Name Name	Method :Provided with secondary containment (drums) to prevent breakage with proper label and placard. Date : Method :	Date	
Storage Name : ILf Fransporter Freater Disposal	⁵ Hazardous Waste Storage Facility Name Name ID :	Method : Provided with secondary containment (drums) to prevent breakage with proper label and placard. Date : Method : Name: City of HW Treated : Method :Immediately mixed with RFO in the	Date : Method:	
Storage Name : ILf Transporter Treater Disposal W Details Storage	P Hazardous Waste Storage Facility Name Name . : ID : HW No.: 1101	Method : Provided with secondary containment (drums) to prevent breakage with proper label and placard. Date : Method : Name: Oty of HW Treated :	Date : Method:	
Storage Name : ILf Fransporter Freater Disposal	⁵ Hazardous Waste Storage Facility Name Name ID : HW No.: I101 Name :	Method : Provided with secondary containment (drums) to prevent breakage with proper label and placard. Date : Method : Name: Qty of HW Treated : Method :Immediately mixed with RFO in the RFO tank for calcination.	Date : Method:	

On-site self Inspection of Storage Area

Date Conducted	Premises/Area Inspected	Findings and Observations	Corrective Action Taken
2024-02-03	ILP Hazardous Wastes Storage Facility	Storage Facility Wastes are properly stored with proper label and placard	

2024-02-03	ILP Hazardous Wastes Storage Facility	Storage Facility Wastes are properly stored with proper label and placard	
2024-03-23	ILP Hazardous Wastes Storage Facility	Storage Facility Wastes are properly stored with proper label and placard	

C. Hazardous Wastes Treater/Recycler

HW Stored and/Untreated as of End of Quarter

Type of Waste	HW Number	Wastes Generator	Date of Transport	Transport Permit/Date of	Quantity	Type of Storage Container/# of Containers	Time Table for Treatment
				ssue		Containers	

HW Treated and/or Recycled as of End of Quarter

Type of Waste	HW Number	Wastes Generator	Date of Transport	Transport Permit/Date of Issue	Quantity	Type of Treatment of Recycling Process	Quantity of Recycled or Treated Product
---------------	-----------	---------------------	----------------------	--------------------------------------	----------	---	---

Residual Wastes Generated from the Treatment and/or Recycling Operation

Type of Waste	HW Number	Process by which the Waste is Generated	Quantity	Type of Storage Containers/# Number of Containers	Disposal Option	Time Table for Disposal
---------------	-----------	---	----------	--	-----------------	----------------------------

MODULE 3: RA 9275

Water Pollution Data

Domestic wastewater (cubic meters/day)	0.892	Process wastewater (cubic meters/day) :	1.064
Cooling water (cubic meters/day)	0.0065	Others :	
Wash water, equipment (cubic meters/day)	0.0264	Wash water, floor (cubic meters/day) :	

Record Cost of Treatment

	Month 1	Month 2	Month 3
Person employed, (# of employess)	1	1	1
Person employed, (cost)	900.00	731.25	787.50
Cost of Chemicals used by WTP	N/A	N/A	N/A
Utility Costs of WTP(electricity & water)	N/A	N/A	N/A
Administrative and Overhead Costs	4,196.70	N/A	N/A
Cost of operating in-house laboratory	N/A	N/A	N/A
New/Additional investment in WTP (description)	N/A	N/A	N/A
Costs of New/Add Investments	N/A	N/A	N/A

WTP Discharge Location

Outlet Number	Location of the Outlet	Name of Receiving water body	
1	Oil-water separator system	Asin-Gallano River	
2	Dust settling tank discharge compartment	Asin-Gallano River	

Detailed Report of Wastewater Characteristics for Conventional Pollutants

Outlet No.	DATE	Effluent Flow Rate (m3/day)	BOD (mg/L)	TSS (mg/L)	Color	Ph	Oil & Grease (mg/L)	Temp Rise (C)	Unit
1	2024-02-26			0.00		7.95	0.41		
	2000-01-01								
	2000-01-01								
	2000-01-01				-				
	2000-01-01								
	2000-01-01			1					

Detailed Report of Wastewater Characteristics for Other Pollutants

Outlet No	DATE	Effluent Flow				
1	1	Rate		I I	1	1

	1	1	1	1	1	1	1
2000-01-01							
2000-01-01 2000-01-01							
 2000-01-01							
 2000-01-01				1			
2000-01-01							
2000-01-01							

- X

MODULE 4: R.A. 8749 (Air Pollution)

Summary of APSE/APCF

Process Equipment.		Location	# of hours of	# of hours of operation for the guarter		
hawk burner		Kiln Plant		,208 HOURS		
Fuel Burning Equipment	Location	Evolutional disations of the				
		mixed composition)	Quantity Consumed for the# of hours of operation quarter the quarter			
hawk burner	Kiln No. 1	RFO	301.1736	2,208 HOURS		
One (1) unit SEALEY/CUMMINS"	Power house	Diesel	0.1405	8.30		

Pollution Control Facility	Location	# of hours of operation for the quarter
Wel gas scrubber	Kiln Vertical Shaft in the Kiln Plant	2.208 HOURS
Dust Collector and Scrubber System	Kiln Plant	Performance and
Seebeer of storm	Nin Plant	2,208 HOURS

Record Cost of Treatment

11		
Month 1	Month 2	Month 3
		WOULD O

Detailed Report of Air Emission Characteristics

FBE No.	DATE	Flow Rate (Ncm/day)	CO (mg/Ncm)	NOx (mg/Ncm)	Particulates (mg/Ncm)	1		T
1	2023-11-29		105.4	82.20	49.7	 		
	2000-01-01	-			40.7	 	-	
	2000-01-01				1	 +		
	2000-01-01					 		
	2000-01-01					 +		
	2000-01-01					 		
	2000-01-01					 +		
- The second	2000-01-01	-				 +		and the second
	2000-01-01					 		

MODULE 5: P.D. 1586

Station Description	DATE	Noise Level (dB)	CO (mg/Ncm)	NOx (ng/Ncm)	Particulates (mg/Ncm)	(mg/Ncm)	(mg/Ncm)	(mg/Ncm)	(mg/Ncm)
N/A	2000-01-01								
	2000-01-01		Sur ser ser						
	2000-01-01								
	2000-01-01								
100 Co.	2000-01-01								
	2000-01-01								
	2000-01-01			19	644 - July - Jul				· · · · · · · · · · · · · · · · · · ·
	2000-01-01								
	2000-01-01								A
1000	2000-01-01								
	2000-01-01			10					
1	2000-01-01								
-	2000-01-01								
	2000-01-01					No. 34			

Ambient Air Quality Monitoring (if required as part of ECC conditions)

Ambient Water Quality Monitoring (if required as part of ECC conditions)

Station Description	DATE	1	1	/	/	/	/	1	1
N/A	2000-01-01		Conservation and						
	2000-01-01								
	2000-01-01	112.00							
	2000-01-01								
	2000-01-01						1		
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01								
	2000-01-01	100							
	2000-01-01								
	2000-01-01		1	1000					

Other ECC Conditions

ECC Condition/s	Status of Compliance	Actions Taken
Voluntary cease its operation in the event of any malfunction in any of the appurtenant facilities until the time that said damages are rehabilitated or restored. Further, the proponent shall immediately inform the EMBCAR of said damages and of remediat measures undertaken.	No	No malfunctioning of operation facilities during the monitoring period in review.
Uncalcined limestone/discards shall be prevented from deposition to and along drainage/natural waterways and water bodies, and shall be disposed – off properly in an appropriate/designated disposal site(s) which shall be maintained in a stable and non-polluting condition.	Yes	Uncalcined limestone is maintained in a stable condition located at the Kiln stockpile area far from the drainage canal. 35.730 MT was donated to a constituent of Purok 12, lrisan for the backfill of their vacant lot and to Nurich Vitameal Corporation in Calasiao, Pangasinan for manufacturing organic fertilizers for the first quarter.
Timely construction of adequate engineered earth retaining structures along affected and	No	Ripraps were already established along the slopy/unstable areas in the kiln feed

geologically unstable areas, especially in the stockyard of limestone, to protect adjacent properties/environment.		stockpile area. There is no additional construction of retaining structures this firs
The proponent shall plant at least 50 indigenous tree species along the periphery of the project site to serve as buffer for dust and noise and improvement of aesthetics and in the support of the National Greening Program and climate change initialives of the government.	Yes	quarter of CY 2024. The Company established four (4) packets of Plantation Areas with an area of 3,711 square meters that serves as a buffer zone and carbon being enhanced and maintained yearly. These four packets of plantation areas were planted with Bengue coffees and Benguet Pine trees.
The legal requirements pursuant to RA 6969 or the Toxic Substances and Hazardous and Nuclear Wastes Control Act of 1990, RA 8749 or the Philippine Clean Air Act of 1999, RA 9003 or the Ecological Solid Waste Management Act of 2000 and RA 9275 or the Philippine Clean Water Act of 2004 shall be secured whenever applicable. Compliance with said requirements shall be coordinated with the Clearance and Permitting Division (CPD) of EMB-CAR, DENR.	Yes	Discharge Permit for the Settling Tank with DP No. DP-CAR-23-01505 which is valid until February 13, 2024 was renewed and was issued with DP No. DP-CAR-24-02323 valid until February 13, 2023.
The proponent shall secure regularly necessary permit(s)/clearances/authority from concerned national and local offices relative to project implementation.	Yes	A business permit for the operation covering CY 2024 was secured at the Mayor's Office on on January 29, 2024 valid until December 31, 2024.
The proponent shall allow entry of EMB-CAR personnel into the project site at all times to conduct monitoring and to validate project's compliance with the ECC conditions stipulated therein and EMP Mitigating Measures.	Yes	EMB Personnel visited the site in 2024 first quarter MMT monitoring on February 27, 2024.
The proponent shall submit to EMB-CAR within fifteen (15) days after every quarter a Self-Monitoring Report (SMR) and a Compliance Monitoring Report (CMR) semiannually.	Yes	Religiously submitting reports. The Company submitted the 2023 fourth quarter SMR on January 15, 2024 and 2023 second semester CMR on January 23, 2024.
The proponent shall cause the implementation of any undertaking which may be imposed by EMB-CAR as a result of Technical Conference/s called relative to environmental issues arising from the implementation of the project	No	No technical conference during the monitoring period in review.
Limestone feed materials shall be sourced out from the Company's permitted quarry areas and/or other sources sanctioned by government authorities. Violation of this condition shall automatically cause the cancellation/revocation of this ECC or imposition of fine.	Yes	A supply agreement between the Company and Timber & Lime Multi-Purpose Cooperative (TLMC), as a supplier of the feed materials was signed on October 17, 2022 valid for two (2) years for the delivery of limestone feed materials. This agreement is registered at MGB-CAR with Certificate of Registration 102522-CAR-44622.
Project development shall be in accordance with the submitted documents. Major modifications and/or expansion shall be subject to a new Environmental Impact Assessment (EIA) requirement.	No	No modification or expansion, to date.
Any transfer of project ownership carries the same conditions and restriction in this ECC for which a written notification to the EMBCAR shall be made by the ransferee/transferor within fifteen (15) days from such transfer.	No	No transfer of ownership, to date.
The project shall undergo the requirements specified in the implementing guidelines of the Department Administrative Order No. 2003-30 if the project construction has stopped for a period of five (5) years.	No	The project operation has not stopped, to date.

Environmental Management Plan/Program

Enhancement/Mitigation Measures/s	Status of Compliance	Actions Taken
Enhance planting at the vacant spaces within the project area boundaries where applicable.	Yes	Continuous enrichment and maintenance of the four (4) packets onsite Company's plantation areas with a total area of 0.3711
		hectares with planted Benguet Pine trees, Benguet coffees and lemon.
Enhance the implementation of solid waste	Yes	Maintained sorting waste bins (for
management at source (e.g. segregation, reuse, recycling or composting)		recyclables, residuals, and biodegradables, placed in the different areas of the Plant sile
reuse, recycling or composing/		A composting area also is being maintained
		for the generated biodegradable waste.
Enhance and maintain the Materials	Yes	Recyclables/reusable materials were stored
Recovery Facility (MRF).		neally in their respective storage
		compartment. Collected materials are being brought to private junk shops at every end of
		the quarter
Coordinate with the City/Barangay for	Yes	The Company complies with the schedule
regular collection of solid waste generation.		set by the Barangay for the waste collection
		which is scheduled every Friday of the weel at 5:00 AM. The residual wastes were sorte
8		at source.
Regular maintenance of the concrete bund	Yes	1. Increased the height of the 16 linear
within the perimeter of the Fuel tanks		meters (circular) bund wall from 0.50 meters
location, Oil-water separator and storage		high to 1 meter high. A catchment in case of
room for hazardous materials.		an oil spill from the RFO tank pipe was
		constructed with a bund wall leading to the oil-water separator system. The bund wall
		near the OWS was also improved. 2.
		Provided ventilation and safety signages for
		the hazardous waste storage facility. The
		hazardous waste drums compartment was lifted.
Disposal of Hazardous wastes through	No	No hauling of HW this quarter in review.
accredited transporter and treater. Reuse of changed oils from the standby	No	No changed oil this quarter in review.
generator sets.		· · · · · · · · · · · · · · · · · · ·
Regular inspection and maintenance of the	Yes	 Regular inspections were being done. A small volume of accumulated dust settled in
septic tanks and the wastewater settling basins.		the bottom of the tank, hence, no removal of
Casina.		the suspended solids for the first quarter. 2
	And and the second s	Regular maintenance of the OWS.
Effluent Monitoring	Yes	1. No discharge from the septic tanks durin
		the monitoring period. 2. No discharge from the dust-settling tanks during the first quarter
		of CY 2024. 3. Regular maintenance of the
		OWS. Removed oil was stored in the 1104
		drum container in the hazardous waste
		storage facility. A discharge of 2 cubic
		meters from the OWS was recorded for the
		first quarter. Conducted a water sampling for the effluent on February 26, 2024 and
		results of analyses were within the DENR
		Standards.
Regular inspection and maintenance of	Yes	Removal of the leaves/materials and regula
existing canal that traverse the project area		cleaning of the sump in the drainage canal
that includes removal of debris and other materials that may obstruct water flow		The sump was constructed to catch debris before traversing into the Barangay drainag
		canal to prevent clogging.
Properly operate and maintain all emission sources.	Yes	The wet gas scrubber within the vertical shaft is being regularly maintained.
Install, when applicable, appropriate air	No	No installed air pollution control device/s th
pollution control device/s.		quarter.
Control vehicle speed to lessen suspension	Yes	Limestone delivery trucks and RFO deliver
of road dust. Conduct water spraying during dry days	Yes	Irucks' speeds were in control at all times. Implemented sprinkling seven (7) times for
Conduct water on child dring all adja		January, six (6) times for February, and three (3) times for March.
Cover delivery/hauling vehicles that may	Yes	Open trucks of the customers were always
generale dust		equipped with cover (canvas/tolda) to prevent suspension of dust in the atmosphere.
Monitoring of ambient air quality and source	No	No conducted test this quarter.
emission.	1000 A	
Properly operate and maintain all sources of	Yes	Regular maintenance of power house as on

 \mathbf{x}^{*}

noises.		source of noise pollution.
Install, when applicable, appropriate noise control device/s.	Yes	The roots blower in the power house was enclosed to lessen the generation of noise.
Monitoring of ambient noise level	Yes	No conducted test this quarter.
Prioritize hiring of qualified local residents	No	No hiring this guarter.
Regular coordination with LGU.	Yes	Regularly coordination with the LGU by the Community Relations Officer for issues and concerns concerning the Operation and the Social Development and Management Program of the Company Also, Irisan LGU is a member of the BF-ILP MMT and was present during the 2024 first quarter MMT monitoring on February 27, 2024.
Promptly payment of local taxes.	Yes	Payment of taxes to BIR monthly and City for the Business Permit.
Provide appropriate traffic/warning signs.	No	the second se
Maintain parking spaces within the project area.	Yes	Parking space in front of the admin building is always available.

Solid Waste Characterization/Information

	Recyclable	Biodegradable	Residual
Average Quantity Generated (tons/ month)	0 113		0.08
Total Quantity Generated (tons/ quarter)	0.339		0.240
Average Quantity Collected (tons/ month)	0.113		0.08
Total Quantity Collected (tons/quarter)	0.339		0.240
Entity in charge of collection			Baguio Cily garbage collection truck

Brief Description of Solid Waste Management Plan (e.g., waste reduction, segregation, recycling)

Segregation is initially done at the garbage bins at the admin office, bunkhouse/staff house, and kiln plant wherein biodegradable is segregated from non-biodegradable. Recyclable materials (pet bottles and cans) and reusable materials (paper and cartoon) were stored at the MRF of the Company and were bought by private junk shops. Residuals (non-bio) are disposed of in line with the Barangay ordinance. Wastes were being brought out to the designated collecting area in the Purok as per schedule being collected by the City truck waste every Friday. There is also a designated area for composting the biodegradable waste in the Campsite. The composted materials will be used in fertilizing the coffees/lemon in the Plantation Areas.

MODULE 6: OTHERS

Accidents & Emergency Records

Date	Area/Location	Findings & Observation	Actions Taken	Remarks
2000-01-01				
2000-01-01				
2000-01-01				

Personnel/Staff Training

Date Conducted	Course/Training Description	# of Personnel Trained
2024-03-7	Fire Safety Orientation	30
2000-01-01		
2000-01-01		

I hereby certify that the above information are true and correct.

12-11 April 2014 Done this day of in BAGUIO CITY, BENGUET.

miltan hy C. Pomilban

1

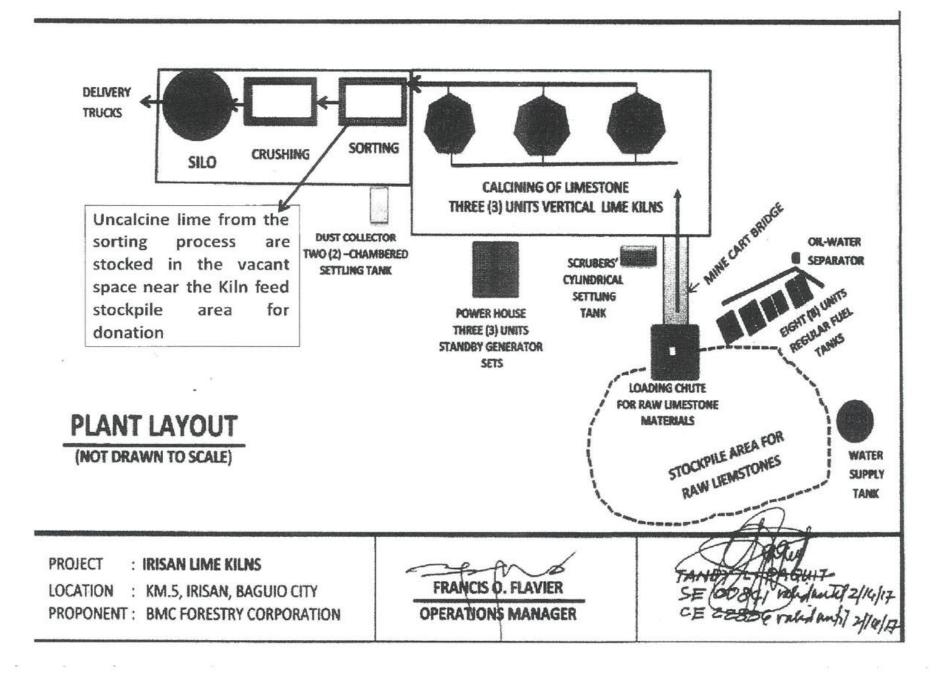
4

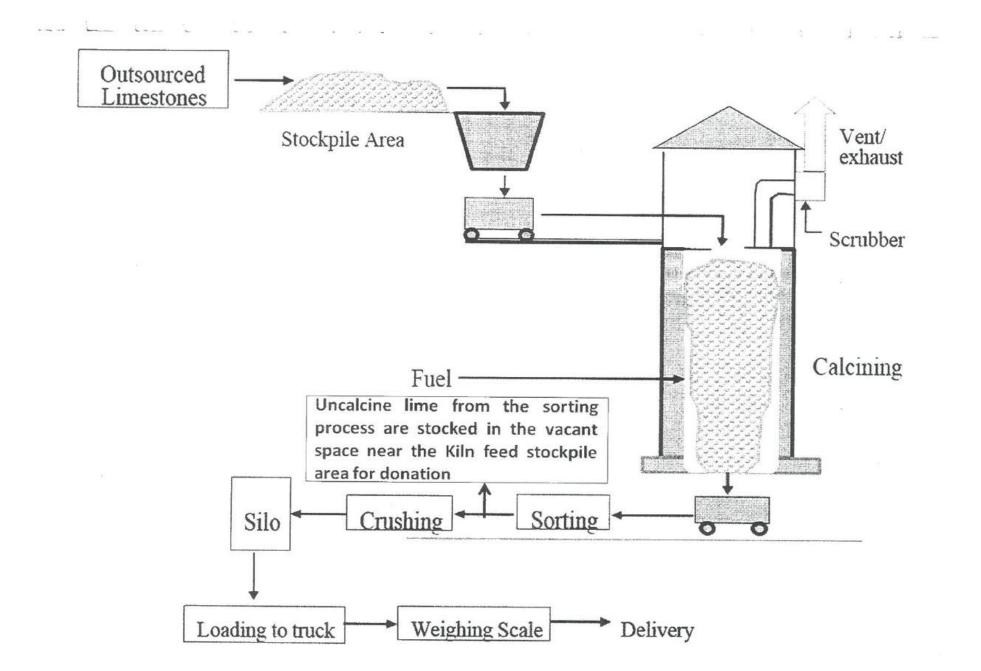
-

Name/Signature of PCO COA No. 2023-CAR-14263 New

Francisco O. Flavier Name/Signature of Managing Head

SUBSCRIBED AND SWORN before me, a Notary Public, this day of


, affiants exhibiting to me their PTR:


Name	CTR No.	Issued at	Issued on
FRANCISCO O. FLAVIER	TIN 103-481-016	Baguio City	
NARHY C. POMILBAN	TIN 314-977-920	Baguio City	

SUBSCRIBED AND SWORN to before me this APR 1 2024 in the City of Baguio, Philippines.

Doc. No. Pane No. Boot No. Series of 2

CRISTINA I, VALDEZ Notary Public in Bhaulo City Until December 31, 2024 NA-1-Biology - 22-00 IPTR O.R. No. 5822406; December 19, 2023: Pagulo City IBP OR No. 331199; Lencymber 19, 2023: Pagulo City IBP OR No. 331199; Lencymber 19, 2023; Pagulo City Roll No. 61811; noni 25, 2023; manino MCLE Compliance Certificine No. 90-0721828 Until 06-14-2025 Rm. 28, Sacred Heart Bullding, Diego Silang St., Begulo City

16 SU. O. U. (No. 16-5

Patroleum Products and Iracking Services Provider

CERTIFICATE OF ANALYSIS (Special Low Sulfur Fuel Oil)

HOD (ASTM) D 1298 D 445 D 928 D 97 D 482 D 482 D 4294 1796 (Modified) D 473 D 4868 D 4868	0.81 kg/l 5 261 27"C 0 003 %(m/m) 0 107 % (m/m) 0 107 % (m/m) 0 03 % (m/m) 1 20 % (M/V) 1 9558
D 445 D 92B D 97 D 482 D 4294 1796 (Modified) D 473 D 4868	-30 (PC 27°C 0 003 %(m/m) 0 107 % (m/m) - 0 20 % (w/v) - 0 03 % (m/m) 19\$58
D 482 D 482 D 4294 1796 (Modified) D 473 D 4868	27"C 0.003 %(m/m) 0.107 % (m/m) - <u>0.20 % (x/v)</u> 0.03 % (m/m) 19558
D 482 D 482 D 4294 1796 (Modified) D 473 D 4868	0 003 %(m/m) 0 107 % (m/m) - 0 20 % (x/v) - 0 03 % (m/m) - 19558
D 482 D 4294 1796 (Modified) D 473 D 4868	0 107 % (m/m) - 0 20 % (v/v) - 0 03 % (m/m) - 19858
D 4294 1796 (Modified) D 473 D 4868	0 20 % (V/V) 0 03 % (m/w) 19558
1796 (Modified) D 473 D 4868	0.03 % (m/m) 19558
D 473 D 4868	0.03 % (m/m) 19558
D 473 D 4868	19858
1) 4868	1. 法公司公司管理部制度任何的公司
	18359
with the second s	
6863 (Method A)	9.0 ppm (10/0)
5863 (Method B)	11.ppm (m/m
4530 (Method A)	0.64 % (m/m
수 같다. 그는 것은 것을 알 것을 것 같은 것이 같은 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다.	• 0 1 % (v/m
	an an an Arrest consider an 2005 an Anna Arrest ann Arrest an Arrest ann an A Arrest ann an Arrest ann an
	geografie auge a la se destruction de la secondada de la secondada de la secondada de la secondada de la second
	6863 (Method A) 5863 (Method B) 4530 (Method A) D 96

Rayal Gian Baldina, One Bains comer Judae Juan Luna Street, 310M Coelessent Instan Lie: (02) 332-9997 (02) 332-9997

Certificate of Analysis: MK22-00020.002

Date: 12/05/2023 MAXFUEL PETROLEUM PRODUCTS TRADING Sitio Maglangue, Concecpcion, Sen Simon Pampanga

The sample(s) is which the linkings recorded haves (Ne "Findings") relate vess(vare) drewn and / or provided by the Costomer or by a Bird party society all the Costomer's objection. The Findings construct no warrany of the sample's representanceses of any goods and sindity relate to the sample(s). The Company society is costed in the set of the origin or source from which the survive(s) where sample to a set operation.

This ladorelary is excredited under 150/15/C 17023. The results reported haves have been performed in ecconducts with the laboratory's isom of ecconditions except calibration/heels trafficial with in setting (1) is this report which are not within the scope of eccendition for our indexety. CUSTOMER ORDER NUMBER POIN. 05. SSS CIENCE MD - 2007204.1

COSTOMER ORDER NUN	ADCH PUNG. 05		SGS ORDER NO .:	2002943	
CUSTOMER ID :	Requested by Ma	. Maxine Uy			
LOCATION :	Not indicated		PRODUCT DESCRIPTIO	N : IFO-100	
SAMPLE SOURCE :	As Supplied				
SAMPLE TYPE :	As submitted		SAMPLED BY :	Client	
SAMPLED :	-		RECEIVED :	11/05/2023	
ANALYSED :	12/05/2022		COMPLETED :	12/05/2023	
PROPERTY	CONTROL OF	METHOD	RES	ULT UNIT	
Relative Density (SG) at	15.0/15.0 °C	ASTM D1296	0.6	1954	
Kinematic Viscosity at 40	*C (104 'F)	ASTM D445	4	6.43 mm ⁴ s	
Flash Point by PMCC		ASTM D938	1	75.0 °C	
High Heating Value (NHV)	ASTM D4858	19	176 Bruno	
Lower Heating Value (LH	V)	ASTM D4868	18	021 8tu/lb	
Ash from Petroleum Prod	ucts	ASTM D462			
Ash			0.	.860 % (m/m)	
Total Sulfur Content *		ASTM D4294	0.	.300 % (m/m)	
Water Content		ASTM D95 ** End of An	alytical Results **	0.2 % (v/m)	

This document is only valid in its entirety and your attention is drawn to the Terms and Conditions on Page 1 of this report.

REPORTED BY :	CERTIFIED BY :	
8	(
Lines Lock Reg the INDUMER Failey L/TU/9/11 PTS Res 0040255 Ready 02/29/2022 Million	Charteria Bang, Man. (00075-06), Captery 0.5/2.6/2024 919 Ran. 9553-2025, Assessed 100.227/2027, Capter Status	
DIANA GEE T. ELIMEN	REY MANINGO	
Leb Analysi I	Laboratory Manager	
140220221550000008138	3/F Alegria Building, 2229 Chino Roces Avenue, Mata	iti City 1231, Philippines web: www.sgs.com
Harrison of the BOB Chevay ; Secondid Galantansie de Businedians	Page 1 of 1	OGC-En_report-2014-10-10_v59K

MONITORING LOGSHEET

Facility Information

Facility Name Facility Address Name of Pollution Control Officer Maintenance Supervisor / Engineer **Telephone and Fax Number**

BAGVIO M

KILN #2

YES

YES

NO

NO

Source Description

Source Type

Source ID

Manufacturer / Brand of Equipment / Serial No. Equipment Capacity (BHp, MW, MT/hr) Date of Installation (month/year) Date of Modification (that may increase emissions) Operational Hours per Year (hrs/year) Operating rate (%)

8,700 hrr: /year 100 %

Air Pollution Control Device

Is there an Air Pollution Control Device (APCD) attached to the source? Type of APCD **Date of Installation** APCD parameters (flowrate,gpm,delta P,etc)

Is the APCD operating during emission sampling

Fue	Analysis	/ Informat	lon	CIE		
Type of Fuel used during emission sampling (%S)	_ <i>v</i> _	Bunker	iotor Fyel	0:1/Industri a	il Fuel Oil	
Original Fuel used	7	BFO			A	
Date of Fuel change						
Daily Fuel Consumption (Liters/day)						_
Is the Fuel Analysis Available?		YES	NO			
Will the company provide the Fuel Analysis		YES	NO			
		4				
Please attach the following		`				
-Fuel Analysis -Permit to Operate				20		

both ty Representative

> -APCD Process Logsheet -Source Process Logsheet

ANNEX D

ANALYTICAL DATA

Unit 201-204 & 406 Rizalina Annex Bldg. 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 Fax No. 8929-4824 Email: info@elarsi.com

	G Bldg Ortigas Ave. Greenhills	Lab. Report No. Date/Time Sampled	241930-SA 05-28-24 1800H
San Juan, Contact Number Nature of Sample/s No of Sample/s Submitted	Metro Manila 8863-6129 Stationary Source Emission Three (3)	Date Received Date Analyzed Date Reported	05-31-24 05-31-24 to 06-10-24 06-10-24

[REPORT OF ANALYSES]

Sample No.	Sample ID	PM (with acetone rinse), mg*	Analysis Date/Time
ES-2408629	PJ 24 241 S1R1	43.6	06-07-24 0850H
ES-2408630	PJ 24 241 S1R2	34.8	06-07-24 0850H
ES-2408631	PJ 24 241 S1R3	26.5	06-07-24 0850H

Reference.

CFR 40 Part 60 Revised as of July 1, 2000

Analyzed By:

JOCELYN T. PAMITTAN, RChT Laboratory Chemical Technician PRC Lic. No. 0005410 Checked By:

JEMMA D. JACINTO, RCh Laboratory Supervisor PRC Lic. No. 0010872 Certified Correct By: RENATOM. GOFREDO, JR., RCh Laboratory Manager PRC Lic. No. 0009824

DENR RECOGNIZED LABORATORY C.R. No. 005/2021

PAB ACCREDITED TESTING LABORATORY PNS ISO/IEC 17026:2017 LA-2023-4384 Test results reflect the quality of the samples as received. No portion of this report may be reproduced in any form without written authorization of ELARSI. Inc This report is not valid without the official dry seal and watermarks of the faboratory

Page 1 of 1 Page/s

EI_HRAFORM_10

ELARSI, INC.

Particulate Matter (PM) (METHOD 5) ANALYTICAL DATA SHEET (EI-APA-15)

Project No. :	P224 241	Lab Report No. :	241930 - Sh
Nature of Sample :	SSE	Date Received:	05.31.24
Analytical Balance:	EI-EQPTREC. ANI	Date Analysis Started:	H 0280 HS . FO. 40
Sensitivity:	0.1 mg		
Detection Limit:	0.1 mg	Date Analysis Finished:	04-10-24 04451
		Temperature (*C) Relative Humidity(%	

	Units			
Sample ID	Pran 241 514	P324 241 6182	gan 201 SIRS	Blank
Sample No.	B-3408429	66-3408630	15-3408651	-

Filter Analysis

Filter ID		605 095	650 208	Sor 0 12	
Filter Appearance		brown	bhewm	phome	-
Initial Weight	g	0.4.10	0.3610	6.358%	-
Final Weight	9	0.0964	0.3891	0.3779	-
Particulate Mass Filter, m,	mg	35.4	44.1	19.1	-

Acetone Rinse Analysis

Dried PM Rinse Appearance		orrange	errang	your	clean
Acetone Rince Volume , Ver	mi	111	22	31	100
Beaker ID		PHIM	PM20	2	PHOS
Initial Weight, Beaker	q	110.0625	109.4554	113.4054	111 442 \$4
Final Weight, Beaker	0	110. 0710	109.4621	113.4128	111.94344
Particulate Mass, Acetone Rinse, my	mg	2.2	6.7	1.4	40.1

Schope

Acetona Blank Volume, Va	ml	100	100	(00	100
Beaker ID		pho is	PMON	PHot	PM0'8
Initial Weight, Beaker	g	111.9430	111.9438	111.9438	111.9438
Final Weight, Beaker	9	111.9434	111.9434	111.9434	111.9134
Blank Residue Mass, m,	mg	0.0000	0.0000	0.0000	0.0000
$C_s = m_s / V_a$	mg/ml	0.0000	0.0000	0-0000	0.0000
Acetone Blank, W. = C. × Ver	mg	0.0000	0.0000	0.0000	0.0000
Max Blank Corr. Allowed, Wm*	mg	0.6800	0.3457	8422.0	0.7857
Acetone Blank Value Used **	mg	0.0000	0.0000	0.0000	0.0000

* Maximum Acetone Blank is 0.001% A, mass. $W_m \approx Var \ge 0.7857 \ge 0.00001$ (where 0.7857 g/ml is acetone density @ 25⁹ C) ** Maximum Mass of Acetone Blank Correction should be less than 0.001% of the Ar mass, otherwise use, W_m .

Total PM = m _t + m _{at} - W _a	mg	49.4	34.8	24.5	40.1
or Total PM = mt + mat - Wm			ND (Not	(Detected)	

LOL

GINDY LONH

Analyzed by JTP Date&Time 04-10-24 1000

Checked by Date&Time

Approved by RMG Detestime 619746Pm

Page 1 of 1

EL_LABAIRFORM_15

Unil 201-204 & 406 Rizalina Annex Bldg, 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 Fax No. 8929-4824 Email: info@elarsi.com

CLIENT : BSI		Lab. Report No.	÷	241931-SA
ADDRESS : 2nd Fir VA	G Bldg Ortigas Ave. Greenhills	Date/Time Sampled		05-28-24 1800H
	Metro Manila	Date Received	8	05-31-24
Contact Number	: 8863-6129	Date Analyzed		06-11-24
Nature of Sample/s No of Sample/s Submitted	Stationary Source Emission Three (3)	Date Reported		06-12-24

[REPORT OF ANALYSES]

Sample No.	Sample ID	SO ₂ , mg ^a	Analysis Date/Time
ES-2408632	PJ 24 241 S1R1	32.78	06-11-24 1300H
ES-2408633	PJ 24 241 S1R2	21.22	06-11-24 1300H
ES-2408634	PJ 24 241 S1R3	18.57	06-11-24 1300H

a - Method 6 / Barlum ~ Thonn Titration

Reference

CFR 40 Part 60 Revised as of August 3 2017

Analyzed By:

CHYLA DRÉXIE C. MORADA, RChT Laboratory Chemical Technician PRC Lic. No. 0009323 Checked By:

JEMMAD. JACINTO, RCh Laberatory Supervisor PRC Lic. No. 0010872 Certified Correct By:

RENATO M. GOFREDO, JR., RCh Laboratory Manager PRC Lic. No. 0009824

DENR RECOGNIZED LABORATORY C.R. No. 005/2021 Test results reflect the quality of the samples as received. No portion of this report may be reproduced in any form without written authorization of ELARS! Inc. This report is not valid without the official dry seal and watermarks of the laboratory

Page 1 of 1 Page/s

EI HRAFORM 10

ELARSI, INC.

SOx (METHOD 6/METHOD 8) ANALYTICAL DATA SHEET (EI-APA-14	SOx (METHOD	6/METHOD 8	B) ANAL	YTICAL DATA	SHEET	EI-APA-	14]
--	-------------	------------	---------	-------------	-------	---------	-----

۰.

•

roject No. :			PD	. 9	24	241			Lab Repo	rt No. :		2	4)931 - 5	A				
ature of Sa					.5	se			Date Received: 31 MAY				2024					
BaCl2 use	and the second second	t	.0	1010		6 8788			Date Analy	als Started:		A	JUN	2024	1 300 H			
Luned for IR	nation) ;			4	51	00		7.) 17	2			-						
tection LI	mit/s :			80	22	(2.70 mg)	1.10 March 10	-	Date Analy	sis Finished:		11	Jun	2024	[800H			
		803	(3.	.27	ms); H2804	(4.00 m	ng)										
			264	11-11-0				1. 0/2										
mputation			3.					-										
Check (Ab					1	PALOT No.	415400	Mass	H2904 (mg)=[49.04) (N _{BaC2})		Referrer V	19:1					
Blenk	eruc,		IPA	-		0.004					٧,]					
iss 802 (m	a) { _	32.03)	(Np	aca)		n - Vonateral) V	<u></u> }]		Mass SO3 (mg)	= mass	H2S0	4 (mg) x1		3 (80.061) SO4 (98.075)			
where	V _{sob}	sample	ava	luma			Vaue	everage volume of litravil usi	ud for sample	Lo municipation and a second second								
	V.	watum																
	Visabaum	volum	e cf	numarr	t LSI	ed for IPA blank	es.			8								
	-			-	-		NO-MOTO AND TAKEN					THEFT	-	ND (Not Detected)			
		mple ID			mate ID							Titrant Volume (ml) Burat Reading						Sh.
mple No	58	mpie		·		Vaein	V.	(Final - Initial)	Trial 1	(Final - Initial)	Trial 2	-	Vare	N	lass (mg)			
ann daaraan ga maaa da	ID.	A Bla	116		+	100	10	0.00' - 0.00	0.00	0.00 - 0.00	0.00	+	0.00	and the providence of the second second	2. 70			
-240 86-32			7	T	1		1	2-20 - 0.00	2.20	2.30 - 0100	2.30	+	2.25					
33	is or eq	1	4	+	4	490	+	1.10 - 0.00		1.20 - 0.00	1.30	+-						
			+	4	-	570			1.10			+	1.15		21.22 /			
并]		1	3	390	1	1.90 . 0.00	1.50	1.60 + 0.00	1.60	_	1.35		18.57			
											8				·			
					1				1			T						
			-		+				1	1		+						
			-		+		+			+	****	+						
				_	+		+		+	+		+						
			_	_	-							+						
			_											-				
				25.25 2010-0					T			T						
19-14-10-16-18-18-18-18-18-18-18-18-18-18-18-18-18-			-		7		1		1	1		T						
	1		-		-				1			-						
					-		+		+									
	1		_		_		_			1		_	An or other states					
MARKS	:																	
leagent &	Standan	d Cod	e/s	i:														
0100 N Bar	ium Stan	dard S	Solu	ition		Calloca	3											
norin Indica			-9104			0/ 903												
					84		<u>, </u>											
sepropanól	Brand/Lol	存				115400												
The American Constant			-	Numerical Contraction	- Contactor	No. Po crederado for Anna								a design of the state of the	and the second secon			
													~					
nalyzed l	ру	cur	1				Chec	ked by			Checke		Ban	6	-0			
Analyzadi		12.17	4		-			Time	ISNU		Date&T		6	G 14/24.1	PM			

EI_LABAIRFORM_14(A)

÷., •

Ţ

•

Pege 1 of 1

.

ELARSI, INC.

REAGENTS STANDARDIZATION for SOx ANALYSIS (EI-APA-14)

Lab Report No.	<u>141931 - sa</u>		Date Receive		3) MAY	, and the second se	Adventure of the second of the second of the	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			Date & Time A	nalysia Startadi	H JUN	2024.	1200A	
1999) 1994 - J J			Date & Time A	nalysia Finished:	h www	2024	180011	
Computations:		4122	1.12.14		te de la dec			
The manufact of the second	Children and the second	Contraction of the second second		A 10 10 10 10 10 10 10 10 10 10 10 10 10				
AL TO A LONG OF THE OWNER	de acato contra	A CARLES		- Andrewski - A	84 P.		1	- x
Standardization of	international Contract State State State State State	the second s	s tear	<u> </u>				- K -
	0.0100 ± 0.00	the second s	Volume (ml)	Normality (N)	•			
	international Contract State State State State State	the second s	Volume (ml) BaCl ₂	Normality (N)	NBACIZ	= <u>Nec</u>	2504 VH25D4	
THE REPORT OF THE REPORT OF THE REPORT OF THE REPORT OF	Volume (m)	Normality (N)	BaCl2	BaCi	N _{BéCI2}	2.4	1504 VIDSDA	
	Volume (m)) H ₂ SO ₄ 45	Normality (N) H ₂ SO ₄	BaCl ₂ 24.7	bear to a second state of the second state of	N _{B4CI2}	2.4	2504 <u>Vidsola</u> Vérci2	

	Trial No.	Volume (ml)	Normality (N)	Volume (ml)	Normality (N)
		NaOH	NaOH	H2SO4	H ₂ SO ₄
	and the second	25.2	01 200 10 - 151 13 13 13	25	0.0098931714
L	8	25.5	0.00980757373	23	0.0000 366.16
1				average	0.00994486532

N_{H2SO4} Ν.

.

VH2SO4

4

đ

ì

Standardization of NaOH:

÷

Trial No.	Weight (g)	Weight (g)	Volume (ml)	Normality (N)
	NeOH	KHP	NaOH	NaOH
1	40	0.1005	. 50.2	0.009802434441
2	40	0.1000	57.2	0.009812388300
			average	0.00190751398

NNOH = Weight of KHP 0.20423 x VNAPH

Analyzed by ccm Dete&Time 1 JUN 2024 1SOOH

Checked by JI Date&Time LINH KNH

25

and the second sec

Approved by RMG Date&Time 6 4 24 6Pm

ELLABAIRFORM_14(8)

Page 1 of 1

When he was shown in a summer

Unit 201-204 & 406 Rizalina Annex Bldg. 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 Fax No. 8929-4824 Email: info@elarsi.com

CLIENT	3	BSI			Lab. Report No.	3	241932-SA
ADDRESS	1	2nd Flr., VA	G B	Ildg Ortigas Ave, Greenhills	Date/Time Sampled	1	05-28-24 1800H
		San Juan, M	Net	ro Manila	Date Received	1	05-31-24
Contact Num	bei	t i i i i i i i i i i i i i i i i i i i	×.	8863-6129	Date Analyzed	1	06-10-24
Nature of Sar	np	e/s	3	Stationary Source Emission	Date Reported	4	06-11-24
No. of Sample	e/s	Submitted	ŝ	Ten (10)			

[REPORT OF ANALYSES]

Sample No.	Sample ID	NO _x (as NO ₂) mg*	Analysis Date/Time
ES-2408635	PJ 24 241 S1R1T1	< 0.0404	06-10-24 0900H
ES-2408636	PJ 24 241 S1R1T1	< 0.0404	06-10-24 0900H
ES-2408637	PJ 24 241 S1R1T1	< 0.0404	06-10-24 0900H
ES-2408638	PJ 24 241 S1R2T1	< 0.0404	06-10-24 0900H
ES-2408639	PJ 24 241 S1R2T1	< 0.0404	06-10-24 0900H
ES-2408640	PJ 24 241 S1R2T1	< 0.0404	06-10-24 0900H
ES-2408641	PJ 24 241 S1R3T1	< 0.0404	06-10-24 0900H
ES-2408642	PJ 24 241 S1R3T1	< 0.0404	06-10-24 0900H
ES-2408643	PJ 24 241 S1R3T1	< 0.0404	06-10-24 0900H
ES-2408644	PJ 24 241 S1 Blank	< 0.0404	06-10-24 0900H

a - Method 7 / Phenoidisulfonic Acid

Reference

CFR 40 Appendix A-4 Part 50 as of May 31, 2023

Analyzed By:

Checked By:

A.4. 100 CHYLA DREXIE C. MORADA, RChT Laboratory Chemical Technician PRC Lic. No. 0009323

JEMMA D. JACINTO, RCh Eaboratory Supervisor PRC Lic. No. 0010872

Certified Correct By: RENA TO M. GORREDO, JR., RCh Laboratory Manager PRC Lic. No. 0009824

Test results reflect the quality of the samples as received. No portion of this report may be reproduced in any form without written authorization of ELARSI, inc This report is not valid writhout the official dry seal and watermarks of the laboratory

Page 1 of 1 Page/s EL_HRAFORM_10

ELARSI, INC.

STANDARD CALIBRATION for NOx ANALYSIS (EI-APA-10)

Project No. :	* 24 Mi	Date Received :	9	SI	MAY	2024	5 i i	r.
Lab Report No. :	241932 - 54	Date Analysis Started:		10	JUN	2024	(Teoff	
Spectrophotometer : Wavelength (nm) :	ELEOPTREC- 2797	Date Analysis Finished:		10	JUN	2024	lucch	

Note: Wavelength is varies besed on the optimum wavelength determination every 6 months.

Cellbration Number	Standard Actual Concentration (µg)	Measured Absorbance	Corrected Absorbance a	Calculated Concentration (µg) b	Concentration (% difference)	
Blank	0	c czł			APPENDIA CONTRACTOR AND A CONTRACTOR	
1	100	c ·151	r.127	(18-83	1114	
2	200	6-299 .	¢ ·255	198-44	0-78 ,	
3	300	0.40	0-3540		- 0.13	
4 .	400	e-531	3-515	400.77	- 0.19	
QC	200	0-268	e 144	180-88	·5.00	
outations: Corrected absorb:	алсе for A1 through A4 is	black corrected		1. REC = 44.94	······	

* 100

b = Corrected absorbance x Kc

c = Concentration, % difference should be less than 7%

Galibration Factor (Kc) = $\frac{a_1 + 2 a_2 + 3 a_3 + 4 a_4}{a_1^2 + a_2^2 + a_3^2 + a_4^2}$

actual concentration - calculated concentration

% difference =

actual concentration

REMARKS: Reagent & Standard Code/s:				
1N NaOH Phenoldisulfonic Acid Reagent Conc. H ₂ SO ₄	VI 1 0148	Ammonium Hydroxide Std. KNO3 Solution Working Std. KNO3 Solution	V ////////////////////////////////////	а.

Approved by: Rung

x

100

778-1083 3457 5704

Reviewed by: _____

Page 1 of 1

EI_LABAIRFORM_10(A)

ELARSI, INC.

NOx (METHOD 7) ANALYTICAL DATA SHEET (EI-APA-10)

Project No. : Nature of Sample : Aliquot Factor : Calibration Factor (K_c) : Detection Limit :

- 22
5950

Sample No.	Sample ID	Sample Absorbance	Blank Adjusted Absorbance (A')	Dilution Factor (F)		s of Nox as ample (mg) m	NO2 in	
	BLANK	0.025	U	1	7) 60 0404		
51-240 86-35	-0000	: .658	e-ete			1		
.He	1/12	s c2g	5-1.9C					
37) 17 7 3	(* 45 <u>°</u>	5-034					
3	C 100 1	* (2C	C.CH2.					
31	S 11/ 2	£1.43±	L 1.45]	4				
40) ((L 3	6.630	e -en	1	10			
ゥ	(1)11	6.605	6403					
42	N 117 1 1	् धरेड	Dick9	1				
49) ////3	0.024	- e-ce4			Ì		
붜	C C S	6,1.25	¢ .	1				
					Mass, µg	%Recovery	%D#	
	QC (200µg)	5.949	5 294	1	(84 -82	યત તેન	5.04	
					<u> </u>			
					Mess, pg	%Recovery	%Diff.	

(A') = Sample Absorbance -

m = 2 K_cA¹F/10³

Blank Absorbance

Note: If other than a 25 mL aliquot is used for analysis, the factor 2 must be replaced by a corresponding factor, i.e., volume solution divided by the volume aliquot evaporated

> Checked by ______ Date&Time __________

Analyzed by Total Date& Time Total Total 2.17

Approved by R.A.G. Date&Time _____ Globy GM-

en com

EI_LABAIRFORM_10(B)

Page 1 of 1

Company : Address :	BSI DEREM AVE-	x Bidg. 1677 Quezon Avenue, * Fax No. 8929-48-24 * E-mail:	info@elarsi.com		Submitted by:	H 7. Operation	Lab. Repo			7- 29 / Ru Kui
Contact Perso	n: HALCY	LEON ON OR GUINA	_Contact No./s	279-0664	Reviewed by:	MAR		_ Date/Time	. 31man	20 Ku
Method of Transpor			Nature of Sample (PLEASE	CHECK)	Approved by:	(Printed Name Signature)	inth Sat	Date/Time	11	Pri
C	Counier Pick-up	Others	Water	Metals	rapiona by.	(Printed Name/Signature)	- m ()	_ Date/Im	- 14	4 117
Condition Upon Receipt Container Type Usealed / Container Intact UPlastic Bottio United/Frozen Useales/Stenie Glass Acom Temp TEDLAR Bag Preserved Others_Fr/ffr		Drinking Water Wastewater Others Alr Stack Source Emission	Water Air Others Solids Soil							
Turn Around Time Urgent/Rush (3-5 Wi	orking Days)	Routine (7-12 Working Days)	Ambient Air Sample Work Env. Measurement Others	Sludge				W.S. and the second		
FOR LAB. USE ONLY								FOR LAB. U	SE ONLY"	
Sample No.	Sample Identification	Analyses Requested	Method Of Analysis	Date of Sampling/Time	No. of Samples	Remarks	Gentificate Sent/Reported	E OF THE I Worksheet Sent	COC Sem	Sample Disposed
PM	B124-241									
5-2428629-31	SIR	PM	- Granmetac		3					
	Rz	Actiona West		20.11	2					
-JOY	R2 R3	Sox	-Barrow thorn harat k	28 MAY						
4.2408632 34	143	<u> </u>			19)	1.1				
				72024	U.	1 Blank				
NOX	ST R1 T1-T3	1-7		/		A flat				
-2408625-11V	R2 TI-T	H H	Phenoldisurtowny /		(9)	<u>t,</u>				
	DT	11 1202			()					
	K3 11-13	5 1	Pig /		1.					
	blank									
					120					
					180					
		1	1							

4FORM_03

N

CO MEASUREMENT DATA

Tedlar Bag Samples

Facility:	BMC FORESTRY CORPORATION	Analysis Date:	May 31, 2024-						
Sample Date:	May 28, 2024	Analyzed By:	JOSE ANJAY M, SANTIAGO						
Collected By:	ECF, HPO, RME, MSL, JBT	Signature:	17 Star						
CO Analyzer Manufacturer	FUJI F	ELECTRIC	CO., LTD.						
Analyzer Model Serial Number		ZPAABBY2 / N2C0833							
Analyzer Range Setting, ppm		0 - 1000							
Analyzer Span Value, ppm		800							

Pre-Measurement Calibration										
Time 0800H	Cylinder No.	Gas Value (ppm)	CO response (ppm)	% Difference* (% span)	Status (≤ 2% span)					
Zero Gas	N2 240403	0	0	0.0000	Passed					
Certified Gas 1	D962229	200	201	-0.1250	Passed					
Certified Gas 2	D962122	500	499	0.1250	Passed					
Certified Gas 3	D962087	800	800	0.0000	Passed					

*((Gas Value- CO Response) /Span Value))x 100%

Time	Tedlar Bag ID No.	CO (ppm)	Time	Tedlar Bag ID No.	CO (ppm)
0900H	PJ24-241 SIR1	106			
0910H	PJ24-241 SIR2	99			
0920H	PJ24-241 SIR3	112			
				and the second	1

	j	Post-Measurement C	allbration Drift Che	ck	
Time	Gas Value (ppm)			% Drift** (% span)	Status ¹ (≤ 10 % span)
1800H		(ppm)	(ppm		
Zero Gas	0	0	0	0.0000	Passed
Certified Gas 1	200	201	198	0.3750	Passed
Certified Gas 2	500	499	495	0.5000	Passed
Certified Gas 3	800	800	797	0.3750	Passed

**((CO Resp from the Pre-Meas Cal-Co Resp for the Post-Meas)/Span Value)) x 100%

QA/QC Check: Completeness / Legibility Accuracy / Specifications Reasonableness Over 8 hours

JANS CHOLO E. CHUA Checked Byr Signature Over Printed Name

- Cart QA/QC/Date:

EDINDO C, FERNANDO Signature Over Printed Name

2nd Fiber, VAG Big. Orliges Ave., Greenhille San Juan City, Natio Manila, Philippines Tels. (632) 853-6129- Fax (632) 727-853

ANNEX E

EQUIPMENT CALIBRATION CERTIFICATES

.

METER BOX POST-TEST CALIBRATION CHECK

USEPA Approved Alternative Method ALT-009

BMC FORESTRY CORP. ILP IRISAN, BAGUIO CITY VERTICAL SHAFT KILN NO. 2

Meter Box #. 2

Calibration	Date	ΔH@	Y
5-point orifice calibration	18-Jan-24	43.1764	0 9884

Calculate Y_{qs} for each test run using the following equation:

$$Y_{qa} = \frac{\theta}{V_m} \sqrt{\frac{0.0011503 T_m}{\Lambda H_{g} \left(P_b + \frac{\Lambda H_{avg}}{13.6} \right)} \times \frac{29}{M_d} \times \left(\sqrt{\Delta H} \right)_{avg}}$$

where:

Y _{qa}	dry gas meter calibration check, value dimensionless.
0	total run time, min.
Vm	lotal sample volume measured by dry gas meter, m ³ .
Tm	absolute average dry gas meter temp., %.
Pb	barometric pressure, mm Hg.
0.0011503	=(760/298) (0.75 x 0.0238) ² (mm Hg/%) (m ³ /min) ²
AHavg	average onfice meter differential, mm H2O.
AHa	orifice meter calibration coefficient, mm H2O.
Ma	dry molecular weight of stack gas, gm/gm mole
29	dry molecular weight of air, gm/gm mole.
13.6	specific gravity of mercury.

After each test run series, do the following:

Average the three or more values of Y_{qa} obtained from the test run series and compare this average with the dry gas meter calibration factor, Y. The average Y_{qa} must be within $\pm 5\%$ of Y.

If the average Y_{qs} does not meet the $\pm 5\%$ criterion, recalibrate the meter over the run full range of orifice settings, as detailed in Method 5. Then follow the subsequent procedure in Method 5.

	METER 80	X POST-TEST CALIBRATIC	ON CHECK	
		Run 1	Run 2	Run 3
Meter Box		Meter Box #: 2	Meter Box #: 2	Meter Box #: 2
Time, min	θ	60.0	60.0	60.0
Total volume, dry m ³	Vn	1 6272	1.5420	1.5294
Average meter temp. ^O C		29 79	30.54	29.88
Average meter temp, ^o K	Tm	302.94	303.69	303.03
Barometric pressure, mm Hg	Po	652.70	651.50	650 50
ΔH _{avg} , mm H ₂ O		63.500	58.000	52.250
∆H _@ , mm H₂O			43.1764	
Mol. wt. of stack gas, g/g-mole	Md	29.84	29.84	29.84
QA gamma	Y _{qa}	1.0147	1.0261	0.9819
Average Yqa			1.0076	
Meter box gamma	Y		0.9884	
Difference to be within 5%			1.9% - PASS	

Environmental Management Service Provider

TEAM NO.2; HPO - CRITICAL ORIFICE

DETERMINATION OF ORIFICE COEFFICIENT K

Cons	N leboM elc	lumber	XC572- QC6V	Date	18-	Jan-24	Time	084	15H	Std Temp	298.15	°Κ	
Cons	ole Serial N	umber	1404036	Barometric	Pressure			755.9 mm Hg		Std Press	760	mm Hg	
DGM	Model Num	ber	G1.6	G1.6 Theoretical Critical Vacuum				Hg or 1	I4in Hg	К	03	858	
DGM Serial Number		2012- 014438		Calibration Technician			HPO Previous calibration				n	1.0000	
		M	etering Cons	ole				- 16-5-5- 74 16-7 7	1	Critical Or	ifice		17 17 1
	Elapsed	DGM Orifice	Vol	ume	Outlet	Temp			nient mp	Critical	Actual Vacuum	Coeff. x10 ⁴	Diff
Run	Time	ΔH	Initial	Final	Initial	Final	Orifice	Initial	Final	Vacuum	1-2in or	X10	%
#	0 min	P _m mm H ₂ O	V _{ns} m ³	V _m , m ³	t _{ux} °C	t _{or} r °C	D	L _{an,b} °C	t _{ath} °C	in Hg or mm Hg	25- 50mm > Critical	K.	< ±0.5
1	5	10	0.3140	0.3616	24.0	24.0	40	27.3	27.2	15	17	2.14490	0.21
2	5	10	0.3616	0.4090	24.0	24.0	40	27.2	27.2	15	17	2.13571	0.21
							.	A	Average	2.14030			
1	5	20	0.4150	0.4847	24.0	24.0	48	27.2	27.5	15	17	3.14432	0.02
2	5	20	0.4847	0.5544	24.0	24.0	48	27.5	27.6	15	17	3.14536	0.02
											Average	3.14484	
1	5	32	0.5620	0.6528	24.0	24.0	55	27.6	275	15	17	4.10232	0.02
2	5	32	0.6528	0.7438	24.0	25.0	55	27.5	275	15	17	4.10411	0.02
											Average	4.10321	
1	5	54	0.7550	0.8722	25.0	25.0	63	27.5	27.5	15	17	5.28812	0.09
2	5	54	0.8722	0.9892	25.0	25.0	63	27.4	27.4	15	17	5.27821	0.09
											Average	5.28317	
1	5	94	0.9980	1.1577	25.0	25.0	73	27.2	272	15	16	7.23002	0.08
2	5	94	1.1577	1.3174	25.0	24.0	73	27.2	27.2	15	16	7.24217	0.08
								director and the second			Average	7.23609	

Halcy Lemon P. Orquina Signature over Printed Name Edindo C/Fernando Signature over Printed Name

2 Jans-Cholo E. Chua Checked By: Signature over Printed Name

Calibrated By:

QA/QC:

Date:

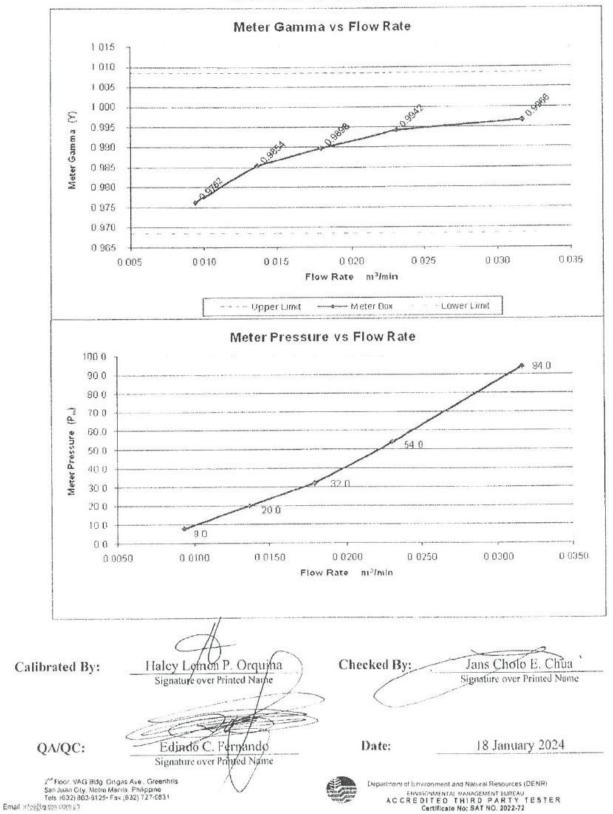
18 January 2024

2^M Floor VAG Bidg, Ortigas Avo., Greenhilts San Juan City, Metro Mamla, Philippine Tels (632) 863.6125• Fax (632) 727-9831 Enialt (*2621345); Solf145

Department of Environment and Natural Resources (DENR) ENVIRONMENTAL MANAGEVENT FUREAU A C C R E DITED THIRD PARTY TESTER Certificate No: SAT NO. 2022-72

TEAM NO.2. HPO - CRITICAL ORBICE

USING FIVE CRITICAL ORIFICES


Number	lodei	XC572-QC6V	Date	18-Ja	an-24	Time	1	005H	Std Ten	np	298	°K	
Console S Number	orial	1404036		Barometric	Pressure	, ha saran a	755.9	nım Hg	Std Pre	\$\$	760	mm Hg	
DGM Mod	el Number	G16	Theoretic	al Critical V	/acuum	and 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	357mm Hg or 14in Hg Ki			K1	0.3858		
DGM Seria	l Number	2012-014438	Calibratic	alibration Technician				HPO	Previous 1 0000 calibration				
		Meterin	g Console	· · · · · · · · ·			1		Critic	al Orifice			
Elapsed	DGM Orifice		/olume		Outlet	t Temp.		Coel.	Ambier	mbient Temp. Critica		Actual	
Time	ΔН	Initial	Final Dif		· · · · · · · · · · · · · · · · · · ·		Serial x10 ⁴	x10 ⁴	Serial		Final	Vacuum	Vacuun 1-2in
θ	Ρ.,	Ver	Vet	Vm	L.m.	lea	#		lamb	t.mb	in Hg	or 25-	
min	mm H ₂ O	m³	m ₂	>0.14m ³	°C	°C		metric units	°C	"C	or mm Hg	50mm > Critica	
17.0	8.0	1 3380	1 5040	0.166	25.0	25.0	40	2 14030	27 1	27.6	15.0	17.0	
11.0	20.0	1 5170	1.6732	0.156	25.0	25.0	48	3 14484	27 6	26.8	15.0	17.0	
9.0	32.0	1.6824	1 8484	0.166	25.0	25.0	55	4.10321	26.8	26.3	15.0	17.0	
70	54.0	1 8560	2.0212	0.165	25.0	25.0	63	5.28317	26 3	26.4	15 0	17.0	
5.0	94.0	2 0410	2.2016	0.161	25.0	25.0	73	7.23609	26.4	26.4	15 0	16.0	
·····	Standa	dized Data		[• • • • • • • • • • • •	Dry Gas M	eler			••••••	
Dry Gas	Meter	Critical Or	ilion	Calib	ration Fa	ctor	Flo	wrate			۸He		
, 000		Childaron	A PARSING STREET		Value Var'n		Std & Corr		0.0212 n			tion	
V _{acstar} m ³	Q _{incardi} m ⁹ /min	V _{otera} m ³	O _{cten} m³/min	Y		.1Y ±2%	20	Q _{(104d)(204)} ΛΗ _{έδ} m ³ /min mm H ₂ O		States	እለዛ _መ ±5 1mm Hg		
0.1626	0 0096	0.1587	0.0093	0.97	62	-1.24	0.0	0093 39.9299		299	-3.2		
0.1532	0.0139	0.1509	0.0137	0.98	54	-0.30	0.0	0137	46.3219		3 1		
0.1630	0 0 1 8 1	0 1613	0 0179	0.98	98	0.14	0 (0179	43.5437		0	4	
0.1625	0.0232	0 1616	0 0231	0 99	42	0.58	0.0	0231	44.4	826	1	3	
0.1586	0.0317	0 1581	0.0316	0 99	66	0 82	0 0	0316	416	038	•1	6	
• · - · · · · · · · · · · · · · · · · ·		Y	Average	0.98	84		лң	e Average	43.1	764	•	********	
ignaturo.	HALCY	LEMON P ORO		Dry Gas Me		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	ce with USF	PA Methor Date.		an-24		

2¹⁴ Foot, WGB dig Diright Are, Oreanhils San Juan City, Meto Marta, Philippena Tets. (632) 863 5120- Fax (632) 127-9831 Emit: UrbyStationarigh

Dobitment of Environment and Netural Rosources (DENR) ENVIRONMENTAL MANACCASh TRIBLAU A C C R E D I F E D T HI R D P AR T Y T E S T E R Cartificato No: SAT NO. 2022-72

TEAM NO. 2 - CRITICAL ORIFICE USING FIVE CRITICAL ORIFICES

Meter Console No.	BSI - T2	Personnel	LIDO DOC
Reference Calibration Maker	DUD	reisonnei	HPO, RCG
	PIE	Pretest	OK
Model	520B	Posttest	OK
Serial No.	222724		and the second state of th
	223734	Date	18 January2024

TEMPERATURE DISPLAY	CALIBRATION
---------------------	-------------

TC CHANNEL ID	Reference Temp. 1, °C	Temp. Reading 1, °C	Criteria	Criteria Met	Reference Tomp. 2, °C	Temp. Reading 1, °C	Criteria	Criteria Met
PROBE	0	0	0	v	60			
FILTER	0	0	~~~~	1	50	49	0.310	Y
the second s	<u>v</u>	0	0	Y	50	49	0.310	Y
EXIT	0	0	0	Y	50	49	0.310	v
AUX	0	0	0	v	and the second design of the second s	And and the subscription of the subscription o	and the second s	ř.
STACK	0	~	0	Ť	50	49	0.310	Y
and sending a second se	U	0	0	Y	50	48	0.619	V
STACK	0	0	0	Y	250	247	0.574	

TC CHANNEL ID	Reference Temp. 3, °C	Temp. Reading 1, °C	Criteria	Criteria Met	Reference Temp. 4, °C	Temp. Reading 1, °C	Criteria	Criteria Met
PROBE	100	99	0.268	v	150		0.170	
FILTER	100	99	0.268	v	**** * · · · · · · · · · · · · · ·	148	0.473	Y
EXIT	100	99	THE REAL PROPERTY AND ADDRESS OF TAXABLE	r	150	148	0.473	Y
			0.268	Y	150	149	0.236	Y
AUX	100	99	0.268	Y	150	149	0.236	· ·
STACK	100	99	0.268	v				Y
STACK	350		and the designed of the second s	1	150	149	0.236	Y
	JOU	349	0.161	Y	450	447	0.415	V

CRITERIA: Percent difference between the Reference Temperature and the average Temperature can be only ± 1.5% K.

EQUATION: [(Ref. Temp. + 273)- (Temp. Reading + 273)] x 100 (Ref.Temp. +273)

Calibrated By: Haley Lemon P. Orquina Signature over Printed Manie 1000 Carried Con QA/QC: Edindo/C. Fernando Signature over Printed Name

Checked By: Jans Cholo E. Chua Signature over Printed Name

Date:

18 January 2024

214 Floor, VAG Bidg, Ortigas Ave. Greenkels San Jupin City, Philippines Tels. (632) 863-6129- Fax (632) 727-9631 Email. <u>939(365) 601 (Gen.ph</u>

Department of Environment and Natural Resources (DENR) ENVIRONMENTAL MANAGEMENTEIMEAN A C C R E DITED THIRD PARTY TESTER Certificate No: SAT NO. 2022-72

TEMPERATURE SENSOR CALIBRATION DATA SHEET

Date	18 January 2024	Thermocouple No.	TMC – T2
Personnel	HPO, MSL	Reference	Alcohol Thermometer

Date	Reference Point Number	Source (Specify)	Reference Thermometer Temp., °C	Thermocouple Display Temp., °C	Absolute Temperature Difference, %
	1	HOT WATER	99.8	100	0.2
18 Jan 2024	2	AMBIENT	28.1	28	0.1
	3	ICE WATER	2.2	2	0.2
	1	HOT WATER	99.2	99	0.2
30 Jun 2023	2	AMBIENT	28.1	28	0.1
	3	ICE WATER	2.2	2	0.2
	1	HOT WATER	99.2	99	0.2
11 Jan 2023	2	AMBIENT	28.1	28	0.1
	3	ICE WATER	2.2	2	0.2

Haley Lemon P. Orquina 5 Calibrated By: Jans Cholo E. Chua Checked By: Signature over Printed Name Signature over Printed Name 15 12 Edindo C. Vernando QA/QC: Date: 18 January 2024 Signature over Printed Name

2rd Floor VAG Bidg, Orligas Avo., Greenhills San Juan Matto Mania, Philograms Tcb. (652) 863-6129 (2007) (652) 727/0831 Email: <u>1/1635</u> (cv.con.pg)

POST TEST THERMOCOUPLE CALIBRATION CHECK EPA Approved Alternative Method (Alt-011) Single Point Calibration

Thermocouple ID	TMC-T2	Probe / Pitot Tube ID	SPA-6FT-2 / PT-6FT-2
Personnel	HPO, RCG	Date	18January 2024

Sensor	Calibrated By:	Reference Temp. °C 1	Thermocouple Temp. °C	Difference ² (within <u>+</u> 1°C)	Continuity Check ³	PASS / FAIL
PROBE	HPO	30.2	30	0.2	ок	PASSED
FILTER	HPO	30.1	30	0.1	ок	PASSED
STACK	HPO	30.1	30	0.1	ок	PASSED
EXIT	HPO	30.1	30	0.1	ок	PASSED
OVEN	НРО	30.2	30	0.2	ок	PASSED
AUX.	HPO	30.2	30	0.2	ок	PASSED

¹ Reference Thermometer is mercury-in-glass and ASTM certified, unless otherwise noted.

²After each test run series, check the accuracy (and, hence, the calibration) of each thermocouple system at ambient temperature. The temperature of the thermocouple and reference thermometers shall agree with \pm 1 °C.

³The continuity check involves subjecting the tip of the thermocouple to a change in temperature to check the crimps, loose connections. Thermocouples with crimps and loose connections will not immediately respond to temperature changes, and those with wrong connections will show an opposite change in temperature.

Calibrated By:

Haley Lemon P. Orquina Signature over Printed Name Edind C /Fernando Signature over Printed, Name

QA/QC:

Date:

Checked By:

18 January 2024

Jans Cholo E. Chila

Signature over Printed Name

2 4 Ficori VAG Bidg Ortigas Ava. Greenbins San JuaeCity, Metro Mania, Philippinas Tela. (632) 663-6129: Fax (632) 727-9631 Email: 中心的bsjenv.cnir.ph

Department of Environment and Natural Resources (DENR) ENVIRONMENTAL LANAQLACIN BUILTAU A C C R E D I TE D T HI R D P A R T Y T E ST E R Certificate No: SAT NO. 2022-72

PITOT TUBE ID	PT-6FT-2	Probe As	sembly ID	SPA-6FT-2	
Calibrated by:	HPO, RCG	Date Cali	brated	18 January 2024	
PARAMETH	R	VALUE	A	ALLOWABLE RANGE	
Assembly Lev		YES		YES	
Holes Damage	ed	NO		NO	
Obstructed		NO		NO	
αι		0		-10°<α1<+10°	
α2		0		-10° <a2<+10°< td=""></a2<+10°<>	
β1		1		-5°<β1<+5°	
β2		0		-5°<β2<+5°	
Y		1			
θ		1		and a second	
Α		0.935		For ¼" OD, 0.526 to 0.750" For ¾" OD, 0.788 to 1.125"	
Z =A sin Y		0.016		Z = ≦ 0.125"	
W = A sin θ		0.016		W = ≦ 0.031"	
Pa				For ¼" OD, 0.263 to 0.375" For ³ / ₈ " OD, 0.394 to 0.563"	
PB		0.433		For ¼" OD, 0.263 to 0.375" For ³ / ₈ " OD, 0.394 to 0.563"	
PA-PB		-0.015		-0.063 to 0.063"	
DT		0.320		0.188 to 0.375"	

TYPE-S PITOT TUBE CALIBRATION

Where: $\alpha 1 \& \alpha 2$ = angles between the pitot tube opening and the horizontal plane when viewed from the end

 $\beta 1 \& \beta 2$ = angles between the pitot tube opening and the horizontal plane when viewed from the side

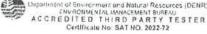
Y= the angle measured when calculating the difference in length between the two pitot tube legs

 $\mathbf{0}=\mathbf{lhe}$ angle measured when calculating the distance that the pitot tubes are rotated

A = the distance between the tips of the pitot tube opening T. The difference between the tips of the pitot tube opening

Z =The difference in length between the two pitot tube legs

W= the distance that the pitot tube legs are rotated


 $P_A\&P_{B^\circ}$ vertical distance between each pitot tube opening plane & the center line of the pitot tube Dr = the tube external diameter

Certification

I certify that the Type S pitot tube meets or exceeds all specifications, criteria and / or applicable design features and is hereby assigned a pitot tube calibration factor (Cp) of 0.84.

Calibrated By:	Halcy Lemon P. Orquina Signature over Printed Name	Checked By:	Jans Cholo E. Chua Signature over Printed Name
QA/QC:	Edindo C. Fernando Signature over Printed Name	Date:	18 January 2024
2 [∉] Floor, VAG Bildg, Onligas A	ve., Greanhits	Bepartingent of Envi	rorment and Natural Resources (DENR)

2 ⁴ Floor, VAG Bldg, Orligas Ave., Greenhilts San Juan, Metro Manila, Philippines Tels (632) 863-6124-Flax (632) 727-983 Email: ufggbbjeriv (min.pt)

NOZZLE CALIBRATION SHEET

Date	18 January 2024	Personnel	HPO, RCG
Nozzle Box ID	NS-T2	Nozzle Type	Stainless Steel

ID	D₁(mm)	D₂(mm)	D₃(mm)	D (mm)	Average (mm)
T2 NS-1	3.04	3.06	3.02	0.04	3.04
T2 NS-2	4.09	4.09	4.09	0.00	4.09
T2 NS-3	5.90	5.90	5.87	0.02	5.89
T2 NS-4	7.90	7.88	7.90	0.01	7.89
T2 NS-5	9.36	9.37	9.36	0.01	9.36
T2 NS-6	10.86	10.90	10.90	0.04	10.89
T2 NS-7	12.50	12.50	12.50	0.00	12.50

D = Maximum difference in any two measurements. Tolerance = 0.1 mm ; Average = Average of D1,2.3

Ð **Calibrated By:** Haley Lemon P. Orquina Checked By: Jans Cholo E. Chua Signature over Printed Maine Signature over Printed Name -1.50 free and 2 Edindo & Fernando Signature over Pripted Name QA/QC: Date: 18 January 2024

214 Floor, VAG Bolg, Orogas Avel, Greonoria Sanukan, Metro Munra, Phappines Lefs (632) 8A1-6329 Flux (632) 727-0831 Email (choglusience con ph Department of Environment and Natural Resources (DENR) ENVIRONMENTAL MAINGEMENT BURFAU A C C R E D I TE D THIRD PARTY TESTER Certificate No: SAT NO. 2022-72

FLASK CALIBRATION SHEET

Date	18 January 2024	Personnel	HPO, RCG
FLASK BOX ID	T2- M7 Flask-C	Flask Type	Glass

FLASK ID	1 st Volume(mL)	2 nd Volume(mL)	3 rd Volume(mL)	Average Volume (mL)
BSI T2 - F19	2315	2310	2320	2315
BSI T2 - F20	2250	2250	2250	2250
BSI T2 - F21	2308	2310	2312	2310
BSI T2 ~ F22	2247	2253	2250	2250
BSI T2 – F23	2235	2230	2240	2235
BSI T2 - F24	2286	2286	2283	2285
BSI T2 – F25	2250	2250	2250	2250
BSI T2 – F26	2228	2232	2230	2230
BSI T2 – F27	2280	2280	2280	2280

*Note: The flask volumes are measured within +/- 10mL. All calibrations are at room temperature.

Calibrated By: Haley Lemon P. Orquina Checked By: Jans Cholo E. Chua Signature over Printed Name Signature over Printed Name Edindo C/ Fernando QA/QC: 18 January 2024 Date: Signature over Printed Name 1

2rd Four, VAG Blog, Ortigas Ave., Greenhils San Juan Metro Munila, Philippnes Tels (632) 883-8129: Fax (632) 727-9831 Email: infa(<u>0)sienv.com</u>.ph

L DEPARtment of Environment and Natural Resources (DENR) ENVIRONMENTAL XANAGEMENT BURGAU A C C R EDITED THIRD PARTY TESTER Certificate No: SATNO. 2022-72

DIGITAL BALANCE CALIBRATION

Digital Balance ID	DB - T2	Personnel	HPO, MSL
Manufacturer	AND CO. LTD.	Date	18 January 2024
Model	EJ-1500	Calibration Standard	1000g
Serial Number	BA2826513	Туре	Weights (1500g max)

Eccentricity Test		Repeat	ability Test
Test Load	1000g		led up to 1500g D0g standard weights)
Position	Balance Indication	Trial	Balance Indication
1	1000.0	1	1549.9
2	1000.0	2	1549.9
3	1000.0	3	1549.9
4	999.9	4	1549.9
5	1000.0	5	1549.9
Test Results	0.1	Standard Deviation	n

	L	inearity Test		
Nominal Load	Unit under Test Reading	Deviation from Nominal	Coverage Factor	UE at 95% C.L
Weights	g	g	k	p
0	0	0	2	0
200g	199.9	0.1	2	0.16
500g	500	0	2	0.10
1000g	1000	0	2	0
1500g	1499.9	0.1	2	0.16

¹Acceptable EPA Method 4 tolerance must be less than 0.5 gram. ²Acceptable EPA Method 5 tolerance must less than 0.5 gram.

Equipment Des	cription	Equipment ID		Traceability Reference
Standard W	eight //	1254		08-09-2022-BSI-T2
Calibrated By:	Haley Cembr Signature over		hecked By:	Jans Cholo E. Chuta Signature over Printed Name
QA/QC:	Edindo (. Signature over	Fernando Printed Name	Date:	18 January 2024
¹¹ Floor VAG Bidg Ontigas Ave. Gr lan Juan City Metro Maona, Philippe ets. (532) 863-6129 • Fax (632) 727 mail: <u>info(Qbstenv.com</u>	inas / V		ENV ENV	NYTIONTIENT and Natural Resources (DENR) IRONNENTAL MANAGEMENT BUREAU O ITEO THIRD PARTY TESTER Certificate No: SATNO. 2022-72

Switchtek **Measurement Systems**

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph www.switchtek.com.ph

Certificate No.: 4000.23-8979-4.23 Calibration of 3 INI (Anemometer, Barometer, %RH) BERKMAN SYSTEMS INCORPORATED Identification: Job: PI Test and Verification Fin.acc: 32 Certificate of Calibration December 5, 2023 Initials...: Done___: CAC Categories Calibration Men Hours Total cost Туре Cal Officer 2 1.00 Certificate

CERTIFICATE OF CALIBRATION - 3 IN 1 (ANEMOMETER, BAROMETER, % RH)

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 11025 against NIST traceable reference standards and its co-equal standards.

issued to:	BERKMAN SYSTEMS INCORPORATED		
Address:	Suile 208 VAG Sldg., Ortigas Avenue, Greek	shills, San Juan, Metro M	anita, Philippines
UNIT UNDER TEST (L	וידטו	CALIBRATOR INFORMAT	ION:
Instrument:	3 IN1 (Anemometer, Barometer, XRH)	Instrument:	Temperature and Humidity chamber
Brand:	LUTRON	Model No.:	XB-015-34
Model No.:	ABH-4225	Serial No.:	20130803
Serial No.:	AJ.79434	Traceability:	CNAS
Range:	Velocity (0-30.0 m/s)	Instrument:	Rotating Vane Anemometer
	Temp. (0-50 Deg. C)	Manufacturer:	LUTRON
	Humidity (10 to 95%)	Model No:	AM-4206M
	Dewpoint (-25.3 to 48.9 Deg. C)	Serial No:	Q432206
	10.0 to 999.9 hPa	Range:	0 to 30.0 m/s
Resolution:	Velocity (0-30.0 m/s)/0.1 m/s	and and a set of the	0 to 50.0 °C
	Temp. (0-50 Deg. C)/0.1 Deg. C	Calibrated Against	UKAS, Ihru Laser Doppler Anemometer
	Humidity (10 to 95%)/0.1 %RH	Instrument	Barigo, Precision Barometer
	Dewpoint (-25.3 to 48.9 Deg. C)/0.01 Deg. C	Calibrated Against:	NIST
	Barometeric (10.0 to 999.9 hPa) /0.1		
Calibration Date:	December 4, 2023		
Calibration Due:	December 3, 2024		
Environmental Cond	Nor		
Condition:	DRY/BASIC/NEUTRAL	Ambient Temp. (Deg C):	23 + 2
Relative Humidity	52.2 +5%, 1010 hPa		

Calibration Method:

By comparison technique, unit under lest was tested in reference with a Rotating vane anemometer, precision barometer, Standard Temperature and Humidity calibrator. Procedures of calibration and test conform to the requirements of NPL, NIST and ISO/IEC Guide 17025. Data were gathered and plotted against an ideal curve. Standard error and uncertainty of measurement are written on the attached sheet.

Remarks:

All data pertain only to the unit described obtained at the time of test. This certificate is not valid w/out seal and signature. Unauthorized reproduction is prohibited.

Calibrated By: C.A. CASADO Certified By	ed By:	XR	A ANDOC	/	
Date: December 4, 2023 Date:	Date:	Dec	cembe) 5, 702	hay .	

Switchtek Measurement Systems

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave, Bahay Toro,Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9202869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph www.switchtek.com.ph

Certificate No.:	4000.23-8979-4.23	Calibration of	3 INI (Anemometer, Barometer, %RH)
Identification:	BERKMAN SYSTEMS INCORPORATED		
Address:	Suite 298 VAG Bldg., Orligas Avenue, G	ireenhills, San Juan	, Hetro Manila, Philippines

CERTIFICATE OF CALIBRATION - 3 IN 1 (ANEMOMETER, BAROMETER, % RH)

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

UNIT	UNDER	TEST	NUT	ŀ.

Instrument	3 IN1 (Anemometer, Barometer, XRH)
Brandt	LUTRON
Model No.:	ABH-4225
Serial No.:	AJ.79434
Range:	Velocity (0-30.0 m/s)
	Temp. (0-50 Deg. C)
	Humidity (10 to 95%)
	Dewpoint (-25.3 to 48.9 Deg. C)
	10.0 to 999.9 hPa
Resolution:	Vetocity (0-30.0 m/s)/0.1 m/s
	Temp. (0-50 Deg. C)/0.1 Deg. C
	Humidity (10 to 95%)/0.1 %RH
	Dewpoint (-25.3 to 48.9 Deg. C)/0.01 Deg. C
	Barometeric (10.0 to 999.9 hPa) /0.1

Calibration Date:	December 4, 2023
Calibration Due:	December 3, 2024
Calibrated By:	C.A. CASADO

MODE: THERMOHYGROMETER

Results:

Temperature:

REFERENCE READING (°C)	UNIT UNDER TEST READING (*C)	ERROR IN READING ("C)	STANDARD DEVIATION	REMARKS
9.6	9.9	-0.30	0.2121	The user should determine
20.0	21.3	-1.30	0.9192	the suitability of the
23.9	24.8	-0.90	0.6364	instrument of its intende
40.4	39.8	0.60	0.6263	use.

Uncertainty: # 1.22 *C

Relative Humidity:

REFERENCE READING (% RH)	UNIT UNDER TEST READING (% RH)	ERROR IN READING (% RH)	STANDARD DEVIATION	REMARKS
73.7	58.0	15.70	11.1016	
64.2	50.6	13.60	9.6167	
55.0	42.0	13.00	9.1924	DO NOT USE THIS MODE
47.0	35.0	12.00	8.4853	

Uncertainty: # 12.01 % RH

Inconstants' Association of the second state of the state of the second of the state of the second of t

Switchtek Measurement Systems

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro,Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph www.switchtek.com.ph

Certificate No.: 40 Identification: BR Address: St

4000.23-8979-4.23 Calibration of 3 INI (Anemometer, Barometer, %RH) BERKMAN SYSTEMS INCORPORATED Suite 208 VAG Bldg., Ortigas Avenue, Greenhills, San Juan, Metro Manila, Philippines

CERTIFICATE OF CALIBRATION - 3 IN 1 (ANEMOMETER, BAROMETER, % RH)

This report of calibration shall document that the instrumont herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

UNIT UNDER TEST (UUT):

Instrument:	3 INI (Anemometer, Barometer, %RH)
Brandt	LUTRON
Model No.:	ABH-4225
Serial No.:	AJ.79434
Range:	Velocity (8-30.0 m/s)
1.5	Temp. (0-50 Deg. C)
	Humidity (10 to 95%)
	Dewpoint (-25.3 to 48.9 Deg. C)
	10.0 to 999.9 hPa
Resolution:	Velocity (0-30.0 m/s)/0.1 m/s
	Temp. (0-50 Deg. C)/0.1 Deg. C
	Humidity (10 to 95%)/0.1 %RH
	Dewpoint (-25.3 to 48.9 Deg. C)/0.01 Deg. C
	Barometeric (10.0 to 999.9 hPa) /0.1

Calibration Date:	December 4, 2023
Calibration Due:	December 3, 2024
Calibrated By:	C.A. CASADO

MODE: THERMOHYGROMETER

Results:

Barometric

REFERENCE READING (hPa)	UNIT UNDER TEST READING (hPa)	ERROR IN READING (hPa)	STANDARD DEVIATION	REMARKS
1015	1007	6.00	5.6569	The user should determin
1010	1004	6.00	4.2426	the suitablity of the instrument for its intended
1000	993	7.00	4.9.497	use

Standard error: * 8.57 hPa Uncertainty: * 7.87 hPa

Velocity

REFERENCE READING (m/s)	UNIT UNDER TEST READING (m/s)	ERROR IN READING (m/s)	STANDARD DEVIATION	REMARKS
0.00	0.00	0.00	0.0000	The user should determine
5.20	5.10	0.10	0.0707	the suitablity of the
9.55	9.40	0.15	0.1061	instrument for its intended
15.10	14.90	0.20	0.1414	856

Standard error: # 0.16 m/s

Uncertainty: # 0.59 m/s

Sequence: Also we see C. a. Statu, Alabam Take Scher Reight Rei Rif Scher La Leven et al. Scher Cales of Alabam Scher La Leven and Scher La Lev

Making our world more productive

CERTIFICATE NUMBER : 90168754/D962229 REVISION NUMBER : REVISION DATE :

Certificate of Analysis

Material Number : S802100-AE-C6		C	istomer	· Tag :	
Customer : L Job Card : 9 Certification Date : 2	INDE PHILIPPINES INC. 0168754 9-Nov-2021			PO Number Order Date SO Number	: 9300463129 : 08-Nov-2021 : 128002321
CYLINDER NUMBER			Vcode	: GM34242/10A/S BS4	
D962229		1			
SPECIFICATION					
Component	Requested Concentration	Certified Concentration	Unit	Certifie Uncert	ed ainty (% +/-)
NITROGEN	and a second	1	Balance		and the second
CARBON MONOXIU	DE 200	200	ppm	2	
The Certified uncertainty is	relative unless specified "abs" a	s pheolute with a good		1 - 8 0.507 (
CYLINDER VALVE	10L ALUM BS4 BRASS	ansonare with a com	luence leve	n of 95% (coverage	factor $K \approx 2$).
Content 1,494 M3 Shelf Life 36 Month Recommended Storage	UN Number	150 Bar(a) 1956 10 to 40°C	Referen Min. U	ce Temperature sage Pressure	20'C 5 BAR G
FRACEBILITY Category PROCESS	Traceabiltiy Type WEIGHT	Traceabl National	e To Metrolog	Referen y Centre(NMC)	ce Procedure
METHOD OF CERTH Method	ACATION Gravimetric			.,(10001-2.2001
INSTRUMENTAT Method of LS71704	ION Analysis				
REMARKS					
Cert	ified By			Checked By	
GAS	SING			GAS SING	
NDE IS	N SO		(g)	ALL THE OFFICE	
(5) KT	HAN T		9	ANATHAN YOUN	
	····/····				

Product filled gravimetrically using high-load high-necuracy, weight traceable to National Metrology Centre (NMC) standards, Linde Gas Singapore has obtained a corporate License complying to ISO 9001 standard,

Linde Gas Singapore Pte, Ltd 50 jurong Island Highway Singapore 62/27/7 Pilong + 55 6367 4993 Fax + 65 6896 7745 Tri Grig Moi 109463 / 588

5 Juás Basiminik kusing findustvoj Estare Singapore 6 18759 Mihore - 65 6867 3993 - 6x - 65 6861 56 m www.linde.com sij

Making our world more productive

CERTIFICATE NUMBER : 90168756/D962122 REVISION NUMBER : REVISION DATE :

Certificate of Analysis

Material Number : S	823400-AE-C6	Cu	stomer	Tag :	
Customer : LINE Job Card : 9016 Certification Date : 22-N CYLINDER NUMBER				PO Number Order Date SO Number Vcode	: 9300463129 : 08-Nov-2021 : 128002321 : GM34553/10A/S BS4
D962122					
SPECIFICATION					
Component	Requested Concentration	Certified Concentration	Unit	Certi Unce	fied rtainty (% +/-)
NITROGEN		10.4.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Balanc		
CARBON MONOXIDE	500	500	ppm	2	
VALVE E Content 1.470 M3 Shelf Life 36 Month	OL ALUM S4 BRASS Pressure UN Number	150 Bar(a) 1956		ence Temperati Usage Pressure	
Shelf Life 36 Month Recommended Storage a	UN Number nd Usage Temperature		Min.	Usage Pressure	5 BAR G
TRACEBILITY				227/227	
Category PROCESS	Traceabiltiy Type WEIGHT	Traceab National	le To Metrol	Refe ogy Centre(NM	rence Procedure C) 1SO6142:2001
METHOD OF CERTIFI Method	CATION Gravimetric				
INSTRUMENTATIC Method of A	DN nalysis				
REMARKS					
Certi	fied By			Checked By	
	Sing			INS SING	
49	201				
(-1 (-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)	in in			B KTHAN	2

Product filled gravimetrically using high-load high-accuracy, weight traceable to National Metrology Centre (NMC) standards. Linde Gas Singapore has obtained a corporate License complying to ISO 9001 standard.

Name

Linde Gas Singapore Ple. Ltd. 50 juurug Island Highwey Singapure 027877 Phone + 65 5867 8998 Fax + 65 6896 7745 GuiRey No. 1993037588

(CHANNAN 1003)

.....

Turnis

5 luas Basin Link jurong Industrial Estate Singapore 638250 Thone 165 5567 8998 Eax +65 6861 Se10 www.linde.com.vg

Page 1 of 1

Making our world more productive CERTIFICATE NUMBER : 90168755/D962087 REVISION NUMBER : REVISION DATE :

Certificate of Analysis

Material Number :	S803400-AE-C6	Ci	istome	r Tag :
Job Card : 90 Certification Date : 22	NDE PHILIPPINES INC. 168755 Nov-2021			PO Number : 9300463129 Order Date : 08-Nov-2021 SO Number : 128002321 Vcode : GM23712
CYLINDER NUMBER				, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
D962087				
SPECIFICATION			- 111-2	
Component	Requested Concentration	Certified Concentration	Unit	Certified Uncertainty (% +/-)
NITROGEN			Balanc	e
CARBON MONOXIDI	800	800	ppm	2
CYLINDER VALVE Content 1.494 M3 Shelf Life 36 Month	IOL AL BS4 BRASS Pressure UN Number and Usage Temperature Traceability Type WEIGHT ICATION Gravimetric	150 Bar(a) 1956 10 to 40'C Traceabl	Refere Min. I	rel of 95% (coverage factor K=2). ncc Temperature 20'C Usage Pressure 5 BAR G Reference Procedure gy Centre(NMC) ISO6142:2001
REMARKS				
6 GAS	Che			Checked By
1 ST LIN	Not R			11 41 11 40 11 1 Q

Product filled gravimetrically using high-load high-accuracy, weight traccable to National Metrology Centre (NMC) standards. Linde Gas Singapore has obtained a corporate License complying to ISO 9001 standard.

Linde Gas Singapore Pte. Ud. 50 Joiong Island Highway Singapore 627877 Phone 165 6867 8968 Linx - 65 6896 7745 Co Reg. No. 1993037588

COMPRESS OF COMPRE

·

5 fuas Basin Link turong Industrial Ektate Singapine 638752 Phone +c5 6867 8798 Fax +65 5861 5610 www.lindn.com.sg

Page 1 of 1

KT HAN

ANNEX F

DENR ACCREDITATION

Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU Visayas Avenue, Diliman, Quezon City

SAT No. 2022-72

CERTIFICATE OF ACCREDITATION

Pursuant to DENR Administrative Order No. 26 Series of 2013 of the Department of Environment and Natural Resources having substantially met all the requirements prescribed therein,

BERKMAN SYSTEMS INCORPORATED (BSI)

208 VAG Building, Ortigas Ave., Greenhills, San Juan City, Metro Manila

is hereby duly accredited as

SOURCE EMISSION TESTING FIRM

As such, the following are authorized as:

QA/QC Manager Edindo C. Fernando

Team Leader Halcey Lemon P. Orquina

This certification shall allow the above firm and personnel to conduct stack testing limited to the following methods and parameters:

- 1. US-EPA Method 1 to 5 PM
- 2. US-EPA Method 6/8 SO₂
- 3. US-EPA Method 7 NOx
- 4. US-EPA Method 10 CO

Granted this __14th day of July 2022 and valid until ____ July 14, 2025

Digitally signed by Cuñado William Purgatoric DN: cn=Cuñado William Purgatorio, serialNumber=001006000462A ou=Environmental Ma Natural Resources, c Director

ANNEX G

TEST PARTICIPANTS

TEST PARTICIPANTS

BMC FORESTRY CORPORATION

Mr. Jovelino C. Catacutan - Pollution Control Officer

BSI

.

Mr. Halcy Lemon P. Orquina	-	DENR Accredited Team Leader / Field Engineer
Mr. Romeo M. Elsisura	-	Field Technician
Mr. Marvin S. Llarena	ς.	Field Technician
Mr. Christian A. Soleta		Outsource Technician
Mr. Jimuel B. Torellino	•	Sampling Aide/Driver
Mr. Edindo C. Fernando	-	DENR Accredited QA/QC Manager

ANNEX H

TEST PLAN

May 6, 2024

ENGR. JEAN C. BORROMEO

OIC, Regional Director DENR – Environmental Management Bureau Cordillera Administrative Region (CAR) DENR Compound, Gibraltar Road, Baguio City

CC : ENGR. RAUL G. CUBANGAY OIC Chief, Environmental Monitoring and Enforcement Division

Subject: Test Plan for BMC Forestry Corporation – Irisan Lime Project

Dear Director Borromeo:

We are pleased to submit the test plan for our proposed Source Emission Test to be conducted by Berkman Systems, Inc., an accredited third-party tester at BMC Forestry Corporation – Irisan Lime Project located at Km.5, Naguilian Road, Irisan, Bagulo City.

:A. 1

17 F 111

We hope this addresses your requirements.

Thank you.

Very truly yours,

BMC FORESTRY CORPORATION By:

NARHY C. POMILBAN Reglution Control Officer

Noted by:"

FRANCISCO O. FLAVIER Resident Marlager

P.O.Box 105 Insan, Baguio City * Tel No. (074) 445 – 7180 * Telfax. (074) 445 – 2555 email:totlavier@yahoo.com, npomilban@benguet.com

May 9, 2024

ENGR. JEAN C. BORROMEO OIC, Regional Director CC : ENGR. RAUL G. CUBANGAY Chief, Environmental Monitoring and Enforcement Division ENVIRONMENTAL MANAGEMENT BUREAU CORDILLERA ADMINISTRATIVE REGION (CAR) DENR Forestry Compound, Pacdal District Baguio City, Benguet

1.11

Subject: Test Plan for BMC Forestry Corporation - Irisan Lime Project

Dear Dir. Borromeo:

We are pleased to submit the test plan for our proposed Source Emission Monitoring to be conducted at BMC Forestry Corporation - Irisan Lime Project located at Km.5, Naguilian Road, Irisan, Baguio City.

We hope that this addresses your requirements.

Very truly yours,

BSI يتقريبنية تبعينيه AL F EDINDO CI FERNANDO

EDIANO C/ HERNANDO Field Operation's Manager DENR Accredited QA/QC Manager SAT No. 2022-72 2rd Floor, VAG Bidg, Origas Ave., Greentille San Juan City, Metro Markis, Philippines Tole., (632) 863-8129 - Fax (632) 727-8831 Emel: Info@bsierv.com.ph

Department of Environment and Natural Resources (DENR) ENVIRONMENTAL MANAGEMENT BLIREAU A C C R E D I T E D T H I R D P A R T Y T E S T E R Certificate No: SAT NO. 2022-72

BSI-2022-72-24-025

rentar wanagement service Provider

SOURCE SPECIFIC TEST PLAN

This document is the Source Specific Test Plan of **BSI** (Formerly **Berkman Systems**, Inc.) Ihat describes the emission testing that will be completed at BMC Forestry Corporation – Irisan Lime Project located at Km.5, Naguilian Road, Irisan, Baguio City.

Section A: FACILITY INFORMATION

BMC Forestry Corporation - Irisan Lime Project Irisan, Baguio City

Contact Person: Narhy C. Pomilban Pollution Control Officer

Telephone: (074) 445-7180

Section B: PRODUCTION INFORMATION AND FACILITY REQUIREMENTS

The plant should operate the **one (1) unit of 1.08 MT/hr Vertical Shaft Kiln** set for at 90% or greater of permitted capacity during testing. The Implementing Rules and Regulations of the Philippine Clean Air Act specify that the operating capacity during emission testing shall be the basis for setting the maximum allowable operating capacity during permit application.

The facility must provide the following items:

- The client shall provide an on-site single phase 220VAC/60Hz-power supply.
- The client shall provide at least two (2) sampling portholes based on the existing stack diameter and pipe length. Sampling platforms should be installed or constructed properly for the safety of the sampling personnel.
- Copy of latest Permit to Operate (PTO)
- Schematic diagram of the process
- · Copy of the latest certificate of fuel analysis and delivery receipt.
- Copy of engine log sheet during sampling
- Photo documentation and Video coverage will be taken by the accredited sampling personnel during sampling activity.

2rd Floor, VAG Bidg, Orliges Ave., Greenhills San Juan City, Metro Manila, Philippines Tels, (632) 963-6129 - Fax (632) 727-9831 Email: <u>info@bsienv.com.ph</u>

Depetchent of Environment and Natural Resources (DENR)2 ENVIRONMENTAL MANAGEMENT BUREAU ACCREDITED THIRD PARTY TESTER Certificate No: 5A7 NO. 2022-72

B\$1-2022-72-24-025

Section C: SOURCE INFORMATION

10

The test will be at one (1) unit of 1.08 MT/hr Vertical Shaft Kiln set for 3 sampling runs and 3 stations of 24 hours Ambient air with parameters PM₁₀, SO₂, NO₂ and noise to be conducted on May 27 to 31, 2024.

Parameters to be tested and duration - see Table 1.

Particulars	Parameter	Sampling Methodology	No. of Test runs/Duration	Notes
one (1) unit of 1.08 MT/hr Vertical Shaft Kiln	Volumetric Flow Rate (VFR)	EPA Method 1-4	3 one-hour run/ exhaust	Performed concurrent with PM test
	Oxygen / Carbon Dioxide	EPA Method 3 By Fyrite Method	3 runs / exhaust	Integrated Tedlar bag sample during M5 test
	Particulate Matter (PM)	EPA Method 5	3 one-hour run/ exhaust	Performed with Method 5 set-up
	Sulfur Oxides (SO x)	EPA Method 6 modified	3 one-hour run/ exhaust	Simultaneous with Method 5
	Nitrogen Oxide (NOx)	EPA Method 7	3 runs / exhaust	Three grab sample flasks collected per run
	Carbon Monoxide (CO)	EPA Method 10 By NDIR	3 runs / exhaust	Integrated Tedlar bag sample during M5 test

TABLE 1 - TEST METHODOLOGY

Section D: QUALITY ASSURANCE / QUALITY CONTROL PROCEDURES

Normal QA/QC procedures described in the Methods will be strictly followed.

2^MFibor, VAG B(dg, Ortigas Ave., Greenhills San Juan, Metro Manila, Philippines Tels. (632) 863-6129 • Fax (832) 727-9831 Emeil: inlo@bsienv.com.ph

Department of Environment and Natural Resources (DE§R) ENVIRONMENTAL MARAGEMENT BUREAU A C GREDITED THIRD PARTY TESTER Certificante No: SAT NO. 2022-72

11

BSI-2022-72-24-025

Section E: SAMPLING DATE

May 28 to 29, 2024

The sampling team leader will coordinate the specific run plans with the abovementioned Plant representative. The sampling team will be at the Plant on or before 9:00 AM of the sampling date,

Section F: SAMPLING PERSONNEL

The proposed sampling team shall consist of the following personnel:

4

-

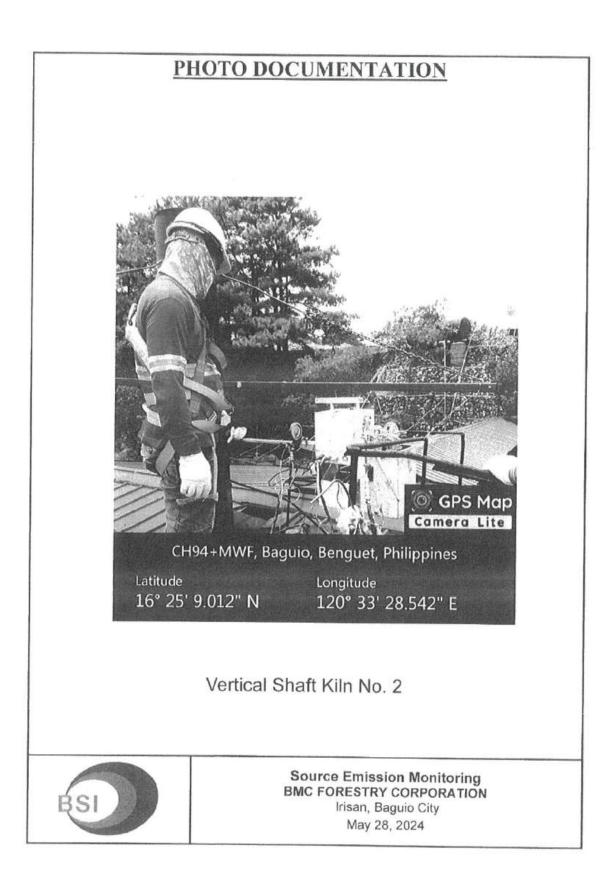
.....

Team:

- 1. Halcy Lemon P. Orquina
- 2. Edindo C. Fernando
- 3. Ruel P. Abando
- 4. Jose Arjay M. Santiago
- 5. Romeo M. Elsisura
- 6. Marvin S. Llarena
- 7. Kariel G. Cabel
- 8. Christian A. Soleta
- 9. Jimuel B. Torrelino
- 10. Joseph Dandy A. Quilet

- Accredited Team Leader
- QA/QC Manager
- Accredited Team Leader (back up)
- QA/QC Manager (back up)
- Field Technician
- Field Technician
- Field Technician
- Field Technician
- Driver / Technician
- Driver / Technician

Signed:


EDINDO C. FERNANDO Field Operations Manager DENR Accredited QA/QC Manager SAT No. 2022 72

2^{ol} Floor, VAB Bldg, Ortigas Ave., Greenhills San Juan, Metro Mania, Philippines Tels. (632) 663-6120 - Fax (632) 727-9831 Emoil: info@bsianv.com.ph

Department of Environment and Natural Resources (DEMR) ENVIRONMENTAL MAYAGEMENT BUREAU A C C R B O IT FD TH IRD P ARTY TESTER Certificate No: SAT NO. 2022-72 **ANNEX I**

PHOTO DOCUMENTATION

Appendix F-2

22 January 2025

Ref. No.: LT-24-566-1-72

MR. NARHY C. POMILBAN Pollution Control Officer BMC FORESTRY CORPORATION Km. 5, Naguilian Rd., Irisan, Baguio City

Subject: Source Emission Monitoring Report

Dear Mr. Pomilban:

We are pleased to submit the final report of the source emission monitoring as a result of our visit to your facility in Irisan, Baguio City on December 13, 2024.

We hope that this report addresses your requirements.

Very truly yours,

(* EMMANUEL R. ALTAREJOS Executive Vice President

Į

ERA/jdm

Department of Environment and Natural Resources (DENR) ENVIRONMENTAL MANAGEMENT DUREAU ACCREDITED THIRD PARTY TESTER

SOURCE EMISSION MONITORING REPORT

One (1) Unit 1.08 MT/hr Vertical Shaft Kiln

BMC FORESTRY CORPORATION

Irisan, Baguio City

DENR SOURCE EMISSION TESTING FIRM ACCREDITATION NO: SAT NO. 2022-72

2nd Floor, VAG Building Ortigas Avenue, Greenhills, San Juan, Metro Manila, Philippines

24.2 - 1 -1 -1 1 • • ч, . . ≥ 0.92 - 8

SOURCE EMISSION MONITORING REPORT (December 13, 2024)

BMC FORESTRY CORPORATION Irisan, Baguio City

. .

10

Prepared for:

BMC Forestry Corporation Km. 5, Naguilian Rd., Irisan, Baguio City Tel. No.: (074) 445-7180

Prepared by:

BSI 2nd Floor VAG Building, Ortigas Avenue Greenhills, San Juan, Metro Manila Tel. No.: (02) 863 6129; Fax. No.: (02) 727 9831

TABLE OF CONTENTS

CONTENTS

PAGE

1. IN	TRODUCTION	1
1.1	PROCESS DESCRIPTION AND OPERATION	
1.2	REASON FOR TESTING	1
1.3	FACILITY OPERATING CONDITIONS DURING THE TEST.	
2. SU	JMMARY OF RESULTS	2
2.1	Conclusions	4
3. SA	MPLING AND ANALYTICAL PROCEDURES	4
3.1	METHODS 1 AND 2 – TRAVERSE POINT AND STACK VELOCITY	4
3.1		
3.1		
3.1	1.3 Flue Gas Velocity	
3.2	METHOD 3 – FLUE GAS COMPOSITION.	
3.3	METHOD 4 - FLUE GAS MOISTURE CONTENT	
3.4	METHOD 5/6 (MODIFIED) - PARTICULATE MATTER AND SULFUR OXIDES	6
3.4	4.1 Sample Collection	
3.4		
3.4	4.3 Sample Analysis	
3.5	METHOD 7 - NITROGEN OXIDES	
3.5	5.1 Sample Collection	
3.5	5.2 Sample Recovery	
3.5	5.3 Sample Analysis	
3.6	METHOD 10 - CARBON MONOXIDE.	
3.6		
3.6	5.2 Sample Recovery	
3.6	5.3 Sample Analysis	
4. QA	A PROCEDURES	
4.1	PARTICULATE MATTER AND SULFUR OXIDES (AS SO2)	8
4.1		
4.1	1.2 Sampling Equipment	
4.1	1.3 Analysis	
4.2	NITROGEN OXIDES (AS NO2)	
4.3	CARBON MONOXIDE	

LIST OF TABLES

.

TABLE 1.	EQUIPMENT INFORMATION	ž
TABLE 2.	OPERATING CONDITIONS	2
TABLE 3.	VERTICAL SHAFT KILN NO. 2 EMISSION TEST RESULTS	5

LIST OF ANNEXES

ANNEX A	SOURCE EMISSION MONITORING SUMMARY OF RESULTS
ANNEX B	SOURCE EMISSION MONITORING FIELD DATA
ANNEX C	PERMIT TO OPERATE AND FACILITY PROCESS DATA
ANNEX D	ANALYTICAL DATA
ANNEX E	EQUIPMENT CALIBRATION CERTIFICATES
ANNEX F	DENR ACCREDITATION
ANNEX G	TEST PARTICIPANTS
ANNEX H	TEST PLAN
ANNEX 1	PHOTO DOCUMENTATION

i

Emission Test Report Certification

The emission sampling reported herein was performed under the direction and supervision of Mr. Edindo C. Fernando of BSI. The analyses of samples were conducted under the direction and supervision of Mr. Renato M. Gofredo, Jr. of ELARSI, Inc., a DENR-recognized Environmental Laboratory

I certify that the information contained in this report is authentic and accurate to the best of my knowledge.

Signed:..... Edindo C. Fernando BSI DENR Accredited QA/QC Manager Date: 24 January 2025

ii

BSI-2022-72-24-062 Source Emission Monitoring Report

1. INTRODUCTION

This report presents the procedures and results of the source emission monitoring conducted on December 13, 2024 at BMC Forestry Corporation situated in Irisan, Baguio City. BSI was commissioned to conduct the monitoring wherein Mr. Halcy Lemon P. Orquina led the team that administered the source emission sampling with Mr. Edindo C. Fernando as QA/QC Manager. Meanwhile, Mr. Narhy C. Pomilban, Pollution Control Officer of BMC Forestry Corporation, served as site contact person during sampling.

The pollutants considered for the source emission monitoring were: particulate matter (PM), sulfur oxides (as SO₂), nitrogen oxides (as NO₂) and carbon monoxide (CO) at one (1) unit 1.08 MT/hr vertical shaft kiln exhaust stack. The source was tested for three runs.

1.1 Process Description and Operation

BMC Forestry Corporation – BC ILP is an enterprise in the Philippines, with the main office in Baguio City. It operates in the Crop Production Industry (https://www.emis.com/php/companyprofile/PH/Bmc_Forestry_Corporation_en_3256166.html) and a producer and supplier of burnt lime. Its Kiln plant located at Km. 5 Naguilian Road, Irisan, Baguio City operates three (3) vertical shaft kilns, three (3) gas scrubbers, two (2) cyclone dust collectors and one (1) jaw crusher.

One (1) unit of 1.08 MT/hr *Vertical Shaft Kiln No.* 2 was operated at a minimum of 95% operating rate was tested during sampling, and used low sulfur fuel oil/regular fuel oil as fuel source.

This report covers the source emission monitoring of the vertical shaft kiln no. 2 only.

1.2 Reason for Testing

The purpose of the monitoring was to verify the company's compliance with the source emission standards of the Department of Environment and Natural Resources (DENR) Administrative Order No. 81 Series of 2000 (Implementing Rules and Regulations of the Philippine Clean Air Act of 1999).

1.3 Facility Operating Conditions during the Test

The equipment information and operating conditions of the facility monitored were summarized in *Tables 1* and 2, respectively.

1

BSI-2022-72-24-062

Source Emission Monitoring Report

Stationary Sou	rce Information	Vertical Shaft Kiln No. 2			
Brand	Name	N/A			
Rated (Capacity	1.08 MT/hr			
Year II	stalled*	August 1940			
	Diameter	36 cm			
Exhaust Stack	Height**	8.5 m			
	Orientation	Vertical			
Air Pollution (Control Device*	Wet Gas Scrubber			
GPS Co	ordinates	16° 25 ' 9.11"N; 120° 33' 28.52"			

Table 1. Equipment Information

*Based from previous sampling records

**Measured from the ground to the tip of the stack

	ing conditions
Stationary Source Information	Vertical Shaft Kiln No. 2
Minimum Load During Sampling	95%
Fuel Used	LSFO/Regular Fuel Oil
- Fuel Sulfur Content	No Fuel Analysis Provided
Fuel Consumption	No Information Provided
Annual Operating Hours	No Information Provided

Table 2. Operating Conditions

2. SUMMARY OF RESULTS

Table 3 presents the summary of test results of the vertical shaft kiln no. 2 exhaust stack. The test results were compared with the National Emission Standards identified in IRR Part VII Rule XXV Table 2. A detailed description of the test run information and sample calculations used to derive the values in the tabular summary were attached in *Annex A*.

Three test runs were performed to collect: PM, SOx (as SO₂), NOx (as NO₂) and CO at vertical shaft kiln no. 2 exhaust stack. Three trial tests per run were conducted to collect samples of nitrogen oxides (as NO₂). The raw field data used to prepare the summary reports in *Annex A* was included in *Annex B*. Emissions have been corrected to the standard conditions of 25°C and 760 mmHg on dry basis (unless otherwise indicated). Moreover, the emissions are not applicable for the corrected oxygen factor since the source is not included in the list of equipment under DENR EMB Memorandum Circular No. 2021-15.

BSI-2022-72-24-062

Source Emission Monitoring Report

		Run 1	Run 2	Run 3		
Sampling date		13-Dec-24	13-Dec-24	13-Dec-24		
Begin sampling time		1010H	1145H	1330H		
End sampling time		1115H	1250H	1435H		
Parameter	Units				Average	DENR Standard
Average stack temperature	°C	292.5	292.9	297.5	294.3	
CO2 measured in stack gas	%	6.8	6.7	6.8	6.8	
Oxygen measured in stack gas	%	13.7	14.3	13.7	13.9	
Stack gas moisture content	%	6.86	6.66	6.43	6.65	
Flue gas velocity	m/s	17.25	17.24	17.42	17.30	
Actual volumetric flow	m ³ /min	105.3	105.3	106.4	105.7	
Dry volumetric flow at STP	dsm³/min	44.5	44.6	44.8	44.6	
Isokinetic flow rate	%	102.0	99.9	100.1		
Particulate matter data	*					
Concentration	mg/Nm ³	16.9	18.6	30.8	22.1	150
Annual emission rate	tons/yr	0.4	0.4	0.7	0.5	
Sulfur oxides data						
Concentration (as SO2)	mg/Nm ³	2,3	1.5	< 1.5	1.9*	1500
Annual emission rate	tons/yr	0.1	0.04	< 0.03	0.04*	
Nitrogen oxides data						
Concentration (as NO2) **	mg/Nm ³	13.5	13.0	14.0	13.5	1000
Annual emission rate	tons/yr	0.3	0.3	0.3	0.3	
Carbon monoxide data						
Concentration	mg/Nm ³	28.6	29.8	17.2	25.2	500
Annual emission rate	tons/yr	0.7	0.7	0.4	0.6	

Table 3.

Vertical Shaft Kiln No. 2 Emission Test Results

Annual emission rates were based on one (1) year continuous operation.

* Average of detected values.

**Average of three (3) trial tests

Emissions are not applicable for the corrected oxygen factor since the source is not included in the list of equipment under DENR EMB Memorandum Circular No. 2021-15.

2

BSI-2022-72-24-062 Source Emission Monitoring Report

2.1 Conclusions

A description of any method deviations and quality assurance assessment was included in *Sections 3* and 4 of this report. Based on a review of the sampling data, facility operating information, test method description and quality assurance results, the concentration values presented in *Table 3* have passed the criteria to be considered as representative emission test results of the source and are suitable for comparison with the regulatory limits.

Under the Implementing Rules and Regulations of the Clean Air Act (CAA), the standards applicable to vertical shaft kiln no. 2 are as "existing fuel-burning equipment; other stationary source".

In conclusion, the test results indicate that the average emissions from vertical shaft kiln no. 2 exhaust stack:

- comply with the applicable standard for PM emissions;
- comply with the applicable standard for SOx (as SO₂) emissions;
- comply with the applicable standard for NO_X (as NO₂) emissions; and
- comply with the applicable standard for CO emissions.

3. SAMPLING AND ANALYTICAL PROCEDURES

All sampling were undertaken in accordance with US EPA standard methods, viz:

Method 1	Sample and Velocity Traverse Point Locations
Method 2	Stack Gas Velocity and Volumetric Flow Rate (S-type Pitot Tube)
Method 3	Gas Analysis for Determination of Dry Molecular Weight
Method 4	Determination of Moisture Content in Stack Gases
Method 5	Determination of Particulate Matter Emissions from Stationary Sources
Method 6	Determination of Sulfur Dioxide Emissions from Stationary Sources
Method 7	Determination of Nitrogen Oxide Emissions from Stationary Sources
Method 10	Determination of Carbon Monoxide Emissions from Stationary Sources

3.1 Methods 1 and 2 - Traverse Point and Stack Velocity

3.1.1 Sampling points

For the vertical shaft kiln no. 2 exhaust stack, the number and location of the sampling points were determined using the procedures of US EPA Method 1 since the equivalent stack diameter was measured to be greater than 30 cm.

BSI-2022-72-24-062

Source Emission Monitoring Report

The vertical shaft kiln no. 2 was sampled at a total of twenty-four (24) traverse points. Having two (2) available portholes that are 90° apart, twelve (12) traverse points were sampled for each.

Some of the traverse points of the exhaust stack were less than the criterion of Method 1 for allowable distance from the stack wall of stacks with diameter less than 0.61 meters. These points were relocated 1.3 cm (0.5 in) away from the stack wall.

3.1.2 Cyclonic Flow Check

For each sampling point, the rotation angle was determined using an "S-type" pitot tube assembly, liquid manometer and angle finder in accordance with section 2.4 of US EPA Method 1.

For each test point, the average absolute value of the rotation angle was less than the 20 degrees criterion of Method 1.

3.1.3 Flue Gas Velocity

The procedures of US EPA Method 2 were employed to determine the flue gas velocity and volumetric flow rate using an "S-type" pitot tube in making velocity head measurements (Δp). The "S-type" pitot tube conforms to the geometric specifications of Method 2 and has therefore been assigned a coefficient of 0.84. An inclined manometer built onto the meter console box was used to measure the differential pressures, while flue gas temperatures were measured with chromel-alumel thermocouples equipped with digital readouts.

3.2 Method 3 – Flue Gas Composition

US EPA Method 3 procedures were used to determine the flue gas composition and molecular weight. An "Orsat" sample pump was operated continuously at a constant rate during each Method 5/6 (Modified) sampling run to collect an integrated flue gas sample into a tedlar bag through a separate sample line attached to the probe. Moisture was removed from the sample by passing it through a small impinger charged with silica gel.

The content of each tedlar bag was analyzed using a Fyrite analyzer to determine the concentration of oxygen and carbon dioxide in the sample.

The same bag samples were also used for the carbon monoxide analysis by Method 10.

3.3 Method 4 - Flue Gas Moisture Content

The moisture content of the flue gas was determined using the US EPA Method 4 procedures in conjunction with Method 5/6 (Modified).

BSI-2022-72-24-062

Source Emission Monitoring Report

3.4 Method 5/6 (Modified) - Particulate Matter and Sulfur Oxides

3.4.1 Sample Collection

A US EPA Method 5/6 (Modified) sampling train was used to extract samples isokinetically from the stack which comprised the following elements:

- a stainless steel nozzle;
- · a heated stainless steel probe with "S-type" pitot tube;
- a glass fibre filter maintained at 120°C ± 14 °C;
- four chilled impingers:
 - 1st and 2nd containing 100 mL 3% H2O2;
 - 3rd left empty; and
 - 4th containing 200 to 300 grams of silica gel; and
- a metering console.

Each of the impingers was labeled and weighed.

Three test runs were conducted at the available sampling ports. The actual sampling time was 60 minutes per run.

3.4.2 Sample Recovery

Sample recovery was undertaken at the sheltered area near the source of emission. The filter was removed from the filter holder and placed on a petri dish. The volume of water vapor condensed in the impingers was measured to determine the volume of water vapor collected.

The nozzle, probe and front half of the filter holder were rinsed with acetone, and the interior of the probe and nozzle were rinsed and brushed repeatedly to remove any adhering PM from the inside surfaces. All rinses were collected into a 250 mL glass bottle.

The contents of the impingers 1, 2 and 3 were transferred to a 1000 mL polyethylene sample bottle. The glass sample line between the heated filter holder and the first impinger, the first three impingers and connecting glasswares were all rinsed with distilled deionized water and the rinse was added into the sample bottle.

BSI-2022-72-24-062

Source Emission Monitoring Report

3.4.3 Sample Analysis

The filter and sample bottles, together with the blank samples of acetone and H_2O_2 , were submitted to a DENR-recognized laboratory.

The mass of filterable particulate matter collected on the filter and in the acetone rinse was determined in accordance with US EPA Method 5 analytical procedures.

The mass of sulfur oxides in the impinger contents and rinse water was determined in accordance with US EPA Method 6 analytical procedures.

3.5 Method 7 - Nitrogen Oxides

3.5.1 Sample Collection

The sampling of the flue gas to determine the concentration of nitrogen oxides was undertaken in accordance with US EPA Method 7 using a nominal 2 L glass collection flask containing 25 mL of NO_x absorbing reagent (Sulfuric Acid-Hydrogen Peroxide) connected to a Borosilicate glass probe sufficiently heated to avoid condensation and equipped with a glass wool filter at the end for particulate matter screening.

During the Method 7 testing, a flask was evacuated to an absolute pressure of 76 mmHg (3 inHg) at most less than the barometric pressure, and the initial flask temperature and pressure were recorded. The sampling train was then checked for leakage not exceeding 10 mmHg (0.4 inHg) in 1 min. The probe was inserted into the stack, connected to the flask and after purging the probe, a sample was drawn into the flask. The flask was then shaken for five minutes. This procedure was carried out thrice for three test runs resulting in the collection of nine samples for the exhaust stack.

3.5.2 Sample Recovery

The NO_x flasks were set at least 16 hours, shaken for two minutes and then the final flask temperature and pressure were measured. The contents of each flask were transferred to a leak-free polyethylene bottle and rinsed twice with 5 mL portions of deionized distilled water, and the rinse water was added into the bottle. Prior to analysis, the pH was adjusted to a value within 9 to 12 by adding 1N NaOH.

3.5.3 Sample Analysis

The sample preparation procedures of US EPA Method 7 were applied and each sample was then subjected to colorimetric analysis.

BSI-2022-72-24-062

Source Emission Monitoring Report

3.6 Method 10 - Carbon Monoxide

3.6.1 Sample Collection

The integrated samples that were collected into tedlar bags were used for the determination of CO in accordance with US EPA Method 10.

3.6.2 Sample Recovery

The tedlar bags were sealed and transported for analysis.

3.6.3 Sample Analysis

The sample was analyzed using a non-dispersive infrared (NDIR) analyzer. The analyzer was flushed with nitrogen and zero setting confirmed. The tedlar bag was attached to the sample input and the gas sample was introduced at a flow rate of about 0.5 L/min by applying gentle pressure to the tedlar bag. The concentration was recorded when the value indicated on the display stabilized.

4. QA PROCEDURES

The US EPA "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III Stationary Source-Specific Methods" was used as a guide to achieve the quality assurance objectives of producing data that are complete, representative and of known precision and accuracy.

4.1 Particulate Matter and Sulfur Oxides (as SO₂)

4.1.1 Sampling Procedure

US EPA Method 5/6 (Modified) was employed to determine the concentration of particulate matter in the gas stream. This method requires the use of Methods 1 to 4 to determine sampling port locations, sample traverse points within the stack, as well as the flow rate, molecular weight and moisture content of the flue gas.

The quality of the emission test was assured by:

- Ensuring that the test port is located sufficiently distant from both upstream and downstream flow disturbances (such as bends and changes in stack diameter).
- Ensuring that stack gas flow is essentially parallel to the stack walls by conducting a cyclonic flow check.

BSI-2022-72-24-062

Source Emission Monitoring Report

- Determination of a representative stack gas velocity by the selection of sampling test points appropriate to the stack diameter in accordance with the method.
- Leak testing of the sampling train before and after each sampling run.
- Testing and calibration of the dry gas meter, thermocouples and temperature displays, pitot tubes, nozzles, and manometer assembly.
- · Ensuring that the temperature of the impinger system is maintained below 20°C.
- Maintaining the filter and sampling probe temperature at 120°C (±14°C).
- Sampling at between 90 110% of the actual gas stream velocity (isokinetic sampling).

The procedure for sampling SOx (as SO₂) was combined with US EPA Method 5 as described in *Section 3.4*. The quality of the test was assured by:

- The use of freshly-prepared chemical solutions;
- Care in the recovery of the sample;
- Attention to detail in the analysis of samples in accordance with the US EPA Method 6;
- · The collection and analysis of representative "blank" samples; and
- Proper calibration and QA/QC checks of all elements of the sampling system.

4.1.2 Sampling Equipment

Copies of various calibration and test certificates were included in Annex E.

Barometer

A calibrated digital barometer was used to measure atmospheric pressure at the platform level.

Probe Nozzle

The probe nozzles were calibrated by the manufacturer and were inspected and checked for roundness before use to ensure that they met the specifications of the method.

Pitot Tube

The pitot tube meets the EPA Method 2 design specifications for "S-type" pitot tubes and was therefore assigned a baseline coefficient of 0.84. After each test, the pitot tube was visually inspected for damage.

Metering System

The meter box was leak checked and a calibration was carried out using five (5)-point calibrating orifices in accordance with EPA Method 5.

BSI-2022-72-24-062

Source Emission Monitoring Report

Post-Test Meter Calibration

A post-test meter calibration was made using the data collected for each of the test runs in accordance with the procedure set out in EPA ALT-009.

Temperature Sensors

An ethanol-filled thermometer with NIST traceable calibration was used to calibrate thermocouples at approximately 0°C in iced water, ambient temperature and approximately 100°C in boiling water. At the completion of each test, the thermocouples were compared to the ethanol-in-glass thermometer at ambient temperature and a continuity check was performed to ensure that the thermocouple read-out trended in the correct direction when subjected to a temperature change.

4.1.3 Analysis

Filters and acetone used in the emission test met the required specifications and Method 5 analytical procedures were employed using a properly calibrated analytical balance.

The mass of sulfur oxides in the impinger contents and rinse water were determined in accordance with US EPA Method 6 analytical procedures.

4.2 Nitrogen Oxides (as NO₂)

The procedure for sampling NO_x (as NO₂) was described in *Section 3.5*. The quality of the test was assured by:

- The use of freshly-prepared chemicals;
- Care in the recovery of the sample;
- Attention to detail in the analysis of samples in accordance with the US EPA Method 7;
- · Calibration and verification of linearity of the spectrophotometer; and
- · Proper calibration and QA/QC checks of all elements of the sampling system.

4.3 Carbon Monoxide

The procedure for sampling CO was described in *Section 3.6*. The quality of the test was assured by:

- Care in the collection of the gas samples to ensure that they are representative of the emission;
- Maintenance of a leak-free bag at all stages of sampling and analysis;
- · Calibration of the analytical instrument prior to analysis; and
- Attention to detail in the analysis of samples in accordance with the US EPA Method 10.

8

•

ANNEX A

SOURCE EMISSION MONITORING SUMMARY OF RESULTS

*

.....

*

.

. .

20

			MC FORESTRY IRISAN, BAGU RTICAL SHAFT	IO CITY			
	-					_	_
	Sampling date			Run 1	Run 2	Run 3	
	Begin sampling time			13-Dec-24	13-Dec-24	13-Dec-24	
	End sampling time			1010H	1145H	1330H	
Symbol	Parameter		Units	1115H	1250H	1435H	
Y	Meter box gamma	_	none	0.0754	0.0754	0.0754	Average
AH	Average ΔH		mm H ₂ O	0.9754 59.9	0.9754	0.9754	
Pbar	Barometric pressure		-		57.2	58.7	
Vm	Metered sample gas volume		mm Hg m ³	654.3 1.5500	654.7 1.5208	654.3	
Tm	Average meter temperature		°C	24.8	25.0	1.5350	
P,	Static pressure					25.8	
T _s	Average stack temperature		mm H ₂ O °C	8.6 292.5	8.6 292.9	8.6 297.5	294.3
Ds	Stack diameter		cm	292.5			294.3
Vĸ	Volume of water collected		mL	71.3	36	36 65.6	
%CO2	CO ₂ measured in stack gas		mL %	6.8	6.7	6.8	0.0
%O2	Oxygen measured in stack gas		%	13.7	6.7 14.3	13.7	6.8
C _o	Pitot tube coefficient		mone	0.84	0.84	0.84	13.9
√∆P	Average of square roots of ΔP	_	(mm H ₂ O) ³		3.392		
θ	Sampling run time		(mm H ₂ O) min	3.393		3.415	
D _n	Nozzle diameter		mm	60 7.89	60	60	
A _c	Nozzle area				7.89	7.89	
	Metered gas volume at STP		m ² Nm ³	4.89E-05	4.89E-05	4.89E-05	
V _{m(std)} P _s ·	Stack pressure			1.3104	1.2854	1.2936	
Bws	Stack gas moisture content		mm Hg	654.93	655.33	654.93	
		×	%	6.86	6.66	6.43	6.65
Vw(std)	Water vapour volume at STP		Nm ³	0.097	0.092	0.089	<u> </u>
M _{fd}	Dry mole fraction of flue gas	2	none	• 0.931	0.933	0.936 -	
Md	Dry molecular weight		g/g-mole	29.64	29.64 .	29.64	A CONTRACTOR
M _s	Wet molecular weight		g/g-mole	28.84	28.87	28.89	
vs	Flue gas velocity		m/s	17.25	17.24	17.42	17.30
As	Stack area		m²	0.102	0.102	0.102	
Qa(act)	Actual volumetric flow		m³/min	105.3	105.3	106.4	105.7
Q _{s(sla)}	Dry volumetric flow at STP		dsm ³ /min	44.5	44.6	44.8	44.6
1	Isokinetic flow rate		%	102.0	99.9	100.1	
AOH	Annual operating hours		hrs/yr	8,760	8,760	8,760	
	Particulate matter data					CAMPACIAN CONTRACTOR	
Mpart	Measured mass		mg	22.1	23.9	39.8	
Cpart	Concentration		mg/Nm ³	16.9	18.6	30.8	22.1
	Mass emission rate		kg/hr	0.05	0.05	0.08	0.06
	Annual emission rate		tons/yr	0.4	0.4	0.7	0.5
	Sulphur oxides data			1400 - 1400 - 1400 - 1400 - 1400 - 1400 - 1400 - 1400 - 1400 - 1400 - 1400 - 1400 - 1400 - 1400 - 1400 - 1400 -			
MSOx	Measured mass		mg	3.02	1.95	< 1.9	
CSOx	Concentration		mg/Nm ³	2.3	1.5	< 1.5	1.9
	Mass emission rate		kg/hr	0.01	0.004	< 0.004	0.01
	Annual emission rate		tons/yr	0.1	0.04	< 0.03	0.04
	Nitrogen oxides data						
CNOx	Concentration		mg/Nm ³	13.5	13.0	14.0	13.5
	Mass emission rate		kg/hr	0.04	0.03	0.04	0.04
	Annual emission rate		tons/yr	0.3	0.3	0.3	0.3
	Carbon monoxide data			a bel			116
Ccoppm	Concentration		ppm	25.0	26.0	15.0	
Ccomg	Concentration		mg/Nm ³	28.6	29.8	17.2	25.2
	Mass emission rate		kg/hr	0.08	0.08	0.05	0.07
	Annual emission rate		tons/yr	0.7	0.7	0.4	0.6

Notes: Italics indicates calculated value

1

.

Annual emission rates were based on one (1) year continuous operation.

*Average of detected values only.

NITROGEN OXIDES (as NO2) EMISSIONS DATA BMC FORESTRY CORP. ILP IRISAN, BAGUIO CITY VERTICAL SHAFT KILN NO. 2

RUN 1

Barometric	Pressure, Paa	ni) (in Hg)		25 76			
Sample 10	Flask ID	Flask Volume	Evacualed Pressure	Initial Absolute Pressure	Flask Temp	Flask Temp	Collection Time
7		V _t	Po	P,		Ti	
		mL	in Hg	(in Hg)	°C	٩ĸ	
\$1R111	BSI T2-F1	2230	24.30	1.45	28.3	301 45	1030H
S1R1T2	BSI T2-F2	2230	24 30	1.45	28.6	301 75	1040H
S1R173	BSI T2-F3	2250	24.20	1.56	29.0	302 15	1050H

arometric	Pressure, P _b	en (in Hg)	25.90		
ample ID	Flask ID	Final Pressure	Final Absolute Pressure	Flask Temp	Flask Temp
		Per	Pr	Temp	Τ,
		in Hg	in Hg	°C	٩K
S1R1T1	BSI T2-F1	0.30	25 60	25.6	298 75
S1R1T2	BSI T2-F2	0.50	25 40	25.4	298 55
S1R1T3	BSI T2-F3	0.40	25 50	25.5	298.65

Concentratio	on Calculation	
Volume at STP	Mass Catch	NO _s Conc
V _{sc}	M _{NG2}	C _{NG2}
mL	49	mg/Nm ³
1775.4	26.8	15 1
1762.1	26.8	15.2
1777.7	18.3	10.3
	13.5	

RUN 2

Barometric I	Pressure, PM	_{not} (in Hg)		25.78				Barometric	Pressure, Ph	and (in Hg)	25 90					
Sample ID	Flask ID	Flask Volume	Evacualed Pressure	Initial Absolute Pressure	Flask Temp	Flask Temp	Collection Time	Sample ID	Flask ID	Final Pressure	Final Absolute Pressure	Flask Temp	Flask Temp	Volume at STP	Mass Catch	NO, Con
		V,	Po	۴,		Τ,				Pø	Pr	Temp	т,	Vec	M _{NG2}	C _{NO2}
		mL	in Hg	(in Hg)	°C	٩ĸ			1 0.9	in Hg	in Hg	°C	۳K	mL	pq	mg/Nm ²
S1R2T1	BSI T2-F4	2230	24.10	1.68	29.2	302.35	1200H	SIR2T1	BSI T2-F4	0.40	25.50	25.5	298.65	1753 0	31.0	17,7
\$1R272	BSI T2-F5	2230	24.30	1.48	29.2	302 35	1210H	S1R2T2	BSI T2-F5	0.50	25 40	25.4	298 55	1760.8	21.1	12.0
S1R2T3	B\$I T2-F6	2250	24 50	1.28	29.6	302 75	1220H	S1R2T3	BSI T2-F6	0.60	25 30	25.3	298 45	1784.8	16.9	9.5
Date Collect	ed .	13-December	-2024		100 C 12	5	1.000	Date Recov	ered	14-December-	2024			And the second s	Average	13.0

	nie (in Hg)		25 75			
Flask ID	Flask Volume	Evacuated Pressure	Initial Absolute Pressure	Flask Temp	Flask Temp	Collection Time
	Vr	Pø	Pi		Ti	
	mL	in Hg	(in Hg)	°C	"K	
BSI T2-F7	2230	24.40	1 35	29.0	302.15	1350H
BSI T2-F8	2240	24.40	1 35	28 7	301 85	1400H
BSI T2-F9	2250	24.50	1.25	28.7	301 85	1410H
	ID BSI T2-F7 BSI T2-F8	ID Volume Vr mL BSI T2-F7 2230 BSI T2-F8 2240	ID Volume Pressure Vr Pg mL in Hg BSI T2-F7 2230 24.40 BSI T2-F8 2240 24.40	Flask ID Flask Volume Evacuated Pressure Absolute Pressure Vr Pg Pr mL in Hg (in Hg) 951 T2-F7 2230 24.40 1.35 BSI T2-F8 2240 24.40 1.35	Flask ID Flask Volume Evacuated Pressure Absolute Pressure Flask Temp Vr Pg Pi Pi Pi mL in Hg (in Hg) *C BSI T2-F7 2230 24.40 1.35 29.0 BSI T2-F8 2240 24.40 1.35 28.7	Flask ID Flask Volume Evacuated Pressure Absolute Pressure Flask Temp Flask Temp Vr Pg Pr Tr Tr mL in Hg (in Hg) *C *K BSI T2-F7 2230 24.40 1.35 29.0 302.15 BSI T2-F8 2240 24.40 1.35 28.7 301.85

Sample Re Barometric	covery. Pressure, P _b	Converter internet water	25.90	Sector Alexander	and the second	Concentratio	on Calculation	5 - 6 (b)
Sample ID	Flask ID	Final Pressure	Final Absolute Pressure	Flask Temp	Flask Temp	Volume al STP	Mass Catch	NO, Co
		Pø	Ρ,	Temp	Tr	V _{sc}	M _{W02}	CNOZ
		in Hg	in Hg	°C	٩ĸ	mL.	μg	mg/Nr
S1R3T1	BSI T2-F7	0.60	25 30	253	298 45	1763.5	21.1	12.0
S1R3T2	BSI T2-F8	0.50	25.40	25.4	298 55	1778 2	35.2	19.8
\$1R3T3	BSI T2-F9	0.40	25.50	255	298 65	1800 3	18.3	10.2
Date Recov	rered	14-December-	-2024	dan activity - acat	Can a be can exact the A	the second second	Average	14.0

.....

-

SAMPLE CALCULATIONS

BMC FORESTRY CORP. ILP

IRISAN, BAGUIO CITY

VERTICAL SHAFT KILN NO. 2

VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS

 $V_{m(stag)} = Y = X = 0.3921 \times V_{m} \times \frac{P_{par} + (\Delta H + 13.6)}{(273 + T_{m})}$ $V_{m(stag)} = 0.9754 \times 0.3921 \times 1.55 \times \frac{654.3 + (59.9 + 13.6)}{(273 + 24.8)} = 1.3104 \text{ Nm}^{3}$ VOLUME OF WATER VAPOUR AT STANDARD CONDITIONS

 $V_{w(std)} = 0.001356 \times V_{lc}$

V_{w(std)} = 0.001356 x 71.3 = 0.097 Nm³

PERCENT MOISTURE IN FLUE GAS

$$B_{we} = \frac{V_{w(std)}}{(V_{w(std)} + V_{m(std)})}$$
$$B_{we} = \frac{0.097}{(0.097 + 1.3104)} = 6.86 \%$$

ABSOLUTE FLUE GAS PRESSURE

$$P_s = P_{bar} + \frac{P_g}{13.6}$$

DRY MOLECULAR WEIGHT OF FLUE GAS

 $M_{d} = (\%CO_{2} \times 0.44) + (\%O_{2} \times 0.32) + [(100 - (\%CO_{2} + \%O_{2})) \times 0.28]$

$$M_{\sigma} = (6.8 \times 0.44) + (13.7 \times 0.32) + [(100 - (6.8 + 13.7)) \times 0.28] = 29.64$$
 g/g mole

WET MOLECULAR WEIGHT OF FLUE GAS

$$M_s = M_c \times (1 - B_{ws}) + (\frac{mol.wt}{H_2O} \times B_{ws})$$

 $M_s = 29.64 \times (1 - 0.0586) + (18 \times 0.0686) = 28.84$ g/g mole

AVERAGE FLUE GAS VELOCITY

$$v_{s} = 34.97 \times C_{p} \times \sqrt{\Delta P} \times \sqrt{\left\{\frac{T_{s} + 273}{P_{s} \times M_{s}}\right\}}$$
$$v_{s} = 34.97 \times 0.84 \times 3.393 \times \sqrt{\left\{\frac{292.5 + 273}{654.9 \times 28.84}\right\}} = 17.25 \text{ m/s}$$

ACTUAL WET FLUE GAS FLOW RATE

$$Q_u = 60 \times v_s \times A_s$$

 $Q_{a} = 60 \times 17.25 \times 0.102 = 105.3 \text{ m}^{3}/\text{min}$

DRY, NORMAL FLUE GAS FLOW RATE

$$Q_{s} = Q_{a} \times M_{fc} \times \frac{298}{273 + T_{s}} \times \frac{P_{s}}{760}$$

$$Q_{a} = 105.3 \times 0.931 \times \frac{298}{273 + 292.5} \times \frac{654.9}{760} = 44.5 \text{ dsm}^{3}/\text{min}$$

SAMPLE CALCULATIONS

BMC FORESTRY CORP. ILP IRISAN, BAGUIO CITY VERTICAL SHAFT KILN NO. 2

ISOKINETIC FLOW RATE

	120	Pstd	15271	100	1.22	T,	+	273				١	miste	\$			
15	-	T _{std}	× -	60	- x ·		P_{s}		- x	V ₂	x	Mid	x	θ	х	An	
		760		100		292.5	+	273				1	.310	4			102.0%
-2	=	298.15	X -	60	- x ·	6	54.9	13	- x	17.25	×	0.931	х	60	×	4.89E-05	 102.076

PARTICULATE MATTER CONCENTRATION

$$C_{part} = \frac{M_{part}}{V_{m(std)}}$$

$$C_{part} = \frac{22.1}{1.3104} = 16.9 \text{ mg/Nm}^3$$

SULPHUR OXIDES CONCENTRATION

Concentration of SO, as SO2

$$C_{SOx} = \frac{M_{SO2}}{V_{m(std)}}$$

 $C_{SOx} = 2.3 \text{ mg/Nm}^3$

NITROGEN OXIDES CONCENTRATION

Concentration of NO_x as NO₂

$$C_{NGx} = \frac{M_{NG2}}{V_{sc}} \times 1000$$

$$C_{NGx} = 15.1 \text{ mg/Nm}^3$$

÷

CONVERSION OF CO IN ppm TO mg/Nm³

$$C_{CO(mg)} = \frac{C_{CO(ppm)} \times mol. wt. CO}{24.5}$$

 $C_{CO(mg)} = \frac{25.0 \times 28.01}{24.5} = 28.6 mg/Nm^3$

ANNEX B

SOURCE EMISSION MONITORING FIELD DATA

.

.

-

MONITO	DRING LOGSHEET
Fa	acility Information
Facility Name Facility Address Name of Pollution Control Officer Maintenance Supervisor / Engineer Telephone and Fax Number	BNIC FORESTRY CORP. BC ILP KM.5 NAGUIYAN ROAD. IKISAN. BAGUOU CITY MS. NARHY C. POMULBAN 245-7180 / 09306480332 Ource Description
Source Type Source ID Manufacturer / Brand of Equipment / Serial No. Equipment Capacity (BHp,MW,MT/hr) Date of Installation (month/year) Date of Modification (that may increase emissions) Operational Hours per Year (hrs/year) Operating rate (%)	VERTICAL SHAFT KILN BAHANST STAFK NO. PUZA 566 SI 1.06 MTTHE 95 °66
<u>Air Po</u>	Ilution Control Device
Is there an Air Pollution Control Device (APCD) attac source? Type of APCD Date of Installation APCD parameters (flowrate,gpm,delta P,etc) Is the APCD operating during emission sampling	VEF Gas Scrubber
ruei A	Analysis / Information
Type of Fuel used during emission sampling (%S) Original Fuel used Date of Fuel change Daily Fuel Consumption (Liters/day) Is the Fuel Analysis Available? Will the company provide the Fuel Analysis	V KFO
Please attach the following -Fuel Analysis -Permit to Operate -APCD Process Logsheet -Source Process Logsheet	WORTH DOL POINT BOW Signature over printed name of Facility Representative PCO

.

.

•

METHOD 1 - TRAVERSE POINT LOCATIONS

Facility	Name	IBMC FORES	TRY CAR		it more than B and 2 damaters and if duot
Address		KM.S. NAGI	ILLIAN ROAD	D. KISAN BAGUOL	diamster is tess than 810 mm, use 8 or 9 points
Source		1.08 MT/he, V	ERTICAL SEV	IFT KIIN NO.	
Person	nel / Date	ECF HOD MS	1. CAS JB	T / ISDEC, 2024	DIAMETERS
Stack/P	ons	Type of Stack	Circular	Ractangla	
CIGNIT		No. of Ports Available		2	12
		No. of Ports Used Port traide Diameter, cm		10	12 1.8 7 Test Port 16
		territe data			
Dimensi	ons	Far Wall to Outside of Port,o Port length, cm (b)	xn(a)	46	
Put o	tlagram of test	Stack Diameter or Depth.cm	i (a-b)	. 56	
kocali	ion (s) an back	Stack Width (d ractangle), co Stack Length (if rectangle).	The state of the s		24 or 25
٥	f this sheet	Equivalent Stack Diameler.			05 + 2
		Arma of Stack, cm ²			DISTURBENCE DRAW HORIZONTAL LINES THROUGH UPSTPEAM AND DOWNSTREAM
Distance	to Flow Distur	bances	Distance	, cm Diameters	OWNEETERS AND USE THE HIGHER NUMBER OF POINTS
		tipstream (A)		84 5.110	
		Downsirezm (B)		95 2431	
Number	of Travense Pol	and the second se		Minimum # Regulated	Equivalent Drameter (for ractangular ducts): De = 2 * Depth * Width / Depth + Width)
		Pi	Velocity Traverse		Ds = 2 * () * () / () + () =
1	# of Parts used		# Points / Port	12	
		Number of	Traverse Poi	inte Used 34	LOCATION OF POWITE DI CRCULAR STACTS OR DUGTS
Point	Fraction of	Dist. From	Port	Oist. From Edge	(Fraction of stack diameter from inside wai) to traverse foint) 2 4 5 8 10 / 12
No.	D. 02 (O. 75V	Longth	of Port	1 140 067 044 032 036 021 2 254 250 145 105 052 567
1	6-06-7	2412	10	12.412	3 760 295 154 145 110 1 333 704 223 226 177
3	0.118	\$ 2618	10	14. 247	5 654 577 342 250 6 956 806 658 335
4	0.17	6.372	To	16. 370	
5	0.20	9.0	(°	19.0	9
6	0.354	12.314	5	22.314	11 12 979
7	0.644	23.124	17	3 3 . 184	LOCATION OF PONTS IN RECTANDULAR STACKS GR DUGTS
8	0.750	17	17	37.0	(Fraction of stack clameter from Inside well to traverse point) 2 3 4 5 6 7 8 9 10 11 12
9	0.523	29.428	10	39 677	1 250 167 125 100 083 071 063 030 045 042 2 756 500 375 306 250 214 168 167 159 125 125
10	0.220	31,752	10	41.72	3 403 525 500 417 367 313 278 220 227 208 4 575 709 503 550 438 389 350 318 292
11	6.937	32.533	5	43.5A	5 .000 750 643 .563 .500 .450 499 .375
12	0.974	35.144	()	45.744	7 929 813 .722 650 591 542
13					8 533 533 140 582 525 9 244 250 773 703
14					10 850 854 792 11 855 875
15	1		1		12
16		1			
-					Notas/Remarks: today today 172
17			1		Notes/Remarks: tadyishel 12t Elevention = 8.5m
18					
19				1	
20			+		- CAS/
21					Team Leader / Date: H.P. (REDUKIA // 13 DFC.)
22					
23					
24	•				- ZA
25	1		1		QAQCTDORE E.C. FERNANDO 113 DEC
		a circular duct, the proba is n	who alley backet		$\neg IV$
IVOIE: W		first hall of the full diameter tr			1 -

EPA METHODS 1 & 2 GAS VELOCITY and CYCLONIC FLOW CHECK

Facility	BMC FORESTRY COPP. BC-11	Thermocouple ID	TMC - T2-
Town/Province	NAGULLIAN RD. IRISAN. BAGULO GTY		M D - 12
Source	MORMITHE, VERTICAL SHAFT KINH	P barometer, mm Hg	454.1
Personnel	ECF HED MSL CAS JOT	Pitot ID	PT-T2-CF.
Date		Pitot Coefficient	0.84

Pitot Tube Leak Check

10/10

Static Pressure, mm H₂O

2.6

Measured at which Traverse Pt

.

e*- _

12 2-5

Traverse Point	Velocity Pressure (mm H ₂ O)	Temperature (Degrees C)	Angle Which Yields Null (degrees)
7 - 11	1100	200	1/2
111	11.10	750	5
10	11:6	757	<i>b</i>
g	11. 6	757	b
B	12.	240	12
. 7	12	765	
G	<i>ħ</i> -	ne	-3
Ğ	· · · · ·	. 240	1 2
. 4	11.5	257	p · ·
	11.5	257	b
2	11.0	240	j'a .
	<i> 1,</i> ○	250	12
3 = 11	· · · · · · · · · · · · · · · · · · ·	200	
2 - 12	<u> </u>		12
10	11.6	750	15
	11.4	-257	10
8	12.2	257	
	/2.0	nee	3
Ġ	/7.0	200	3
5	17.5	1400 N. 3	3
	. 1/.6	247	
d	11-6	257	
7	11.0	250	<u> </u>
	11.0	No	/v
			12 /12
Average	125am= 3.320	251.57	pradicultariste
		V= 8.9714	AHE - 416217:5
ote: "J2>	15.0. 202-5.5	: 30 = 6.0 J	- 7.85 Fach = 7.85
	J.P. PROVINA 13 DEC.24	- Charles	
Rept, VAG Blog. Orlight Ave., Green	indis		Department of Environment and Matural Resources (DB/R) BMMICHANDERTAL ALULACEUPIT BUTCAU

Facility	BMC FORESTRY CORPORATION BC-UP Fuel Type	-
Town/Province	KM. S. MAGUILLAN ROAD. IKISAN, BAGUID CITY Fyrite ID	FB-T2
	1.08 MT/ hp. VERTICAL SHAFT KILN NO. 2 Analysis Location	INSITU

		% CO 2	%O ₂	% N 2
Run Time	Time of Analysis	Reading (A)	Value (B-A)	Value (100-C)
Start Join/2	1/201+	2.0	13, (
	1/-27.4	2.2	13. +	
Stop 11/17#	j/m	3.5	14.0	* hovedda ar o san a
Leak Check				
	Avg	6 23	13.67	79.5

		% CO 2	% O 2	% N 2
Run Time	Time of Analysis	Reading (A)	Value (B-A)	Value (100-C)
Start 114 CH	2504	7.2	14.0	
ewww.conten.edu.	13002	7.0	14.0	
Stop 11504	12572	6.0	15.2	g.
Leak Check				
	Avg	6.67	14.33	79.0

		% CO 2	%02	% N 2
Run	Time of	Reading	Value	Value
Time	Analysis	(A)	(B-A)	(100-C)
itart 1370LI	144012	7.0	13:17	
	14000	6.5	13.5	
Stop 142874	14705	7.0	14.0	
Leak Check				
	Avg	6.83	13.67	79.5

Team Leader/Date: H.P. DROVINA 13 DEC 2024 QA/QC / Date: F FERN ANDO 13 DEC. 2024

/

2nd Floor, VAG Bldg, Ortfga: Axe., Greenhile Son Juan City, Matro ManDa, Philippinas Tels. 283-5129+ Fax (652) 727-6031

Department of Environment and Nataral Resources (DEV by EANROPENDING, NANAGEASENT BUNDAU A COREDITED THIRD PARTY TESTER

METHOD 4 - MOISTURE ANALYSIS DATA SHEET

Facility	IBMC FORESTRY	CARPORATION B	C- 11p	
Address			GUID LITY	A second s
Source	1.03 MT/WR, YEAT	TCAL SHAFT KILN	No.2	
Recovery Loaction	SERVICE VEHICLE	1	utille i a minimum a succession and a su	
		an an best show the state of the second second	an in an	n Mandhallan an ang kang dan yang kanang mang mang manghang pang ang ang ang ang ang ang ang ang ang
Run Number	% MOISTURE	PM - 1	PM-2	PM-3
Test Date	13 DEC. 2024	13 DEE, 2024	13 DEC. 2024	13 DEC. 2024
Recovery Date	DEC. 2024	DEC: 2024	DEC: 2024	DEC, 2024
Recovered By	ECEMPO MISL CAS JAT	ECF HPD MSI CASJOT	ESE HED MSI CUSILBI	FOF HOD MSL CASJE
Impinger 1 100 ML	D.I. H20	31/6 H2.02	3% H109	3% 4912
Final Weight, g	727.2	757.4	752.5	2540
Initial Weight, g	712.4	714.8	737	JIT.0
Net Weight, g	10.4	43.6	33.7	39.0
Impinger 2 1.10 ML	D. L. H20	3%H202	3% H201	3º10 H2(22
Final Weight, g	710.5	717.4	622.2	77.4
Initial Weight, g	6-99.7	707.6	699.6	AOT.C
Net Weight, g	<i>b.</i> 3 '	103	12.6	2-0
Impinger 3 <u>EMP</u> TY	EMPTY	EMPTY	ENPTY	EMPTY
Final Weight, g	6 47.2	1,13 9	613.0	.615.7
Initial Weight, g	605.8	- 6-28 3	606.3	6/10.7
Net Weight, g	20	5.6	6.2	and Dean
impinger 4 200-300 g	SILIFA GEL	SILLCA GEL	SILLICA GEL	I SINCA GEL
Final Weight, g	6117	124.0		. 0.43.8
Initial Weight, g	811.5	\$75.7	324.0	0 834.2
Net Weight, g	4.V	3.3	pr	9.6
Impinger 5	1			
Final Weight, g				
Initial Weight, g				
Net Weight, g				
Impinger 6				
Final Weight, g				
Initial Weight, g				
Net Weight, g	and an an an an an and a second s			
Impinger 7				
Final Weight, g				
Initial Weight, g				
Net Weight, g				
		97/	<u>_</u>	
Total Catch, g	31.1	71.3	(7.7/	6t.L
Silica Gel Spent, %	A	Second and address of the second second	- the	5

Team Leader / Date: H.P. 13 DEC. 24

QA/QC/DITE: E.C. FERNENW 13 DEC. 2024

2nd Hoor, VAG Bidg, Ortigs: Ave., Grasniliis San Juan City, Metro Manih, Philippinsi Telt. 858-6129: Fax (832) 727-9831

i.

DIRELTERAL OF EXPLOYMENT AND INTERAL FRACTURES (DEIR) EDUNO HINGLITAL MANAGEMENT DISTEAU ACCREDITED THIRD PARTY TESTER

ISOKINETIC FIELD DATA SHEET METHOD(s)_____

acility Na	me	BM (FOREST	ey (orp	BC-	-ILP		Test Date		13 DEC	EMBER	2024
ddress		KM.S	NAGVILLAN	I RAAD. I	RISAN	BAGINON	GIY					M4
ource		108 N	1/hr, VEKN	CAL SHAF	T KILN	NO,	M11	Year Installed				
ontrol de	vice	Sycin	THE DUSY /	ALLECTOR	- FICIN	MU/		Field Perso	onnel	ECF HIPA.	MSI CA	IS JAT
Contact P	erson		ARHY C. P	1011.BAN				Operators		UT DE	NOT LA	17/101
Filter ID	Tar	e(s)	Barometric (mm	Static		Meterbox		No	ozzie	Pitot T	uhe	Probe
			Hg)	(mm H ₂ O)	ID#	Gamma	DeltaH @	ID#	Dia.	ID#	Cp	ID#
			icu,	2.0	BSI-T2		46.4705	the second se		PT-T2-		SPL-72-
					and the second sec	rain Leak Ch		1193-12 -1	7.5	F1-12-	Fyrites	051-12-
un No.	SI	M4		Initial			lerim		Final	Time	%O ₂	%CO-
Factor	2	1917	Vacuum, mm Hg	150		H IS				55 WH		
itot Leak C	Checks		Leak rate. m³/m						0	A CONTRACTOR OF		and the second second
Pretes			Start Volume	0						B9464	the second se	3 7 1.
Post-te	~ ~	114=		313.0720					à .2100	ORSAT Leak Ch		6 G. 111
Post-ti	esi m	livy	Stop Volume	313.0780	1			31	3. 240	Tediar Bag ID V	124 196	6 S1 M4
Ports &	Ti	me			Delta H	Delta H	Gauge				(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
Points	Clock	Test	DGM reading	Pitot Reading	Calc.	Actual	Vacuum	1		Temperature	0°C	
	(24-hr)	(min)	(m ³)	(mm H ₂ O)	(mm H ₂ O)	(mm H ₂ O)	(mm H ₂ O)	Stack	DGM	Probe	Filter	Imp Exr
1-2	09/54+	0	\$13-0322	Het		40		257	20	112	In	17
	2 men	V					5.7	1		110	μ.	- //
	Ugnois	G	22 .1214	luif		43	5.7	257	20	112	1/3	15
						- 45			-10	113	1/3	
	Cerzon	10	3 .1922	h.7		40	5.2	257	20	120	121	- 11-
		-10		<u> 1, F</u>				07/		1	1.1	16
	Ogzar	15	313 ·3964	he		40	5.2	257	w	17	5.	
	Ung	12	דטרבי ביין	[fet		40		1	·w	120	m	14
	Nie	20	\$3.4950	1.0		40.	- (.^	2000	- 622	12	-	
	agran	20		1.0		70.	- 13	2:7-	70	. 117	1	18
		0.0	22.1.									
	09497	25	N3.6007	11.0		40	J.C	27	20	115	112	13
			0	<u> </u>		1						
	ang		\$10F. 55									
	10440	14										
~ 1		<u></u>										
											The burner of the burner	
									Will Create the			
					-							
												_
									·			
No. State					5				2.4. with	/	1	
	1	Run Time	Total Volume	RMS Delta P	1	Delta H	High Vac.	TS Stack	Tmeler)	
						"Ayg "I'S		Avg	Avg	/	/	
	1	30	E Glac	3.317		15	1-0	257	p-	1-1		
			AK.					-		AN	=	
		11 11	110 1	1 6 5 6 1					- SA			
	er / Date:	H.P. 1	TROUTNA 1	3 DEC, 24			QA	VQC / Date	E.C.F	2NANDO /	13DEC .:	24
eam Leade								10	/	17		
eam Lead												
		1253027420							/	V		
i Floor, VAG BI	ice. Onlight Av											iura Revolutes (CENR) Ment Britsali
Floor, VAG Bl	idg, Onigas Av turo Mania, Ph 7x (632) 727-9	ilippines								ENVISON	KIENTAL MANAGE	

ISOKINETIC FIELD DATA SHEET METHOD(s).5/6

ad all	me	BMC	FORESTRY	CORPHRA	TICN		LP	Test Date		13 0	EREMBER	2094
ddress		KM. 5	NAGUILIAN	ROAD IRIS	AN, BAG	WID GT	1	Job Numb	er			SIR1
Source		1.08 N	MILLAR. VERI	ICAL SHAF	F KILN	No. 2		Year Instal	led	HEET .	000 01410	CLU Nedes
Control dev	vice	CYCLON	LE DUST CO	LECTOR				Field Perso	onnel	Frettai	MSL ME.	1BT
ontact Pe	erson		JARHY C.	POMILBAN				Operators			gruss	40
Filter ID	Ta	re(s)	Barometric (mm	Static		Meterbox		N	ozzie	Pitot	Tube	Probe
			Hg)	(mm H ₂ O)	ID#	Gamma	DeltaH @	ID#	Dia.	ID#	Cp	ID#
			614,3	8-11	BS1-72	10.0754	46.4705		-9.34	Pr-12-4		
				9	distant and the second second	Train Leak Cl		1105 12 7		1116 11	Fyrites	1-12-11
un No.	S1	RUN 1		Initial	1	ín	terim		Final	Time	%O2	%CO;
Factor	5.:	204	Vacuum, mm Hg	15.0		1	T		13	1231		70
itot Leak Ct	hecks		Leak rate, m³/m	2					Ū	11081		7-0
Prefest	1111	lin	Start Volume	313.71	22			2	15.200	ORSAT Leak C		170
Post-ter	st 17	4119	Stop Volume	313.713				1	10 2340	Tediar Bag ID	14 500	STRIC
Ports &	T	me			Delta H	0.11			in in the		141 1966	SILLU
Points	Clock	Test	DGM reading	Pitot Reading	Calc.	Delta H Actual	Gauge			Temperatur	e °C	
1	(24-hr)	(min)	(m ³)	(mm H ₂ O)	(mm H ₂ O)		(mm H _z O)	Stack	0.011	·····		
	12101-	0	3/3.7/20	11.2.	1 2.14	13			DGM	Probe	Filter	Imp. Exit
11			312 . 722	", 3	11.57	57	6.0	293	24	116		19
101	カレート	.5	23 - 2440	11.7.		CB .	4.0	240	· 24. ·	172	170	19
9			7:5 .9/14	11.6	J2:00	60	15	240	14.	po_	h3	17
BI	220/4	10	73.9718	11.6	60.4	40	70	245.	241	1/7	14	17
71			38.0371	12 1.	67 44			295-	25	120	120	17
61	ורחרנ	15	312 1008	12.0.	62.42	- tolar	70	295.	75		175	1a
·E		-14,	319.1020	Dia .:	62.42	tr	20	29.5+	25	114	120.	16
4	122261	20 -	14.1322	11.4.	1009V	.40	7.7	A data and a data and a data	-25.	118	120	16
A	1 1 34	~~ × ×	314 .1922	11. 47	50.16	60	7.0	295.	25	120	120	17
2	107774	25	314 2526	11.12	60/4	40		the second s	25	120	.120 .	16
1		- A.2	314.7220	11.9	60.10		7.0.	240:	· 20	120.	120	16
STOP	1044	30	314, 7832	1.9	6010	_60	<u>— 7-6</u>	29.3	-21	120	10	. 12
1 vil	1.1.1											
	-	1										-
5-121	3471	30	510.3 Ron	11.0.	57.24	D ·	1 0	20-	0-			
41	971.11	-11	314.4050	1.2.		58.	(a. 0	240	K	17	121	19
10	107011	35	314 - 5714	1.0.	57.24	R	6.0	240	25	112	po	18
g			3/4 - 5787	11:4	60 36	94	6.0	74.7	24	120	170	17
BI	102CH	40	34.6417	11. 4.	Grab	40	7.0	295	25	17= /20	he	17
1	1	- William	314-70n	17.0.	67 47		7.0	2911	25		120	-17
611	1914	45	314 . 7414	12.0	67.42	12	the second se	2917:	25	170	125	14
Ě	12 0 (3)		319.2020		47.42	4.6	75		20	17.0	107	16
4	(:17	50	314.7900		12.43	42	7.0	295	25	117	1/4	12
3		94	319.9000	12.0		92	70	290	25	117	121	12
21	110%	55	314.0842	11.0 .	52.24	60	7-0		25	112	120	R
11	1 an		316,1720	110	57.24	53		290	25	120	14	17.
END	11/100		35.1600	1100	20.00	13	70	40	w	11	116	18
		E.V.										
			www.mite	1				<u> </u>		d	7	
	-	Due Time	Taballiahuma	0140.0.0.0	Г	Delta H	T	TS Stack	Trneter	/)	
		Run Time	Total Volume	RMS Delta P	L	"Avg	High Vac.	Avg	Avg	/	/	
	1			7	r r	\$9.97	7.0	292.	2002	1	1	
	1	60	1, 5500 1	3.393		Vil.	7.0	1011	1 4	/		
	5	60	1, 1300	3.393	L	<u> 111.</u>	7.0	- (-) 1	2	Fat		
	t		A		. L	Sul.	7.0	- (- 1)	E			
am Leader	t		DROUND		L	<u></u>		/QC / Date:		ENNADO	11/130+1	, 11/4
am Leader	t		A		L			2		ÉRNANC	0/130t	C. 2014

PATIMINE OF Environment and Natural Resources (DENR) ENVERONMENTAL MANAGEMENT BUREAU ACCREDITED THIRD PARTY TESTER

nd Floor, VAG Bldg, Ordgas Ave., Greenhalts Juan Chy, Metro Monila, Philippines . 863-6129= Fax (632) 707-9831

4 14

ISOKINETIC FIELD DATA SHEET METHOD(s) 5/6

۲

Facility Na			CORPORAT	TON	BCIL	P	Test Date		13 DEC	EMBER /	1014	
Address	KM.S	, NAGVILLAN	1 ROAD IR	ISAN. P	SIGHO	ITY	Job Numb	er	RU14 566 S1 RUN 2			
Source	1.08	AT THE VERT	VAL SHAFT	KIIN	NO. 1		Year Insta	led	1041 0	10 90	UN Z	
Control dev	vice Cyclo	NE PUST (A	LECTOR	- Per Las	1917. 6		and a state of the					
Contact Pe	Intact Person MG. NAKHY C. POMILBAN							Signature	ECF HPD	ASI-ETT	JBT	
Filter ID	Tare(s)	Barometric (mm	Static	1	Meterbox	- manager		ozzie	Pitot			
		Hg)	(mm H ₂ O)	ID#	Gamma	DeltaH @	ID#	Dia.	ID#	Cp	Probe ID#	
		454.7	8.4	8.SF71	0.9754	and the second se	NS-T2-9	7.39				
		192.14			Train Leak Ch	the second se	100 0-1	4,01	F1-12 4	Fyrites	-12-4F	
Run No.	SI RUN 2	1	Initial			terim		Finat	Time	%Oz	%CO2	
K Factor	4.920	Vacuum, mm Hg	15.0		T		1	1	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O	7002	70002	
Pitot Leak C		Leak rate, m³/m	0				-	110	1184	17.	17	
Pretest	13/118	Start Volume	315.20	0.0			-		1172.4	14		
Post-te		the state of the second s	515.20	10					ORSAT Leak Che	and the second s		
2	·		1 111.04				//	16.212	Tediar Bag ID	124 1964	SIR2 CC	
Ports & Points	Time Clastic Test	-		Delta H	Delta H	Gauge	T		Temperature	90		
Poins	Clock Test	DGM reading	Pitot Reading	Calc.	Actual	Vacuum			i omperature			
0 10	(24-hr) (min)	(m ³)	(mm H ₂ O)	(mm-H2O)		(mm H ₂ O)	Stack	DGM	Probe	Filter	Imp. Exit	
A - 12	1/454 0	315.2918	11.0 1	54.12	54	10-2	290	24	15	11	19	
11		7/5.3502	1.0.	54.1~	C/	6.7	240	24	1/8	119	15	
	to: 5	215 -4/12	1, 0	\$4.12	54	4.0	340	24	m	ha	3	
g		315 -47 46	11.6	57.7	18	1.0	220.	74	M	no	3	
B	1/10-2 10	315,5422	17.2	59.04	40	4.6	235.	74	120	M	13	
71		315.6012	. 17.0	19.05	600	10	205	2	17.0	1-1	5	
61	201- 15	315.64 18	17-2	5.09	: wo	6.0	CAC.	26	120	131	1	
5		315.720	120	59.09	69	.60	las:	30	no	1200	7	
41	2052 20	310.79.00	11.5	ries.	B	40	TAF	20	11-3	170	11	
3		318.XEUS	11.0	175	50,	7.0	300	x	47			
2	20- 25	515.9122	111	14/2	54	7.0	200	. 25		170	16	
11		38.9710	11.0	Stin	II I	70	190		11:10	17	14	
STOP	17 17 30	114.04 78		- Saul.				25			17	
			-									
1												
3-12	mole 30	216.04 78	11.0 .	Gil	77	7.0	250		111	1-	-	
11		314.10 19	110	54.12	译		240	24	112	17	7	
	1200 4925		11, 6	17.7	TA	70	290	The local distance of	13		<u></u>	
91		314.7180	11.4	(77)	or successful whether the local data	-10	2	25	121	10	13	
	no+ 40	316.29 76	12.0		P	30	245	21 1	M	12	13	
41	18	314.3542	12.0	and the second se	00		275	N	no	170	3	
G	mar 450	7/6.41 04	12.0	59.09	60	7.0	245	21	no	12	.3	
	ture 1 30		Putter and a second sec	19009	40	8.0	240	25	pro l	in	10	
5	174.00 50	9/2.47 74		19,01	60	20	203	U	ha	ro	3	
3		91154 20	1.0	577	TB	90	nat	24	11-7	50	0	
	340 57	511-6014	1.6	(7.7	38	30	296	U,	1/2	117	0	
	4 ru 55	211 . 66.82		54.12	59	712	Clas	n	115	116	17	
Sall I		311, 742	11.0.	[4.12	54	212 20	Cas	24	liv	117	S	
END /	1404 61	314 8126	~									
- I'											-	

Delta H Total Volume TS Stack Run Time RMS Delta P High Vac. Trneter Avg "Avg Avg 60 2.997 1.5 5.17 203 atio 792.92 20 -13 DE C.24 Team Leader / Date HIP_ ORAVINA / QAVOCIDATE: E.C. FERNANISO 13 DEC . 24 ϵ_z Ind Floor, VaG Bldg. Ortiges Ave., Greenhills

and Roor, VaG Bidg. Ortigas Ave., Greenkills San Juan City, Metro Manila, Philippines Tels. 863-6129= Fax (632) 727-5831 Department of Environment and Natural Resources (DENR) ENVIRONMENTAL MANAGEMENT BUREAU ACCREDITED THIRD PARTY TESTER

ISOKINETIC FIELD DATA SHEET METHOD(s) 5/6

acility Name	BM				BC-J	LP	Test Date		13 DEC	EMBER	2024
ddress	KN.S		ROAD, IRIS!		GNO CIT	7	Job Numbe	er		56 SI	RUN 3
ource	1.08 N	IT INR, VERTIC	AL SHAFT		NO. 2		Year Instal	led	1	J. Quanting and the	AVIG
ontrol device	CYCI	INE PLIST (ALLECTOR		the second second		Field Perso	onnel	ECF HPM	MISL CA	SJBT
ontact Person		NARHY C	POMILBAN			C.M. Louis	Operations	Signature	1 or orde	H	2001
Filter ID	Tare(s)	7	1	[second	Matarhau				1	40.	
	(bic(b)	Barometric (mm Hg)	Static (mm H ₂ O)	10.4	Meterbox			22/8	PRot	-	Proba
				ID#	Gamma	DeltaH @	ID#	Dia.	10#	Cp	ID#
		6143	1.4	BS1-T2		46.4705	INS-72-4	7.89	R-12-4F		1-72-4
un No. St	Mile 2			Sample I	rain Leak Cr			·		Fyrites	-1
Factor	RUN3		Initial		In	terim		Final	Time	%O3	%CO2
tot Leak Check		Vecuum, mm Hg	15.0					10	13424	19	17
	m /	Leak rats, m³/m	6					0	14/13/		17
Pipersi	12/m	Start Volume	3/5:87					5.9392	GRSAT Leak Che	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Post-test /	n (142	Stop Volume	7 8. 83	10			313	P.234.2	Tedlar Bag ID	1241560	S1K3C
Ports &	Time	1	Contraction of the local distance of the loc	Delta H	Deita H	Gauge	CONTRACTOR OF CONTRACTOR	CONTRACTOR OF TAXABLE	The Local Designment of Street, or Stre		NAME OF TAXABLE PARTY.
Points Clo	ck Test	DGM reading	Pilot Reading	Calc.	Actual	Vacuum			Temparature	°C	
(24-	hr) (min)	(m²)	(mm H ₂ O)	(mm H ₂ O)	(mm H ₂ O)	(mm H ₂ O)	Stack	DGM	Probe	Filler	Imp. Ex
- 12/200	20	316-2448	11.4 1	57.5	28	60	ar	25	170	In	175
11 /		316 .9050	liry .	1217	(R	4.0	29-	N	1/16	118	1/6
10 131	4 5	312-9652		12.12	58	1,0	295	25	1/21	n	14
91.		1314 8264	11.6	\$2.12	B	6.0	20	25	120	ho	178
B B40	4 10	312.0466	and the second sec	60.6	60	4.2	200	25	120	no	1 18
П		170:1070	12.00	66.6	60	10	300	25	120	ni	1 5
6 1341	70 15	76.21.72	17.0	60.6	40	70	300	24		May.	1 12
5.	1	212-2220	17.0	6 2.6-	60	30	.300	no	m	170	12
4 13	ah 20	342.3492	11.6	17.5	. 57	70	300	h	hing .	hio	1-5/
2	- selv-	310-4009	11.4	138	12	7.0	245	W.	ho	· In ·	14
21/200	4 25	717.4700	1.4	57.77	18	70	295	ù	117.		1/7
1	- 102	37 .5318	114	57.17	13	20	295	N	115 1	157	14
TOP 1400	" 30	577.5518	11.7	57.17		7-	24	10	1 1/2	1K	1 16
2101 1190		1211.21.0									
									F		+
3-12 140	CH 10		11.1.1	OT		20	2	0		-1,	1-77
11 11	141 10		1.4	57.07	13	7.0	200	24	1/1/	15	16
10/14/0	74 35			The second s	te	3-	240	n.	14-2	1177	16
	2017	37 .7234	11.6	18.00	28	20	795	N	ni	M	16
	x1 40	54.7340	11.6	53.0	TR	70	300	n	ne !	170	17
B/41	x4 70	17. B44-	h.0	60.6	60	7.0	300	He	1no	'ho	17
	0/1 45	37.91+0	12.0	400	60	-25	300	n	11	m.	10
6 142	01/ 45	317-9753	120	66.4	60	ye a	930	N	Re 1	<u> </u>	17
	74 50	33-03 (00	11.6	604	60	8.0		24	m-	120	146
- 2 142	14 36	812.0972		G.G	50	300	320	U.	17	po	16
	79	12.1676	1.6	B.B		210	291	4	17	17	17
21143	n 55	72.2388	11.4 1	5757	V	20	295	U	115	117	10
and .	100	518.2092	11.4	[7:17	B	300	297	U	116	10	M
-ND 143	m GD	313.3797							1		
											1
	[6 14	Deb 11			Cirkeliter search Car	, /		
	Run Tims	Total Volume	RMS Delta P	1 J	Delta H	High Vac.	TS Stack	Trater		1	
					*Avg	8.0	Avg	Avg	i /	1	

Team Lozder / Date: H.P. OGATINA / 13 DEC. 24-

S MA Department of Environment and Network Resources (DENA) EXANDMENTAL ANALASEMENT DUREAU A COREDITED THIRE PARTY TESTER

1

3DEC. 24

75.7 1 z

CAIOCIDETE E. C. FEANANDO

and Floor, VAG Bldg, Ortigas Are., Granbilis San Auan City, fifetro Manifo, Philippines Tels. 653-5128 + Pax (632) 727-2231

METHOD 7 FLASK SAMPLE AND RECOVERY DATA

Absorbing

Remarks

Facility	BMC FORESTRY CORPORATION BC-TLP
Address	KM. 5. NAGUILIAN ROAD, IRISAN, BAGUIO CITY
Source	1.08 MT/hr. VERTICAL SHAFT KILN NO.2
Personnel	ECT HPO MSL CAS LBT
Test Date	13 DECEMBER

Absorbing Solu	tion Volu	ıme,	ml	
Heated Probe?	(check)	Yes	~	No

25ml

*if No, explain in "Remarks"

Filter Used?

(check) Yes _ / No ____*If No, explain in "Remarks"

					Barometric P Date Perform							Sample Collection Information Barometric Pressure, Pbar (in Hg) 25. Date Performed: /si pec 24 By:Ett, M2, M3L, LAC						
Run Number	Sampl	le ID	Flask ID Number	Flask Volume (ml)	Leak Check (<0.4"Hg/min)	Pressure	Flask abs. Press Initial Pi, Pbar- Pgi (In Hy)	Temp	Flask Temp, Ti (°K)	Sample Collection Time ² 24hour	Shaken for 5min	Shaken for 2min	Sample Recovered Time ³ 24hour	Final Pressure Pgf (in Hg)	Flask abs. Press Initial Pi, Pbar-Pgi (in Hg)	Flask Temp ℃	Flask Temp Tf °K	Sample pH Adjusted (9 - 12)
P	RI	Ť1	BS 15257	ファネン	\sim	24.20	1.46	27)	201.4	· 12/0 /	-	-	0900 14	6.3	25.6	30.1	303 .25	-
1		To	the second se	1137	-	24.35		284	3,21 -7	ei 13434		-	24072	050	25.4	31.2	304.35	
2		B	ち	7210	-	24.70	1.20	79.0	302.15	12700	-	-	09101-	0.4	275	346	327.7-	-
4	R1	TI	Fy.	7712		27-10	167	29.2	372.31	[200]	-	/	09154	0.4	24.5	30,7	33.85	-
-		12	Fr	AND		24 70	1.43	29.2	302 .31	- 120h	-	/	697:01-	0.5	25.4	30.8	373 -91	
5		13	FI,	7750	/	24.50	1.28	29.6	32.7	[1230"	-	1	09375	0.6	25.3	31.1	374.27	-
6	R3	11	Fy	7730	/	24 40	1.38	29.0	307 -10	Btor	1	/	0937-	Dili	X.3		334.35	
G		T2	TI	7740	/	24.40	1.38	28.7	301 .30	. 1000 L	/	-	Ogusit	7.0	25.4		303 - 31	
\$1		13	拓	7150	1	24. 50	1.28	27.7	301 2	5 14104	1	/	69472	0.4	W.5	301	303.25	

2020140 Source Oxygen Concentration?

Was additional oxygen introduced to the Flask?

Yes No

¹Pi = Pbar - Pgi, Flask must be evacuated to within 3 inches of mercury (Hg) of the absolute pressure (barometric pressure).

²Additional oxygen should be introduced to the flask if the source O₂ is below 3%

³Flask must stand for 16 hours or greater after sampling before recovery can be performed.

Int Root, VAD Bild, Druges Ave., Greenb San Juse City, Matra Manila, Philippines Tata. 843-4523+ Fex (432) 727-9821

AND 得 DEC Checked By: partment of Environment and Natural Resources (DENR) ENVIRONMENTAL MANAGEMENT RUREAU

ACCREDITED THIRD PARTY TESTER

ANNEX C

PERMIT TO OPERATE AND FACILITY PROCESS DATA

.

Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU Cordillera Administrative Region (CAR) Cordillera Administrative Region DENR Compound, Gibrattar Baguio City

Tel No: (074) 446-64-40

Permit No: PTO-OL-CAR-2021-09103-R Application Type: Renewal

Date Issued: 30 Oct 2021 Date Expiration: 30 Oct 2026

PERMIT TO OPERATE Air Pollution Source and Control Installations

Pursuant to Part IV, Rule XIX of the Rules and Regulations of R.A. 8749, authority is hereby granted to:

BMC Forestry Corporation (Irisan Lime Kiln)

Km. 5 Naguilian Road, Irisan, Baguio City, Benguet

subject to the following terms and conditions:

TERMS AND CONDITIONS

- 1. This Permit is issued for the permittee to operate the following facilities/equipment described below at the permittee's establishment located at the above-mentioned address (geolocation of entrance gate: 16.419336°, 120,557358°):
 - · Air Pollution Source Installations/Equipment:
 - Three (3) units Vertical Shaft Kiln (Cap.: 1.08 MT/hr; Fuel used: Regular Fuel Oil or Bunker Oil) for the purpose of calcinations of limestones (geolocation of kiln plant building 16.419198°, 120.557922°);
 - One (1) unit Jaw Crusher (Cap.: 1 MT/hr; With Conveyors) for the purpose of pulverizing the quicklimes:
 - One (1) unit Lime Storage Silo (Cap.: 90 MT);
 - One (1) unit Aboveground Fuel Storage Tank (Cap.: 60,000 liters; Fuel: Regular Fuel Oil or Bunker Oil; Vertical Cylinder);
 - Seven (7) units Aboveground Fuel Storage Tanks (Cap.: 15,000 liters each; Fuels: Regular Fuel Oil of Bunker Oil; Horizontal Cylinders);
 - One (1) unit Standby Generator Set (Cap.: 200 kW / 250 kVA; Make: SEALEY; Model: SLC250GF; S/N: 151118001; P.F. = 0.8; Silent-type): Alternator/Generator (Make: MBH; Model: XN274G; S/N: 31512006; Cap.: 180 kW / 225 kVA, continuous; P.F. = 0.8) primed by Diesel Engine (Make Chongqing Cummins; Model: NT855-GA; S/N: 41226017; Cap.: 257 kW @ 1800 RPM, max);
 - One (1) unit Standby Generator Set (Cap.: 75 kW; Open-type): Alternator/Generator (Make: Caterpillar) primed by Diesel Engine (Make: Isuzu; Model: E120; S/N: 202587); and
 - One (1) unit Standby Generator Set (Cap.: 200 kW / 250 kVA; Make: DCA; Model: 200DC; S/N: 8221-002; P.F. = 0.8; Open-type): Alternator/Generator (Make: DCA; Model: 200DC; S/N: A73281AC; Cap.: 200 kW / 250 kVA, standby; P.F. = 0.8) primed by Diesel Engine (Make: Cummins; Model: NT-855-G; S/N: 30104629) all generator sets are installed in the Powerhouse with geolocation of 16.419050°, 120.557809°; and
 - Air Pollution Control Facilities:
 - Three (3) units Gas Scrubber Systems (Cap.: 66 m3/min; Wet-type; 1-unit scrubber is exclusively connected to 1-unit shaft kiln); and
 - One (1) unit Dust Collector and Scrubber System (Cap.: 505.84 m3/min; composed of 1-unit 12,850 CFM Cyclone Dust Collector interconnected to 1-unit 5,000 CFM Cyclone Dust Collector with their bottom open and submerged on Water-bed Scrubber) - for the purpose of controlling the airborne particulates/dusts from the sorting, crushing and loading areas (geolocation: 16.419132°, 120.557396°).
- This Permit shall be valid until <u>SEPTEMBER 10, 2026</u> (PLEASE DISREGARD THE EXPIRATION DATE INDICATED ABOVE) unless suspended or revoked by the Bureau.
- The Bureau may modify the Permit by amending any existing condition or imposing any new or additional condition from the date of issuance (as indicated above) until its expiration on SEPTEMBER 10, 2026, subject to the provisions of Rule XIX of the Implementing Rules and Regulations (IRR) of the Republic Act No. 8749.

Filing Fee	: Php 600.00	O.R. No. : 1809914 & 1810468	Date : Oct. 11, 2021
Permit Fee	: Php 47300.00	O.R. No. : 1809914 & 1810468	Date : Oct. 11, 2021
PD1856	· Phn 10 00	O.R. No. 1809914 & 1810468	Date Oct 11 2021

- An application for renewal of this Permit shall be filed not less than thirty (30) days before the expiry date the explry date SEPTEMBER 10, 2026.
- This Permit shall be posted in a conspicuous location at the premises and shall be adequately framed or otherwise protected against damage.
- 6. The operation of any installation, process activity at this establishment that produces, generates, captures, treats, reduces, controls, emits, releases or disperse air pollutants without a valid Permit to Operate, or in violation of any of the conditions of this Permit, shall be subject to penalties pursuant to Rule LVI of the IRR of RA 8749.
- 7. The installations, processes or activities at this establishment shall be operated, conducted and managed by the permittee, and the associated plant and equipment shall be maintained and operated by the permittee, so that emissions of air pollutants are kept to a practicable minimum. The permittee shall be responsible for ensuring that any emissions of air pollutants from abnormal or unexpected events, do not cause air pollution in the surrounding air environment or have adverse effects on persons in that environment.
- Without limiting the generality of the previous condition, the permittee shall ensure that the emissions from the permitted installations or processes comply with:
 - the National Emission Standards for Source Specific Air Pollutants as specified in Rule XXV of the IRR of RA 8749; and
 - the National Ambient Air Quality Standards for Source Specific Air Pollutants from Industrial Sources/Operations as specified in Rule XXVI of the IRR of RA 8749.
- The permittee shall submit Self-Monitoring Reports to the Bureau on a quarterly basis in accordance with DENR Administrative Order No. 27 (Series of 2003) and any written instructions by the Bureau based on the following schedule:

Quarter	Coverage	Submission	Quarter	Coverage	Submission
First	Jan Mar.	1-15 Apr.	Third	Jul Sep.	1-15 Oct.
Second	Apr Jun.	1-15 Jul.	Fourth	Oct Dec.	1-15 Jan.

- 10. The permittee shall at all times has an accredited Pollution Control Officer (PCO) who shall be the day-by-day contact person between the Bureau and the establishment. The permittee shall ensure that the PCO is familiar with the operations and activities undertaken at the establishment, and the relevant emission sources and air pollution control devices and equipment. The permittee shall give the PCO the necessary authority to take or to direct corrective action in the event of a malfunction, accident, breakdown or other abnormal event that results in excessive emissions or emissions that do not comply with relevant Permit conditions, emission standards or ambient air quality standards.
- The Permittee shall seek accreditation of his/her appointed/designated PCO pursuant to Section 8 of DAO 2014-02 (Revised Guidelines for Pollution Control Officer Accreditation).
- 12. In case of the resignation or termination of the services of the PCO, the Managing Head shall appoint/designate a new PCO. He/she shall inform, in writing, the concerned EMB Regional Office within fifteen (15) days and seek accreditation for the new PCO within thirty (30) days from the date of resignation or termination.
- 13. The permittee shall report in writing to the Bureau any malfunction, accident, breakdown, leak, spill or other abnormal or unexpected event which results in emissions to atmosphere that do not comply with relevant Permit conditions, emission standards or ambient quality standards, or in any other abnormal or unexpected releases of air pollutants. The report shall indicate the nature of the incident or event, its impact on emissions, the time period involved, and any actions or measures taken to control the emissions or releases, remedy any air pollution problems that may have occurred, and minimize the probability of reoccurrence of the event or the release.
- 14. The permittee shall at all times allow authorized or accredited officers of the Department or the Bureau entry to the establishment and access to any part of the establishment to conduct inspections, gather information, test emissions or take samples. The permittee and its personnel shall not obstruct such officers in the performance of these functions, and shall furnish any information or materials requested by them that is reasonable for them to have. The permittee shall obey any lawful instruction or direction given by the Department or the Bureau at all times.

Filing Fee	: Php 600.00	O.R. No.: 1809914 & 1810468	Date : Oct. 11, 2021
Permit Fee	: Php 47300.00	O.R. No.: 1809914 & 1810468	Date : Oct. 11, 2021
PD1856	· Pho 10 00	O R No 1809914 & 1810468	Date : Oct 11 2021

15. The permittee shall not make or allow any alterations or modifications to operations, activities, installations, processes, plant or equipment at the establishment that might substantially change the nature or quantity of the associated emissions without obtaining the approval of the Bureau, including the obtaining of any necessary Permit to Operate.

SPECIFIC CONDITION

.

16. The permittee shall <u>conduct emission testing</u> for the three (3) units Vertical Shaft Kilns through a DENR accredited third party Source Emission Testing Firm <u>twice each year for each year of operation</u> with three (3) sampling runs to verify its compliance pursuant to Memorandum Circular No. 2007-003 (Policy on Compliance and Permitting for Industrial Facilities Relating to Air Quality). However, considering that each kiln is operated in a period of six (6) to eight (8) months, <u>each kiln shall be subjected to two (2) emission testing within that period</u>. The Test Reports will be a part of the requirements for the renewal of this Permit.

Recommended by:

ENGR. MARIE PIN L. RODAS OIC-Chief, Clearance & Permitting Division Approved by:

TORIA V. ABRERA

MA: VICTORIA V. ABRERA Regional Director

Filing Fee Permit Fee PD1856 : Php 600.00 : Php 47300.00 : Php 10.00 O.R. No. : 1809914 & 1810468 O.R. No. : 1809914 & 1810468 O.R. No. : 1809914 & 1810468

Date : Oct 11, 2021 Date : Oct 11, 2021 Date : Oct 11, 2021

Annex

	Fuel Burning						
IÐ	APSI	Capacity	Brand name	Type of Fuel	APCD		
130795	Vertical Shaft Kiln No. 1	1.08 MT/hr/equipment	N/A	Regular Fuel Oil	Gas Scrubber No. 1 (66.0 m ³ /min)		
130797	Vertical Shaft Kiln No. 2	1.08 MT/hr/equipment	N/A	Regular Fuel Oil	Gas Scrubber No. 2 (66.0 m ³ /min)		
130799	Vertical Shaft Kiln No. 3	1.08 MT/hr/equipment	N/A	Regular Fuel Oil	Gas Scrubber No. 3 (66.0 m ³ /min)		
140793	Standby Generator Set	250.0 kVA	DCA/CUMMINS	Diesel			
140794	Standby Generator Set	200.0 kW	SEALEY/Cummins	Diesel	-		
140795	Standby Generator Set	75.0 kW	Caterpillar/Isuzu	Diesel	-		

Non Fuel Burning					
APSI	Capacity	Brand name	Material	APCD	
Jaw Crusher	1.0 MT/hr/equipment	N/A	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Dust Collector Collector System (505.84 m ³ /min)	
Lime Storage Silo	90.0 MT	N/A			
Aboveground/Overhead Fuel Storage Tank	60000.0 Liters	N/A			
Aboveground/Overhead Fuel Storage Tank	15000.0 Liters	N/A			
Aboveground/Overhead Fuel Storage Tank	15000.0 liters	N/A			
Aboveground/Overhead Fuel Storage Tank	15000.0 liters	N/A			
Aboveground/Overhead Fuel Storage Tank	15000.0 liters	N/A		-	
Aboveground/Overhead Fuel Storage Tank	15000.0 liters	N/A		-	
Fuel Storage Lank		N/A		-	
Aboveground/Overhead Fuel Storage Tank	15000.0 liters	N/A			
	Jaw Crusher Lime Storage Silo Aboveground/Overhead Fuel Storage Tank Aboveground/Overhead Fuel Storage Tank Aboveground/Overhead Fuel Storage Tank Aboveground/Overhead Fuel Storage Tank Aboveground/Overhead Fuel Storage Tank Aboveground/Overhead Fuel Storage Tank Aboveground/Overhead Fuel Storage Tank	APSICapacityJaw Crusher1.0 MT/hr/equipmentLime Storage Silo90.0 MTAboveground/Overhead Fuel Storage Tank60000.0 LitersAboveground/Overhead Fuel Storage Tank15000.0 liters	APSICapacityBrand nameJaw Crusher1.0 MT/hr/equipmentN/ALime Storage Silo90.0 MTN/AAboveground/Overhead Fuel Storage Tank60000.0 LitersN/AAboveground/Overhead Fuel Storage Tank15000.0 litersN/A	APSICapacityBrand nameMaterialJaw Crusher1.0 MT/hr/equipmentN/ALime Storage Silo90.0 MTN/AAboveground/Overhead60000.0 LitersN/AFuel Storage Tank60000.0 LitersN/AAboveground/Overhead15000.0 litersN/A	

APCD-APSI Mapping					
ID	APCD	Connected APSIs (<name> (id))</name>	Connected APCDs (<name> (id))</name>		
19030	Gas Scrubber No. 1 (1)	Vertical Shaft Kiln No. 1 (4)	-		
19907	Gas Scrubber No. 2 (8)	Vertical Shaft Kiln No. 2 (5)			
19908	Gas Scrubber No. 3 (9)	Vertical Shaft Kiln No. 3 (6)			
19909	Dust Collector Collector System (10)	Jaw Crusher (7)			

Filing Fee Permit Fee PD1856

*

.

.

: Php 600.00 : Php 47300.00 · Php 10.00 O.R. No. : 1809914 & 1810468 O.R. No. : 1809914 & 1810468 O.R. No. : 1809914 & 1810468 Date : Oct. 11, 2021 Date : Oct. 11, 2021 Date : Oct. 11, 2021

MONITO	ORING LOGSHEET
. <u>F</u>	acility Information
Facility Name Facility Address Name of Pollution Control Officer Maintenance Supervisor / Engineer Telephone and Fax Number	BMIC FORFESTRY CORP. BC ILP KM.5 NAGUILAN ROAD. IRISAN. BAGUDO CITY MS. NARHY C. POMILBAN \$45-7180 / 09306480332
5	Source Description
Source Type Source ID Manufacturer / Brand of Equipment / Serial No. Equipment Capacity (BHp,MW,MT/hr) Date of Installation (month/year) Date of Modification (that may increase emissions) Operational Hours per Year (hrs/year) Operating rate (%)	VERTICAL SHAFT KILN EXHAUST STACK NO. PU24 \$66 \$1 1.06 MTTHE 95 °66
Air Pe	ollution Control Device
Is there an Air Pollution Control Device (APCD) atta source? Type of APCD Date of Installation APCD parameters (flowrate,gpm,delta P,etc) Is the APCD operating during emission sampling	Wet Cas Scrubber
Fuel	Analysis / Information
Type of Fuel used during emission sampling (%S) Original Fuel used Date of Fuel change Daily Fuel Consumption (Liters/day) Is the Fuel Analysis Available? Will the company provide the Fuel Analysis	V KFO
Please attach the following -Fuel Analysis -Permit to Operate -APCD Process Logsheet -Source Process Logsheet	Warth Drow C. POINT BOW

•

PCO

ANNEX D

ANALYTICAL DATA

. .

Unit 201-204 & 406 Rizalina Annex Bldg. 1677 Quezon Avenue, Quezon City Tel. No 8927-77-15 Fax No. 8929-4824 Email info@elarsi.com

	VAG Bldg Ortigas Ave. Greenhills uan, Metro Manila	Lab. Report No. Date/Time Sampled Date Received	244456-SA : 12-13-24 1100H 12-16-24
Contact Number Nature of Sample/s No. of Sample/s Subm	8863-6129 Stationary Source Emission	Date Analyzed Date Reported	12-18-24 to 12-23-24 12-23-24

[REPORT OF ANALYSES]

Sample No.	Sample ID	PM (with acetone rinse), mg*	Analysis Date/Time
ES-2420808	PJ 24 566 S1R1	22 1	12-18-24 0830H
ES-2420809	PJ 24 566 S1R2	23 9	12-18-24 0830H
ES-2420810	PJ 24 566 S1R3	39.8	12-18-24 0830H

a - Method 5 / Gravimetric

Peterence CFR 40 Part 60 Reviseo as of December 20, 2020

Note Date and time of sampling for "As Removid" samples were provided to prent

Analyzed By

tre. CHYLA DREXIE C. MORADA, RChT

Laboratory Chemical Technician PRC/Lic. No. 0009323

Checked By:

JENMA DE JACINTO, RCh Aboratory Supervisor PRC Lic. No. 0010872

Certified Correct By: ZAL RENATO M. GOFREDO, JR., RCh Laboratory Manager PRC Lic. No. 0009824

DENR RECOGNIZED C.R. No. 005/2024

.

PAB ACCREDITED TESTING LABORATORY PNS ISO/IEC 17025 2017 LA-2023-436A

Test results reflect the quality of the samples as received. No portion of this report may be reproduced in any form without written authorization of ELARSI inc. This report is not valid without the official dry seal and watermarks of the laboratory

Page 1 of 1 Page/s

EI_HRAFORM_10

ELARSI, INC.

REAGENTS STANDARDIZATION for SOx ANALYSIS (EI-APA-14)

Project No. :	PJ 24 566	Date Received:	12/16/201
Lab Report No.	244457-54	Date & Time Analysis Started:	12/17/24 13004
		Date & Time Analysis Finished:	12/17/24 1000H

Computations:

Standardization of	of 0.0100 ± 0.000	2 N BaCI2:		
Trial No.	Volume (ml)	Normality (N)	Volume (ml)	Normality (N)
	H₂SO₄	H ₂ SO ₄	BaCl ₂	BaCl ₂
1	25	0.0009074085	24.5	0.01009601
2	25	0.0099074085	24.3	0.10192807
			Average	0.00151204

Standardization of 0.0100 ± 0.0002 N H2SO4:							
Trial No.	Volume (ml)	Normality (N)	Volume (ml)	Normality (N)			
	NaOH	NaOH	H2504	H ₂ SO ₄			
1	247	0.0100277414	25	0.00099074085			
- 2	24-7	0-0100277414	25	0.0099074085			
			Average	0.0099074085			

Trial No	Weight (g)	Weight (g)	Volume (ml)	Normality (N)
	NaOH	KHP	NaOH -	NaOH
1	40.0012	0-1004	49.1	0.000/12730
2	40.0012	10.1003	48.9	0.0100432098
			Average	0.0100277414

.

 $N_{H2SO4} = \frac{Weight of KHP}{(0.20423)(V_{NaOH})}$

Analyzed by _366 (.C.M Date & Time _12/74/24 13004 Approved by RmG Date & Time 12/20/24 5P-

Checked by UN Date & Time Planky UN

Page 1 of 1

Ż

EI_LABAIRFORM_14(8)

 $N_{BaCl2} = \frac{(N_{H2SO4})(V_{H2SO4})}{V_{BaCl2}}$

(NNAOH)(VNAOI $N_{H2SO4} =$ VH2SO4

Page 1 of 1

ELARSI, INC.

SOX (METHOD SMETHOD 8) ANALYTICAL DATA SHEET (ELAPA-14)

Project No. : Nature of Sample : N BeCl2 used : IPA (used for stration) :

k

4

...

.

, **.**,

0-0051204 247430 Detection Limit/s : SO2 (1.90 mg) SG3 (3.27 mg) ; H2SG4 (4.00 mg)

PJ 24 566

1

Lab Report No. : Date Received: Date Analysis Started: Date Analysis Pinished:

14/19/24	
2/17/24	

	Dom	-	*1			
Computations:	COD	pyu	non	8G	1.11	

PA Check (Abs g) Black		IPA .	9-002	247430	Masa H2804 (mg)	=[(49.04) (N===) (V		es., 5
Mass 502 (mg) -	(32.0	3) (Nasco) (Vera - V.	and the second second second	- 1	contrast de la contrast entrel		meas H2SO4 (mg) : s	MAY SCS (80.081) MY 125C4 (98.075)
Where:	V	volume aliquol		V _{no} .	average volume of litrant used for	sangola		
	VipAllers .	volume of litrar	nt used for sPA	blank			50 GC	· · · ·
						A DOWN DOWN OF THE OWNER OF THE OWNER		ND (Not Describe)

	Sample ID	Vsah	V.		Titran	t Volume (ml) rel Reeding			80,		
				(Final - Initial)	Trial 1	(Minut - Initial)	Trial 2	Var.	Hese (reg)		
	IPA Blank	[00	10	0-0-0.0	0.0	0.0-0.0	0.0	0.00	4190		
			t.								
5-2420811	PJ 24 566 5/121	310		0.4 -0.0	04	0.2-0-0	2.2	C-30	3.02		
8/2	122	240	15	0.3-0.0	0.3	£.2-0-U	.c.2	6.15	1.95		
\$13	R3	350	11.	0.1 -0.0	0.1	0.1-0.0	0.1	0.10	4.90		
			· 1						21.3		
	· .						-	2			
						1.					
				-					12 I		
	21000-11200100-00-77										

EI_LABAJRFORM_14(A)

Unit 201-204 & 406 Rizalina Annex Bldg. 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 Fax No. 8929-4824 Email: info@elarsi.com

	Lab. Report No.	32	244458-SA
G Bldg Ortigas Ave, Greenhills	Date/Time Sampled		12-13-24 1100H
Aetro Manila	Date Received		12-16-24
8863-6129	Date Analyzed	- 3	12-21-24 to 12-27-24
: Stationary Source Emission	Date Reported	1	12-27-24
: Ten (10)			
	Aetro Manila 8863-6129 Stationary Source Emission	G Bldg Ortigas Ave, Greenhills Date/Time Sampled Metro Manila Date Received 8863-6129 Date Analyzed Stationary Source Emission Date Reported	Bldg Ortigas Ave, Greenhills Date/Time Sampled Metro Manila Date Received 8863-6129 Date Analyzed Stationary Source Emission Date Reported

		4.■ Aver 1001 42 100 - 10 400 - 20 40 100 - 20 10					
-	Sample No.	Sample ID	N	lO₂ (as NO₂) mgª		Analysis Date/Time	
	ES-2420814	PJ 24 566 S1R1T1		0.0268		12-21-24 0900H	
	ES-2420815	PJ 24 566 S1R1T2		0.0268		12-21-24 0900H	
	ES-2420816	PJ 24 566 S1R1T3		0.0183		12-21-24 0900H	
	ES-2420817	PJ 24 566 S1R2T1		0 0310		12-21-24 0900H	
	ES-2420818	PJ 24 566 S1R2T2		0 0211		12-21-24 0900H	
	ES-2420819	PJ 24 566 S1R2T3		0.0169		12-21-24 0900H	
	ES-2420820	PJ 24 566 S1R3T1		0.0211		12-21-24 0900H	
	ES-2420821	PJ 24 566 S1R3T2		0.0352	-	12-21-24 0900H	
	ES-2420822	PJ 24 566 S1R3T3	8	0.0183		12-21-24 0900H	
	ES-2420823	PJ 24 566 S1 Blank	385	< 0.0078		12-21-24 0900H	-
						2 N	

[REPORT OF ANALYSES]

a - Method 7 / Phenoid sulfonic Acid

Reference CFR 40 Appendix A-4 Part 60 as of May 31, 2023

Note Date and time of sampling for "As Received" samples were provided by client

Analyzed By:

Checked By:

Certified Correct By.

1. CHYLA DREXIE G. MORADA, RChT Laboratory Chemical Technician PRC Lic. No. 0009323

JEMMA B. JACINTO, RCh Laboratory Supervisor PRC Lic. No. 0010872 FAL

RENATOM. GOFREDO, JR., RCh Eaboratory Manager PRC Lic. No. 0009824

Test results reflect the quality of the samples as received. No portion of this report may be reproduced in any form without written authorization of ELARSI. Inc This report is not valid without the officiar dry seal and watermarks of the laboratory

Page 1 of 1 Page/s

EL_HRAFORM_10

DENR RECOGNIZED LABORATORY C.R. No. 005/2024

Unit 201-	204 & 405 Rizəlina Annex	Bldg 1677 Quezon Avenue. (Quezon City	Inv #	ORE	TOR LABORATORY US	Lab. Repor	t No.	49451	0-58-
Company : Address : Contact Perso	-BS CHERNIE	S Ween CA	Contact No./s	469485	Submitted by: Reviewed by:	(Printed Name/Signature)	a.dł	_ Oate/Tim	12-1 14 pec	6 -25 24 1100
Walk-inC		Others	Nature of Sample (PLEASE Water	CHECK)'	Approved by:	(Printed Name/Signature) (Printed Name/Signature)	in 8	Date/Time	_ P1	ofm 110
anorle Condition Up Sealed / Container Chilled/Frozen Room Temp Proserved Turn Around Time Urgent/Rush (3-5 W	rintact	ntalner Type Plastic Bottle Glass/Stenlie Glass TEDLAR Bilg Others Roulino (7-12 Working Days)	Drinking Water Wastowater Others Air Stack Source Emission Ambient Air Sample Work Env. Measurement Others	Water Air Others Solids Soli						
OR LAB USE ONLY	L		A construction of the second state of the seco	Building Building				FOR LAB U		
Sample No.	Sample Identification	Analyses Requested	Method Of Analysis	Date of Sampling/Time	No. of Samples	Remarks	DATE Certificate Sent/Haportad	OF THE Worksheet Sent	COC Sant	G Sample Disposed
	PJ24-566		· · · · · · · · · · · · · · · · · · ·	DEC 324		* (* (* * *				
2020008-10	SIRI	1 PM	Gaumetric	11004	3	QX - he blank				
(DX 2020811-13	p2.		bailum Thorm-		3					
NON	R8	ACEDINE	highten :		3					
2420814-23	SIRTI- T2	2								
	13 R211	NOX	- Phenoldwortente		-9 W	pesnet				
	12		"OU .	-	/	U.a.				
	RSTI			•						
	T2 T3									-
	Blank									
LUSE ONE U.C.	OC FOR EACH NATURE OF SAMPLE									

EI_HRAFORM_03

CO MEASUREMENT DATA

Tedlar Bag Samples

Facility:	BMC FORESTRY COR	PORATION	Analysis Date:	December-16, 2024	
Sample Date:	December 13, 2024	and the second	Analyzed By:	JØSEARJAY M. SANTI	100
Collected By:	ECF, HPO, MSL, JBT		Signature:	A CAL SANT	AGO
			Signature.		
CO Analyzer Manufacturer		FUJI EI	ECTRIC	CO., LTD.	
Analyzer Model Serial Number			ABBY2 / N		-
Analyzer Range Setting, ppm			0 - 1000		
Analyzer Span Value, ppm			800		
		Pre-Measure	ment Calibration		м. М
Time 0800H	Cylinder No.	Gas Value (ppm)	CO response (ppm)	% Difference* (% span)	Status (≤ 2% span)
Zero Gas	N2 240403	0	0	0.0000	Passed
Certified Gas 1	D962229	200	201	-0.1250	Passed
Certified Gas 2	D962122	500	499	0.1250	Passed
Certified Gas 3	D962087	800	800	0.0000	the second s
((Gas Value-COR	esponse) /Span Value))x 100%	• . • •		0.0000	Passed
	And and a second se	CO Tedlar	Bag Samples		
Time	Tedlar Bag ID No.	CO (ppm)	Time	Tedlar Bag ID No.	Со
0900H	PJ24-566 S1R1	25		ID NO.	(ppm)
0910H	PJ24-566 S1R2	26			
0920H	PJ24-566 S1R3	15			
T	Gas Value	st-Measurement C		A COLORED AND A CO	
Time 1800H	(ppm)	Pre-Meas CO Response	Post-Meas CO Response	% Drift** (% span)	Status [†] (≤ 10 % span)
Zero Gas	0	(ppm) 0	(ppm		
Certified Gas 1	200	201	0	0.0000	Passed
Certified Gas 2	500	499	198	0.3750	Passed
Certified Gas 3	800	800	495	0.5000	Passed

**((CO Resp from the Pre-Meas Cal-Co Resp for the Post-Meas)/Span Value)) x 100% QA/QC Check: Completeness_ Legibility ____ Accuracy ____ Specifications Reasonableness Over 8 hours Checked By: JANS CHOLO E. CHUA QA/QC/Date: EDINDO C. FERNANDO Signature Over Printed Name Signature Over Frinted Name

797

0.3750

Department of Environment and Natural Resources (DENR) ENVIRONMENTAL MANAGEMENT RUREAU A C C R E QI TE O THIED DARTY A C C R E QI TE O THIED DARTY I ESTER Centilization (STAT NO. 2222-12)

Passed

800

2" Floor VAG 3dg Origas Ave., Greenhills San Juan City, Metro Manita, Philippines Yels. (632) 863-6129- Fax (632) 727-9931

Certified Gas 3

800

20

ANNEX E

EQUIPMENT CALIBRATION CERTIFICATES

METER BOX POST-TEST CALIBRATION CHECK

USEPA Approved Alternative Method ALT-009

BMC FORESTRY CORP. ILP IRISAN, BAGUIO CITY VERTICAL SHAFT KILN NO. 2

Meter Box #: 2

Calibration	Date	SH®	Y
5-point orifice calibration	25-Nov-24	46.4705	0.9754

Calculate Y_{qe} for each test run using the following equation:

$$Y_{qa} = \frac{\theta}{V_m} \sqrt{\frac{0.0011503T_m}{\Delta H_{g} \left(P_b + \frac{\Delta H_{avg}}{13.6}\right)} \times \frac{29}{M_d}} \times \left(\sqrt{\Delta H}\right)_{avg}$$

where:

42

Yga	dry gas meter calibration check, value dimensionless.
Ð	total run time, min,
Vm	total sample volume measured by dry gas meter, m ³ .
Tm	absolute average dry gas meter temp., °K.
Pb	barometric pressure, mm Hg.
0.0011503	$=(760/298)(0.75 \times 0.0238)^{2} (mm Hg/^{\circ}K) (m^{3}/min)^{2}$
THand	average orifice meter differential, mm H ₂ O.
AHa	orifice meter calibration coefficient, mm H ₂ O.
Ma	dry molecular weight of stack gas, gm/gm mole.
29	dry molecular weight of air, gm/gm mole.
13.6	specific gravity of mercury.

After each test run series, do the following:

Average the three or more values of Y_{qa} obtained from the test run series and compare this average with the dry gas meter calibration factor, Y. The average Y_{qa} must be within ±5% of Y.

· · · ·

If the average Y_{qe} does not meet the $\pm 5\%$ criterion, recalibrate the meter over the run full range of orifice settings, as detailed in Method 5. Then follow the subsequent procedure in Method 5.

. METER	R BOX POST-TEST CALIBRATIC	IN CHECK	
	Run 1	Run 2	Run 3
Meter Box	Meter Box #: 2	Meter Box #: 2	Meter Box #: 2
Time, min 0	60.0	60.0	60.0
Total volume, dry m ³ V _m	1.5500	1.5208	1.5350
Average meter temp, ^o C	24.83	25.00	25.75
Average meter temp, ⁰ K T _m	297.98	298.15	298.90
Barometric pressure, mm Hg Pb	654.30	654,70	654.30
∆H _{avg} , mm H₂O	59.917	57.167	58.667
∆H _@ . mm H₂O		46.4705	
Mol. wt. of stack gas, g/g-mole M _d	29.64	29.64	29.64
QA gamma Y _{ca}	0.9917	0.9872	0.9925
Average Yqa		0.9905	
Meter box gamma Y		0.9754	
Difference to be within 5%		1.5% - PASS	

TEAM NO. 2 - ORITICAL OF FICH

USING FIVE CRITICAL ORIFICES

Console M Number	odel	XC572- QC6V	Date 25-Nov-24 Tim				13	100H	Std Temp	0	298	°K
Console S Number	erial	1404036		Barometric	Pressure	ess une 755.9 mm Hg		Std Press		760	mm Hg	
DGM Mode Number	1	G16	Theoretica	Critical Vac	cuum		3571	mm Hg or	14in Hg	к,	0 3858	
DGM Seria Number	I	2012- 014438	Calibration	Technician			ŀ	IPO	Previous calibratio		0.9	873
		Met	ering Consol	e			1		Critic	al Orifice		
Elapsed Time	DGM Orifice		Volume		Outlet	Temp.		Coef. x10 ⁴	Ambier	nt Temp.	Critical Vacuum	Actual Vacuum
ining	ΔH	Initial	Final	Dif	Initial	Final	Serial	~10	Initial Final	Vacuum	1-2in	
0 min	P _m mm H ₂ O	V _m , m ^a	V _{mt} m ³	V _m >0.14m ³	t≂ °C	trı °C	#	K' metric units	Lime °C	lam⊐ °C	in Hg or mm Hg	or 25- 50mm > Critica
17.0	10.0	300.1000	300 2640	0.164	25 0	25.0	40	2.09977	27.1	27.6	15.0	17.0
11.0	20.0	300.2750	300.4312	0.156	25.0	25.0	48	3.10936	27.6	26.8	15.0	17.0
	32.0	300 4388	300.6048	0.166	25.0	25.0	55	4.05110	26.8	26 3	15.0	16.0
9.0												
9.0	54.0	300.6102	300.7768	- 8.167	25.0	25.0	63	5.20716	26.3	26.4	15.0	16.0

	Standar	dized Data				Dry Gas Me	ter	
Dry Gas	Motor	Critical	Orifice	Calibration F	actor	Flowrate	Δł	la
Diy Gas	meter	ontical		Value	Var'n	Std & Corr	0.0212 m ^s sto [/] min	Variation
V _{mista} i m ³	Q _{misio} m²/min	Veiser m ³	Q _{σ(390)} m ³ /min	Y	۸۲ ±2%	Qnite(scoor) m³/min	۱H ₃ mm H ₂ O	£4.7¢ ±5.1mm Hg
0.1606	0.0094	0.1557	0.0092	0.9692	-0.64	0.0092	51.8778	4.4
0 1532	0.0139	0.1492	0.0136	0.9743	-0.11	0.0136	47 3852	09
0.1630	0.0181	0.1592	0.0177	0.9772	0.19	0.0177	44 6711	-1.8
0 1539	0.0234	0.1592	0 0227	0.9717	-0 38	0 0227	45.7906	-0.7
0.1586	0.0317	0.1561	0.0312	0.9845	0.94	0.0312	42.6276	-3.8
			Y Average	0.9754		AHe Average	46.4705	

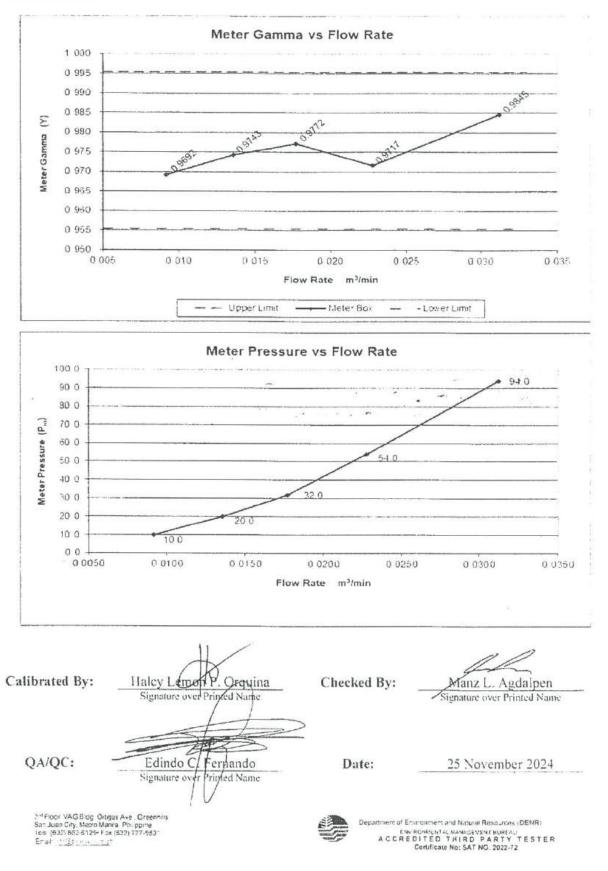
il.

I certify that the above Dry Gas Meter was calibrated in accordance with USEPA Method 5. ~ ≤ -1 HALCY LEMON FORQUINA / MANZ L AGDALPEN /EDINDO J. FERNANDO Signature

Date: 25-Nov-24

2⁵⁴ Floor VAG Bidg, Drtigas Ave., Greenheis San Juan Cry, Merto Mania, Philippine Tels. (632) 553-6125-Flax (532) 727-9531 Email. <u>20.953-6125-Flax</u> (532) 727-9531

Department of Environment and Natural Resources (DENR) ENVIRONMENTAL MARKOPHOLY RUREAU A C C R E DITED THIND PARTY TESTER Certificate No: SAT NO. 2022-72


TRAMAR 2. CHI MAR UMANDA

DETERMINATION OF ORIFICE COEFFICIENT K'

Consol	e Model I	Number	XC572-QC6V	Date	25-	Nov-24	Time	09	15H	Std Temp	298.15	¢κ	
Consol	e Serial N	Number	1404036	Barometric	Pressure	l.		755.9	mm Hg	Std Press	760	mm Hg	
DGM M	odel Nun	nber	G1.6	Theoretical Vacuum	Critical		357mm	n Hgi or	14in Hg	к,	0 3858		
DGM Se	erial Num	nber	2012-014438	Calibration *	Technicia	in	HPO Previous 0.9873						
			Metering Cons	ole			[Critical Or	ifice		
	Elap sed	DGM Orific e	Volu	me	Outlet	Temp			bient mp	Critical Vacuu	Actual Vacuu m	Coeff.	Diff
Run	Time	ΔH	Initial	Final	Initia I	Fina I	Orific e	Initia I	Final	m	1-2in or	x10*	%
	0 min	P# mm HłO	V~. m ³	V _{net} m ³	tr. °C	t _{er} °C	ID	t⊮∞ °C	tama °C	in Hg or mm Hg	25- 50mm > Critical	ĸ	< ±0
1	5	10	299.1000	299.1472	24.0	24 0	40	27.3	27.2	15	17	2 00986	0.0
2	5	10	299.1472	299.1944	24.0	24.0	40	27.2	27.2	15	17	2.09969	0.0
											Average	2.09977	
1	5	20 .	299.1980 .	. 299.2676	24.0	24.0	48	27.2	27.5	15	'17	3.09993	0.30
2	5 ·	20	299 2676	299.3376	24.0	24.0	48	27.5	27.6	15	17	3 11878	0.30
	,							0			Average	3.10935	
1	5	32	299.3400	299.4308	24.0	24 0	55	27.6	27.5	15	17	4 05022	0.02
2	5	32	299.4308	299.5218	24.0	25.0	55	27.5	27.5	15	17	4.05198	0.02
	r										Average	4.05110	
1	5	54	299.5300	299.6472	25.0	25.0	63	27.5	27.5	15	16	5.22096	0.26
2	5	54	299.6472	299 7638	25.0	25 0	63	27.4	27.4	15	16	5.19337	0.26
							,				Average	5.20716	
1	5	94	299.7710	299.9308	25.0	25.0	73	27.2	27.2	15	16	7 14266	0.08
2	5	94	299 9308	300.0906	25.0	24.0	73	27.2	27.2	15	16	7.15467	0.08
											Average	7.14867	

Calibrated By: Halcy Lemon P. Orquina Signature over Printed Name Checked By: Manz L. Agdalpen Signature over Printed Name Date: 25 November 2024 Edindo C. Fernando Signature over Printed Name Date: 25 November 2024 Department of Environment and Natura Resources (DENR) Fred: (22) 853-6127-15431 Ered: (22) 853-6127-15431 Ered: (22) 853-6127-15431 Ered: (22) 853-6127-15431

POST TEST THERMOCOUPLE CALIBRATION CHECK EPA Approved Alternative Method (Alt-011) Single Point Calibration

Thermocouple ID	TMC-T2	Probe / Pitot Tube ID	SPA-6FT-2 / PT-6FT-2
Personnel	HPO, MSL, CAS	Date	25 November 2024

Sensor	Calibrated By:	Reference Temp. °C ¹	Thermocouple Temp. °C	Difference ² (within <u>+</u> 1°C)	Continuity Check ³	PASS / FAIL
PROBE	HPO	30.1	30	0.1	ок	PASSED
FILTER	HPO	30.2	30	0.2	ок	PASSED
STACK	HPO	30.2	30 .	0.2	ок :	PASSED
EXIT	HPO	30.1	30	0.1	ок	PASSED
OVEN	HPO .	30.2	- 30 - 3	0.2	OK .	PASSED
AUX.	HPO	30.1	30	0.1	ÖK	PASSED

¹ Reference Thermometer is mercury-in-glass and ASTM certified, unless otherwise noted.

²After each test run series, check the accuracy (and, hence, the calibration) of each thermocouple system at ambient temperature. The temperature of the thermocouple and reference thermometers shall agree with \pm 1 °C.

³The continuity check involves subjecting the tip of the thermocouple to a change in temperature to check the crimps, loose connections. Thermocouples with crimps and loose connections will not immediately respond to temperature changes, and those with wrong connections will show an opposite change in temperature.

Calibrated By:

QA/QC:

Halcy Lemon P. Orquina Signature over Printed Vime Edindo C,/Fernando Signature over Printed Name

Checked By:

Manz L. Agdalpen Signature over Printed Name

Date:

25 November 2024

Department of Environment and Natural Resources (DENR) ENVEROAMENTAL MANAGENEN IMPRAU A C C R E D I T E D T HI R D P A R T Y T E S T E R Certificate No: SAT NO. 2022-72

Meter Console No.	BSI - T2	Personnel	HPO, MSL, CAS
Reference Calibration Maker	PIE	Pretest	OK
Model	520B	Posttest	OK
Serial No.	223734	Date	25 Nov 2024

TEMPERATURE DISPLAY CALIBRATION

TC CHANNEL ID	Reference Temp. 1, °C	Temp. Reading 1, ⁰C	Criteria	Criteria Met	Reference Temp. 2, °C	Temp. Reading 1, °C	Criteria	Criteria Met
PROBE	0	0	0	Y	50	49	0.310	Y
FILTER	0	0	0	Y	50	49	0.310	Y
EXIT	0	0	0	Y	50	49	0.310	Y
AUX	0	0	0	Y	50	49	0.310	Y
STACK	0	0	0	Y	50	48	0.619	Y
STACK	0	0	0	Y	250	247	0.574	Y

TC CHANNEL ID	Reference Temp. 3, °C	Temp. Reading 1, °C	Criteria	Criteria Met	Reference Temp. 4, °C	Temp. Reading 1, °C	Criteria	Criteria Met
PROBE	100	99	0.268	Y	150	148	0.473	Y
FILTER	100	99	0.268	Y	150	148	0.473	Y
EXIT	100	99	0.268	- Y	150	149	0.236	Y
AUX	100	99	0.268	Y	150	149	0.236	Y
STACK	100	99	0.268	Y	150	149	0.236	Y
STACK	350	349	0.161	Y	450	447	0.415	Y

CRITERIA: Percent difference between the Reference Temperature and the average Temperature can be only ± 1.5% K.

EQUATION: [(Ref. Temp. + 273)- (Temp. Reading + 273)] x 100 (Ref.Temp. +273)

Calibrated By: Halcy Lemon P. Orquina Checked By: Manz L. Agdalpen Signature over Printed Name Signature over Printed Name र्यम QA/QC: F.dindo C. Feynando 25 November 2024 Date: Signature over Printed Xame

2** Floor, VAG Bid; Origas Ave., Greenhil's Sar Juan C.ar, Philophines Tels (532) 853-6129- Fax (632) 727 9831 Email: C.<u>Q.L.sefter Contr</u>

Decariment of Environment and Natural Resources (DENR) ENVIRONMENTAL MANAGEMENT BUREAU A C C R E DITE D. T HIR D. P A R T Y T E S T E R Certificate No: SAT NO. 2022-72

TEMPERATURE SENSOR CALIBRATION DATA SHEET

Date	25 November 2024	Thermocouple No.	TMC – T2
Personnel	HPO, MSL, CAS	Reference	AlcoholThermometer

Date	Reference Point Number	Source (Specify)	Reference Thermometer Temp., °C	Thermocouple Display Temp., °C	Absolute Temperature Difference. %
	1	HOT WATER	99.9	100	0.1
25 Nov 2024	2	AMBIENT	28.3	28	0.3
	3	ICE WATER	2	2	0
	1	HOT WATER	99.8	100	0.2
18 Jan 2024	2	AMBIENT	28.1	- 28 .	· .0.1
	3	ICE WATER	2.2	2	0.2
	1	HOT WATER	99.2	99	0.2
30 Jun 2023	2	AMBIENT	28.1	28	0.1
	3	ICE WATER	2.2	2	0.2

Haley Lemon P. Orquina Calibrated By: Checked By: Manz L. Agdalpen Signature over Printed Name Signature over Printed Name QA/QC: Edindo C. Fernando Signature over Pribled Name Date: 25 November 2024

2nd Fixer, VAG Bidg, Orngas Ave., Greenhild San Juan, Marco Manila, Philippines Los, 2023 85-01 the Lax (632) 727-9811 Einak, de Greene autor pr

1¥

PITOT TUBE ID	PT-T2-4FT	Probe Assembly I	D SPA- T2-4FT	
Calibrated by:	HPO, MSL, CAS	Date Calibrated	26 November 2024	
PARAMETI	R	VALUE	ALLOWABLE RANGE	
Assembly Lev	and the second se	YES	YES	
Holes Damage	ed	NO	NO	
Obstructed		NO	NO	
αΙ		0	-10°<01<+10°	
α2		0	-10°<α2<+10°	
β1		1	-5°<β1<+5°	
β2		0	-5°<β2<+5°	
Y		1		
θ	-	1		
А		0.905	For ¼° OD, 0.526 to 0.750" For ¾° OD, 0.788 to 1.125°	
Z =A sin Y		0.016	Z = ≦ 0.125"	
W = A sin 0		0.016	W = ≦ 0.031"	
Pa		0.469	For ¼" OD, 0.263 to 0.375" For ³ / ₈ " OD, 0.394 to 0.563"	
Рв	· · · · · · · · · · · · · · · · · · ·	0.474	For ¼" OD, 0.263 to 0.375" For ¾" OD, 0.394 to 0.563"	
PA - PB		-0.005	-0.063 to 0.063"	
Dĭ		0.318	0.188 to 0.375"	

TYPE-S PITOT TUBE CALIBRATION

Where: $\alpha 1\& \alpha 2$ = angles between the pitol tube opening and the horizontal plane when viewed from the end

 β 1& β 2 = angles between the pitot tube opening and the horizontal plane when viewed from the side

Y= the angle measured when calculating the difference in length between the two pitot tube legs θ = the angle measured when calculating the distance that the pitot tubes are rotated

A = the distance between the tips of the pitot tube opening

Z =The difference in length between the two pitot tube legs

W= the distance that the pitot tube legs are rotated

PA& PB= vertical distance between each pitot tube opening plane & the center line of the pitot tube Dr = the tube external diameter

Certification

I certify that the Type S pitot tube meets or exceeds all specifications, criteria and / or applicable design features and is hereby assigned a pitot tube calibration factor (Cp) of 0.84.

Calibrated By:	Halcy Lemon P. Orquina Signature over Printed Name	Checked By:	Manz L. Agdalpen Signature over Printed Name
QA/QC:	Edindo C/Fernando Signature over Printed Name	Date:	26 November 2024
24 Floor, VAG Bidg Unigas A San Juan Morre Manua, Phole Lets m22383-44 25 Juan 25 Email: <u>Inclusion von pr</u>	pines	ACCREDI	Envronment and Natural Resources (DENR) NOMENTAL VARAGEMENT BUREAU TED THIRD PARTY TESTER Inflicate No: SAT NO. 2022-72

Date	26 November 2024	Personnel	HPO, MSL CAS
Nozzle Box ID	NS-T2	Nozzle Type	Stainless Steel

NOZZLE CALIBRATION SHEET

ID	D1(mm)	D₂(mm)	D₃(mm)	D (mm)	Average (mm)
T2 NS-1	3.06	3.04	3.02	0.04	3.04
T2 NS-2	4.09	4.09	4.09	0.00	4.09
T2 NS-3	5.90	5.87	5.90	0.02	5.89
T2 NS-4	7.90	7.88	. 7.90	0.01	7.89
T2 NS-5	9.35	9.34	9.36	0.02	9.35
T2 NS-6	10.90	10.90	10.90	0.00	10.90
T2 NS-7	12.41	12.40	12.39	0.00	12.40

D = Maximum difference in any two measurements. Tolerance = 0.1 mm ; Average = Average of D1,2,3

Halcy Lemon P. Orquina Calibrated By: Checked By: Manz L. Agdalpen Signature over Printed Name Signature over Printed Name 3 Edindo C. Fernando QA/QC: Date: 26 November 2024 Signature over Printed Name

210 Foor VAG Bidg Onigas Ave. Groenhills San Juan MetroMarca. Philippines (c): 0632(30366(20) F23(632) 723(933) Email: <u>mini23.com/com/com</u>

FLASK CALIBRATION SHEET

Date	26 November 2024	Personnel	HPO, MSL, CAS
FLASK BOX ID	T2- M7 Flask-A	Flask Type	Glass

FLASK ID	1 st Volume(mL)	2 nd Volume(mL)	3 rd Volume(mL)	Average Volume (mL)
BSI T2 F1	2231	2228	2231	2230
BSI T2 – F2	2233	2232	2225	2230
BSI T2 – F3	2248	2250	2252	2250
BSI T2 – F4	2230	2228	2232	2230
BSI T2 – F5	2229	2231	2230	2230
BSI T2 – F6	2246	2251	2253-	2250 -
BSI T2 – F7	2229	2229	2232	. 2230
BSI T2 – F8	2238	2241	2241	2240
BSI T2 – F9	2247	2251	2252	2250

*Note: The flask volumes are measured within +/- 10mL. All calibrations are at room temperature.

Calibrated By: Haley Lemon P. Orquina Checked By: Manz L. Agdalpen Signature over Printed Namy Signature over Printed Name Edindo C. Ferrando Signature over Printed/Name QA/QC: Date: 26 November 2024

2º1 Florr VAG Bidg Ortigas Ave. Greenhilts San Juan Mero Mania, Philippines Teis (632) 853-6125+ Fax (632) 727-9831 Email: <u>Info.Suriecy.com.pn</u>

Decartment of Environment and Natural Resources (DENR) ENVIRONMENTAL MANAGEMENT BUILT AU A CCREDITED THIRD PARTY TESTER Certificate No: SAT ND. 2022-72

DIGITAL BALANCE CALIBRATION

Digital Balance ID	DB - T2	Personnel	HPO, MSL, CAS
Manufacturer	AND CO. LTD.	Date	26 November 2024
Model	EJ-1500	Calibration Standard	1000g
Serial Number	BA2826513	Туре	Weights (1500g max)

Eccentricity Test		Repeatability Test		
Test Load	1000g	When Loaded up to 1500g (Using 1000g& 500g standard weights)		
Position	Balance Indication	Trial	Balance Indication	
1	1000.0	1	1549.9	
2	1000.0	2	1549.9	
3	1000.0	3	1549.9	
4	. 999.9	4	1549.9	
5	1000.0	5	1549.9	
Test Results 0.1		Standard Deviation	0	

Linearity Test						
Nominal Load	Unit under Test Reading	Deviation from Nominal	Coverage Factor	UE at 95% C.L		
Weights	g	g	k	e		
0	0	0	2	0		
200g	200	0	2	0		
500g	500	0	2	0		
1000g	1000	0	2	0		
1500g	1499.9	0.1	2	0.16		

¹Acceptable EPA Method 4 tolerance must be less than 0.5 gram. ²Acceptable EPA Method 5 tolerance must less than 0.5 gram.

Equipment Description Equipment ID Traceability Reference Standard Weight 1254 08-09-2022-BSI-T2 Calibrated By: Halcy Lemon P. Orquina Checked By: Manz L. Agdalpen Signature over Printed Name Signature over Printed Name QA/QC: Edindo C. Fernando Date: 26 November 2024 Signature over Printed Name 2ndFloor VAG Bidg Onligas Ave., Greenhis San Juan City, Matto Manta, Philippines Tels. (612) 853 6129 - Fax (632) 727-9831 Email. <u>616 551ch./.com</u> Department of Environment and Natural Resources (DENR) FNVRCAMENTAL VANAGEVENTBURGAU A C C R E D I T E D T H I R D P A R T Y T E S T E R Certificate No: SAT NO: 2022-72

Making our world more productive

CERTIFICATE NUMBER : 90168754/D962229 REVISION NUMBER : REVISION DATE :

Certificate of Analysis

Material Number : 5	5802100-AE-C6	Cu	stomer	Tag :
Customer : LIN Job Card : 9016 Certification Date : 29-N CYLINDER NUMBER				PO Number : 9300463129 Order Date : 08-Nov-2021 SO Number : 128002321 Vcode : GM34242/10A/S BS4
D962229				
SPECIFICATION	and the second se			
Component	Requested Concentration	Certified Concentration	Unit	Certified Uncertainty (% +/-)
NITROGEN CARBON MONOXIDE	200	200	Balance	
The Certified uncertainty is re	lative unless specified "abs" a	as absolute with a conf	idence lev	vel of 95% (coverage factor K=2).
	OL ALUM S4 BRASS			F (41)
Content 1,494 M3 Shelf Life 36 Month Recommended Storage an	Pressure UN Number nd Usage Temperature	150 Bar(a) 1956 10 to 40°C	Referen Min. U	nce Temperature 20'C Usage Pressure 5 BAR G
TRACEBILITY Category PROCESS	Traceabiltiy Type WEIGHT	Traceab National		Reference Procedure ogy Centre(NMC) ISO6142:2001
METHOD OF CERTIFI	CATION Gravimetric			
INSTRUMENTATIC Method of An LS71704				
REMARKS				
Certif	ïed By			Checked By
GAS	SINGAR		22	CAS SINGER
ONIT 15				15 000 WH 90

Product filled gravimetrically using high-load high-accuracy, weight traceable to National Metrology Centre (NMC) standards. Linde Gas Singapore has obtained a corporate Liceose complying to ISO 9001 standard.

Linde Gas Singapore Pte. Ltd 50 juliong Usland Highway Singapore 627877 Phone +65 686 / 8998 Hax +65 6896 7745 Co.Reg. No. 1991037588

5 Tuas Basin Link Jurong Industrial Estate Singapore 638759 Phone -65 6867 8998 Fax +65 6861 5610 www.inde.com.sg Page 1 of 1

Making our world more productive

CERTIFICATE NUMBER : 90168756/D962122 REVISION NUMBER : REVISION DATE :

Certificate of Analysis

Material Number :	S823400-AE-C6	Cu	stomer	Tag :	
Job Card : 901 Certification Date : 22-3	IDE PHILIPPINES INC. 68756 Nov-2021			PO Number Order Date SO Number Vcode	: 9300463129 : 08-Nov-2021 : 128002321 : GM34553/10A/S BS4
CYLINDER NUMBER					
D962122					
SPECIFICATION					
Component	Requested Concentration	Certified Concentration	Unit	Certi Unce	fied rtainty (% +/-)
NITROGEN			Balance	-	ika shekara ka ka ƙasar ƙwal
CARBON MONOXIDE	500	500	ppm	2	
Content 1.470 M3 Shelf Life 36 Month Recommended Storage a TRACEBILITY Category	Pressure UN Number and Usage Temperature Traceabiltiy Type	150 Bar(a) 1956 10 to 40'C Traceab	Min. U	ice Temperatu sage Pressure Refer	re 20'C 5 BAR G rence Procedure
Category PROCESS	WEIGHT			gy Centre(NM	C) ISO6142:2001
METHOD OF CERTIF	ICATION Gravimetric				
INSTRUMENTATI Method of A					
REMARKS					
	ified By			Checked By	
UNS W	SINGRA			GAS SING	
E 22	Straw OR		3	10月 21 11 11 10 10 10 10 10 10 10 10 10 10 10	

Product filled gravimetrically using high-load high-accuracy, weight traceable to National Metrology Centre (NMC) standards. Linde Gas Singapore has obtained a corporate License complying to ISO 9001 standard.

Linde Gas Singapore Ptel Ltd. 50 (urong Island Highway Singapore 627877 Phone +65 6867 8998 Fax +65 6896 7745 Co Reg. No. 1993037588

KONATHAN YOON

5 Tuas Basin Link Jurong Industrial Estate Singapore 638759 Phone +65 6867 8998 Fax +65 6861 5610 www.linde.com.sg Page 1 of 1

21 頭頭 KT HAN

Making our world more productive CERTIFICATE NUMBER : 90168755/D962087 REVISION NUMBER : REVISION DATE :

Certificate of Analysis

Material Numbe	r : S8034	00-AE-C6	Cu	stomer	Tag :	
Job Card Certification Date	90168755 22-Nov-202	IILIPPINES INC.			PO Number Order Date SO Number Vcode	: 9300463129 : 08-Nov-2021 : 128002321 : GM23712
CYLINDER NUME	ER				Alinois Americania a	
D962087						
SPECIFICATION						
Component		Requested Concentration	Certified Concentration	Unit	Certifie Uncerta	d inty (% +/-)
NITROGEN				Balance		
CARBON MONO	XIDE	800	800	ppm	2	
The Certified uncertaint	y is relative u	aless specified "abs" as	absolute with a conf	idence lev	el of 95% (coverage	factor K=2).
CYLINDER VALVE	10L AI BS4 BR					
Content 1-494 M Shelf Life 36 Mont Recommended Stor	'n	UN Number	150 Bar(a)- 1956 - 10 to 40'C	Referen Min. U	nce-Temperature Jsage Pressure	20'C 5 BAR G
TRACEBILITY Category PROCESS	Trac WEI	ceabiltiy Type GHT	Traceabl National		Referen gy Centre(NMC)	ice Procedure ISO6142:2001
METHOD OF CEF Method		ON vimetric				
INSTRUMENT Method	CATION of Analysis					
REMARKS						
	Certified By	ŕ			Checked By	
6	GAS SING				CAS SINO	
ONT	27 W W R	1			4 22 40 10 00	
Ę.	OWNTHUN VOON				KTHAN A	
	\searrow			3		

Product filled gravimetrically using high-load high-accuracy, weight traceable to National Metrology Centre (NMC) standards. Linde Gas Singapore has obtained a corporate License complying to ISO 9001 standard.

Linde Gas Singapore Fte. Ltd. 50 jurong Island Highwav Singapore 527877 Phone +65 6867 8998 Fax +65 6896 7745 Co Reg. No. 199303758R

Situas Basin turk jurong industrial Estate Singapore 638759 Phore + 65 6867 8998 Fax +65 6861 5610 www.linde.com.sg Page 1 of 1

LUTRON ELECTRONIC ENTERPRISE CO., LTD.

ADDRESS : 4F, 106, Min Chuan West Road, 103 Taipei, Taiwan

Tel : +886-2-25570844, 2553-3067 Fax : +886-2-25577132 E-MAIL : lutron@lutron.com.tw

http://www.lutron.com.tw

CALIBRATION & TEST CERTIFICATE

To whom it my concern:

We hereby certify that the instrument under mentioned has been certainly calibrated according to our calibration standard and the testing result in the calibration procedure has been good enough within the tolerance regulated in our specification.

Name of Model Model Number Serial Number

: HUMIDITY/TEMP/BARO : PHB-318 : AM.02197

Temperature: 23.2°CHumidity: 65 %RHDate of Calibration: Apr. 2, 2024

(The standard generators used for calibration procedure are proofed once a year and can be traceable to the standard authorized by public organization.)

LUTRON ELECTRONIC ENTERPRISE CO., LTD.

Signature

D. C. Linx

The Art of Measurement

ANNEX F

DENR ACCREDITATION

· · · · · · · · · ·

Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU Visayas Avenue, Diliman, Quezon City

SAT No. 2022-72

CERTIFICATE OF ACCREDITATION

Pursuant to DENR Administrative Order No. 26 Series of 2013 of the Department of Environment and Natural Resources having substantially met all the requirements prescribed therein,

BERKMAN SYSTEMS INCORPORATED (BSI)

208 VAG Building, Ortigas Ave., Greenhills, San Juan City, Metro Manila

is hereby duly accredited as

SOURCE EMISSION TESTING FIRM

As such, the following are authorized as:

QA/QC Manager Edindo C. Fernando

Team Leader Halcey Lemon P. Orquina

This certification shall allow the above firm and personnel to conduct stack testing limited to the following methods and parameters:

- 1. US-EPA Method 1 to 5 PM
- 2. US-EPA Method 6/8 SO2
- 3. US-EPA Method 7 NOx
- 4. US-EPA Method 10 CO

Granted this 14th day of July 2022 and valid until ____ July 14, 2025

Digitally signed by Cuñado William Purgatoric DN: cn=Cuñado William Purgatorio, serialNumber=001006000462A ou=Environmental Ma **D** D Comment of the Natural Resources, c Director

ANNEX G

TEST PARTICIPANTS

TEST PARTICIPANTS

BMC FORESTRY CORPORATION

Mr. Narhy C. Pomilban - Pollution Control Officer

BSI

	Mr. Halcy Lemon P. Orquina	-	DENR Accredited Team Leader / Field Engineer
	Mr. Marvin S. Llarena	-	Field Technician
8	Mr. Christian A. Soleta	-	Field Technician
	Mr. Jimuel B. Torrelino	÷	Sampling Aide/Driver
	Mr. Edindo C. Fernando		DENR Accredited QA/QC Manager

ANNEX H

TEST PLAN

November 8, 2024

ENGR. JEAN C. BORROMEO OIC, Regional Director DENR – Environmental Management Bureau Cordillera Administrative Region (CAR) DENR Compound, Gibraltar Road, Baguio City

CC : ENGR. RAUL G. CUBANGAY OIC Chief, Environmental Monitoring and Enforcement Division

Subject: Test Plan for BMC Forestry Corporation – Irisan Lime Project

Dear Director Borromeo:

We are pleased to submit the test plan for our proposed Source Emission Test to be conducted by Berkman Systems. Inc., an accredited third-party tester at BMC Forestry Corporation – Irisan Lime Project located at Km.5 Naguilian Road, Irisan, Baguio City.

-- . .

We hope this addresses your requirements.

Thank you.

Very truly yours,

BMC FORESTRY CORPORATION

By lan HY C. POMILBAN

NARHY C. POMILBAN Pollution Control Officer

Noted by: FRANCISCO Ø. FLAVIER Resident Manager

IdlaverSystem Com, ny moban Spangast com

November 15, 2024

ENGR. JEAN C. BORROMEO OIC, Regional Director CC : ENGR. RAUL G. CUBANGAY Chief, Environmental Monitoring and Enforcement Division ENVIRONMENTAL MANAGEMENT BUREAU CORDILLERA ADMINISTRATIVE REGION (CAR) DENR Forestry Compound, Pacdal District Baguio City, Benguet

Subject: Test Plan for BMC Forestry Corporation - Irisan Lime Project

Dear Dir. Borromeo:

We are pleased to submit the test plan for our proposed Source Emission Monitoring to be conducted at BMC Forestry Corporation - Irisan Lime Project located at Km.5, Naguilian Road, Irisan, Baguio City.

We hope that this addresses your requirements.

Very truly yours,

BSI

EDIMOD C/ FERNANDO Field Operation's Manager DENR Accredited QA/QC Manager SAT No. 2022-72

Cenartment of Environment and Natural Resources (DENR)

BSI-2022-72-24-062

SOURCE SPECIFIC TEST PLAN

This document is the Source Specific Test Plan of **BSI** (Berkman Systems, Inc.) that describes the emission testing that will be completed at BMC Forestry Corporation - Irisan Lime Project located at Km.5, Naguilian Road, Irisan, Baguio City.

Section A: FACILITY INFORMATION

BMC Forestry Corporation - Irisan Lime Project Irisan, Baguio City

Contact Person: Narhy C. Pomilban Pollution Control Officer

Telephone: (074) 445-7180

Section B: PRODUCTION INFORMATION AND FACILITY REQUIREMENTS

The plant should operate the **one (1) unit of 1.08 MT/hr Vertical Shaft Kiln** set for at 90% or greater of permitted capacity during testing. The Implementing Rules and Regulations of the Philippine Clean Air Act specify that the operating capacity during emission testing shall be the basis for setting the maximum allowable operating capacity during permit application.

The facility must provide the following items:

- The client shall provide an on-site single phase 220VAC/60Hz-power supply.
- The client shall provide at least two (2) sampling portholes based on the existing stack diameter and pipe length. Sampling platforms should be installed or constructed properly for the safety of the sampling personnel.
- Copy of latest Permit to Operate (PTO)
- Schematic diagram of the process
- Copy of the latest certificate of fuel analysis and delivery receipt.
- Copy of engine log sheet during sampling
- Photo documentation and Video coverage will be taken by the accredited sampling personnel during sampling activity.

2" Floar, VAG Blog, Ortigas Ave., Greenhills

Department of Environment and Natural Resources (DENR) 7

BSI-2022-72-24-062

Section C: SOURCE INFORMATION

The test will be at one (1) unit of 1.08 MT/hr Vertical Shaft Kiln set for 3 sampling runs to be conducted on December 12-14, 2024.

Parameters to be tested and duration - see Table 1.

Particulars	Parameter	Sampling Methodology	No. of Test runs/Duration	Notes
an a	Volumetric Flow Rate (VFR)	EPA Method 1-4	3 one-hour run/ exhaust	Performed concurrent with PM test
	Oxygen / Carbon Dioxide	EPA Method 3 By Fyrite Method	3 runs / exhaust	Integrated Tedlar bag sample during M5 test
one (1) unit of 1.08 MT/hr	Particulate Matter (PM)	EPA Method 5	3 one-hour run/ exhaust	Performed with Method 5 set-up
Vertical Shaft Kiln	Sulfur Oxides (SO x)	EPA Method 6 modified	3 one-hour run/ exhaust	Simultaneous with Method 5
	Nitrogen Oxide (NOx)		3 runs / exhaust	Three grab sample flasks collected per run
	Carbon Monoxide (CO)	EPA Method 10 By NDIR	3 runs / exhaust	Integrated Tedlar bag sample during M5 test

TABLE 1 - TEST METHODOLOGY

Section D: QUALITY ASSURANCE / QUALITY CONTROL PROCEDURES

Normal QA/QC procedures described in the Methods will be strictly followed.

2nd Floor, VAG Blog, Orligas Ave., Greenhills

BSI-2022-72-24-062

Section E: SAMPLING DATE

December 12-14, 2024

The sampling team leader will coordinate the specific run plans with the abovementioned Plant representative. The sampling team will be at the Plant on or before 9:00 AM of the sampling date.

Section F: SAMPLING PERSONNEL

The proposed sampling team shall consist of the following personnel:

-

-

-

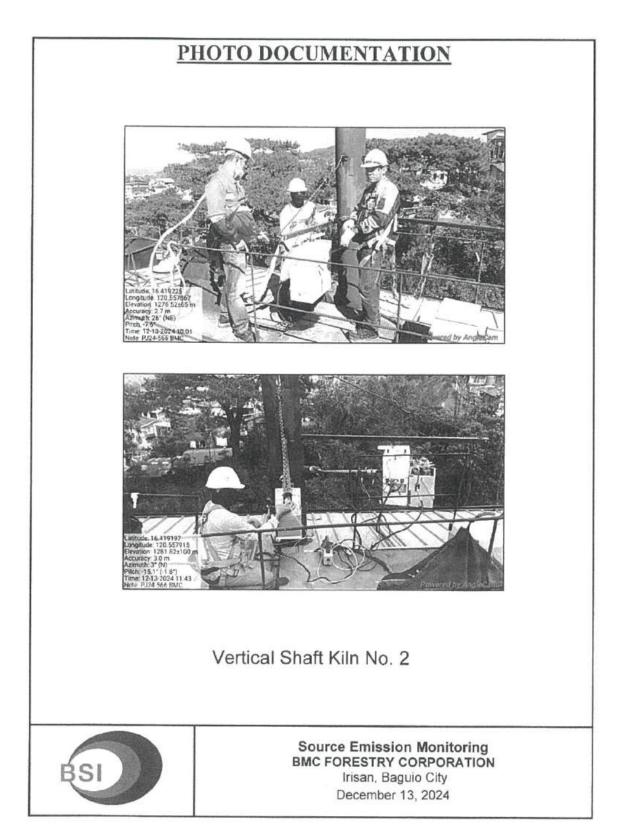
Team:

- 1. Halcy Lemon P. Orquina
- 2. Edindo C. Fernando
- 3. · Ruel P. Abando
 - 4. Jose Arjay M. Santiago
- 5. Romeo M. Elsisura
- 6. Marvin S. Llarena
- 7. Eugene B. Salazar
- 8. Christian A. Soleta
- 9. Jimuel B. Torrelino
- 10. Joseph Dandy A. Quilet

- Accredited Team Leader
- QA/QC Manager -
 - Accredited Team Leader (back up)
 - QA/QC Manager (back up)
- Field Technician .
- Field Technician -
- Field Technician -
- Field Technician -
- Driver / Technician -
 - Driver / Technician

Signed:

EDINDO C. FERNANDO Field Operations Manager DENR Accredited QA/QC Manager SAT No. 2022/7/2


2nd Floor, VAS Bidg. Oragas Ave., Greenhalts

Department of Environment and Natural Resources (DEMR)

ANNEX I

PHOTO DOCUMENTATION

To:	MR. NARHY C	POMILBAN	6		Email:	npomilban@	penguetcorp.com
Company:	BMC FORESTR	Y CORPORAT	ION	- BC 1LP	Date:	22 January 2	2025
From:	ENGR. JUBELI	D.C. MOG	DTE		Page 1 of:	2	
cc:					BSI Project No:	PJ 24 566	
Special Instructions:	Confidential	Urgent	V	Please reply	🔽 For your	information	For follow-up
				1 144 14.4	S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

If you do not receive all pages or transmission is illegible, please contact the originator to re-send. Should the e-mail be sent to a wrong address, please notify BSI immediately and destroy this copy. Thank you

Subject: Initial Report on Source Emission Monitoring

Dear Mr. Pomilban,

Please find in the succeeding pages the results of the source emission monitoring conducted on December 13, 2024 at your plant in Irisan, Baguio City.

Source Information		PM (mg/Nm ³)	SO _X (as SO ₂) (mg/Nm ³)	NO _x * (as NO ₂) (mg/Nm ³)	CO (mg/Nm ³)
VERTICAL SHAFT KILN NO. 2	Run 1	16.9	2.3	13.5	28.6
Brand Name: No information provided Date Installed: August 1940** Rated Capacity: 1.08 MT/hr Load During Sampling: 95% Fuel Used: LSFOI / RFO	Run 2	18.6	1.5	13.0	29.8
Fuel Sulfur Content: No Fuel Analysis Provided Fuel Consumption: No Information Provided Annual Operating Hours: 8,760 hours	Run 3	30.8	< 1.5	14 0	17.2
	Average	22.1	1.9***	13.5	25.2
DENR S (existing source fuel burning equipment; other station	Standards ary source)	150	1500	1000	500

Source Emission Monitoring Results

*Average of three (3) trial tests

**Based from previous sampling records

***Average of detected values only.

Emissions are not applicable for the corrected oxygen factor since the source is not included in the list of equipment under DENR EMB Memorandum Circular No. 2021-15.

Department of Environment and Natural Resources (DENR) ACCREDITED THIRD PARTY TESTER

OSHC DOLE ACCREDITED WEM PROVIDER

TO MR NARHY C POMILBAN COMPANY: BMC FORESTRY CORPORATION - BC ILP DATE 22 January 2025 Page 2 of 2

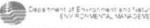
We would like to request a scanned copy of your process flow chart, annual operating records, copy of self-monitoring report (SMR) if possible, monitoring logsheet, fuel consumption during sampling, and fuel delivery receipt in line with the source emission monitoring conducted at your facilities. These documents will be attached to the final report as per DENR mandatory requirement. Please be informed that DENR-EMB requires that all third party testers to comply with all mandatory requirements including the submission of source emission summary.

The final report will be prepared as soon as we receive a scanned copy of this document with your signature. If we are unable to receive a response from you within three (3) working days upon receipt of this initial report, we will start preparing the final report.

If you have concerns, please do not hesitate to contact us.

Thank you and best regards.

JUBELI/D.C/MOGOTE Environmental Specialist


Noted by:

Conth

EDINDO C. FERNANDO DENR-EMB Accredited QA/QC Manager SAT No. 2022-72

Conforme: Francisco O. Flavier/ Managing Head BMC FORESTRY CORPORATION - BC ILP

2^{ne} Floor, VAG Bidg: Ortigas Ave., Graenhills San Juan, Metro Manila, Philippines Tel No. (632) 863-5129- Fax (632) 727-9831 Email: Info@bslenv.com

Department of Environment and Natural Resources (DENR ENVIRONMENTAL MANAGEVENT BUREAU

ACGREDITED THIRD PARTY TESTER

O5HC DOLT ACCREDITED WEM PROVIDER

CERTIFICATION

This is to certify that **BSI** has satisfactorily completed the *Source Emission Monitoring* conducted on December 13, 2024 at **BMC FORESTRY CORPORATION – BC ILP** located in Km. 5, Naguilian Road, Irisan, Baguio City.

We commend BSI for the successful completion of the contracted scope of work to the full satisfaction of our company.

This certification is being issued upon the request of BSI this 22nd day of January 2025.

BMC FORESTRY CORPORATION By:

Francisco O Flavier

Resident Manager/Managing Head

Appendix G

AMBIENT AIR QUALITY AND NOISE LEVEL MEASUREMENT MONITORING REPORT

Reference No.: GEPC-AAQM-2406-035

Prepared for:

BENGUET CORPORATION ACUPAN CONTRACT MINING PROJECT Balatoc, Virac, Itogon, Benguet

Sampling Date: June 29, 2024

Report Date:

July 17, 2024

AMBIENT AIR QUALITY AND NOISE LEVEL MEASUREMENT MONITORING REPORT CERTIFICATION

THREE (3) STATIONS AREA TESTS

PARAMETERS:

TOTAL SUSPENDED PARTICULATE (TSP) SULFUR DIOXIDE (SO₂) NITROGEN DIOXIDE (NO₂) NOISE LEVEL MEASUREMENT

BENGUET CORPORATION ACUPAN CONTRACT MINING PROJECT

Balatoc, Virac, Itogon, Benguet

The ambient air monitoring and noise level measurement monitoring results reported herein were headed and performed by Mr. Angelo V. Guevarra and his team. The laboratory analysis of the collected samples is conducted by Mach Union Laboratories Inc. and has been verified and found to be orderly.

I have certified that the information discussed in this report is accurate to the best of my knowledge.

Signed by: ANGELOV. GUEVARRA SAT No. 2023-152

Date Signed: July 17, 2024

AMBIENT AIR QUALITY MONITORING REPORT

FACILITY NAME: Benguet Corporation Acupan Contract Mining Project

FACILITY ADDRESS: Balatoc, Virac, Itogon, Benguet

1.0 INTRODUCTION

Greentek Environmental Phils. Co. was contracted by **Benguet Corporation** - **Acupan Contract Mining Project** to conduct ambient air sampling for three (3) Stations within their plant facility as a requirement of their environmental permit and partly for their regular environmental monitoring.

Ambient air sampling was conducted on June 29, 2024, to analyze nitrogen dioxide (NO2), sulfur dioxide (SO2) and total suspended particulate (TSP) levels.

2.0 SAMPLING METHODOLOGY

The DENR standard ambient air sampling equipment and analytical procedures were used in the sampling activity. These equipment and procedures are specified below:

Total Suspended Particulate Matter (TSP)

Reference Procedure: Sampling Equipment: Method of Analysis:	USEPA, 40 CFR 50, Appendix B High Volume Sampler (1-Hour Air Sampler) Gravimetric Method
Sulfur dioxide (SO ₂) Reference Procedure: Sampling Equipment: Method of Analysis:	USEPA, 40 CFR 50, Appendix A Gas Bubbler Sampler (USEPA compliant) Pararosaniline Method
Nitrogen dioxide (NO ₂) Reference Procedure: Sampling Equipment: Method of Analysis:	Air Pollution Monitoring Manual, EMB-1994 Gas Bubbler Sampler (USEPA compliant) Colorimetric, Griess Saltzman

The SO2 and NO2 samples were stored in an icebox, and the TSP filters were placed in a clean envelope. All collected samples were then transported to the laboratory for analysis.

3.0 SAMPLING LOCATIONS

There are Three (3) sampling stations for ambient air monitoring. The table below shows the location and observations made during the sampling activity.

STN	LOCATION	OBSERVATION / ACTIVITY IN THE AREA DURING THE TIME OF SAMPLING
1	Along Keymens Road (Upwind)	The sampling site at Along Keymens Road is dry with light winds. The facility remains operational during sampling to ensure accurate data collection under typical conditions. Throughout this time, a total of 2 dump trucks, 2 jeeps, 8 motorcycles and 10 cars passed by the site.
2	Near Assay Laboratory & Gate 2 (Downwind)	The sampling site at Near Assay Laboratory & Gate 2 is dry with light winds. The facility remains operational during sampling to ensure accurate data collection under typical conditions. Throughout this time, a total of 4 cars, 8 motorcycles and 7 jeeps passed by the site.
3	Near BCACMP Office (Upwind)	The sampling site at Near BCACMP Office is dry with light winds. The facility remains operational during sampling to ensure accurate data collection under typical conditions. Throughout this time, a total of 2 motorcycles and 9 cars passed by the site.

4.0 SUMMARY OF RESULTS

The summary results of the laboratory analysis are presented below for all sampling areas.

Stn	Location	Date / Time Sampling	TSP (ug / Nm ³)	SO ₂ (ug / Nm ³)	NO ₂ (ug / Nm ³)
1	Along Keymens Road (Upwind)	29-June-2024 1021H-1121H	284.4	10.9	9.9
2	Near Assay Laboratory & Gate 2 (Downwind)	29-June-2024 1132H-1232H	207.1	10.9	10.9
3	Near BCACMP Office (Upwind)	29-June-2024 1244H-1344H	227.7	10.9	10.1
DENR NAAQ Standards for 60 minutes sampling		300	340	260	

 Table 1

 Laboratory Analysis Results and Standard Limits for 60 minutes sampling

These data are measured to standardize the test results to 25°C and 760mmHg and for comparison purposes.

Table 2
Meteorological Monitoring Reading for 60 minutes sampling

STN	Location (GPS)	Date / Time Sampling	Barometric Pressure. (Inch Hg) Result Avg.	Ambient Temp.(°C) Result Avg.	% Relative Humidity Result Avg.	Wind Speed Avg. (m/s)
1	Along Keymens Road (Upwind) 29-June-2024 1021H-1121H E 120°39'32"		27.09	31.9	58.3	0.2
			27.00	01.0	00.0	
2	Near Assay Laboratory & Gate 2 (Upwind)	29-June-2024	27.33	34.5	51.4	0.2
2	N 16°21'34" E 120°39'31"	1132H-1232H	21.55	54.5	51.4	0.2
3	Near BCACMP Office (Upwind)	29-June-2024	29.63	34.2	54.6	0.5
5	N 16°21'38" E 120°39'36"	1244H-1344H	20.00	04.2	04.0	0.0

5.0 DISCUSSION OF RESULTS

The USEPA "Quality Assurance Handbook for Air Pollution Measurement Systems, Environmental Management Bureau, Department of Environment and Natural Resources, Philippine Environmental Policies, Laws, and Regulations handbook was used as a guide to achieve the quality assurance objectives of producing data that is complete, representative, and of known precision and accuracy.

The above results of analysis are compared to the National Ambient Air Quality Standards (NAAQS) for source-specific air pollutants from industrial operations. These standards are specified in the Implementing Rules and Regulations of the Philippine Clean Air Act of 1999.

During sampling on June 29, 2024, the weather from station 1 to 3 was cloudy to sunny with prevailing light to moderate wind blowing from the Southwest to Northeast. *Thus, the results of TSP, SO₂ and NO₂ concentrations are within the applicable CAA/IRR standard for 60 minutes of sampling.*

NOISE LEVEL MEASUREMENT MONITORING REPORT

FACILITY NAME: Benguet Corporation Acupan Contract Mining Project

FACILITY ADDRESS: Balatoc, Virac, Itogon, Benguet

INTRODUCTION

Environmental noise is the unwanted or harmful outdoor sound created by human activity. On June 29, 2024, daytime noise level monitoring was conducted in three (3) stations within the premises of their facility located at the above address. Noise level measurement was performed, and the measurement was conducted as part of their environmental monitoring and permit requirements.

OBJECTIVE OF THE MONITORING

The objective of noise monitoring is to provide data regarding the level of noise in a location so that it may be compared to the National Pollution Control Commission's (NPCC) noise limit standard. It is also to assess the impact of industrial activities on noise pollution and implement mitigation strategies to safeguard both workers well-being and the surrounding environment.

SAMPLING METHODOLOGY

A precision-type digital sound level meter was used for noise measurement. The said instrument is a LUTRON sound level meter, Model SL-4033SD. The sound level meter meets the IEC 61672 class 1 standard. The sound level meter that was used to measure the level was calibrated at Switchtek Measurement Systems with an acoustical calibrator (Lutron Sound Level). The noise was measured using an "A" weighting network and "slow response" with different limits for various times of the day and area categories. Noise measurement was performed for about 3 minutes per station after the 1-hour ambient sampling activity. The noise sampler was handheld at about thirty degrees (30°) from the plane directly pointing to the facility.

SAMPLING LOCATIONS

There are three (3) sampling stations for noise level measurement monitoring. The table below shows the location and observations made during the sampling activity.

STN	LOCATION	OBSERVATION / DURING NOISE LEVEL MEASUREMENT
1	Along Keymens Road	The audible noise detected came from the machinery around the area.
2	Near Assay Laboratory & Gate 2	The audible noise detected came from the people's voices and vehicles that passed by near the sampling point.
3	Near BCACMP Office	The audible noise detected came from the guard post (radio) near the sampling point.

SUMMARY OF RESULTS

Location	Time	Median (dBA)	Category of the Area	DENR Standard (dBA)	
Along Keymens Road	1123H-1126H	57.8	Class C	70	
Near Assay Laboratory & Gate 2	1235H-1238H	57.4	Class C	70	
Near BCACMP Office	1345H-1348H	56.3	Class C	70	

Table 3 Noise Level Measurement Monitoring Reading

	Maximum Allowable Noise (dBA)						
Category of the Area	Day Time 0900H to 1800H	Morning & Evening 0500H to 0900H / 1800H to 2200H	Nighttime 2200H to 0500H				
AA	50	45	40				
A	55	50	45				
В	65	60	55				
С	70	65	60				
D	75	70	65				

 Table 4

 Environmental Noise Quality Standards in General Areas

The Philippines standard for noise is categorized into five (5) classes of sections, and the maximum allowable noise is classified in different time.

Description per Category

- Class AA A section or contiguous area which requires quietness, such as areas within 100 meters from school sites, nursery schools, hospital, and special home for the aged.
- Class A A section or contiguous area which is primarily used for residential purposes.
- Class B A section or contiguous area which zoned or used as a commercial area.
- Class C A section primarily zoned or used as a light industrial area.
- Class D A section which is primarily reserved, zoned, or used as a heavy industrial area.

DISCUSSION OF RESULTS

The environmental noise standards are based on Memorandum Circular No. 002 Series of 1980 of the National Pollution Control Commission. The noise was measured using an "A" weighting network and "slow response" with different limits for various times of the day and area categories. The location of Benguet Corporation - Acupan Contract Mining Project is primarily zoned or used as light industrial area (Class C) with a DENR Daytime Noise Standard of 70 dBA.

The results of the noise level measurement reading show that the noise level in *stations 1 to 3 is within the applicable DENR daytime limit of 70 dBA.* The audible noise detected came from the vehicles that passed by near the sampling point.

"APPENDIX A"

AMBIENT AIR MONITORING FIELD DATAS

AMBIENT AIR MONITORING DATA Benguet Corporation - Acupan Contract Mining Project June 29, 2024

GPS Location:					E 120°39'32"		
Station 1	Along Keymens Road				Flowrate		
(Upwind)				TSP	NO2	SO2	Wind Speed
Time	Pbar inHg	Amb. Tmp. °C	RH%	m3/min lpm	lpm	Ipm	m/s
1021H-1031H	27.10	33.8	54.9	1.0	0.5	0.5	0.2
1031H-1041H	27.10	32.2	56.6	1.0	0.5	0.5	0.1
1041H-1051H	27.09	31.3	59.2	1.0	0.5	0.5	0.2
1051H-1101H	27.09	30.1	59.9	1.0	0.5	0.5	0.3
1101H-1110H	27.09	31.9	60.5	1.0	0.5	0.5	0.1
1111H-1121H	27.09	32.1	58.7	1.0	0.5	0.5	0.2
Average	27.09	31.9	58.3	1.0	0.5	0.5	0.2

GPS Location:				E 120°39'31"			
Station 2	Near Assay Laboratory & Gate 2				Flowrate		
(Downwind)				TSP	NO2	SO2	Wind Speed
Time	Pbar inHg	Amb. Tmp. °C	RH%	m3/min	lpm	Ipm	m/s
1132H-1142H	28.17	34.7	52.8	1.0	0.5	0.5	0.2
1142H-1152H	27.17	35.2	49.1	1.0	0.5	0.5	0.1
1152H-1202H	27.17	34.9	48.6	1.0	0.5	0.5	0.2
1202H-1212H	27.16	34.4	51.8	1.0	0.5	0.5	0.2
1212H-1222H	27.16	33.8	52.6	1.0	0.5	0.5	0.1
1222H-1232H	27.16	34.1	53.4	1.0	0.5	0.5	0.2
Average	27.33	34.5	51.4	1.0	0.5	0.5	0.2

GPS Location:	N 16	6°21'38"		E 120°3	9'36"		
Station 3	Near BCACMP Office				Flowrate		
(Upwind)				TSP	NO2	SO2	Wind Speed
Time	Pbar inHg	Amb. Tmp. °C	RH%	m3/min	lpm	Ipm	m/s
1244H-1254H	27.13	33.4	54.8	1.0	0.5	0.5	0.3
1254H-1304H	27.13	31.6	61.3	1.0	0.5	0.5	0.2
1304H-1314H	27.13	32.5	59.8	1.0	0.5	0.5	0.2
1314H-1324H	27.13	31.4	58.1	1.0	0.5	0.5	0.3
1324H-1334H	27.12	32.9	59.5	1.0	0.5	0.5	0.2
1334H-1344H	27.12	30.6	63.4	1.0	0.5	0.5	0.4
Average	27.13	32.1	59.5	1.0	0.5	0.5	0.3

NOISE LEVEL MEASUREMENT MONITORING RESULTS Benguet Corporation - Acupan Contract Mining Project June 29, 2024

Station 1	Along Keymens Road					
Ťi.	me of Sampli	ing (1123H- 1126H)				
58.1	59.2	55.7	58.4			
57.2	57.6	56.2	58.8			
58.8	59.4	58.1	57.1			
55.4	58.9	57.5	56.9			
56.7	57.7	55.8	58.3			
55.6	57.8	53.2	59.6			
58.2	58.2	54.6	58.9			
Median =	57.8	Average =	57.43			
Minimum =	53.2	Maximum =	59.6			

Station 2	Near Assay Laboratory & Gate 2					
Tir	ne of Sampli	ng (1235H - 1238H)				
55.7	54.7	62.8	54.1			
57.5	56.4	60.1	57.3			
59.3	53.8	58.7	56.6			
58.6	55.9	59.1	57.5			
57.2	58.2	56.8	59.4			
58.1	59.6	52.9	58.6			
56.8	62.4	53.7	55.3			
Median =	57.4	Average =	57.40			
Minimum =	52.9	Maximum =	62.8			

Station 3	Near BCACMP Office					
Tir	ne of Sampli	ng (1345H - 1348H)				
49.8	59.4	57.8	55.1			
49.9	57.8	55.9	55.8			
54.6	58.7	53.1	58.3			
52.1	58.9	54.6	57.6			
55.8	59.6	56.7	54.5			
54.3	61.3	58.2	53.8			
58.2	60.4	56.8	55.9			
Median =	56.3	Average =	56.25			
Minimum =	49.8	Maximum =	61.3			

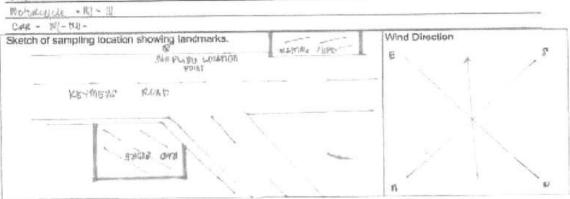
ê 337

AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING

Benguet Corporation - Acupan Contract Wining Project Name of Facility: Realatoc. View, Itagon Benguet Facility Address: Facility Representative: LOTS F CAMADY Personnel: mile , paid

Station No.: Specific Location:	1 (upuno) Arma keyment Road			
Sampling Date:	6 24 24	Coordinates:	1631 36N 120 3932E	
Filter ID:	240217	Filter Weight:	2.490	
1 - 10 21			2+ 4891	

Time	pBar inHg RH%		Ambient	502	NO2	TSP		Wind Direction	Wind Speed m/s
		RH%	Temp., °C	Flow Rate, Ipm	Flow Rate, Ipm	Flow Rate, Ipm	Weather Condition		
四小-10切	27.10	54.9	39.8	3.0	0.5	1-0	Anter	EN SE	0.2
1051A - 1091F	27-10	Pla-18	32.2	0.5	0.0	1.0	7.Puu-t	清砚- 沙牡	9.1
tasili - Kerja	27.04	54.1	97. 97	8-5	0.5	140	JUM	110-55	0.2
10516 - 1101 6	27 029	59.7	501	10.£	0+	1-0	ANT AN	NW-JE	0.5
1018 - UNE	10 13	40.5	51.9	5.1	0.6	1-0	Juzal	11W-8E	0-1
111 F - 11201	27.04	58.7	7/2-1	v·g	0-5	-t	JANN'	W30 - <* B	称 - 92


Description of the sampling location and observations: (use separate sheet if necessary)

· IS CA CITIP IS DPERATIONAL OWEININ JAMPLINU PERIND.

· THE AREA WAY DRY WITH LIGHT WHICH

- THE ANALYLING LOCATED PEST & LPCARD ALEAD KEATER ROAD.

Dump tomak - 11 Jeap - H

Noise Level Monitoring

126 1

Station N Specific	lo.: Location:	1 (UPW)MO) ALONIA VE) Imeter R.O.ED	Sampling Date: 1/24/29			
Time		North Control	- In Library II		Noise Source / Observation		
120 #	-08-1	59.7	55.7	58.4	NDICE CAME FROM MADRIADE		
	54-2	57.0	56-2	58.8	ABOUD THE AREA .		
	588	59.4	58-1	57-1			
	55.4	58.9	59.5	50.9			
-	56.7	57.7	22-8	58.9			
	65.4	578	53-2	59-4			
124	58 2	58'2	54.4	58.9			

AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING

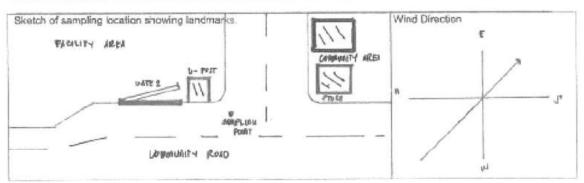
Name of Facility: braun	T Obelookal OB	· ACHIPAN LOSTRACT	開始出版 日本のしての作	
Facility Address: PHLATE	VIRAC ITTU	on definiter		
Facility Representative:	LOYDE	2. CAMADO	Personnel: MRC -	WINC

Station No.:	2 (DOWIN)(80)					
Specific Location:	ABLAR ALLAN LAB & WATE 2					
Sampling Date:	11/20 24	Coordinates:	10 21 34 "A/120" 59 81 "E			
Filter ID:	240218	Filter Weight	2.4972			

Time	pBar inHg	RH% Temp.	Ambient	S02	NO2	2 TSP	1 A.	100000	Wind
			Flow Rate, Ipm	Flow Rate, Ipm	Flow Rate, Ipm	Weather Condition	Wind Direction	Speed m/s	
前内全体-作为全体	27-17	12.8	54.7	0.2	0.5	1.0	JUEN #-1	190-5°E	0-2
14211-11211	17-17	49.1	35-2	0.6	0.5	1-0	Sumit	nin-se	b-1
1521.12021	27. 13	40.10	34-9	0.5	0-6	1.0	ALARY	HIÙ - BÌ	0.2
1202 1- 12121	27. 10	51.8	34.4	0.5	0.5	1.0	Span /	110 - 55	0-2
120.11 - 12228	27.10	52.4	99.66	D.P	0.2	1-10	JUAN 4	141) - JH	D-1
1222 1 - 12528	27-16	In. 4	94-1	0.5	0.6	1-0	JURPY	1111-18	0.2

Description of the sampling location and observations: (use separate sheet if necessary)

· POGROMP IS OPERATIONAL DURING MEPLVIL WERD.


" THE SAMPLING LOCATION POINT IS A FAR ACTAY LAB AND WATE 2.

- THE AREA WAS DIN WITH WULD .

CAR - BI

単い物素いいにを ~ 御二十日

1828- BA - 8

Noise Level Monitoring

57.2

58.1

1238 # 54.8

58.2

59-6

42.4

54.8

62.9

59.7

Station No.: Specific Location:		2 (DOWN NE+# 4414-	WIAD) (LAD ? WATE		ing Date: 10 / 29 / 24
Time				Supposed of the	Noise Source / Observation
1235 1	55.7	54.7	62.8	54-1	BOISE CHINE FROM PEOPLE VOIDE
A second Revel Sciences	57.5	50.4	40.1	54.3	LOD VEHICLE PHUED ST-
	59.3	69.8	58.7	56-6	
	58.0	55-9	69-1	1.4.2	
	and the second s	and a second product of the second se	Constant and a constant of the second	and the second sec	

59.4

18.6

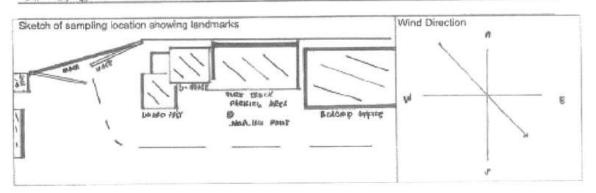
50.3

AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING

Name of Facility: <u>BENNUET LOPPORATION - ACUPAN LONGEACT MININU PROJECT</u> Facility Address: <u>BALATOC - VIRAC , ITOLOG BENULLET</u> Facility Representative: <u>110557 P. CAMATOC</u> Personnel: <u>MMC - RMC</u>

Station No.:	5 (WPAHD)					
Specific Location: Sampling Date:	NEAR B-CAUNP DIFICE	Coordinates:	12 21 78 "n / 120" 39 '960 #E			
Filter ID:	210225	Filter Weight:	2.0807			

Time			Ambient	SOZ	NO2	TSP	france man	100000000	Wind
	pBar inHg	RH%	Temp., °C	Flow Rate, Ipm	Flow Rate, Ipm	Flow Rate, Ipm	Weather Condition	Wind Direction	Speed m/s
2444.12541	27.10	54.9	内町・平	0.5	0.5	1-0	JUNN Y	AM- JE	0.3
18671- 15041	27.15	41.5	31.0	0.9	0.0	1.0	MORY	NW- 45	0.1
15048-15148	27.19	59.8	52.0	0.5	0.5	1.0	JUARY	110.52	0.2
杨州月一场经济	27.13	59.1	32.1	8.5	8.P	1-0	ANNA	10-08	0.4
15241-15541	27.12	59.5	38.7	0-5	O.P	1-0	Jana-I	110-20	0.2
1334 8- 1544 8	27.12	60.4	50.6	0.5	0.5	10	ALARY	AW- de	0.4


Description of the sampling location and observations: (use separate sheet if necessary)

- BOA CATP IS OPERATIONAL DURING MAPLING PERIOD.

- THE AREA WAS DRY WITH LIGHT WITH .

- THE SAMPLIAN POINT IS NEAR BOACONP DEFICE

MOTORCHCLE- 11 CAR - 144 - 141

Noise Level Monitoring

Station No.: <u>6 (ununo)</u> Specific Location: <u>Nt/e 60/04P 0#(46</u>				ng Date: 1/24/24	
Time	the second second				Noise Source / Observation
内外州	49.8	501.4	57.8	S.F. 1	hoise came prom lumpo per
Louis de la construction de la const	49.9	57.8	55.9	55 8	UBILE RADING THE AREA.
	54.6	58.7	53.1	58.3	
	52.1	58.9	54.4	57.0	
	15.8	59-6	56.7	54.5	
	54.5	61.3	58.2	53.8	
1341 1	582	40.4	54.8	55.9	

"APPENDIX B"

RESULTS OF LABORATORY ANALYSIS

AMBIENT AIR SAMPLING LABORATORY REPORT Benguet Corporation - Acupan Contract Mining Project June 29, 2024

Laboratory Data

Station #	TSP ug	SO2 ug	NO2 ug
Station 1	15,100	0.29	0.262
Station 2	11,000	0.29	0.299
Station 3	12,100	0.29	0.269

Computation

- TSP = (concentration-ug)/((flowrate-1.0)*(298/(Tm-ave.+273))*((Pbar-ave.*25.4)/760))*60
- SO2 = (concentration-ug)/((flowrate-0.5/1000)*(298/(Tm-ave.+273))*((Pbar-ave.*25.4)/760))*60
- NO2 = (concentration-ug)/((flowrate-0.5/1000)*(298/(Tm-ave.+273))*((Pbar-ave.*25.4)/760))*60

Concentration at Standard Condition

Station #	TSP ug/Ncm	SO2 ug/Ncm	NO2 ug/Ncm
Station 1	284.4	10.9	9.9
Station 2	207.1	10.9	10.9
Station 3	227.7	10.9	10.1

MACH UNION LABORATORIES INC.

NoIn Office: Mach timon Boltong, 33b Aubing-Capote Road, Telon J., 1760 Las Pitos City, Philippines Extension Office: ANFRA Bulg., PMC-LTO Cropt., 334 Alabang-Zapote Road, Talon S, 1740 Las Pitos Gity Tel. No: (02)8553-8381,7 (92)8553-8382,7 (02)8553-88779 (02)8550-2873 Fan No: (02) 8553-8578 Empli: Info@machanion.com #Website: www.machenon.com # http://www.inceto.ok.com/Machinien Acure/Kyd. Philippine Acurehintable Bureau (31)-PHI + Department of readts = Acure & Dag Administration Recognized: Department of Environment & Natura Researce (DENE-EMB) = Bureau & animal values/(Da-Bats)

CERTIFICATE OF ANALYSIS

Nork Order	3	MU24013542	Lab. Sample ID :	WU24013542-001	Date Reported:	07/16/2024
Client ID	:	NCRMUL-000356				
CUSTONER	-	GREENTEK ENVIRONMENTAL PHILS., CO. 2353 RJ Place Bldg., Unit 3A, Selya St., Pandacar	n, Manila			
Attention	1	Liwayway P. Gaodi 09175139240 jd greentek@gmail.com				
ROJECT DETAIL	ă:	Benguet Corporation - Acupan Contract Mining Pro	tect			

SAMPLE INFORMATION						
Sample Type	Air Ambient	Skinage Condition Chilled	and Ambient			
Identification	BENGLET CORPORATION - ACUPAN CONTRACT MINING PROJECT					
Description	Air Amblent Sample in Absorbing Solution in 50mL HDPE and Filler Paper (Round)					
Collection Date a	and Time 06/29/2024 12:00 AM	Received Date and Time	07/03/2024 01:00 PV			
Callected by	CUSTOMER	Analyzed Start Date and Time	07/03/2024 09. 30 /M			
		Analyzed End Date and Time	07/12/2024 05:00 FM			

Comments

At semple information stated herein are based on the details provided by the customer. This results in this certificate of festing relates only to the semples submitted to and lester by the laboratory

M1124014543_FTNAL_24006_0049H

American is drawn to the terms and cookinast for the nearing planted over leaf

Page Fiel 2

MACH UNION LABORATORI

Main Office: Mach Union Building, 335 Alabang-Zapeta Read, Talos 3, 1740 Las Plitas City, Philippines Extension Office: ANFRA Blog, FMO-LTO Crept., 314 Alabang-Zapite Road, Taton 1, 1740 Las Pihas Oty Tel. No. (02)8553-8381/ (02)8553-8382/ (02)8553-8879/ (02)8555-2573 Fev. No. (02) 8551-8878 Email, info@machanion.com = Website: www.machanion.com = http://www.facebook.com/MachUmen Accredited: Philippine Accreditation (Sureas (D7)-FAII) + Department of Health + Food & Drug Administration Recognized: Department of Environment & Hatural Resources (DRMR-SMR); + Burrow of Animal (edustry (DA-SAI)

CERTIFICATE OF ANALYSIS								
	LI NIRONMENTAL PHILS CO. QUALITY MONITORING	sb. Sample ID	NU24013542-001	Date Reported:	07/16/2024			
		LABORATORY 1	TEST RESULTS					
AMPLE ID	PARAMETER		TEST METHOD	UNIT	RESULT			
CACNP - STN 1	Nitrogen dicaide	Gress S	alizman Method	eg.	0.262			
CACMP - STN 1	Sullur dickide	Paranser	unime Method	10	< 0 19			
CACMP - STN 1	Total Suspended Particulate	High Vol	ume /Gravimetric Method	90	1.5100			
GACMP - STN 2	N/rogen dioxide	Creat 5	alternan Method	92	0.589			
CACMP - STN 2	Sultar dicaids	Paranosa	unline Method	9	< 0.79			
CACMP - STN 2	Total Suspended Particulate	High Vol	me /Gravimetric Method	99	11000			
CACMP STN 3	Ningen dioxide	Gness S	alizman Method	10	0.269			
CACNP - STR 3	Sultur dicixide	Parandsa	whime Method	10	e 0 29			
GACMP - STN 3	Total Suspended Parkovate	High Vol	ime /Gravimetric Method	ug	12100			

Test Mythout Roterarios:

Code of Faderal Republicing Title 40 Parts 80 to 51, USA 1985 Selected Mathods of Massuries Air/Polistants, VMHD, 1976. US CPA Title 40 Code of Faderal Republices. Purt 50 Standard of Partonniacs für Nare Stationary Sources: Appendix A to D 1981

Checked by

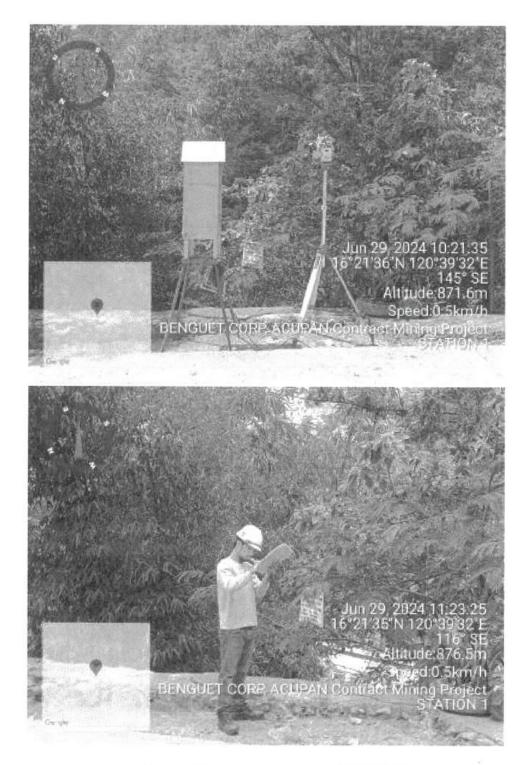
Lanuisyan, RCh Kasning PRCALE 13881

Certified by: mailuran Marisa T Manaor, RCh Supervising Chemist PRC# 0005485

Approved for Release by:

Audico's Abutencia, ChE Techical (Lanager Piac Loence No. 0008361

Page 3 of 3


MU24013343 _PINAL_ 240326 31498

"APPENDIX C"

SAMPLING ACTIVITY PHOTOS AND VICINITY MAP

Benguet Corporation - Acupan Contract Mining Project Reference No.: GEPC-AAQM-2406-035

Station 1 - Along Keymens Road (UPWIND)

Benguet Corporation - Acupan Contract Mining Project Reference No.: GEPC-AAQM-2406-035

Station 2 - Near Assay Laboratory & Gate 2 (DOWNWIND)

Benguet Corporation - Acupan Contract Mining Project Reference No.: GEPC-AAQM-2406-035

Station 3 - Near BCACMP Office (UPWIND)

"APPENDIX D"

AMBIENT AIR EQUIPMENT CALIBRATION CERTIFICATES

SM	A Divisi 4 th Floor No Bah Tel Nes.02 A	Switchtek urement Syst or of Switchtek Construction Corp ribridge Plaza, Annex A, 12 Congres or Toro, Caseson City, 1100, Philippi Californ / 9222080 / 5227709 Fax N al Address: admin@powtchtak.com. www.awitchtek.com.ah	eration Itional Ave., Nes.	
Certificate No.: Mentification:	4090-23-9342-3.23 Greekter Environmantal Phy	Calibration of	3 INI (berosieter	Punction]
Job:	P)	Test and Varia	inition	
Fituace:	32	Certificate of C		
Danie -	November 22, 2023	Initials	CAC	

CERTIFICATE OF CALIBRATION - 3 IN 1 (Barometer Function)

This report of calibration shall document that the instrument hands was examined and tasked in compliance with ISO/IEC 37825 against NIST tracentile reference standards and its co-equal standards.

Initials...:

foliers.

CAC

Slears

1.00

Total cost

.....

Type

Certificate

saved bor	GREENTEX ENVIRONMENTAL PHILL, CO	2	
Address:	2353 RI PLACE UNIT 3A SRLYA STREET &		A, PHILIPPINES
HAT LINDER TEST (UU	η:	CALIBRATCH INFOR	MATRIN
tentrumeni:	3 iN1 (berometer function)	Instrument:	Barigo, precision barometer
Brand:	LUTTION .	lothument	Drieck, pressure calibrator
Madel No.:	PHB-318	lastrononi-	Lumel temp and humility transmittee
Serial No.:	No record	Instruments	Temperature and Hursidity chamber
ID code:	No record		supplier many deals with and the Characteria
Ranges	Terrip. (0-50 Eleg). ()	Weeked Pho.:	XD-015-38
	Humidity (10 to 95%)	Sevial No.	20130203
	Desepaint (-25.3 to 48.9 Deg. C)	Traceskillity:	CINAS
	Barometer (10 to 999.9 hPa)		L BENTRADA
Resolution	Terrep. (0.1 Deg. C)		
	HAMMERED (RL-2 36)		
	Devepoint (0.1 Deg. C)		
	Barometer (1 hPa)		
Accurrecy:			
Temporatore:	29.8/15℃%		
168H	梁土 (306 reading + 156 NH).		
	< 70% 約1 · 3% 約11.1 3% 約1		
Banometric	30.0 to 999.9 (± 1.5 hPz)		
pressure	3000 to \$300 (± 2 hPa)		
Calibration Date:	November 20, 2023		
Calibration Dose:	November 19, 2024		
wirenmental Coordigie	90J		
Conditions	DRY/RASIC/MEU/ENAL	Amblent Yomp, (Des	Ch 34.4 ±2
Relative Humidity:	55.6 ±5%, 1007 hPa	number of the	telt saveys

Calibration Method:

Categories

Cal Officer

Calibration

By comparison technique, unit under test was placed in a Churcher with a Standard precision baronseter, Temperature and Humidity calibrator. Proceedures of calibration and test conform to the requirements of NPL NIST and ISO/NC Golde 17025. Data were gethered and plotted against an ideal curve.

Standard error and uncertainty of measurement are written on the attached sheet.

Remarks:

All data pertain only to the unit described olganess at the time of text. This certificate is not valid w/set and and signature. Unsuthorized reproduction is prohibited.

responses "result": "Securit in the energidences" "Fight Teacherson" (Epithese "Contractive "Weiter Securit Securit

Certificate No.: Identification: Address:

4000.23-9142-1.23 Calibration of 3 IRI (baromoter function) GREENTEK ENVIRONMENTAL PHILS, CO 2353 RJ PLACE UNIT 3A SELVA STREET ERGY.860 PANDACAN, MANILA, PHILIPPINES

CERTIFICATE OF CALIBRATION - 3 IN 1 (Barometer Function)

This report of calibration shall document that the instrument herein was assumined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

UNIT UNDER TEST (UUT):

Instrument: Brand: Model Ro.:	3 IN1 (barometer function) LUTRON PHB-318	Calibration Date:	November 20, 2023
Sertal No.: Range:	No record Temp, (O-SO Deg. C)	Calibration Doe: Calibrated By:	November 19, 2024 C.A. CASADO
Resolution:	Humidity (10 to 95%) Dewpoint (-25.3 to 48.9 Deg. C) Barometer (10 to 999.9 M ^a) Temp. (0.1 Deg. C)		
	Humidity (0.1 %) Dewpoint (0.1 Deg. C) Batemeter (1 hPa)		
ID code:	No record		

Results:

Barometer

REFERENCE READING (hPa)	UNIT UNDER TEST READING (hPa)	ERROR IN RIADING (hPa)	STANDARD DEVIATION	REMARKS
1003.0	1003.0	0.00	4.2426	
1005,0	1000.0	5.00	3.5355	The user should determine the
1000/0	995.0	5.00	3,5395	suitabley of the instrument for
0.099	984.0	5.00	4.2420	 Its intended use

Standard ervor: ± 7.7# hPa

Uncertainty. ± 6.09 hPa

Interpretation (Interpretation) (Second Interpretation) (Column View) (Column View)

/		Switchtek irement Sys	stems	
~ ~	A Divisio	n af Switchtek Construction Corp	poration	
CA	(Raer Nort	finidge Plate, Annes A. 12 Congre	nuthal Ave	
N		y forn Gurcon City, 1120. Mylas		
	Tel Mos 83517	471 / WHITETHER / 199267769 Fac	No 89828269	
	etta	Address admin@vwitchtek.com	s ph	
energy /		waras isketstitute corr pri		
Certificate No.	4000.05-5664-2.23. HEV	Calibration of	Rotameter	
Identification	GREENTEK ENVIRONMENTAL PHIL	L\$., CO		
1-sb	#1	Test and Venfe	ation	

Cardinal and a final strength	and the second s				
1-sb	÷1	Test and Ver	Vication		
100-011	32	Certificate o	f Caldination		
Literre:	1UNY 20. 2024	Induza	CAC		
Categories	Timot and Californities	Men	Hours	Total cost	Typie
Cal Offices		2	1.0		Certificate

CERTIFICATE OF CALIBRATION - ROTAMETER

This report of calibration shall document that the instrument herein was exemined and tested in compliance with ISO/IEC 17025 against NIST tracesple reference standards and its co-equal standards.

Issued To:	GREENTER ENVIRONMENTAL PHILS., CO
Address:	2430 LAURA STREET, PANEMCAN, MANUA, PHILIPPINES

UNIT UNDER TEST IUL	πk	CALIBRATOR INFORMATION	
Instrument:	#CRameter	ärstrument:	DWYER, Rotameter
Brand:	1-14070	Intert Gas.	Pare (NJ) Nitrogen Gan
Model No.	*54-40482	Standard Thermometer	Herarus, Standard platinum
Serial No.	Novessed		trisistance thermometer
Property (D	No recard	Standard Gauge	Test Gauge, NABL UKAS
Range	0.1 to 3.5 LPM		CH4145541200.01
Graduetion:	0.1 (Ph/	Unstransert.	Promily DE ORYCAL
Calibration Date:	July 02. 2024	Brand	1035
Calibration Over	hulh 02, 2025	Serial No.	4229
		Traceability.	NHST. MPL and PTR Lab.
Environmental Condit		Ambient Temp. (Deg C):	14 8 23

Condition. DW//6AS-C/NEUTRAL Relative Hpenidity: 45 ±5% 1005 #Pa

Calibration Method-

By comparative technique, and under test was tested and calibrated in referenced with a Standard Rowmeter of planned intervals using direct and filtered inert gas and in accordance with NIST, NPL and ISO/IEC Guide 17825. Data were gathered and tetulated.

During calibration, the unit was found to have a statistist error of ± 0.0000 CPM with a confidence level of not less than 95%. Invertainty of invalurement is 1.0.658 UMA Celculations were taken using Standard Deviation Formula.

Result:

NO OF TEST	REFERENCE READING	UNIT UNDER TEST READING (LPM)	ERROR (# READING (LPM)	STANDARD DEVIATION
1	0.000	0.00	E.000	0.0006
2	0.500	0.50	000	0 00000
3	1 000	1 00	0.000	0.0000
4	1.500	150	0.000	0.0000
5	2.000	2.00	0.000	0.0890

Remarks;

All data pertain only to the unit described obtained at the time of test. This certificate is not valid in/out test and registure Unauthoruset reproduction is prohibitist

···········NOTE	MEASUREMENTIN	WCATOR IS AT THE UPPER PA	RT OF THE FLOATER
	and		Zando
Calibrated By:	CA CASEDO	Continue by.	A.R. CAINORE
Date	1,04 112 2024	Univ	Fate 032 20024

	L Mea	Switchtek asurement Sys	tems	1
SI	(S) (***	Dienies of Switchtak Construction Corpo or Northridge Place, Annes A. 12 Cangersis Bahay Toro, Quezon City, 1300, Philippin LID: 4267593 / 9282869 / 9287967 Fai No email Address: admin@vehictat.com.a	ianud Anu, res 6.4537691	
		www.switchtek.com.ph	- Contract of Cont	ME IFICANE FOR Don
Certificate No.:	400/01-8227-1.23	Cubilination of	Sound Level Meter	

which may be provided and the	The second second	and the second of the		an estada martanta		
Meetification :	GREENTEK ENVIRONMENTAL PHILS., CO					
.sapr	Pi	Test and Vorific	ation			
Fin.occ.	32	Carriellowier of Ca	Reation			
Done	Justine 4, 202-4	Instanto	CAL			
Celegaries	Calibration	(Alicen	Neuro	Table cost	Type	
Dal Officar		э	2.0		ContReate	

CERTIFICATE OF CALIBRATION - SOUND LEVEL METER

This report of calibratian shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST transatile reference standards and its co-equal standards.

tenued To:	GREERITER ENVIRONMENTAL PHR	5,00				
Addresis:	2355 RI PLACE UNIT SA SELVA STREET BRGY, ING PANDACAN, MANILA, PHILIPPINES					
UNIT URDER TEST (ստղ։	CALIBRATOR INFOS	IMATION			
Instrument:	Scienti Lovel Meter	Instrument:	Sound Level Calibrator			
Brandi	ELITINE IN	Brand:	Lutron			
Model No:	SL-4/3350	Secial No:	1.278821			
Serial No:	1.4.3.3801	Model No:	SC-942			
Bianger:	35 to 130 dB	Traceab@Ry:	TEC 60942 Type H A Standard			

Environmental Condition:

the record

Califeration Date: Arter 3, 2024 Califeration Doc: Arter 3, 2025

O Cole:

Condition:	tiry/basec/multral	Authient Tomp. (Dag.C):	21.3 :2
Relative Humidity:	41.2 ±5% 1006 hPa		

Calibratian Interbod:

By comparative bechnique, Standard Sound Generator was introduced at the anit under text at a constant value of 94.0 dB to 114 dB at a uniform inequency of 1000 Hz. Onto were gethered and tabulated. Procedures of text conform to the requirements of GNME 88 Generators, IEC 60942 of the NIST and National Physical Laboratories.

During salibration, the unst was found to have a standard ensure of +0.00 (R) with a confidence level of not less than 9985. Uncertainly of measurement is ±0.58 (R). Calculations were taken using the Standard Deviation Formula.

Benafty.

130423	REFERENCE READING	UNIT UNDER T		ENROR IN READING	STANSARO	REMARKS
	(48)	AS FOLSHID	AS LEFT	A second s	CLARK LETR	
1	34.0	53.8	94.0	0.00	0.0000	
2	214.0	114.0	114.3	0.30	0.2821	Passad

teenacks:

All dots pertain only to the unit described objethed at the line of test. This coefficient is not valid softwart and and agrantum. Unautimized reproduction is prohibited.

ast Calibrated By: C.A. OISADO Bate: have 3, 20164

Certified B Data

NIST and HIPL

foregoing of monomic level (1) concentrations (1) control to concern the apply 204766 Concentrating Mandage (1) and the foregoing of the apply of the apply of the foregoing of the apply of the apply of the foregoing of the apply of t

Certificate No.2 Identification:	4000.05-8227-1.23 Greenter environmental phils., Co	Collimation of	High V	olume Sempler		
Jub;	P1	Test and Veri	tication			
Fin.ect:	32	Certillicate of	Calibration			
Done	NS3Y 15, 2024	Initials	CAC			
Categories		Men	Hours	Total cost		Туре
Cal Officer		1	1.0		-	Certificate

CERTIFICATE OF CALIBRATION - HIGH VOLUME SAMPLER

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST tranship reference standards and its co-equal standards.

Issued To:	GREENTEK ENVIRONMENTAL PHILS, CO
Address:	2353 RI PLACE UNIT 3A SELVA STREET BREY, BED PANDACAN, MANRA, PHEIPPINES

UNIT UNDER TEST (U/UT):

High Volume Sampler instrument: Brands STAPLEX Model Nec 7518-7 25707T Serial No: 0.5 to 2 m3/min. Ranger Graduation 0.1 m3 ID code: No record 95ay 11, 2024 Calibration Date: Calibration Dut: May 10, 2025

CALIBRATOR INFORMATI	CHN;		
Bristziamient:	Rotating Vane Anemometer		
Manufacturers	LUTRON		
Model No:	AMI 4206M		
Serial No:	0432206		
Range:	0 to 30.0 m/s		
	0 to 50.0 °C		
Originc	USA		
Calibrated Against:	UKAS, thru Laser Doppler Anemometer		

24.5 17

Environmental Condition

Conditions DRY/BASIC/NEUTRAL Relative Hernidity: 56 ±5%, 1011 h/a

Calibration Method:

By comparative technique, unit under tast was tested and calibrated in reference with a rotating ware anemometer at planned intervals using dried and filtered inert gas and with HIST, NPL and SQ/IEC Gaide 17025. Data were gathered and tabulated.

Amblent Temp. (Dag C):

During collibration, the unit was found to have a standard error of ± 0.008 m3/min. with a confidence lavel of not lass than 05%. Uncertainty of measurement is ±0.052m3/min. Calculations were taken using Standard Deviation Formula.

hesishic

NO. OF TEST	REFERENCE MEADING {m3/min.}	UNIT UNDER TEST INEADING (m3/min.)	ERROR IN READING (m3/min.)	STANDARD DEVIATION
1	1.00	1.0	0.000	0.0000
z	1,49	1.5	0.020	0.0071
3	2.01	2.6	-0.0310	9.0071

Remarks:

All data portain only to the unit described obtained at the time of test. This certificate is not valid w/out scal and signature. Unauthorized reproduction is prohibited.

mo CA-CESADD Colifbrated By: Elato: May 11, 2024

Centified By: Date:

1, 202

Temperature "respons" Sourd" Gaudeatan/Atalyor "Flaw "Walare" Weldur 12 " 11 " Convestively "Contactively "Contactively "Executive "Improve Temperature" Temperature "Improve Temperature" (Sourd & B-Medde *arrentees *7.0* *1.0* 'Note' who 'Notes's 'Transmitat 'Transmitat Transmitat 'Converts' Methodal Statutes' University 'Notes' Statutes' Constraints' Constrai

"APPENDIX E"

AMBIENT AIR TESTING PARTICIPANTS

AMBIENT AIR TESTING PARTICIPANTS

BENGUET CORPORATION - ACUPAN CONTRACT MINING PROJECT

Mr. Lloyd P. Camado - Facility Representative

GREENTEK ENVIRONMENTAL PHILS. CO.

Mr. Angelo V. Guevarra	-	QA/QC Manager
Mr. Manny R. Cruz	-	Field Technician
Mr. Rodel M. Castante	-	Field Technician

Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU Visayas Avenue, Diliman, Quezon City

SAT No. 2023-151

CERTIFICATE OF ACCREDITATION

Pursuant to DENR Administrative Order No. 26 Series of 2013 of the Department of Environment and Natural Resources having substantially met all the requirements prescribed therein,

GREENTEK ENVIRONMENTAL PHILS. CO.

#2430 Laura St., Pandacan Manila

is hereby duly accredited as

SOURCE EMISSION TESTING FIRM

As such, the following are authorized as:

QA/QC Manager Danilo M. Palaypay, Jr.

Team Leader Aaron Jonathan R. Regilme

This certification shall allow the above firm and personnel to conduct stack testing limited to the following methods and parameters:

- US-EPA Method 1 to 5 PM
- 2. US-EPA Method 6/8 SO₂
- 3. US-EPA Method 7 NOx
- 4. US-EPA Method 10 CO

Granted this December 22, 2020 and valid until December 22, 2026

111

GILBERT C. GONZALES, CESO III

Director and concurrent Assistant Secretary for Field Operations

"APPENDIX F"

LABORATORY CERTIFICATES OF RECOGNITION

.

Secretary

SCOPE OF RECOGNITION* Republic of the Philippines Water and Wastepater DEPARTMENT OF ENVIRONMENT AND NATURAL RESOLUCES Visayes Avenue, Biliman, Quezon City Surfectants (Methylear Blac Active Substances) Temporature; Total Disselved Solida This Total Suspended Folids; Zinc CERTIFICATE OF RECOGNITION Ambieut Air C.R. No. 040/2020 Niemgen Dioxide: Sulfur Dinxide Suspended Particulate Matter - Philo is hereby granted to Suspended Particulate Monter - TSP Stationary Source Emissions Mach Union Laboratories, Inc. Mach Union Blidg, 335 Abshang-Zapote Roud, Talon J, Las Piñas City and ANFRA Blidg. FMC-UTC Compound. Mahang-Zapote Basid, Talon 1, Las Piñas City NG;; Particulates Soffer Oxides as \$05 after having been assessed and found to comply with the documentation, analytical performance and other technical requirements of Administrative Order No. 63, Series of DENR RECOGNIZED SIGNATORIES For Air, Metula, Physical-Chumical 1998, Guidelines for the Designation of DENR Recognized Environmental Laboratories. and Waste Analyses Marisa T. Manaor This certificate is valid for three years from date of issue unless otherwise revoked or cancelled. For Bacteriological Analysis In testimony whereof, I have hereunto signed this Certificate and issued the same this Lutthle S. Ignacio. thirtieth day of June, year two thousand and twenty at Quezon City, Philippines. "Exclusion of sampling. Analytical methods and references approved for uniter and scatteneous are in some Cil 1940-2020. ROY A. CIMATU ELR LAHOHATORY CODE NO. NCR-29 Page 2 of 8 Secretary

SCOPL OF RECOGNITION*

Sedimenta Arsenic Total Catimium, Copper, Iron Loui, Manganese, Nickei Silver, Zinc; Total Mercury

Wastes

Azimmy: Azimmy compounds Arsenic and its compounds Barium and its compounds Cadmium and its compounds Chromium compounds Lead compounds

Marcury and marcury compounds Selemium and its compounds.

DENR RECOGNIZED SIGNATORIES

For Air, Metals, Physical-Chemical and Waste Analyses Marina T. Menant

For Bacteriological Analysis Luchie S. Ignacio.

*Enchance of compling, Assolptions methods and references approved for antise and sourcesour are to Annex CR 040/2020.

> ELE LANDRAPORT CODE NO. NETR-pp Page 2 of 8

Republic of the Philippines Department of Enveronment and Natural Resources Visions Adenue, Dilingon, Queenn City

This

CERTIFICATE OF RECOGNITION

C.R. No. 040/2020

is hereby granted to

Mach Union Laboratories, Inc.

Mach Union Bidg., 335 Alabarg-Zapate Read, Talon 3, Lus Pillen Chy and ANTRA Bidg., FMC-LITT Compound, Alabarg-Zapate Bood, Talon 1, Las Pillas City.

after having been assessed and found to comply with the documentation, analytical performance and other technical requirements of Administrative Order No. 63, Series of 1998, Guidelines for the Designation of DENR Recognized Environmental Laboratories.

This certificate is valid for three years from date of issue unless otherwise revoked or cancelled.

In testimony whereof, I have bereauto signed this Certificate and issued the same this thirtieth day of June, year two thousand and twenty at Quezon City, Philippines.

ROY A. CIMATU Secretary

ANNEX CR 040/2020 Mach Union Laboratories, Inc.

RECOGNIZED PARAMETERS AND ANALYTICAL METHODS

Water and Wastewater

PARAMETERS	ANALYTICAL METHODS	REFERENCES	
Ammonia as NH ₃ -N	Phenate Method	SMEWW 4500-NH3 F	
	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 B (SMEWW 3030E)	
Arsenic	Manual Hydride Generation/ Atomic Absorption Spectrometric Method	SMEWW 3114 B	
	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)	
n	Direct Nitrous Oxide – Acetylene Flame Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3111 D (SMEWW 3030 F)	
Barium	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochlorie Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)	
BOD	5-Day BOD Test	SMEWW 5210 B	
	Carmine Method	SMEWW 4500-B C	
Boron	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)	
Cadmium	Direct Air-Acetylene Flame Method (Nitric Acid - Hydrochloric Acid/ Hotplate Digestion Method)	SMEWW 3111 B (SMEWW 3030 F)	

ANNEX CR 040/2020 Mach Union Laboratories, Inc.

RECOGNIZED PARAMETERS AND ANALYTICAL METHODS

Water and Wastewater

PARAMETERS ANALYTICAL METHODS		REFERENCES	
	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 B (SMEWW 3030E)	
Cadmium	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochlorie Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)	
	Open Reflux Method	SMEWW 5220 B	
Chemical Oxygen Demand	Closed Reflux, Colorimetric Method	SMEWW 5220 D	
	Argentometric Method	SMEWW 4500-Cl- B	
Chloride	Ion Chromatography with Chemical Suppression of Eluent Conductivity	SMEWW 4110 B	
Chromium as Hexavalent Chromium (Cr ⁶⁺)	Colorimetric Method		
Coliform, Fecal	Multiple Tube Fermentation Technique – Fecal Coliform Procedure	SMEWW 9221 E	
Coliform, Total	Multiple Tube Fermentation		
Color (True)	r (True) Visual Comparison Method		
Copper as Dissolved	Direct Air-Acetylene Flame Method (Nitric Acid - Hydrochloric Acid / Hotplate Digestion Method)	SMEWW 3111 B (SMEWW 3030 F with SMEWW 3030 B)	
Copper	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 B (SMEWW 3030 E with SMEWW 3030 B)	

ELR Laboratory Code No. NCR-29 Page 5 of 8

ANNEX CR 040/2020 Mach Union Laboratories, Inc.

RECOGNIZED PARAMETERS AND ANALYTICAL METHODS

Water and Wastewater

PARAMETERS ANALYTICAL METHODS		REFERENCES
Copper, Total	Direct Air-Acetylene Flame Method (Nitric Acid - Hydrochloric Acid / Hotplate Digestion Method)	SMEWW 3111 B (SMEWW 3030 F)
	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 B (SMEWW 3030E)
	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)
Cyanide as Free Cyanide	Cyanide – Selective Electrode (w/o distillation)	SMEWW 4500-CN·F
Dissolved Oxygen	Iodometric Method - Azide Modification	SMEWW 4500-0 C
	Membrane Electrode Method	SMEWW 4500-0 G
Fluoride	Ion Chromatography with Chemical Suppression of Eluent Conductivity	SMEWW 4110 B
	Ion-Selective Electrode Method	SMEWW 4500-F C
1	Direct Air-Acetylene Flame Method (Nitric – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)
Iron	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3120 B (SMEWW 3030 F)
Lead	Direct Air-Acetylene Flame Method (Nitric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 E)

ANNEX CR 040/2020 Mach Union Laboratories, Inc.

RECOGNIZED PARAMETERS AND ANALYTICAL METHODS

Water and Wastewater

PARAMETERS	ANALYTICAL METHODS	REFERENCES	
	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 E)	
Lead	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)	
	Direct Air-Acetylene Flame Method (Nitric – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)	
Manganese	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)	
Mercury Cold-Vapor Atomic Absorption Spectrophotometric Method		SMEWW 3112 B	
	Direct Air-Acetylene Flame Method (Nitric – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)	
Nickel	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)	
Nitrate as NO3-N	Ion Chromatography with Chemical Suppression of Eluent Conductivity	SMEWW 4110 B	
	Nitrate Electrode Method	SMEWW 4500-NO3- D	

ELR Laboratory Code No. NCR-29 Page 7 of 8

ANNEX CR 040/2020 Mach Union Laboratories, Inc.

RECOGNIZED PARAMETERS AND ANALYTICAL METHODS

Water and Wastewater

PARAMETERS ANALYTICAL METHODS		REFERENCES		
Oil and Grease	l and Grease Liquid-Liquid, Partition - Gravimetric Method			
pН	Electrometric Method	SMEWW 4500-H+ B		
Phosphate	Stannous Chloride Method	SMEWW 4500-P D		
	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 B (SMEWW 3030 E)		
Selenium	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)		
	Manual Hydride Generation/ Atomic Absorption Spectrometric Method	SMEWW 3114 B		
Settleable Solids	Imhoff Cone Method	SMEWW 2540 F		
Sulfate	Ion Chromatography with Chemical Suppression of Eluent Conductivity	SMEWW 4110 B		
	Turbidimetric Method	SMEWW 4500-SO42- E		
Surfactants (Methylene Blue Active Substances)	Anionic Surfactants as MBAS	SMEWW 5540 C		
Temperature Laboratory and Field Methods		SMEWW 2550 B		
Total Dissolved Solids Gravimetric, Dried at 180°C		SMEWW 2540 C		
Total Suspended Solids	Gravimetric, Dried at 103-105°C	SMEWW 2540 D		
	Direct Air-Acetylene Flame Method (Nitric – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)		
Zinc	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Method)	SMEWW 3120 (SMEWW 3030 F)		

Appendix G-1

AMBIENT AIR QUALITY AND NOISE LEVEL MEASUREMENT MONITORING REPORT

Reference No.: GEPC-AAQM-2412-072

Prepared for:

BENGUET CORPORATION ACUPAN CONTRACT MINING PROJECT Balatoc, Virac, Itogon, Benguet

Sampling Date:

December 13, 2024

Report Date: December 27, 2024

AMBIENT AIR QUALITY AND NOISE LEVEL MEASUREMENT MONITORING REPORT CERTIFICATION

THREE (3) STATIONS AREA TESTS

PARAMETERS:

TOTAL SUSPENDED PARTICULATE **(TSP)** SULFUR DIOXIDE **(SO₂)** NITROGEN DIOXIDE **(NO₂)** NOISE LEVEL MEASUREMENT

BENGUET CORPORATION ACUPAN CONTRACT MINING PROJECT

Balatoc, Virac, Itogon, Benguet

The ambient air monitoring and noise level measurement monitoring results reported herein were headed and performed by Mr. Danilo M. Palaypay, Jr. and his team. The laboratory analysis of the collected samples is conducted by Mach Union Laboratories Inc. and has been verified and found to be orderly.

I have certified that the information discussed in this report is accurate to the best of my knowledge.

Signed by:

DANILO M. PALAYPAY, JR. SAT No. 2023-151 Date Signed: December 27, 2024

AMBIENT AIR QUALITY MONITORING REPORT

FACILITY NAME: Benguet Corporation Acupan Contract Mining Project

FACILITY ADDRESS: Balatoc, Virac, Itogon, Benguet

1.0 INTRODUCTION

Greentek Environmental Phils. Co. was contracted by **Benguet Corporation Acupan Contract Mining Project** to conduct ambient air sampling for Three (3) stations within their plant facility as a requirement of their environmental permit and partly for their regular environmental monitoring.

Ambient air sampling was conducted on December 13, 2024, to analyze nitrogen dioxide (NO2), sulfur dioxide (SO2) and total suspended particulate (TSP) levels.

2.0 SAMPLING METHODOLOGY

The DENR standard ambient air sampling equipment and analytical procedures were used in the sampling activity. These equipment and procedures are specified below:

Total Suspended Particulate Matter (TSP)

Reference Procedure:	USEPA, 40 CFR 50, Appendix B	
Sampling Equipment: High Volume Sampler (1-Hour Air Samp		
Method of Analysis:	Gravimetric Method	
Sulfur dioxide (SO ₂)		
Reference Procedure:	USEPA, 40 CFR 50, Appendix A	
Sampling Equipment: Gas Bubbler Sampler (USEPA complia		
Method of Analysis:	Pararosaniline Method	
Nitrogen dioxide (NO2)		
Reference Procedure:	Air Pollution Monitoring Manual, EMB-1994	
Sampling Equipment:	Gas Bubbler Sampler (USEPA compliant)	
Method of Analysis:	Colorimetric, Griess Saltzman	

The SO2 and NO2 samples were stored in an icebox, the TSP filters were placed in a clean envelope. All collected samples were then transported to the laboratory for analysis.

3.0 SAMPLING LOCATIONS

There are Three (3) sampling stations for ambient air monitoring. The table below shows the location and observations made during the sampling activity.

STN	LOCATION	OBSERVATION / ACTIVITY IN THE AREA DURING THE TIME OF SAMPLING
1	Along Keymens Road (Upwind)	The Plant facility was operational during sampling with light to moderate wind. There were twelve (12) cars, fourteen (14) trucks and fifteen (15) motorcycles that passed by during sampling.
2	Near Assay Laboratory & Gate 2 (Upwind)	The Plant facility was operational during sampling with light to moderate wind. There were ten (10) trucks, five (5) car and eight (8) motorcycles that passed by during sampling.
3	Near BCACMP Office (Downwind)	The Plant facility was operational during sampling with light to moderate wind. There were five (5) trucks and one (1) car that passed by during sampling.

4.0 SUMMARY OF RESULTS

The summary results of the laboratory analysis are presented below for all sampling areas.

Stn	Location	Date / Time Sampling	TSP (ug / Nm ³)	SO ₂ (ug / Nm ³)	NO ₂ (ug / Nm ³)
1	Along Keymens Road (Upwind)	13-Dec-2024 1315H-1415H	270.6	10.8	19.9
2	Near Assay Laboratory & Gate 2 (Upwind)	13-Dec-2024 1135H-1235H	190.3	10.8	15.9
3 Near BCACMP 3 Office (Downwind) 13-Dec-2024 1015H-1115H		182.2	10.8	12.4	
DEN	IR NAAQ Standards sampling		300	340	260

 Table 1

 Laboratory Analysis Results and Standard Limits for 60 minutes sampling

These data are measured to standardize the test results to 25°C and 760mmHg and for comparison purposes.

STN	Location (GPS)	Date / Time Sampling	Barometric Pressure. (Inch Hg) Result Avg.	Ambient Temp.(°C) Result Avg.	% Relative Humidity Result Avg.	Wind Speed Avg. (m/s)	
1	Along Keymens Road (Upwind)	4-Dec-2024	27.12	29.4	59.9	1.7	
	N 16°21'35.718" E 120°39'31.724"	1315H-1415H					
2	Near Assay Laboratory & Gate 2 (Upwind)	13-Dec-2024 1135H-1235H 13-Dec-2024 1135H-1235H	27.25	30.7	56.9	1.2	
	N 16°21'33.744" E 120°39'30.636"						
2	Near BCACMP Office (Downwind)		13-Dec-2024	27.27	29.9	55.8	1.1
	N 16°21'38.406" E 120°39'36.17"		21.21	23.5	55.0	1.1	

Table 2Meteorological Monitoring Reading for 60 minutes sampling

5.0 DISCUSSION OF RESULTS

The USEPA "Quality Assurance Handbook for Air Pollution Measurement Systems, Environmental Management Bureau, Department of Environment and Natural Resources, Philippine Environmental Policies, Laws, and Regulations handbook was used as a guide to achieve the quality assurance objectives of producing data that is complete, representative, and of known precision and accuracy.

The above results of analysis are compared to the National Ambient Air Quality Standards (NAAQS) for source-specific air pollutants from industrial operations. These standards are specified in the Implementing Rules and Regulations of the Philippine Clean Air Act of 1999.

During sampling on December 12, 2024, the weather from stations 2 to 3 was sunny with prevailing light to moderate wind blowing from the Northeast to Southwest, while on December 13, 2024, the weather from station 1 was sunny with prevailing light to moderate wind blowing from the Southwest to Northeast, respectively. *Thus, the results of TSP, SO₂ and NO₂ concentrations are within the applicable CAA/IRR standard for 60 minutes of sampling.*

NOISE LEVEL MEASUREMENT MONITORING REPORT

FACILITY NAME:	Benguet Corporation Acupan Contract Mining Project
FACILITY ADDRESS:	Balatoc, Virac, Itogon, Benguet

INTRODUCTION

Environmental noise is the unwanted or harmful outdoor sound created by human activity. On December 13, 2024, daytime noise level monitoring was conducted in Three (3) stations within the premises of their facility located at the above address. Noise level measurement was performed, and the measurement was conducted as part of their environmental monitoring and permit requirements.

OBJECTIVE OF THE MONITORING

The objective of noise monitoring is to provide data regarding the level of noise in a location so that it may be compared to the National Pollution Control Commission's (NPCC) noise limit standard. It is also to assess the impact of industrial activities on noise pollution and implement mitigation strategies to safeguard both workers well-being and the surrounding environment.

SAMPLING METHODOLOGY

A precision-type digital sound level meter was used for noise measurement. The said instrument is a LUTRON sound level meter, Model SL-4033SD. The sound level meter meets the IEC 61672 class 1 standard. The sound level meter that was used to measure the level was calibrated at Switchtek Measurement Systems with an acoustical calibrator (Lutron Sound Level). The noise was measured using an "A" weighting network and "slow response" with different limits for various times of the day and area categories. Noise measurement was performed for about 3 to 5 minutes per

station after the 1-hour ambient sampling activity. The noise sampler was handheld at about thirty degrees (30°) from the plane directly pointing to the facility. **SAMPLING LOCATIONS**

There are Three (3) sampling stations for noise level measurement monitoring. The table below shows the location and observations made during the sampling activity.

STN	LOCATION	OBSERVATION / DURING NOISE LEVEL MEASUREMENT						
1	Along Keymens Road	The audible noise was detected from the plant facility that the generator set was operational during sampling.						
2	Near Assay Laboratory & Gate 2	The audible noise was detected from the plant facility that the generator set was operational during sampling.						
2	Near BCACMP Office	The audible noise was detected from the plant facility that the generator set was operational during sampling.						

SUMMARY OF RESULTS

Location	Time	Median (dBA)	Category of the Area	DENR Standard (dBA)
Along Keymens Road	1420H-1423H	62.9	Class C	70
Near Assay Laboratory & Gate 2	1238H-1241H	55.8	Class C	70
Near BCACMP Office	1120H-1123H	49.5	Class C	70

Table 3 Noise Level Measurement Monitoring Reading

40

45

55

60

65

		lanty Standards in Gene				
Category of the Area	Maximum Allowable Noise (dBA)					
	Day Time 0900H to 2900H	Morning & Evening 0500H to 0900H / 2900H to 2200H	Nighttime 2200H to 0500H			

45

50

60

65

70

50

55

65

70

75

Table 4 Environmental Noise Quality Standards in General Areas

The Philippines standard for noise is categorized into Three (3) classes of sections, and the maximum allowable noise is classified in different time.

Description per Category

AA

A

В

С

D

- Class AA A section or contiguous area which requires quietness, such as areas within 100 meters from school sites, nursery schools, hospital, and special home for the aged.
- Class A A section or contiguous area which is primarily used for residential purposes.
- Class B A section or contiguous area which zoned or used as a commercial area.
- Class C A section primarily zoned or used as a light industrial area.
- Class D A section which is primarily reserved, zoned, or used as a heavy industrial area.

DISCUSSION OF RESULTS

The environmental noise standards are based on Memorandum Circular No. 002 Series of 1980 of the National Pollution Control Commission. The noise was measured using an "A" weighting network and "slow response" with different limits for various times of the day and area categories. The location of Benguet Corporation Acupan Contract Mining Project is primarily zoned or used as a industrial area (Class C) with a DENR Daytime Noise Standard of 70 dBA.

The results of the noise level measurement reading show that the noise level in *stations 1 to 3 were within the applicable DENR daytime limit of 70 dBA.* The audible noise was detected from the plant facility and vehicle that passing by during sampling.

"APPENDIX A"

AMBIENT AIR MONITORING FIELD DATAS

AMBIENT AIR MONITORING DATA Benguet Corporation - Acupan Contract Mining Project December 13, 2024

Station 1					Flowrate		
(Upwind)	Alor	Along Keymens Road			NO2	SO2	Wind Speed
Time	Pbar inHg	Amb. Tmp. °C	. Tmp. °C RH%		lpm	lpm	m/s
1315H-1325H	27.12	31.1	59.2	1.0	0.5	0.5	1.8
1325H-1335H	27.12	29.7	59.6	1.0	0.5	0.5	1.6
1335H-1345H	27.12	29.6	58.7	1.0	0.5	0.5	1.6
1345H-1355H	27.11	29.0	60.0	1.0	0.5	0.5	1.8
1355H-1405H	27.11	28.6	60.7	1.0	0.5	0.5	1.8
1405H-1415H	27.11	28.3	61.2	1.0	0.5	0.5	1.8
Average	27.12	29.4	59.9	1.0	0.5	0.5	1.7

Station 2	Non Ann			Flowrate			
(Upwind)	Near Assay Laboratory & Gate 2			TSP	NO2	SO2	Wind Speed
Time	Pbar inHg	Amb. Tmp. °C	RH%	m3/min	lpm	Ipm	m/s
1135H-1145H	27.25	31.2	53.2	1.0	0.5	0.5	1.2
1145H-1155H	27.25	31.1	57.5	1.0	0.5	0.5	1.0
1155H-1205H	27.25	30.8	57.7	1.0	0.5	0.5	1.0
1205H-1215H	27.24	30.7	56.7	1.0	0.5	0.5	1.2
1215H-1225H	27.24	29.5	59.5	1.0	0.5	0.5	1.4
1225H-1235H	27.24	31.0	56.8	1.0	0.5	0.5	1.2
Average	27.25	30.7	56.9	1.0	0.5	0.5	1.2

GPS Location: N 16°21'38.406"

E 120°39'36.17"

Station 3	BCACMB Office						
(Downwind)	-	BCACMP Office			NO2	SO2	Wind Speed
Time	Pbar inHg	Amb. Tmp. °C	RH%	m3/min	3/min Ipm		m/s
1015H-1025H	27.27	28.7	58.9	1.0	0.5	0.5	1.0
1025H-1035H	27.27	29.5	57.7	1.0	0.5	0.5	1.0
1035H-1045H	27.27	29.9	56.3	1.0	0.5	0.5	1.2
1045H-1055H	27.27	30.0	55.9	1.0	0.5	0.5	1.0
1055H-1105H	27.26	30.6	53.2	1.0	0.5	0.5	1.2
1105H-1115H	27.26	30.9	53.0	1.0	0.5	0.5	1.2
Average	27.27	29.9	55.8	1.0	0.5	0.5	1.1

NOISE LEVEL MEASUREMENT MONITORING RESULTS Benguet Corporation - Acupan Contract Mining Project December 13, 2024

Station 1	Along Keymens Road								
Time of Sampling (1420H- 1423H)									
65.0	62.0	63.2	62.0						
64.5	62.9	63.7	62.7						
64.3	61.9	63.6	62.5						
69.6	62.5	62.5	63.1						
66.0	65.6	62.2	62.8						
63.9	62.6	62.3	62.6						
63.0	63.7	61.7	62.5						
Median =	62.9	Average =	63.39						
Minimum =	61.7 Maximum = 69								

Station 2	Near Assay Laboratory & Gate 2								
Time of Sampling (1238H - 1241H)									
54.6	59.8	56.5	56.3						
53.6	69.8	55.8	55.7						
53.2	63.2	56.3	55.8						
58.2	68.5	57.8	55.5						
53.3	55.5	55.4	61.7						
55.0	55.4	56.0	50.2						
54.5	56.6	56.1	52.1						
Median =	55.8	Average =	56.87						
Minimum =	50.2	Maximum =	69.8						

Station 3	BCACMP Office								
Time of Sampling (1120H - 1123H)									
53.5	50.6	52.0	48.4						
48.8	49.8	51.0	50.6						
51.3	48.6	49.0	49.6						
48.6	48.5	48.5	49.1						
54.1	48.5	50.6	54.6						
52.4	48.8	50.8	48.8						
51.5	47.9	49.1	49.3						
Median =	49.5	Average =	49.3						
Minimum =	47.9	Maximum =	54.6						

AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING

Name of Facility:	Bungaut	Corp	Acupin	(on free f	Mining Projuct
Facility Address:					
Facility Representation	tive: Ms.	Jumime L	, salayas Pe	ersonnel: RSP,	BCB. EGT

Station No.: Specific Location: Sampling Date: Filter ID: Along knymen's Road

12-13-24 240478 Coordinates: Filter Weight: 16°21'35.718"N 120 39'31.824E 2.6936

	Barometric		Amblent	TSP	TSP NO2				Wind
Time	Pressure inHg	RH%	Temp., °C	Flow Rate m ³ /min	Flow Raie, Ipm	Flow Rate, Ipm	Weather Condition	Wind Direction	Speed m/s
1315 - 1325	27.12	59.2	31.1	1.0	2-0	0.5	Sunny	SU = NE	1.8
1325 - 1335		59.6	29.7	1.0	0-5	2.0	SUDAY	SW-NE	1.6
1335 - 1345		38.7	29.6	1.0	0-5	2.0	SUDAY	SU- NE	1.6
345 - 1355		60.0	29.0	1.0	0-5	2-0	Sunny	SW -NE	1-8
355 - 14:05	the second s	60.7	28-6	1.0	0-5	0.5	54MMY	SU - NE	1.8
1405-1415	27-11	61.2	28.3	1.0	0.5	0-5	Sunny	SW -NE	1.8

Description of the sampling location and observations: (use separate sheet if necessary)

- The	HARBO !	1.514	moderste	0110.
- Th	Plant	Facility	operatio	nel i
1.	11-47	olino pe	- Opt-criv	

Vihicle cer - 141-144 - 11 TRUCK - MH - MH - 1111 -

Noise Level Monitoring

Station N Specific L	o.: .ocation:	Along k	lymen's 1		ng Date: <u>12 - 13 - 24</u>
Time		NAME AND DESCRIPTIONS	Stall Soll	- HANGER AND	Noise Source / Observation
1420	65.0	62.0	43-2	62.0	
	44.5	62.4	63.4	42.7	Norse Cane From
	49.6	42.5	025	(3.)	Facility Operation
	64.0	45.4	41.2	42.4	part propriet.or
	63.9	424	47.3	42.0	
1423	43.0	43.7	61.7	625	

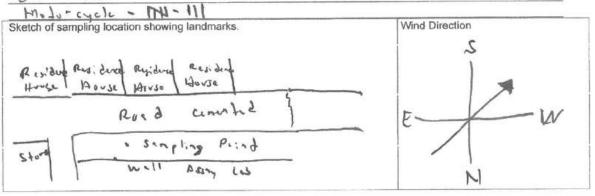
AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING

Name of Facility:	Bur	que t	Corp	Acupan	confrect	Mining	Projust
Facility Address. Facility Representa	II	OGAN	A ALLAN	ct Salays	SPersonnel:	RIP, BCB	EGJ
Station No.:	-	CUP	Loria				

Specific Location: Sampling Date: Filter ID:

Neur Assay Leb and Mut leb 12-13-24

240477


Coordinates: Filter Weight: 16°21'33.744 N 120°31 30.636E 2.6824

	Barometric		Ambient	TSP	NO2	SO2			Wind
Time	Pressure inHg	RH%	Temp., °C	Temp., Flow		Flow Rate, Ipm	Weather Condition	Wind Direction	Speed m/s
135 - 1145	27.25	33.2	31.2	1.0	0.5	6-5	Sunny	NE-SV	1.2
145.1135	27.25	575	31.1	1.0	0.5	0.3	Sunny	NE-3W	1.0
155 - 1205	27.25	37.7	30.8	1.6	0-5	2.0	JUANA	NE-SV	1.0
205-1215	27.24	56.7	30.7	1.0	2.0	0.5	Sunny	NE SV	1.2
215 - 1225	27.24	89.5	29.5	1.6	0.5	0.5	Svany	NE-SU	1.4
12 25 - 12 33	27.24	568	31.0	1.0	0.5	0.5	Sunny	HE-SU	1.2

Description of the sampling location and observations: (use separate sheet if necessary)

 The	Anna 15	cempti	5 904	r dusty	because in	
 the	v a bre la	F SACION	54	the roc	2.	
 + 4	Area	il bi	117	noderete	4:2	

Visicle Truck HAH - MH -- IN-Cer

Noise Level Monitoring

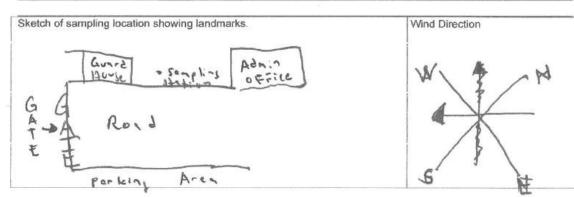
Station N Specific L	133 C C C	2 Nur Asse	y 1.03 0		ling Date: 12-13-24 1 1eb
Time	Dire 2 Table		Difference and the second	- AND	Noise Source / Observation
1238	54.6	59.4	56.5	56.3	
	\$3.6	69.8	35.8	35.7	Maise Came from
	59.2	63.2	50.3	55.8	the behicle pessing
	182	68.5	57.8	33.5	the residue hosting
	53.3	35.5	55.4	61.7	h 11
	35.0	35.4	30-02	30-2	by the Ford.
1241	J4.5	56.6	20.1	52.1	

AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING

Name of Facility: <u>Benguet Carp Acutan Contract Minig Project</u> Facility Address: <u>ITOGON BENGUET</u> Facility Representative: <u>Mr. Jumiman Salayor</u> Personnel: <u>Rip, BCB, EGT</u>

Station No : Specific Location: Sampling Date: Filter ID: 3 COONNIND) BEACMP - OFFICE

240476


_ Coordinates: Filter Weight: 16021 38406"N 120 39'36.17 E

	Barometric		Ambient	TSP	NO2	SO2			Wind	
Time	Pressure inHg	RH%	Temp., °C	Flow Rate m ³ /min	Flow Rate, Ipm	Flow Rate, Ipm	Rate, Condition D	Wind Direction	Sneed	
015-1025	27-27	58.9	28-7	1.0	0.5	6.5	Sunny	NE-SV	1.0	
025-1035	27.27	52.7	29.5	1.0	6.5	0-5	SUNNY	NE-SU	1.0	
035-1045	27.27	56.3	29.9	1.4	u. S	0.5	SUARY	NE -SV	1.2	
1045-1055	27.27	53.9	30.0	1.0	0.5	0.5	Sunny	NE-SV	1.0	
105 - 110S	27.20	\$3.2	30.6	1.3	0.5	6.5	Sunny	NE-SW	1.2	
1105 - 1115	27.26	53.0	30.9	1.0	0-5	0.5	SUNNI	Ne -Sw	1.2	

Description of the sampling location and observations: (use separate sheet if necessary)

- the Facility is operation during sampling period-- the Area is light Moderate wind.

Vihiele Truck - MU -Motorcycle • car ı

Noise Level Monitoring

 Station No.:
 3
 Sampling Date:
 12 · 13 - 24

 Specific Location:
 OGAMP - OFFICE
 Noise Source / Observation

 Time
 Noise Source / Observation

Time	a second and a second se	Parameter and a start of the cost about		of the second	Noise Source / Observation
1120	32.2	50.6	\$ 2.0	48.9	
	48.4	49.8	0.12	50.6	Noise come From
	513	48.4	44.0	45.6	
	48.4	44.5	48.5	45.)	the vehicle prosing
	54.1	48.5	50.4	54.6	
	32.4	48.8	70.8	48.5	by near Roid.
1123	51.5	47.5	49.)	45.9	

"APPENDIX B"

RESULTS OF LABORATORY ANALYSIS

AMBIENT AIR SAMPLING LABORATORY REPORT Benguet Corporation - Acupan Contract Mining Project December 13, 2024

Laboratory Data

Station #	TSP ug	SO2 ug	NO2 ug
Station 1	14,500	0.29	0.532
Station 2	10,200	0.29	0.425
Station 3	9,800	0.29	0.333

Computation

- TSP = (concentration-ug)/((flowrate-1.0)*(298/(Tm-ave.+273))*((Pbar-ave.*25.4)/760))*60
- SO2 = (concentration-ug)/((flowrate-0.5/1000)*(298/(Tm-ave.+273))*((Pbar-ave.*25.4)/760))*60
- NO2 = (concentration-ug)/((flowrate-0.5/1000)*(298/(Tm-ave.+273))*((Pbar-ave.*25.4)/760))*60

Concentration at Standard Condition

Station #	TSP ug/Ncm	SO2 ug/Ncm	NO2 ug/Ncm
Station 1	270.6	10.8	19.9
Station 2	190.3	10.8	15.9
Station 3	182.2	10.8	12.4

AACH UNION LABORATORIES INC.

Main Office: Mach Union Building, 335 Alabang-Zapote Road, Talon 3, 1740 Las Piñas City, Philippines Extension Office: ANFRA Bidg., FMC-LTO Cmpd., 314 Alabang-Zapote Road, Talon 1, 1740 Las Piñas City Tel. No. (02)8553-8381 / (02)8553-8382 / (02)8553-8879 / (02)8550-2573 Fax No. (02)8553-8878 Email: Info@machunion.com • Website: www.machunion.com • http://www.facebook.com/Machünion Accredited: Philippine Accreditation Bureau (DTI-PAB) • Department of Health • Food & Drug Administration Recognized: Department of Environment & Natural Resources (DENR-EMB) • Bureau of Animal Industry (DA-8A1)

CERTIFICATE OF ANALYSIS

					the second se		
Work Order	;	MU24035702	Lab. Sample ID :	MU24035702-001	C	Date Report	ed: 12/21/2024
Client ID	:	NCRMUL-000356					
CUSTOMER	:	GREENTEK ENVIRONMENTAL PHILS. CO. 2430 Laura St., Brgy. 862, Pandacan, Manila					
Attention		Liwayway P. Gaddi 09175139249 greentek services@yahoo.com					
PROJECT DETAIL	L8:	BENGUET CORP ACUPAN CONTRACT MIN Itogon, Benguet	NING PROJECT				
			SAMPLE INFO	ORMATION			
Sample Type : Identification :		Ambient ACMP AIR QUALITY MONITORING			Storage Condition : C	Chilled and Am	bient
Description :	Air	Ambient Sample in Absorbing Solution in 50mL HDPE	and Filter Paper (8X10)				
Collection Date and	d Tim	12/13/2024 12:00 AM			Received Date and Time	1 1	2/16/2024 02:35 PM
Collected by :	CU	ISTOMER			Analyzed Start Date and Tim	ne 1	2/16/2024 03:15 PM
					Analyzed End Date and Time	e ; 1	2/20/2024 06:00 PM

Comments:

1 All sample information stated herein are based on the details provided by the client. The results in this certificate of testing relates only to the samples submitted to and tested by the laboratory.

w

MLI24035702_FINAL_2412210917H

Attention is drawn to the terms and condition for the testing printed over leaf

MACH UNION LABORATORIES INC.

Main Office: Mach Union Building, 335 Alabang-Zapote Road, Talon 3, 1740 Las Piñas City, Philippines Extension Office: ANFRA Bidg., FMO-LTO Cmpd., 314 Alabang-Zapote Road, Talon 1, 1740 Las Piñas City Tel. No.: (02)8553-8381 / (02)8553-8382 / (02)8553-8879 / (02)8550-2573 Fax No.: (02) 8553-8878 Email: info@machunion.com • Website: www.machunion.com • http://www.facebook.com/MachUnion Accredited: Philippine Accreditation Sureau (DTI-PAB) • Department of Health • Food & Drug Administration Recognized: Department of Environment & Natural Resources (DENR-EMB) • Sureau of Animal Industry (DA-BAI)

CERTIFICATE OF ANALYSIS

WorkOrder : MU24035702		Lab. Sample ID :	MU24035702-001	Date Reported: 12/2	1/2024
CUSTOMER : GREENTEK E	NVIRONMENTAL PHILS., CO.				
Sample Source : BCACMP	AIR QUALITY MONITORING				
		LABORATORY T	EST RESULTS		
SAMPLE ID	PARAMETER		TEST METHOD	UNIT	RESULT
BCACVP-STN 1	Nitrogen Dioxide	Griess Sa	altzman Method	ug	0.532
BCACIIP-STN 1	Sulfur dioxide	Pararosa	iniline Method	лд	< 0.29
BCACVP - STN 1	Total Suspended Particulate	High Volu	ume /Gravimetric Method	ug	14500
BCACMP-STN 2	Nitrogen Dioxide	Griess St	aitzman Method	ug	0.425
BCACMP - STN 2	Sulfur dioxide	Pararosa	niline Method	ug	< 0.29
BCACIIP-STN 2	Total Suspended Particulate	High Volu	ume /Gravimetric Method	ug	10200
BCACIIP - STN 3	Nitrogen Dioxide	Griess Sa	altzman Method	ug	0.333
BCACIIP- STN 3	Sulfur dioxide	Pararosa	niline Method	ug	< 0.29
BCACIIP - STN 3	Total Suspended Particulate	High Volu	ume /Gravimetric Method	ug	9800

Test Nethod Reference:

Code « Federal Regulations Title 40 Parts 50 to 51. USA. 1999. Selected Methods of Meesuring Air Pollutants. WHO. 1976. US EPA Title 40 Code of Federal Regulations. Part 50 Standard of Performance for New Stationary Sources. Appendix A to O. 1991

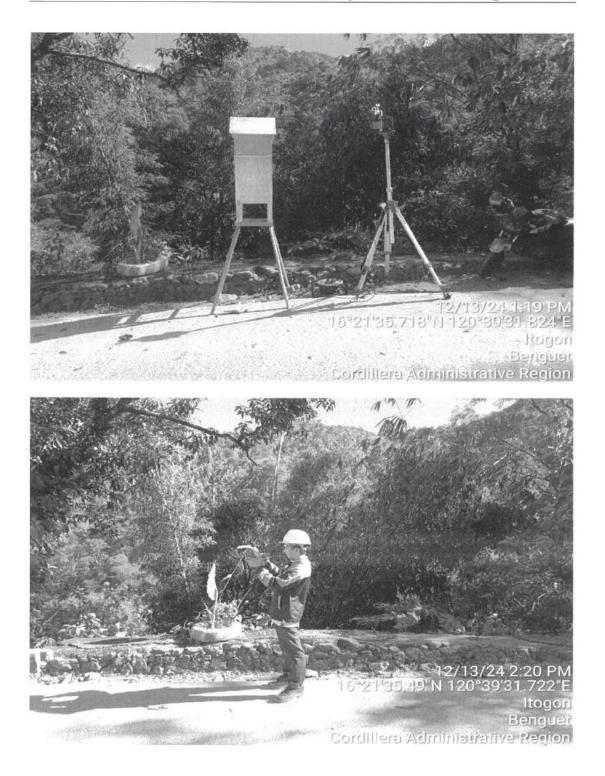
Checked by

Mon per Victo Gregory Jude D. Garcia, RCh Chemist in PRC# 004-8349 MLR4035702 FINAL 241221 0917H

2

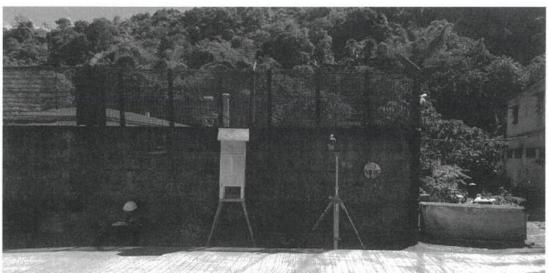
Certified by Manan Marisa T. Manaor, RCh Supervising Chemist PRC# 0005465

Approved/tog Release by nur Alading M. Abulencia, ChE Technidal Manager PRC License No 0008351


Page 2 of 2

"APPENDIX C"

SAMPLING ACTIVITY PHOTOS AND VICINITY MAP


Benguet Corporation Acupan Contract Mining Mining Project Reference No.: GEPC-AAQM-2412-072

Station 1 - Along Keymens Road (Upwind)

Benguet Corporation Acupan Contract Mining Mining Project Reference No.: GEPC-AAQM-2412-072

12/13/24 11 35 AM 16³21 33 744"N 120 39 30 335"E Itogon Benguei Benguei

Station 2 - Near Assay Laboratory & Gate 2 (Upwind)

Benguet Corporation Acupan Contract Mining Mining Project Reference No.: GEPC-AAQM-2412-072

Station 3 - Near BCACMP Office (Downwind)

Benguet Corporation Acupan Contract Mining Mining Project Reference No.: GEPC-AAQM-2412-072

VICINITY MAP

"APPENDIX D"

AMBIENT AIR EQUIPMENT CALIBRATION CERTIFICATES

Switchtek Measurement Systems

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph

www.switchtek.com.ph

Calibration of

3 IN1 (barometer function)

Certificate No.: 4000.23-9142-1.23 Identification: Address:

GREENTEK ENVIRONMENTAL PHILS., CO 2353 RJ PLACE UNIT 3A SELVA STREET BRGY.860 PANDACAN, MANILA, PHILIPPINES

CERTIFICATE OF CALIBRATION - 3 IN 1 (Barometer Function)

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

UNIT UNDER TEST (UUT):

Instrument:	3 IN1 (barometer function)		
Brand:	LUTRON	Calibration Date:	November 20, 2024
Model No.:	PHB-318	Calibration Due:	November 19, 2025
Serial No.:	No record	Calibrated By:	C.A. CASADO
Range:	Temp. (0-50 Deg. C)		
	Humidity (10 to 95%)		
	Dewpoint (-25.3 to 48.9 Deg. C)		
	Barometer (10 to 999.9 hPa)		
Resolution:	Temp. (0.1 Deg. C)		
	Humidity (0.1 %)		
	Dewpoint (0.1 Deg. C)		
	Barometer (1 hPa)		
ID code:	No record		

Results:

Ratometer

REFERENCE READING (hPa)	READING (hPa)	ERROR IN READING (hPa)	STANDARD DEVIATION	REMARKS
1009:0	1003.0	6.00	4.2426	1
1005.0	1000.0	5.00	3.5355	The user should determine the
1000.0	995.0	5.00	3.5355	suitablity of the instrument fo its intended use
990.0	984.0	6.00	4.2426	- its interfued use

Uncertainty: ±

6.09 hPa

Temperiture" Trensme" Scanet Got Detector/Acatery "Flow "Volume" Weight Tent Int Conductions "Relatives" "Voltage "Amberlas" Relatives "Flow "Volume" Weight Tent International Conductions "Relatives" Conductions (Conductions Conductions (Conductions Conductions Conductions Conductions Conductions Conductions (Conductions Conductions *Spriggmonikeameter *Low Ohm meter *Dial Texi Gauge Block* Relet* Davgen Meter* Psechameter* Vibration* Dielectric XV Mener* Transformer Terrer Fact in the Meter* Gauge Block* Relet*

Switchtek Measurement Systems

A Division of Switchtek Construction Corporation

4th Floor Northridge Plaza, Annex A, 12 Congressional Ave Bahay Toro, Quezon City, 1100, Philippines Tel Nos 83517471 / 89282869 / 89287769 Fax No. 89828269 email Address admin@switchtek.com.ph www.switchtek.com.ph

Certificate No.:	4000.05-5664-2.23. REV	Calibration of	Rotameter		
Identification:	GREENTEK ENVIRONMENTAL PHILS., CO				
dot	PI	Test and Verif	ication		
Fin.acc:	32	Certificate of 0	Calibration		
Done.	July 20, 2024	initials	CAC		
Categories	Test and Celibration	Men	Hours	Total cost	Түре
Cal Officer		2	1.0		Certificate

CERTIFICATE OF CALIBRATION - ROTAMETER

This report of calibration shall document that the Instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

issued To:	GREENTEK ENVIRONMENTAL P	HILS., CO	
Address:	2430 LAURA STREET, PANDACA	IN, MANILA, PHILIPPINES	
UNIT UNDER TEST	UUT):	CALIBRATOR INFORMATION:	
Instrument:	Rotameter	Instrument:	DWYER, Rotameter
Brand:	KIMOTO	Inert Gas:	Pure (N2) Nrtrogen Gas
Model No:	F94-40883	Standard Thermometer:	Heraeus, Standard platinum
Serial No:	No record		resistance thermometer
			The second second

esistance thermometer No record Test Gauge, NABL UKAS, Property ID: Standard Gauge Range: 0.1 to 2.5 LPM Cert#\$M\$200.01 0.1 LPM Graduation: Instrument: Primary DC DRYCAL Calibration Date: July 02, 2024 Brand BIOS Calibration Due: July 02, 2025 Serial No.: 4329 NIST, NPL and PTB Lab Traceability: 198±2 Ambient Temp. (Deg C):

Environmental Condition:

DRY/BASIC/NEUTRAL Condition: Relative Humidity: 48 ±5%, 1009 hPa

Calibration Method:

By comparative technique, unit under test was tested and calibrated in referenced with a Standard Flowmeter at planned intervals using dried and filtered inert gas and in accordance with NIST, NPL and ISO/IEC Guide 17025 Data were gathered and tabulated.

During calibration, the unit was found to have a standard error of ± 0.0000 LPM with a confidence level of not less then 95%. Uncertainty of measurement is ± 0.058 LPM. Calculations were taken using Standard Deviation Formula.

Result:

NO. OF TEST	REFERENCE READING (LPM)	UNIT UNDER TEST READING (LPM)	ERROR IN READING (LPM)	STANDARD DEVIATION
1	8.000	0.00	0.000	0 0000
2	0.500	0.50	0.000	0.0000
3	1.000	1.00	0.000	0.0000
4	1.500	1.50	0.000	0.0000
5	2.000	2.00	0.000	0.0000

Remarks:

All data pertain only to the unit described obtained at the time of test. This certificate is not valid w/out seal and signature Unauthorized reproduction is prohibited

····· NOTE	MEASUREMENT INDICA	ATOR IS AT THE UPPER PAR	T OF THE FLOATER
Calibrated By	a casado	Certified By:	A.R. CAINDOC
Date	July 02, 2024	Date:	July 02, 2024

Construction of the second second result spectrum is specified with the second second structure in spectrum respective results of the second respective respective

Switchtek Measurement Systems

A Division of Switchtek Construction Corporation 4th Hoor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro,Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph

Certificate No.:	400.01-8227-1.23 GREENTEK ENVIRONMENTAL PHILS., CO	Calibration of	5cm	ad Level Meter	
Job:	P1	Test and Verific	ation		
	32	Certificate of Ca	Concernance - Co		
Fin.acc			CAC	2	
Done	June 4, 2024	Initials:			04000
Categories	Calibration	Men	Hours	Total cost	Type
Cal Officer		2	3.0		Certificate

CERTIFICATE OF CALIBRATION - SOUND LEVEL METER

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

tssued To:	GREENTEK ENVIRONMENTAL PHILS., CO
Address:	2353 RI PLACE UNIT 3A SELVA STREET BRGY, 860 PANDACAN, MANILA, PHILIPPINES

UNIT UNDER YEST (UUT):

lestrument:	Sound Level Meter
Brand:	LUTRON
Model No:	SE-4033SD
Serial Mo:	1.433801
Range:	35 to 130 dB
ID Code:	No record
Calibration Date:	June 3, 2024
Calibration Due:	June 2, 2025

CALIBRATOR INFORMATION:

Instrument:	Sound Level Calibrator
Brand:	Lutron
Serial No:	1,278821
Model No:	SC-942
Traceability:	IEC 60942 Type # A Standard
	NOST and MPL

Embronmental Condition:

Condition: DRY/BASIC/NEUTRAL Relative Humidity: 41.2 ±5%, 1006 hPa Ambient Temp. (Deg C): 23..7 ±2

Calibration Method:

By comparative technique, Standard Sound Generator was introduced at the unit under test at a constant value of 94.0 dB to 114 dB at a uniform frequency of 1000 Hz. Dota wave gathered and tabulated. Procedures of test conform to the requirements of OIML 88 Guidelines, IEC 60942 of the NIST and National Physical Laboratories.

During calibration, the unit was found to have a standard error of ±0.00 dB. with a confidence level of not less than 95%. Uncertainty of measurement is ±0.58 dB, Calculations were taken using the Standard Deviation Formula.

Results:

TRIALS REFERENCE READING (dB)	1 (66)		ERROR IN READING	STANDARD	REMARKS		
	AS FOUND	AS LEFT		Devacion			
1	94.0	93.8	94,0	0.00	0.0000	Deced	
2	114.0	114.0	114.3	0.30	0.2121	Passed	

Remarks:

All data pertain only to the unit described objective of test. This certificate is not valid w/out seal and signature. Unauthorized reproduction is prohibited.

Calibrated By: C.A. CASADO Date: June 3, 2024

Certified B Date

Temperature® Prosente' Sound' Go: Detector/Anview 11 Gwe Nursiew" Wergist Bin* Ph* Conductivity "Besistuity "Conductivity "Resistuity" Conductivity "Resistuity" Conductivity" Conductivity "Resistuity" Conductivity "Resistuity" Conductivity "Resistuity" Conductivity "Resistuity" Conductivity" Conductivity "Resistuity" Conductivity "Resistuity" Conductivity" Conductity "Resistuity" Conductivity" Condu

Certificate No.:	4000.05-8227-1.23	Calibration of	High V	olume Sampler		
Identification:	GREENTER ENVIRONMENTAL PHILS., CO					
.dot:	P1	Test and Veri	fication			
Fin.acc:	32	Certificate of	Calibration			
Done:	May 15, 2024	Initials:	CAC			
Categories		Men	Hours	Total cost		Type
Cal Officer		1	1.0		-	Certificate

CERTIFICATE OF CALIBRATION - HIGH VOLUME SAMPLER

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

CALIDRATION INCODEANTION.

Ambient Temp. (Deg C): 24.5 ±2

issued To:	GREENTEK ENVIRONMENTAL PHILS., CO
Address:	2353 RI PLACE UNIT 3A SELVA STREET BRGY, 860 PANDACAN, MANILA

AN, MANILA, PHILIPPINES

HIMIT HIMPED TEST (HHIT)-

man manere insi (n	orp.	CHEMPERSON HEROPOLIS	NJTD.
Instrument:	High Volume Sampler	instrument:	Rotating Vane Anemometer
Brand:	STAPLEX	Manufacturer:	LUTRON
Model No:	TFIA-2	Model No:	AM-4205M
Serial No:	25707T	Serial No:	Q432206
Range:	0.5 to 2 m3/min.	Range:	0 to 30.0 m/s
Graduation:	0.1 m3		0 to 50.0 °C
ID code:	No record	Origin:	USA
Calibration Date:	May 11, 2024	Calibrated Against:	UKAS, thru Laser Doppler Anemometer
Calibration Due:	May 10, 2025		

Environmental Condition:

Condition: DRY/BASIC/NEUTRAL Relative Humidity: 56 ±5%, 1011 hPa

Calibration Method:

By comparative technique, unit under test was tested and calibrated in reference with a rotating vane anemometer at planned intervals using dried and filtered inert gas and with NIST, NPI. and ISO/IEC Guide 17025. Data were gathered and tabulated.

During calibration, the unit was found to have a standard error of ±0.008 m3/min. with a confidence level of not less than 95%. Uncertainty of measurement is ± 0.062m3/min. Calculations were taken using Standard Deviation Formula.

Results:

NO. OF TEST	REPERENCE READING (m3/min.)	UNIT UNDER TEST READING (m3/min.)	ERROR IN READING (m3/min.)	STANDARD DEVIATION
1	1.00	1.0	0.000	0.0000
z	1.49	1.5	0.010	0.0071
3	2.01	2.0	-0.010	0.0071

Remarks:

All data pertain only to the unit described obtained at the time of test. This certificate is not valid w/out seal and signature. Unauthorized reproduction is prohibited.

eng CARCESADO Calibrated By: Date: May 11, 2024

Certified By: Date:

emperature" Pressure" Sound" Gas Detector/Analyzer "Flow "Volume" Weight" Rh" Pit" Conductivity "Resistivity "Conductivity "Wolunge "Amperes "Kwhrmeter "Freque ncy Controller *Hygrometer *Glass & Bi-Metal hermometer *Priv *Sitv *Intv *Relet-Value *Recorder *Thernostat *Turgoe Wrench *Calarimeter *Calauri Microameter *Durgmater *Referctioneter *Multi-testor* Highometer* Capacitance & Inductorice Men *Sphygmonapometer *Low Ohim meter *Dial Test Gauge *Bauge Back* Ruler* Daygon Meter* Psychometer* Vibration* Dielectric kV Meter* Transformer Turns Refe? Hi Pot Meter* Capacitance & Dissipation

"APPENDIX E"

AMBIENT AIR TESTING PARTICIPANTS

AMBIENT AIR TESTING PARTICIPANTS

BENGUET CORPORATION ACUPAN CONTRACT MINING PROJECT

Ms. Jemimah Salayog - Facility Representative

GREENTEK ENVIRONMENTAL PHILS. CO.

Mr. Danilo M. Palaypay, Jr.	-	Technical and QA/QC Manager
Mr. Bryan C. Badon	-	Team Leader - Trainee
Mr. Emerbill G. Justo	-	Team Leader - Trainee
Mr. Reynaldo S. Pile	-	Field Technician / Driver

Republic of the Philippines Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU Visayas Avenue, Diliman, Quezon City

SAT No. 2023 - 151

CERTIFICATE OF ACCREDITATION

Pursuant to DENR Administrative Order No. 26 Series of 2013 of the Department of Environment and Natural Resources having substantially met all the requirements prescribed therein,

GREENTEK ENVIRONMENTAL PHILS. CO.

#2430 Laura St., Pandacan Manila

is hereby duly accredited as

SOURCE EMISSION TESTING FIRM

As such, the following are authorized as:

QA/QC Manager Danilo M. Palaypay, Jr.

Team Leader Aaron Jonathan R. Regilme

This certification shall allow the above firm and personnel to conduct stack testing limited to the following methods and parameters:

1. US-EPA Method 1 to 5 - PM

2. US-EPA Method 6/8 - SO2

- 3. US-EPA Method 7 NOx
- 4. US-EPA Method 10 CO

Granted this ______ December 22, 2023 and valid until ______ December 22, 2026

GILBERT C. GONZALES, CESO III

Director and concurrent Assistant Secretary for Field Operations

"APPENDIX F"

LABORATORY CERTIFICATES OF RECOGNITION

SCOPE OF RECOGNITION AND DENR RECOGNIZED SIGNATORIES ARE SPECIFIED AND CAN BE VERIFIED AT https://emb.gov.ph/denrrecognized-environmentallaboratory/ AND ARE INTEGRAL PARTS OF THIS CERTIFICATE.

ISSUE DATE: JULY 25, 2023 EXPIRY DATE: JULY 25, 2026

ELR LABORATORY CODE NO. NCR-29

Republic of the Philippines DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES Visayas Avenue, Diliman, Quezon City

This

CERTIFICATE OF RECOGNITION

C.R. No. 040/2023

is hereby granted to

Mach Union Laboratories Inc.

Mach Union Bldg., 335 Alabang-Zapote Road, Talon Tres, Las Piñas City & ANFRA Bldg., FMC-LTO Compound 314 Alabang Zapote Road, Talon Uno, Las Piñas City

after having been assessed and found to comply with the documentation, analytical performance and other technical requirements of Administrative Order No. 63, series of 1998 (AO 63), Guidelines for the Designation of DENR Recognized Environmental Laboratories.

This certificate remains valid subject to continued compliance with the requirements of AO 63.

In testimony whereof, I have hereunto signed this Certificate at Quezon City, Philippines.

LOYZAGA MARIA ANTO

10/17/23, 11:40 AM

Mach Union Laboratories Inc. | Environmental Management Bureau

Marisa T. Manaor

Services *

SOVPH (http://www.gov.ph) Home.(https://emb.gov.ph) About Us - July 25, 2026

Laboratory Head:

SCOPE OF RECOGNITION

(Exclusive of Sampling)

Water and Wastewater

PARAMETERS	ANALYTICAL METHODS	REFERENCES
Ammonia as NH3-N	Ammonia – Selective Electrode Method	SMEWW 4500-NH3 D
Ammonia as NH3-N	Phenate Method	SMEWW 4500-NH ₃ F
i Line and the second se	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 (SMEWW 3030 E)
Arsenic	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)
	Manual Hydride Generation/ Atomic Absorption Spectrometric Method	SMEWW 3114 B
	Direct Nitrous Oxide-Acetylene Flame Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3111 D (SMEWW 3030 F)
Barium	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)
BOD	5-Day BOD Test	SMEWW 5210 B
	Carmine Method	SMEWW 4500-B C
Boron	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)
Cadmium	Direct Air-Acetylene Fiame Method (Nitric Acid – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)
	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 (SMEWW 3030 E)
	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)
Chemical Oxygen Demand	Closed Reflux, Colorimetric Method	SMEWW 5220 D
	Open Reflux Method	SMEWW 5220 B
	Argentometric Method	SMEWW 4500-CIT B
Chloride	Ion Chromatography with Chemical Suppression of Eluent Conductivity	SMEWW 4110 B
Chromium as Hexavalent Chromium (Cr ⁵⁺)	Colorimetric Method	SMEWW 3500-Cr B
Coliform, Fecal	Multiple Tube Fermentation Technique – Fecal Coliform Procedure	SMEWW 9221 E
Coliform, Total	Multiple Tube Fermentation Technique Standard Total Coliform Fermentation Technique	SMEWW 9221 B
Color (Apparent)	Visual Comparison Method	SMEWW 2120 B

https://emb.gov.ph/denr-recognized-environmental-laboratory-mach-union-laboratories-inc/

E-Library -ME

Foreign Assisted Projects 👻

Mach Union Laboratories Inc. | Environmental Management Bureau

10/17/23, 11:40 AM	Mach Union Laboratories Inc. Environmental Management	Bureau	
密切伊哈(http://www.gov.ph)	Visual Comparison Method About Us - Programs - Services - Fore	SMEWW 2120 B Filibrary	
	Direct Air-Acetylene Flame Method (Nitric Acid – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)	
Copper, Total	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 (SMEWW 3030 E)	
	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)	
	Direct Air-Acetylene Flame Method (Filtration; Nitric Acid – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F with SMEWW 3030 B)	
Copper as Dissolved Copper	Electrothermal Atomic Absorption Spectrometric Method (Filtration; Nitric Acid / Hotplate Digestion)	SMEWW 3113 (SMEWW 3030 E with SMEWW 3030 B)	
	Inductively Coupled Plasma – Emission Spectroscopy Method (Filtration; Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F with SMEWW 3030 B)	
Cyanide as Free Cyanide	Cyanide – Selective Electrode (w/o distillation)	SMEWW 4500-CN- F	
	Iodometric Method - Azide Modification	SMEWW 4500-0 C	
Dissolved Oxygen	Membrane Electrode Method	SMEWW 4500-O G	
	Ion Chromatography with Chemical Suppression of Eluent Conductivity	SMEWW 4110 B	
Fluoride	Ion-Selective Electrode Method	SMEWW 4500-F- C	
in the second	Direct Air-Acetylene Flame Method (Nitric Acid – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)	
Iron	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)	
	Direct Air-Acetylene Flame Method (Nitric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 E)	
Lead	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 (SMEWW 3030 E)	
	Inductively Coupled Plasma Emission Spectroscopy Method (Nitric Acid Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)	
	Direct Air-Acetylene Flame Method (Nitric Acid – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)	
Manganese	Inductively Coupled Plasma - Emission Spectroscopy Method (Nitric Acid - Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)	
Mercury	Cold - Vapor Atomic Absorption Spectrophotometric Method	SMEWW 3112 B	
Nickel	Direct Air-Acetylene Flame Method (Nitric Acid – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)	
	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)	
	Ion Chromatography with Chemical Suppression of Eluent Conductivity	SMEWW 4110 B	
Nitrate as NO3-N	Nitrate Electrode Method	SMEWW 4500-NO3 ⁻ D	
	Colorimetric, Brucine	US EPA 352.1	
Oil and Grease	Liquid-Liquid, Partition - Gravimetric Method	SMEWW 5520 B	

https://emb.gov.ph/denr-recognized-environmental-laboratory-mach-union-laboratories-inc/

10/17/23, 11:40 AM

Mach Union Laboratories Inc. | Environmental Management Bureau

COVPH (http://www.gov.ph)	Flectrometric Method About Us - Programs - Services - For	eign Assisted Projects H ⁺ B E-Library ~
Phosphate as Phosphorus (Total,	Stannous Chloride Method	SMEWW 4500-P D
Reactive)	Vanadomolybdophosphoric Acid Colorimetric Method	SMEWW 4500-P C
	Electrothermal Atomic Absorption Spectrometric Method (Nitric Acid / Hotplate Digestion)	SMEWW 3113 (SMEWW 3030 E)
Selenium	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)
	Manual Hydride Generation/ Atomic Absorption Spectrometric Method	SMEWW 3114 B
Settleable Solids	Imhoff Cone Method	SMEWW 2540 F
Sulfate	Ion Chromatography with Chemical Suppression of Eluent Conductivity	SMEWW 4110 B
	Turbidimetric Method	SMEWW 4500-SO42- E
Surfactants (Methylene Blue Active Substances)	Anionic Surfactants as MBAS	SMEWW 5540 C
Temperature	Laboratory and Field Methods	SMEWW 2550 B
Total Dissolved Solids	Gravimetric, Dried at 180°C	SMEWW 2540 C
Total Suspended Solids	Gravimetrio, Dried at 103-105°C	SMEWW 2540 D
Zinc	Direct Air-Acetylene Flame Method (Nitric Acid – Hydrochloric Acid/ Hotplate Digestion)	SMEWW 3111 B (SMEWW 3030 F)
	Inductively Coupled Plasma – Emission Spectroscopy Method (Nitric Acid – Hydrochloric Acid / Hotplate Digestion)	SMEWW 3120 (SMEWW 3030 F)

Sediments

PARAMETERS	ANALYTICAL METHODS
Arsenic	Manual Hydride Generation / Atomic Absorption Spectrophotometric Method
Barium	Direct Nitrous Oxide – Acetylene Flame Method
Total Cadmium, Copper, Iron, Lead, Manganese, Nickel, Silver, Zinc	Atomic Absorption Spectrophotometric Method (Wet Ashing)
Total Mercury	Cold – Vapor Atomic Absorption Spectrophotometric Method

Ambient Air

PARAMETERS	ANALYTICAL METHODS
Nitrogen Dioxide	Gas Bubbler Griess-Saltzman Method
Sulfur Dioxide	Gas Bubbler and Pararosaniline Method
Suspended Particulate Matter-TSP	High Volume and Gravimetric Method
Suspended Particulate Matter-PM10	High Volume with 10-micron particle size inlet; Gravimetric

https://emb.gov.ph/denr-recognized-environmental-laboratory-mach-union-laboratories-inc/

10/17/23, 11:40 AM

Mach Union Laboratories Inc. | Environmental Management Bureau

Stationary Source Emissions <u>GOVPH (http://www.gov.ph)</u> Home (https://emb.gov.ph) About Us T Programs T Services T Eneign Assisted Projects T E-Library ME

PARAMETERS ANALYTICAL METHODS		
NOx	Phenoidisulfonic Acid Method	
Particulates	Gravimetric Method	
Sulfur Oxides as SO2	Titration Method with Barium Chloride using Thorin as Indicator	

Wastes

PARAMETERS	ANALYTICAL METHODS	
Antimony; Antimony compounds	US EPA Method 1311/ Hydride Generation AAS	
Arsenic and its compounds	US EPA Method 1311/ Hydride Generation AAS	
Barium and its compounds	US EPA Method 1311 / Flame AAS Method	
Cadmium and its compounds	US EPA Method 1311 / Flame AAS Method	
Chromium and its compounds	US EPA Method 1311 / Flame AAS Method	
Fluoride and its compounds	US EPA Method 1311 / Ion Selective Electrode Method	
Hexavalent chromium compounds	US EPA Method 1311 / Colorimetric Method	
Lead compounds	US EPA Method 1311 / Flame AAS Method	
Mercury and mercury compounds	US EPA Method 1311 / Cold-Vapor AAS Method	
Silver and its compounds	US EPA Method 1311 / Flame AAS Method	

DENR RECOGNIZED SIGNATORIES

NAME OF SIGNATORY

AREA/S OF RESPONSIBILITY/IES

Gino Franco P. Camposano	Physical-Chemical Analyses
Luchie S. Ignacio	Bacteriological Analysis
Marisa T. Manaor	All Analyses
Katrina U. Pagulayan	Air, Metals and Physical-Chemical Analyses
Liza Louise P. Perez	Bacteriological Analysis

Appendix G-2

7 August 2024

Ref. No.: LT-24-241-25-68

MR. FRANCISCO O. FLAVIER Resident Manager BMC FORESTRY CORPORATION – BC ILP Km. 5 Naguilan Road, Irisan, Baguio City

Subject: 24-Hours Ambient Air Quality and Noise Level Monitoring Report

Dear Mr. Flavier,

We are pleased to submit the final report of the 24-hours ambient air quality and noise level monitoring as a result of our visit to your plant in Irisan, Baguio City on May 27 to 29, 2024.

We hope that this report addresses your requirements.

Very truly yours, WEMMANUEL R. ALTAREJOS Executive Vice President

ERA/mla

Department of Environment and Natural Resources (DENR) ACCREDITED THIRD PARTY TESTER

24-HOURS AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING REPORT

BMC FORESTRY CORPORATION – BC ILP

Km. 5 Naguilan Road, Irisan, Baguio City

Environmental Management Service Provider 2nd Floor, VAG Building Ortigas Avenue, Greenhills, San Juan, Metro Manila, Philippines

24-HOURS AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING REPORT (May 27 to 30, 2024)

BMC FORESTRY CORPORATION – BC ILP Irisan, Baguio City

Prepared for:

BMC Forestry Corporation – BC ILP Km. 5 Naguilan Road, Irisan, Baguio City Tel. No.: (074) 445-7180; Fax No.: (074) 445-7185

Prepared by:

BSI

2nd Floor VAG Building, Ortigas Avenue Greenhills, San Juan, Metro Manila Tel. No.: (02) 863 6129 ; Fax. No.: (02) 727 9831

TABLE OF CONTENTS

CONTENTS

PAGE

1.	INT	RODUCTION
2.	OB.	JECTIVE OF THE MONITORING
3.	ME	THODS OF SAMPLING AND ANALYSIS1
	3.1. 3.1. 3.2 3.2. 3.2.1	2 Sulfur Dioxide 2 3 Nitrogen Dioxide 2 3 SAMPLING OBSERVATIONS 2 1 Wind Direction 3 2 Wind Speed 3
4.		SULTS AND DISCUSSION
- 53		24-HOURS AMBIENT AIR QUALITY MONITORING
5.	REF	7ERENCES

LIST OF TABLES

TABLE 1.	METHODS OF AMBIENT AIR SAMPLING AND ANALYSIS	1
TABLE 2.	MODERN BEAUFORT WIND SCALE	3
TABLE 3.	CLOUD DESCRIPTION	
TABLE 4.	RAIN DESCRIPTION	4
TABLE 5.	NOISE MONITORING PERIODS	5
TABLE 6.	24-HOURS AMBIENT AIR QUALITY MONITORING RESULTS	6
TABLE 7.	FIELD OBSERVATIONS AND PHOTO DOCUMENTATIONS DURING SAMPLING	7
TABLE 8.	24-HOURS AMBIENT NOISE LEVEL MONITORING RESULTS	
TABLE 9.	SOURCES OF 24-HRS AMBIENT NOISE	9

LIST OF ANNEXES

- ANNEX AMAP OF AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING STATIONSANNEX BAMBIENT AIR QUALITY MONITORING SUMMARY OF RESULTSANNEX CLABORATORY CERTIFICATES

- ANNEX D EQUIPMENT CALIBRATION CERTIFICATES
- ANNEX E TEST PARTICIPANTS

24-Hours Ambient Air Quality and Noise Level Monitoring Report

1. INTRODUCTION

This report presents the procedures and results of the ambient air quality and noise level monitoring conducted on May 27 to 30, 2024 at BMC Forestry Corporation – BC ILP situated in Irisan, Baguio City. BSI was commissioned to conduct the monitoring wherein Mr. Halcy Lemon P. Orquina led the team that conducted the 24-hours ambient air quality and noise level monitoring. Meanwhile, Mr. Francisco O. Flavier, Resident Manager of BMC Forestry Corporation – BC ILP, served as site contact person during the activity.

The pollutants considered for the 24-hours ambient air quality monitoring were particulate matter less than 10 microns (PM_{10}), sulfur dioxide (SO_2), and nitrogen dioxide (NO_2) at three (3) designated sampling stations within the plant's vicinity (see *Annex A*). In addition, noise level measurements were also undertaken at the same stations.

2. OBJECTIVE OF THE MONITORING

The purpose of the monitoring was to verify the company's compliance with the ambient air quality guideline values of the Department of Environment and Natural Resources (DENR) Administrative Order No. 2000-81 (Implementing Rules and Regulations of the Philippine Clean Air Act of 1999), and the noise level standards of the National Pollution Control Commission (NPCC) Memorandum Circular 002 Series of 1980.

3. METHODS OF SAMPLING AND ANALYSIS

3.1 24-Hours Ambient Air Quality Monitoring

The prescribed methods of sampling and analysis in DAO No. 2000-81 for PM₁₀, SO₂, and NO₂ were employed. The methodologies are discussed in this section and presented in *Table 1*.

Parameter	Sampling Methodology / Analysis			
Particulate Matter less than 10 microns (PM16)	Low Volume - Gravimetric Method			
Sulfur Dioxide (SO ₂)	Bubbler - Pararosaniline Method			
Nitrogen Dioxide (NO ₂)	Bubbler - Griess-Saltzman Reaction Method			

Table 1. Methods of Ambient Air Sampling and Analysis

Reference: USEPA 40 CFR, Part 50

24-Hours Ambient Air Quality and Noise Level Monitoring Report

3.1.1 Particulate Matter less than 10 microns

Sampling of PM₁₀ was carried out by using a low volume PM₁₀ sampler. Ambient air was drawn at a controlled flow rate into a specially-shaped cyclone inlet where the larger particulates are inertially separated from PM₁₀ size range. Each size fraction in the PM₁₀ size range is then collected on a pre-weighed glass microfiber filter over the specified sampling period. The filter paper with retained particles was recovered after sampling and desiccated for 24 hours in the laboratory followed by accurate weighing using a calibrated mass balance. The net weight (mass gain) from the initial and final masses of the filter paper corresponds to the amount of PM₁₀ collected. The concentration of PM₁₀ in ambient air was determined from the ratio of total mass of PM₁₀ collected and the total normal volume of air sampled.

3.1.2 Sulfur Dioxide

Sulfur dioxide in the ambient air was sampled using a handy gas sampler by aspirating air at a controlled flowrate into a solution of 0.04 M sodium tetrachloromercurate (TCM) through a glass midget impinger over the specified sampling period. The solution was then treated in the laboratory with formaldehyde and with a specially purified acid-bleached pararosaniline to form an intensely colored pararosaniline methyl sulfonic acid. The color intensity was measured spectrophotometrically at 548 nm and is directly related to the amount of SO₂ collected. SO₂ concentration was determined from the difference between the absorbance of the sample and blank, multiplied by the calibration factor, and divided by the total normal volume of air sampled.

3.1.3 Nitrogen Dioxide

Nitrogen dioxide in the ambient air was determined using Griess-Saltzman Reaction Method. Air was drawn using a handy gas sampler at a controlled flowrate into an azo dye forming reagent through a glass midget impinger over a specified sampling period. The absorption reaction produces a stable red-violet color. The color intensity was read by a spectrophotometer in a laboratory at 550 nm and is directly related to the amount of NO₂ collected. NO₂ concentration was determined from the difference between the absorbance of the sample and blank, multiplied by the calibration factor, and divided by the total normal volume of air sampled.

3.2 Sampling Observations

Meteorological observations such as wind direction and speed were recorded during the duration of the activity in order to correlate the interpretation of the gathered concentrations.

24-Hours Ambient Air Quality and Noise Level Monitoring Report

3.2.1 Wind Direction

Wind direction is the direction from which the wind originates. It is reported in the cardinal directions. The wind direction in a certain station is determined by observing the motion of the wind from field observation of objects such as trees, grasses, smoke, etc. using a compass as a reference.

3.2.2 Wind Speed

Wind speeds were recorded during the sampling activity using the Beaufort Wind Scale as a guide. Devised by Britain's Admiral Sir Francis Beaufort, this was one of the first scales used to estimate and report wind speeds via visual observations. The scale starts with 0 and goes to a force of 12. *Table 4* details the categorization of the Beaufort wind forces 0 to 4 only, along with the corresponding equivalent speeds, wind descriptions, and land observations.

Equivalent Speed (m/s)	Description	Land Observation
0.0 - 0.2	Calm	CalmSmoke rises vertically
0.3 - 1.5	Light Air	 Direction of wind shown by smoke drift, but not by wind vanes
1.6 - 3.3	Light Breeze	Wind felt on exposed skinLeaves rustleWind vanes begin to move
3.4 - 5.4	Gentle Breeze	Leaves and small twigs constantly movingLight flags extended
5.5 - 7.9	Moderate Breeze	Dust and loose paper raisedSmall branches begin to move
	(m/s) 0.0 - 0.2 0.3 - 1.5 1.6 - 3.3 3.4 - 5.4	(m/s) Description 0.0 - 0.2 Calm 0.3 - 1.5 Light Air 1.6 - 3.3 Light Breeze 3.4 - 5.4 Gentle Breeze 5.5 - 7.9 Moderate

Table 2. Modern Beaufort Wind Scale

Source: Encyclopedia of Coastal Science (2005)

3.2.3 Cloud and Rain Description

The systems used to describe sky condition and rain description during the sampling period are outlined in *Tables 3* and *4*, respectively. These terminologies were adopted and used by the Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA).

24-Hours Ambient Air Quality and Noise Level Monitoring Report

Sky Condition	Definition / Description
Clear or Sunny Skies	 State of the sky when it is cloudless, totally clear or with a few small light clouds visible. Has a total cloud cover of less than one okta.
Partly Cloudy	 State of the sky is within 2-5 oktas total cloud cover or has between 30% to 70% cover of the celestial dome.
Partly Cloudy to at Times Cloudy	 Mostly partly cloudy but there are times when more than 70% of the celestial dome is covered with clouds.
Mostly or Mainly Cloudy	 The sky is mostly covered with clouds but with possible brief periods of sunshine. The total cloud cover is between 6 to 8 oktas.
Cloudy	 The sky is covered with clouds between 6 to 8 oktas or has more than 70% cloud cover. Predominantly more clouds than clear sky. For a longer period during the day, the sun is obscured by clouds.
Overcast	 The sky is totally or completely covered with thick and opaque clouds, 8 oktas or around 100% cloud cover.

Table 3. Cloud Description

Table 4.	Rain Description

Definition / Description				
 Scattered drops that do not completely wet an exposed surface regardless of duration. 				
 The rate of fall is from trace to 2.5 mm per hour. Individual drops easily identified and puddles (small muddy pools) form slowly. Small streams may flow in gutters. 				
The rate of fall is between 2.5 mm to 7.5 mm per hour.Puddles rapidly forming and down pipes flowing freely.				
 The rate of fall is greater than 7.5 mm per hour. The sky is overcast, there is a continuous precipitation. Falls in sheets, misty spray over hard surfaces. May cause roaring noise on roofs. 				
Heavy and continuous precipitation attributed to either the Southwest or Northeast Monsoon.				
 Not frequent but is recurrent precipitation. 				
· Precipitation occurring extensively throughout an area.				
· Precipitation occurring regularly and often throughout the time duration.				
· Precipitation which ceases at times and re-occur again.				

24-Hours Ambient Air Quality and Noise Level Monitoring Report

3.3 24-Hours Ambient Noise Level Monitoring

A direct-reading sound level meter (in A-weighting network) was used to collect noise level data at each sampling station. A-weighted (dBA) scale was selected as required by the 1978 NPCC and the 1980 NPCC standards were also based on the same weighting network. A-weighting network most closely approximates the response of human ear to various sound frequencies.

The procedure used followed that of Wilson (1989), in which at least a total of fifty (50) readings were recorded in order to increase the confidence limits of the data. Procedures outlined by Wilson (1989) were adopted in the monitoring as the time interval, duration of sampling, size of data needed, and methods of noise level analysis were not specified in the 1978 NPCC.

According to the provision provided in the NPCC Memorandum Circular 002 (1980), the arithmetic median of seven (7) maximum-recorded noise levels is regarded as the noise level comparable to the standard. 24-Hours ambient noise levels were undertaken at four periods with the inclusive times as seen in *Table 5*. Field observations during the monitoring were also noted so as to identify the primary sources of noise in each area.

Table 5.	Noise Monitoring Periods		
Period	Time		
Morning	5:00 AM - 9:00 AM		
Daytime	9:00 AM - 6:00 PM		
Evening	6:00 PM - 10:00 PM		
Nighttime	10:00 PM - 5:00 AM		

4. RESULTS AND DISCUSSION

4.1 24-Hours Ambient Air Quality Monitoring

Three (3) designated sampling stations were assessed with PM_{10} , SO_2 and NO_2 . The pollutant concentrations, as presented in *Table 6*, were within the DENR National Ambient Air Quality Guideline Values (NAAQGV) for Criteria Pollutants of 150 µg/Ncm for PM₁₀, 180 µg/Ncm for SO₂, and 150 µg/Ncm for NO₂ based on 24 hours averaging time.

Table (

Station	Location	Date / Time of Sampling		SO ₂ (µg/Ncm)	NO ₂ (µg/Ncm)
A24-1	Basketball Area	May 27-28, 2024 / 1420H-1420H	8.06	0.29	4.00
A24-2	Near Plant Barracks	May 28-29, 2024 / 1433H-1433H	7.27	0.57	1.97
A24-3	Near Bamboo Plantation/Water Tank	May 29-30, 2024 / 1500H-1500H	6.27	0.94	1.18
DE	NR National Ambient Air (Criteria Pollutants based	Quality Guideline Values for on 24 hours averaging time	150	180	150

24-Hours Ambient Air Quality and Noise Level Monitoring Report

24-Hours Ambient Air Quality Monitoring Results

Sampling observations during the monitoring as well as photo documentations are summarized in *Table 7*. Moreover, the summary of results including the gathered meteorological data, laboratory certificate of analyses, and calibration records of the equipment used were attached in *Annexes B*, C, and D, respectively.

24-Hours Ambient Air Quality and Noise Level Monitoring Report

7

Station	Field Observations	Photo Documentations		
<i>A24-1</i> Basketball Area May 27 to 28, 2024 1420H-1420H	The monitoring station is located on cement ground of the basketball court. Behind the station is a rocky terrain. The area is surrounded by trees and grass. No vehicular activities were observed. Plant is at normal operation during the monitoring. Weather was generally cold with mostly cloudy to overcast skies. Wind was blowing predominantly from the southeast at light air condition. Light to heavy rainfall occurred during the periods between 1520H to 1920H, 0620H to 0820H and 1320H to 1420H occurred during sampling. Air temperature ranged from 20.1 to 28.3°C, with hourly readings averaging to 23.4°C.			
<i>A24-2</i> Near Plant Barracks May 28 to 29, 2024 1433H-1433H	The monitoring station is located on gravelly ground partly covered with grass near Plant Barracks. The area is surrounded by trees and plants. No vehicular activities were observed. Plant is at normal operation during the monitoring. Weather was generally cold with partly cloudy to overcast skies. Wind was blowing predominantly from the southeast at light air to light breeze condition. Light rainfall occurred during the period between 1533H to 1833H and 0133H to 0333H occurred during sampling. Air temperature ranged from 21.2 to 30.5°C, with hourly readings averaging to 24.3°C.	Name 1 a dist were to distance transmission of the second		
<i>A24-3</i> Near Water Tank May 29 to 30, 2024 1500H-1500H	The monitoring station is located on an elevated and unpaved soil ground covered with grass. The area is surrounded by trees and small plants. No vehicular activities were observed. Plant is at normal operation during the monitoring. Weather was generally cold with partly cloudy to overcast skies. Wind was blowing predominantly from the southeast at light air condition. Light rainfall occurred during the period between 1600H to 2300H and 0400H to 0600H occurred during sampling. Air temperature ranged from 20.4 to 29.6°C, with hourly readings averaging to 23.8°C.	And the second sec		

Table 7. Field Observations and Photo Documentations during Sampling

24-Hours Ambient Air Quality and Noise Level Monitoring Report

4.2 24-Hours Ambient Noise Level Monitoring

The same three (3) ambient air quality stations were monitored for 24-hours ambient noise level and the results are presented in Table 8.

All stations are categorized under Class C areas (a section which is primarily reserved as a light industrial area). As per NPCC Memorandum Circular 002 Series of 1980, the applicable standards for Class C areas are 65 dBA for morning, 70 dBA for daytime, 65 dBA for evening, and 60 dBA for nighttime measurements.

Station	Location	Date / Time of Sampling	Period	Noise Level (dBA)	NPCC Standards Class C (dBA)
		May 28, 2024 / 0606H-0616H	MORNING	54	65
N24-1	Basketball Court Area	May 27, 2024 / 1630H-1640H	DAYTIME	52	70
1424-1		May 27, 2024 / 1803H-1813H	EVENING	52	65
		May 27, 2024 / 2203H-2213H	NIGHTTIME	44	60
		May 29, 2024 / 0530H-0540H	MORNING	56	65
N24-2	Near Plant Barracks	May 28, 2024 / 1441H-1451H	DAYTIME	56	70
1824-2	Near Flain Darracks	May 28, 2024 / 1800H-1810H	EVENING	55	65
		May 28, 2024 / 1000H-1010H	NIGHTTIME	55	60
		May 30, 2024 / 0600H-0610H	MORNING	56	65
N24-3	Near Bamboo	May 29, 2024 / 1438H-1448H	DAYTIME	55	70
1424-3	Plantation / Water Tank	May 29, 2024 / 1000H-1010H	EVENING	55	65
	0.0000	May 29, 2024 / 2200H-2210H	NIGHTTIME	56	60

ble 8.	24-Hours	Ambient	Noise	Level	Monitoring	Results

Class C - A section primarily reserved as a light industrial area

The results indicate that all stations complied with the 24-hours ambient noise level standards. The primary sources of noise are summarized in Table 9. The equipment calibration certificate of the noise meter used during the measurement is attached in Annex D.

Station	Location	Period	Sources of Noise
N24-1 Basketball G Area		Morning	Kiln operation, compressor and rustling of tree leaves
	Basketball Court	Daytime	Kiln operation, compressor and rustling of tree leaves
	Area	Evening	Kiln compressor, chirring insects and rustling of tree leaves
		Nighttime	Compressor, chirring insects and rustling of tree leaves
	Near Plant Barracks	Morning	Kiln #2 operation
N24-2		Daytime	People conversation and kiln #2 operation
1824-2		Evening	Raindrops, kiln #2 operation and people conversation
		Nighttime	Kiln #2 operation and chirring insects
		Morning	Kiln #2 operation, compressor and rustling of tree leaves
N24-3	Near Bamboo	Daytime	Kiln #2 operation, compressor and rustling of tree leaves
1944-3	Plantation / Water Tank	Evening	Kiln #2 operation, compressor and rustling of tree leaves
		Nighttime	Kiln #2 operation, compressor and rustling of tree leaves


24-Hours Ambient Air Quality and Noise Level Monitoring Report

5. REFERENCES

- DENR Administrative Order No. 2000-81, 1999. Implementing Rules and Regulations of the Philippine Clean Air Act of 1999.
- National Pollution Control Commission. 1978. Rules and Regulations of the National Pollution Control Commission, Chapter IV Article I - Noise Control Regulations, Sections 74-79, Implementing Rules and Regulations, Presidential Decree No. 984 (National Pollution Control Decree of 1976). Manila: Official Gazette. June 1978, 4477-4479 pp.
- National Pollution Control Commission. 1980. NPCC Memorandum Circular 002 Series of 1980 - Amendments to Article 1 (Noise Control Regulations), Chapter IV (Miscellaneous Regulations), Rules and Regulations of the National Pollution Control Commission. Manila: Official Gazette.
- PAG-ASA. 2004. Definition and description of weather forecast terminologies used and adopted by PAG-ASA. http://kidlat.pagasa.dost.gov.ph/wb/terminology.html (Accessed November 2013).
- U.S. National Archives and Records Administration. Code of Federal Regulations. Title 40 Part 50. National Primary and Secondary Ambient Air Quality Standards. 2000.
- Wilson, C. E. 1989. Noise Control: Measurements, Analysis, and Control of Sound and Vibration. New York: Harper & Row, Publishers, Inc.

ANNEX A

MAP OF AMBIENT AIR QUALITY AND NOISE LEVEL MONITORING STATIONS

ANNEX B

AMBIENT AIR QUALITY MONITORING SUMMARY OF RESULTS

Ambient Air Quality Summary of Results for the 24-Hour Monitoring of TSP, PM₁₀, Particulate Pb, SO₂, and NO₂

Project No. PJ24-241

· · · ·

BMC Forestry Corp. ILP Client

: Irisan, Baguio City Location

Station Code	A1	A2	A3
Location	Basket Bail Area	Near Plant Barracks Area	Near Bamboo Plantation / Water Tank
Date of Sampling	May 27, 2024	May 28, 2024	May 29, 2024
Time of Sampling	1420H-1420H	1433H-1433H	1500H-1500H

Particulate Matter Less than 10 Microns (PM ₁₀) Data					
Volume of air for PM ₁₀ sampling, Ncm	20.7239	20.6357	20.7240		
PM _{to} Weight, µg	167	150	130		
PM10 Concentration, µg/Ncm	8.06	7.27	6.27		

	Sulfur Dioxide (SO ₂) and Nitrogen Dioxide (NO ₂) Data			
Volume of air for SO _{2 and} NO ₂ sampling, Nom	1.2410	1.2357	1.2410	
SO ₂ Weight, µg	0.357	0.700	1,170	
SO2 Concentration, µg/Nom	0.29	0.57	0.94	
NC ₂ Weight, µg	4 970	2 440	1.460	
NO ₂ Concentration, µg/Ncm	4.00	1.97	1.18	

Average Temperature, °C	23.4	24.3	23.8
Clouds (Octa)	5/8 to 8/8	5/8 to 8/8	5/8 to 8/8
Prevailing Wind Direction	BF1	BF1, 8F2	8F1, 8F2
Prevailing Wind Condition	SE	SE	SE

	a	

Remarks:					
BF	Beaufort Force	BF1	Light Air (0.3 - 1.5 m/s)	BF3	Gentle Breeze (3.4 - 5.4 m/s)
BFO	Calm (0.0 - 0.2 m/s)	BF2	Light Breeze (1.6 - 3.3 m/s)	BF4	Moderate Breeze (5.5 - 7.9 m/s)

ANNEX C

LABORATORY CERTIFICATES

Unit 201-204 & 406 Rizalina Annex Bldg. 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 Fax No. 8929-4824 Email: info@elarsi.com

CLIENT ADDRESS	: BSI : 2 nd Fir., VA	G Bldg Ortigas Ave. Greenhills Metro Manila	Lab. Report No. Date/Time Sampled Date Received	 241927-AA 05-27-24 to 05-30-24 1600H
Contact Numl Nature of San No. of Sample	per nple/s	: 8863-6129 : Ambient Air Sample : Four (4)	Date Analyzed Date Reported	 05-31-24 05-31-24 to 06-06-24 06-06-24

[REPORT OF ANALYSES]

Sample No.	Sample ID	NO ₂ , ug ^a	Analysis Date/Time
ES-2408616	PJ 24 241 A24-1	4.97	05-31-24 1614H
ES-2408617	PJ 24 241 A24-2	2.44	05-31-24 1614H
ES-2408618	PJ 24 241 A24-3	1.46	05-31-24 1614H
ES-2408619	PJ 24 241 Blank	< 0.038	05-31-24 1614H

a - Method 406 / Griess-Saltzman

Reference

James P. Lodge Methods for Ambient Air Sempling & Analysis, 3rd edition

Analyzed By: JENAIA A. ANDAYA, RChT Laboratory Chemical Technician PRC Lic. No. 0009297

Analyzed By:

JESSEMAR G. GUIMBAQLIBOT, RChT Laboratory Chemical Technician PRC LIC. No. 0006100

Checked By:

JEMMA D. JACINTO, RCh Laboratory Supervisor PRC Lic. No. 0010872

Certified Correct By:

7 AL RENATO M. GOFREDO, JR., RCh Laboratory Manager PRC Lic. No. 0009824

DENR RECOGNIZED LABORATORY C.R. No. 006/2021

Test results reflect the quality of the samples as received. No portion of this report may be reproduced in any form without written authorization of ELARSI, inc This report is not valid without the official dry seal and watermarks of the laboratory

Page 1 of 1 Page/s

EI_HRAFORM_10

Unit 201-204 & 406 Rizalina Annex Bldg. 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 Fax No. 8929-4824 Email: info@elarsi.com

	VAG Bldg Ortigas Ave. Greenhills n. Metro Manila	Lab. Report No. Date/Time Sampled Date Received	241926-AA 05-27-24 to 05-30-24 1600H 05-31-24
Contact Number Nature of Sample/s No. of Sample/s Submitte	8863-6129 Ambient Air Sample	Date Analyzed Date Reported	06-27-24 to 07-04-24 07-04-24

Sample No.	Sample ID	SO ₂ , ug*	Analysis Date/Time
ES-2408612	PJ 24 241 A24-1	0.357	06-27-24 1400H
ES-2408613	PJ 24 241 A24-2	0.700	06-27-24 1400H
ES-2408614	PJ 24 241 A24-3	1.17	06-27-24 1400H
ES-2408615	PJ 24 241 Blank	< 0 155	06-27-24 1400H

[REPORT OF ANALYSES]

a - Pararosaniline Method / Color metric

Reference

CFR 40 Appendix A2 to Part 50

Analyzed By:

- m

JESSEMAR G. GUIMBAQLIBOT, RChT Laboratory Chemical Technician PRC Lic. No. 0006100 Checked By:

JEMMA STACINTO, RCh Laboratory Supervisor PRC Lic. No. 0010872 Certified Correct By: RENATO M. GOFREDO, JR., RCh Laboratory Manager PRC Lic. No. 0009824

Test results reflect the quality of the samples as received. No portion of this report may be reproduced in any term without writein authorization of ELARSI, Inc. This report is not valid without the official dry seal and watermarks of the laboratory

Page 1 of 1 Page/s

EI_HRAFORM_10

Unit 201-204 & 406 Rizalina Annex Bldg. 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 Fax No. 8929-4824 Email: info@elarsi.com

CLIENT	1	BSI			Lab. Report No.		241925-AA
ADDRESS	2nd Fir., VAG Bldg Ortigas Ave. Greenhills				Date/Time Sampled		05-27-24 to 05-30-24 1600H
		San Juan, M	Ae	ro Manila	Date Received	1	05-31-24
Contact Number : 8863-6129			8863-6129	Date Analyzed	:	06-06-24 to 06-10-24	
Nature of Sample/s		1	Ambient Air Sample	Date Reported	•	06-10-24	
No. of Sample/s Submitted		;	Four (4)				

[REPORT OF ANALYSES]

Sample No.	Sample ID	PM ₁₀ , ug ^a	Analysis Date/Time
ES-2408608	PJ 24 241 A24-1	167	06-06-24 0845H
ES-2408609	PJ 24 241 A24-2	150	06-06-24 0845H
ES-2408610	PJ 24 241 A24-3	130	06-06-24 0845H
ES-2408611	PJ 24 241 Blank	< 100	06-06-24 0845H

⁸ - Method 501 / Gravimetric

Reference.

James P. Lodge, Methods for Ambient Air Sampling & Analysis, 3rd edition

Analyzed By: JENAIA A. ANDAYA, RChT Laboratory Chemical Technician PRC LIC. No. 0009297 Checked By:

JEMMA D. JACINTO, RCh Laboratory Supervisor PRC LIc. No. 0010872 Certified Correct By:

1 RENATO M. GOFREDO, JR., RCh Laboratory Manager PRC Lic. No. 0009824

Test results reflect the quality of the samples as received. No portion of this report may be reproduced in any form without written authorization of ELARSI. Inc This report is not valid without the official dry seal and watermarks of the laboratory

Page 1 of 1 Page/s

EI_HRAFORM_10

LABORATORY C.R. No. 006/2021

Tel. No. 8927-77-15 , 8994-3443 * Fax No. 8929-48-24 * E-mail: info@elarsi.com Company : BSI Address : DE 11 + AS Avdition Contact Person : HALCY Official Contact No.Js Dast - 1379-9669						(Printed Namer Bonature)	zun	_ Date/Time: _ Date/Time:	31 manue	1 1237A
Walk-inC	puner Pick-up	Others	Nature of Sample (PLEASE Water Drinking Water	CHECK)' Motals Water	Approved by:	(Printed Name/Signature)	inter and	_ Date/Time	< <u>sijw</u>	1240
Sealed / Container Chilled/Frozen Room Temp Preserved orn Around Time _Urgent/Rush (3-5 Wo	Intact	Italiner Type Plastic Bottle Glass/Stente Glass TEDLAR Bag Others <u>Tr (Twr</u> Noutine (7-12 Working Days)	Dirinary Prate Water Others Stack Source Emission Air Stack Source Emission Work Env Measurement Others	Ar Others Solids Soli Sludge				FOR LAB. US	C ABIV	
			Units	Carlers	40					
OR LAB. USE ONLY* Sample No.	Sample Identification	Analyses Requested	Method Of Analysis	Date of Sampling/Time	No. of Samples	Remarks	Certificane Sent/Reported	E OF THE F Worksheet Secit	COC Serre	Sample Disposed
	R124-241									
PINIO	12-1-6-11			1 27-28						
	A 741	PMO	- Grannem.	may	12					
2408608-11	FII-21ths	Nov	- Rora nusaniune - Gnus - Jau zman	2024	32					
		pus		may						
502				100.00		W -2				
	1 2011	PMIO		2-2-24	1	Blonk				
-1108Ph- K	12-29/13	SON		> may	2	- 1-1-1-1				
		Nev		2019						
- Noz										
2408616-101										
2408010-101	A . 74H	PMIS		29-20						
	/13-21115	Son		7 man	(3)					
	BIOAK	petro							-	
	DIVIN			1 2029				-		
				· · · ·						
				1						
				11						
				llog	-			1		
				1			1	-		
							1			

Senai No 2023

ANNEX D

EQUIPMENT CALIBRATION CERTIFICATES

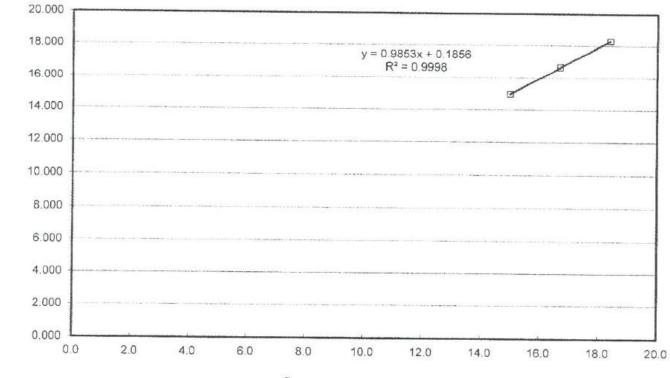
Calibration Report

Tisch Particulate Matter 10 (PM10) Air Sampler

No. 06012024PM₁₀475-11

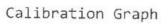
Submitted by: Edindo C. Fernando BSI (Berkman Systems Inc.,) Address: 2nd Floor VAG Bldg., Greenhills, San Juan

	Site	Calibrator Make/Model
Location:	On-Site	Make: BGI Tetracal
Date:	Jun 1, 2024	Model/S.N.: 139/#1, Range: 6-30LPM
Tech.:	Roberto L. Co	Result of Venturi Calibration
Sampler:	TE-Wilbur PM ₁₈ Air Sampler	No. 1: 5.37813 ΔP ^ 0.52138
Serial #:	475 / TSP - D SN: 3868	Overall Uncertainty: 0.35%


Temp	(°	F):		Elevation (ft):
Ta	(*	K);	295	SL Press (in Hg):
Та	("	C):	22	Pa (mm Hg): 752

Test Points	Sampler Flowmeter Setting, LPM	Q _a , LPM	Q _s , STP, LPM
1	15.0	15.050	14.950
2	16.7	16.746	16.670
3	18.4	18.368	18.300

Remarks: 1. The above values are those obtained at the time of test and refer only to the particular instrument submitted.


2. The flow rate controller was set at 16.7 LPM.

Calibrated by:

LPM

Qa,

 Q_{std} , LPM

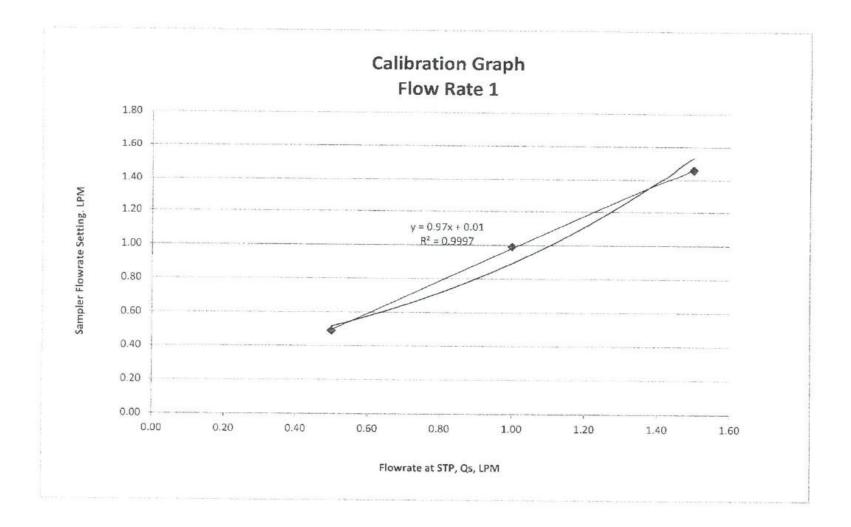
Page 2 of 2

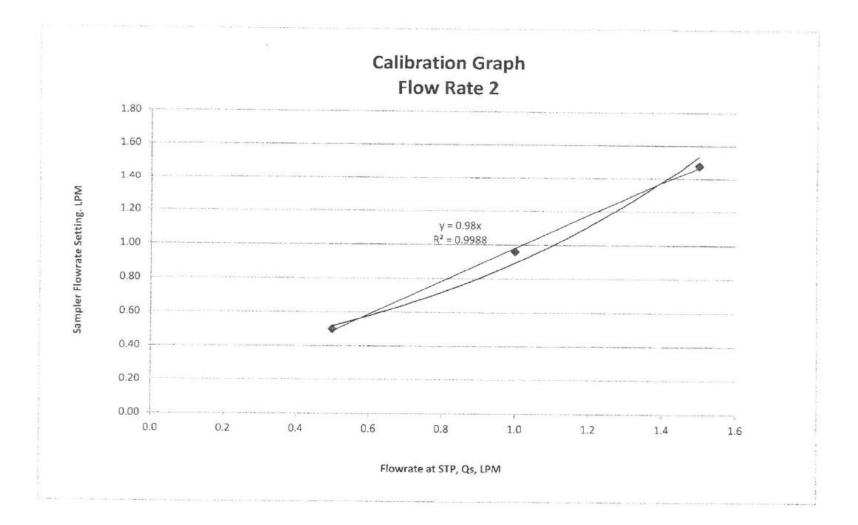
CALIBRATION REPORT No. 06292024GS-BSI-DGS-2-10

Instrument/Model:	BSI	Dual Gas Sampler	Standard Used:	Agilent ADM1000
Serial Number:		DGS-2		1000ml/min
		Edindo Fernando	Temp.,°C:	Accession in the second s
Address:	BSI	(Berkman System Inc)	Rel. Humidity,%:	the second se
Barometric Pressure, mm Hg:	752		아파 아	29-Jun-24

CALIBRATION DATA FLOW RATE 1

Test Point	UUT Flowmeter Setting, LPM	Qa, Actual, LPM	Q _s , STP, LPM
1	0.5	0,50	0.49
2	1.0	1.00	0.99
3	1.5	1.50	1.46


FLOW RATE 2


Test Point	UUT Flowmeter Setting, LPM	Qa, Actual, LPM	Q _s , STP, LPM
1	0.5	0.50	0.50
2	1.0	0.98	0.96
3	1.5	1.50	1.48

Remarks: 1. The above values are those obtained at the time of test and refer only to the particular instrument submitted.

Calibrated By:

Augo non L. Co Roberto L. Co

Switchtek **Measurement Systems**

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchlek.com.ph www.switchtek.com.ph

Certificate No: 4000.23-8979-4.23 **Calibration of** 3 INI (Anemometer, Barometer, %RH) Identification BERKMAN SYSTEMS INCORPORATED PI .lob: **Test and Verification** Fin.acc: 32 Certificate of Calibration Done___ December 5, 2023 Initials..: CAC Calegories Calibration Hen Hours **Total cost** Type Cal Officer 2 1.00 Certificate

CERTIFICATE OF CALIBRATION - 3 IN 1 (ANEMOMETER, BAROMETER, % RH)

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISOAEC MATE analost NIST to peak to set

issued to:	BERKMAN SYSTEMS INCORPORATED		
Address:	Suite 208 VAG Bldg., Ortigas Avenue, Green	shills, San Juan, Metro M	anita, Philippines
UNIT UNDER TEST (ມບາງ:	CALIBRATOR INFORMAT	TON:
Instrument	3 INI (Anemometer, Barometer, %RH)	Instrument:	Temperature and Humidity chamber
Brand:	LUTRON	Model No.:	X8-015-34
Model No.:	ABH-4225	Seriat No.:	20130803
Serial No.:	AJ.79434	Traceability:	CNAS
Range;	Velocity (0-30.0 m/s)	Instrument:	Rotating Vane Anemometer
	Temp. (0-50 Deg. C)	Manufacturer:	LUTRON
	Humidity (10 to 95%)	Model No:	AM-4206M
	Dewpoint (-25.3 to 48.9 Deg. C)	Serial No:	Q432206
	10.0 to 999.9 hPa	Range:	0 to 30.0 m/s
Resolution:	Velocity (0-30.0 m/s)/0.1 m/s	0.000000000	0 to 50.0 °C
	Temp. (0-50 Deg. C)/0.1 Deg. C	Calibrated Against:	UKAS, thru Laser Doppler Anemometer
	Humidity (10 to 95%)/0.1 %RH	Instrument:	Barigo, Precision Barometer
	Dewpoint (-25.3 to 48.9 Deg. C)/0.01 Deg. C	Calibrated Against:	NIST
	Barometeric (10.0 to 999.9 hPa) /0.1		
Calibration Date:	December 4, 2023		
Celibration Que:	December 3, 2024		
invironmental Condi	tion:		
Conditions	DRY/BASIC/NEUTRAL	Amblent Temp. (Deo C):	23 +2
Relative Humidity	52.2 +5%, 1010 hPa		

Calibration Method:

By comparison technique, unit under test was tested in reference with a Rotating vane anemometer, precision barometer. Standard Temperature and Humidity calibrator. Procedures of calibration and test conform to the requirements of NPL, NIST and ISO/IEC Guide 17025. Data were gathered and plotted against an ideal curve. Standard error and uncertainty of measurement are written on the attached sheet.

Remarks:

All data pertain only to the unit descripted attained at the time of test. This certificate is not valid w/out seat and signature. Unauthorized reproduction is prohibited.

Calibrated By: Certified By: CA. CASAD December 4, 2023 Date: Date: Decemb $\begin{array}{c} (1-\chi_{1}^{-1})_{1} & = (1-\chi_{1}^{-1})_{1} + \frac{(1+\chi_{1}^{-1})_{1}^{-1}}{(1-\chi_{1}^{-1})_{1}^{-1}} + (1-\chi_{1}^{-1})_{1} + (1-\chi_{1}^{-1})_{1}^{-1} + (1-\chi_{1}^{-1})_{1}^{-1$ $(a_{ij}^{(k)})^{(k)} = (a_{ij}^{(k)})^{(k)} (a_{i$

27.00

Switchtek Measurement Systems

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.02 4267593 / 9202869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph www.switchtek.com.ph

Certificate No.: Identification: Address:

4000.23-8979-4.23 Calibration of 3 INI (Anemometer, Barometer, %RH) BERKMAN SYSTEMS INCORPORATED Suite 208 VAG Bldg., Orilgas Avenue, Greenhills, San Juan, Metro Manila, Philippines

CERTIFICATE OF CALIBRATION - 3 IN 1 (ANEMOMETER, BAROMETER, % RH)

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

UNIT UNDER TEST (UUT):

Instrument	3 INI (Anemometer, Barometer, %RH)
Brandt	LUTRON
Model No.:	ABH-4225
Serial No.:	AJ.79434
Range:	Velocity (0-30.0 m/s)
	Temp. (0-50 Deg. C)
	Humidity (10 to 95%)
	Dewpoint (-25.3 to 48.9 Deg. C)
	10.0 to 999.9 hPa
Resolution:	Velocity (0-30.0 m/s)/0.1 m/s
	Temp. (0-50 Deg. C)/0.1 Deg. C
	Humidity (10 to 95%)/0.1 %RH
	Dewpaint (-25.3 to 48.9 Deg. C)/0.01 Deg. C
	Barometeric (10.0 to 999.9 hPa) /0.1

Calibration Date:	December 4, 2023		
Calibration Due:	December 3, 2024		
Calibrated By:	C.A. CASADO		

MODE: THERMOHYGROMETER

Results:

Temperature:

REFERENCE READING (°C)	UNIT UNDER TEST READING (°C)	ERROR IN READING ("C)	STANDARD DEVIATION	REMARKS
9.6	9.9	-0.30	0.2121	The user should determine
20.0	21.3	-1.30	0.9192	the suitability of the
23.9	24.8	-0.90	0.6364	instrument of its intended
40.4	39.8	0.60	0.4243	use.

Uncertainty: * 1.22 *C

Relative Humidity:

REFERENCE READING (% RH)	UNIT UNDER TEST READING (% RH)	ERROR IN READING (% RH)	STANDARD DEVIATION	REMARKS
73.7	58.0	15.70	11.1016	
64.2	50.6	13.60	9.6167	
55.0	42.0	13.00	9.1924	DO NOT USE THIS MODE
47.0	35.0	12.00	8.4853	

Uncertainty: # 12.01 % RH

Stages and the set of the period of the State Control of the State St

Switchtek Measurement Systems

A Division of Switchtek Construction Corporation 4th Floor Northridge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Ouezon City, 1100, Philippines Tel Nos.02 4267593 / 9282869 / 9287769 Fax No.4537694 email Address: admin@switchtek.com.ph www.switchtek.com.ph

Certificate No.:	4000.23-8979-4.23	Calibration of	3 INI (Anemometer, Barometer, XRH)
Identification:	BERKMAN SYSTEMS INCORPO	RATED	
Address:	Suite 208 VAG Bldg., Ortigas /	Ivenue, Greenhills, San Juar	n, Metro Manila, Philippines

CERTIFICATE OF CALIBRATION - 3 IN 1 (ANEMOMETER, BAROMETER, % RH)

This report of calibration shall document that the instrument herein was examined and lested in compliance with ISO/IEC 17025 against NIST traceable reference standards and its co-equal standards.

UNIT UNDER TEST (UUT):

Instrument:	3 INI (Anemometer, Barometer, XRH)
Brandt	LUTRON
Model No:	ABH-4225
Serial No.:	AJ.79434
Range:	Velocity (0-30.0 m/s)
	Temp. (0-50 Beg. C)
	Humidity (10 to 95%)
	Dewpoint (-25.3 to 48.9 Deg. C)
	10.0 to 999.9 hPa
Resolution:	Velocity (0-30.0 m/s)/0.1 m/s
	Temp. (D-50 Deg. C)/0.1 Deg. C
	Humidity (10 to 95%)/0.1 %RH
	Dewpoint (-25.3 to 48.9 Deg. C)/0.01 Deg. C
	Baromeleric (10.0 to 999.9 hPa) /0.1

Calibration Date:	December 4, 2023
Calibration Due:	December 3, 2024
Calibrated By:	C.A. CASADO

MODE: THERMOHYGROMETER

Results:

Barometric

REFERENCE READING (hPa)	UNIT UNDER TEST READING (hPa)	ERROR IN READING (hPa)	STANDARD DEVIATION	REMARKS
1015	1007	8.00	5.6569	The user should determine
1010	1004	6.00	4.2426	the suitablity of the instrument for its intended
1000	993	7.00	4.9497	use

Standard error: # 8.57 hPa Uncertainty: # 7.87 hPa

Velocity

REFERENCE READING (nv/s)	UNIT UNDER TEST READING (m/s)	ERROR IN READING (m/s)	STANDARD DEVIATION	REMARKS
0.00	0.00	0.00	0.0000	The user should determine
5.20	5.10	0.10	0.0707	the suitablity of the
9.55	9.40	0.15	0.1061	instrument for its intended
15.10	14.90	0.20	0.1414	use

Standard error: # 0.16 m/s

Uncertainty: # 0.59 m/s

A particular sector is a subscription of the standard state is a sector of the subscription of the sector is a sector of the sector of the sector is a sector of the sector is a sector of the sector of the

Switchtele Measurement Systems

A Division of Switchtek Construction Corporation 4th Floor Northeidge Plaza, Annex A, 12 Congressional Ave., Bahay Toro, Quezon City, 1100, Philippines Tel Nos.83517471 / 89282869 / 89287769 Fax No.84420560 email Address: admin@switchtek.com.ph www.switchtek.com.ob

Certificate No.:	400.01-8979-1.23	Calibration of	Sour	d Level Meter	
Identification:	BERKMAN SYSTEMS INCORPORATED				
Job:	PI	Test and Veri	fication		
Fin.acc:	32	Certificate of	Calibration		
Done:	November 3, 2023	Initials:	CAC		
Categories	Calibration	Men	Hours	Total cost	Туре
Cal Officer		2	1.0	-	Certificate

CERTIFICATE OF CALIBRATION - SOUND LEVEL METER

This report of calibration shall document that the instrument herein was examined and tested in compliance with ISO/NEC 17825 against NIST traceable reference standards and Rs co-equal standards.

Brand:

CALIBRATOR INFORMATION

BERKMAN SYSTEMS INCORPORATED Issued To:

Address: Suite 208 VAG Bldg, Ortigas Avenue, Greenhells, San Juan, Metro Manila, Philippines

UNIT UNDER TEST (UUT):

Instrument	Sound Level Meter
Brand:	Lutron
Madel No:	SL-4030
Serial No:	1503730
ID Code:	No record
Range:	30 to 130 dB
Graduation:	0.1 dB
Calibration Date:	November 3, 2023
Calibration Due:	November 2, 2024

Instrument Sound Level Calibrator Lutron Serial No: 1278821 Model No: SC-942 Traceability: IEC 60942 Type II A Standard NIST and NPL

Environmental Condition:

Condition:	DRY/BASIC/NEUTRAL	Ambient Temp. (Deg C):	21.7 +2
Relative Humidity:	51.3 +5% 1906 hPa		

Calibration Method:

By comparative technique, Standard Sound Generator was introduced at the unit under test at a constant value of 94.0 dB and 114.0 dB at a uniform frequency of 1000 Hz. Data were gathered and tabulated. Procedures of test conform to the requirements of DIML 88 Guidelines, IEC 60942 of the NIST and National Physical Laboratories.

During calibration, the unit was found to have a standard error of + 0.10 dB with a confidence level of not less than 95%. Uncertainty of measurement is # 0.28 dB. Calculations were taken using the Standard Deviation Formula.

Results:

TRIALS REFERENCE READING (dB)	The Cost of the Co	G READING (dB)		ERROR IN READING	STANDARD	REMARKS
	AS FOUND	AS LEFT	(48)	DEVIATION		
1	94.0	94.3	94	0.000	0.0000	Passed
2	114.0	114.5	114.2	0.200	0.1414	Passed

Remarks:

All data pertain only to the unit desprined obtained at the time of test. This certificate is not valid w/out seal and signature. Unauthorized reproduction is prohibited.

Calibrated By: C.A. CASADO Date: November 3, 2023

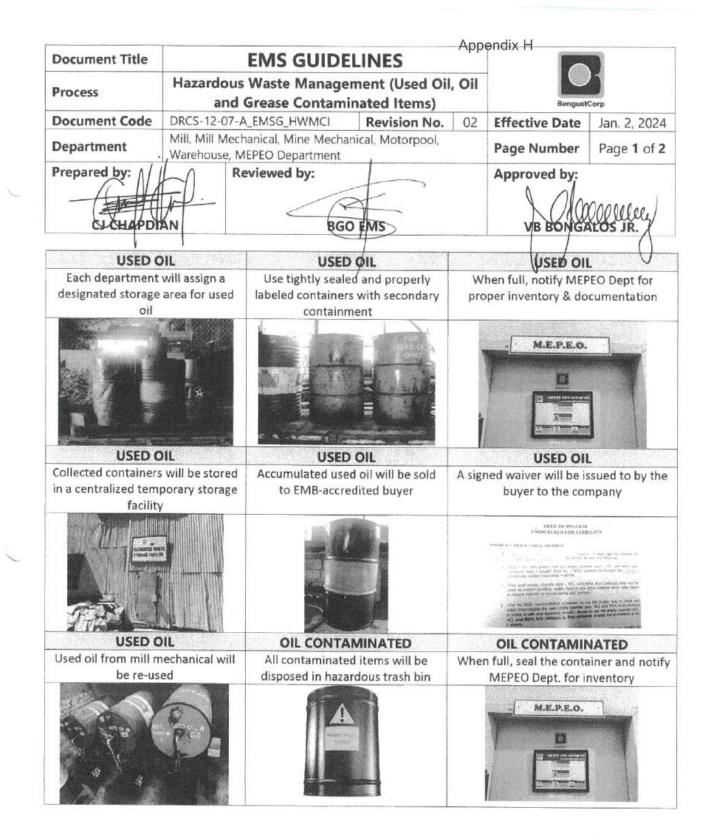
Certified By : Date :

Apply a provide the second second second and provident transmission of the "data for the second control on the second s second secon 1. JAM & DI

ANNEX E

TEST PARTICIPANTS

0

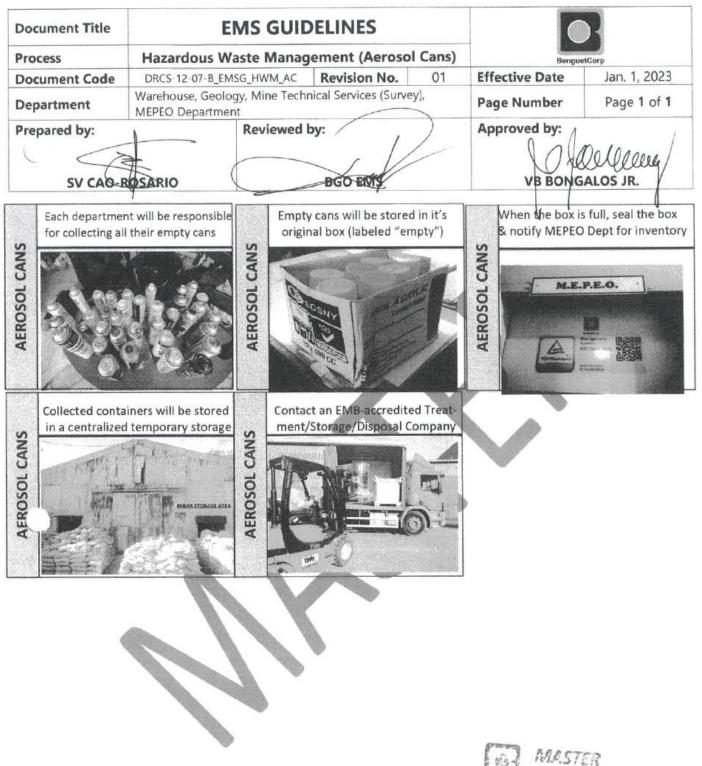

TEST PARTICIPANTS

BMC FORESTRY CORPORATION - BC ILP

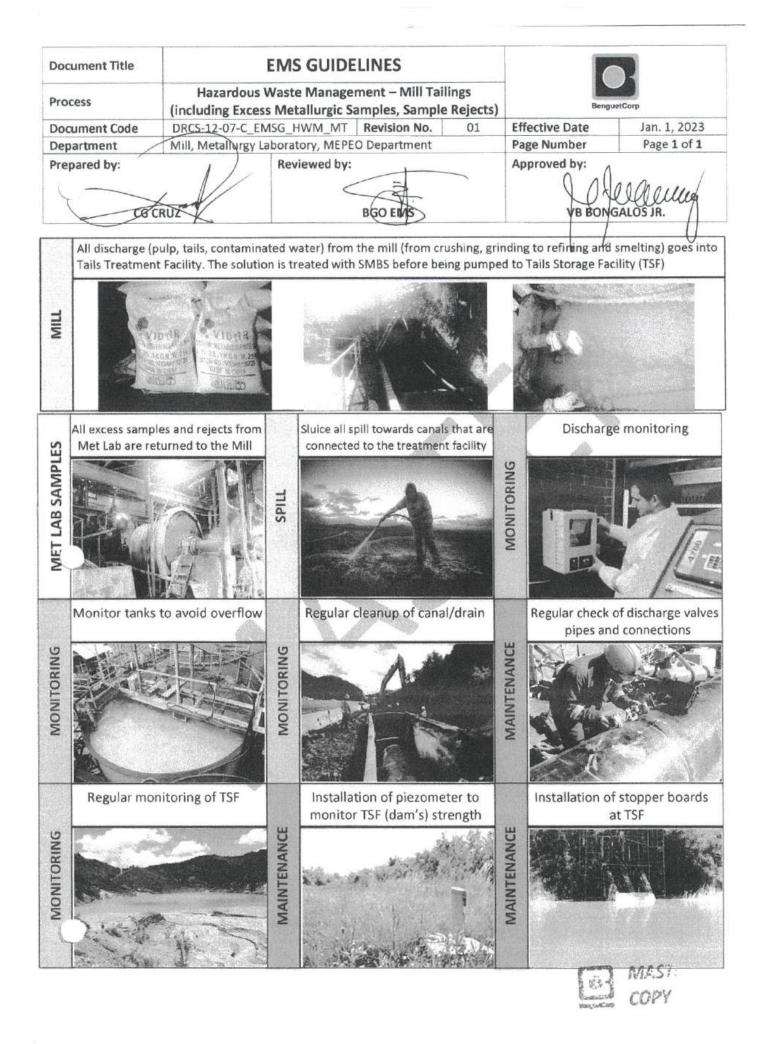
Mr. Franciso O. Flavier - Resident Manager

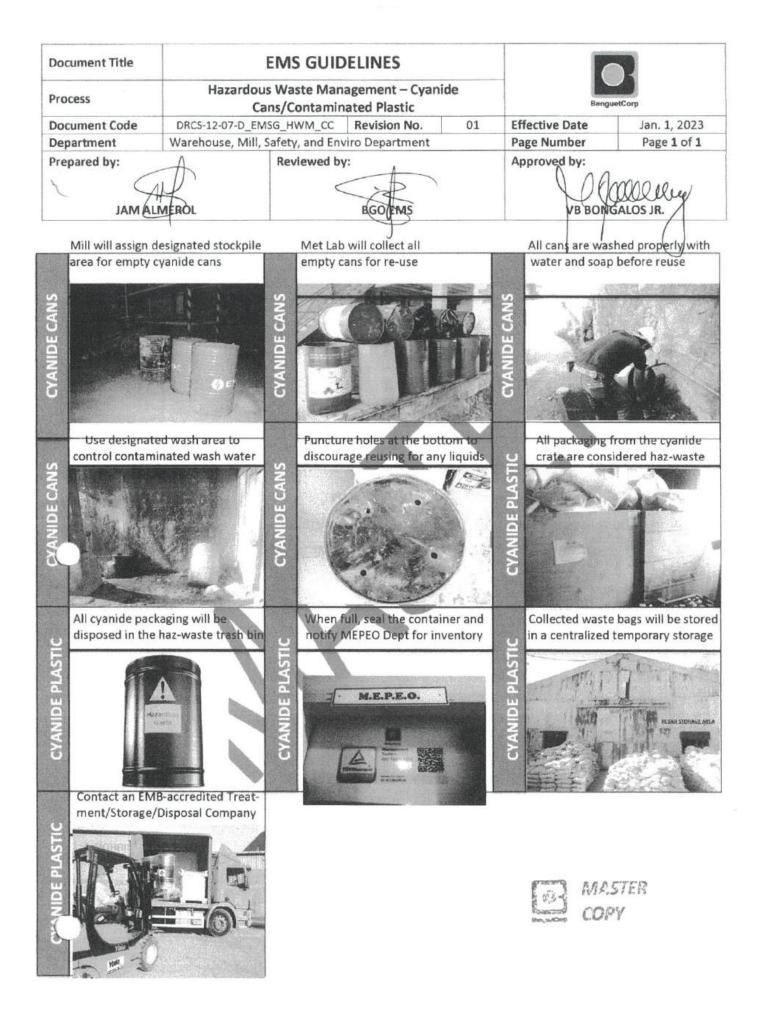
BSI

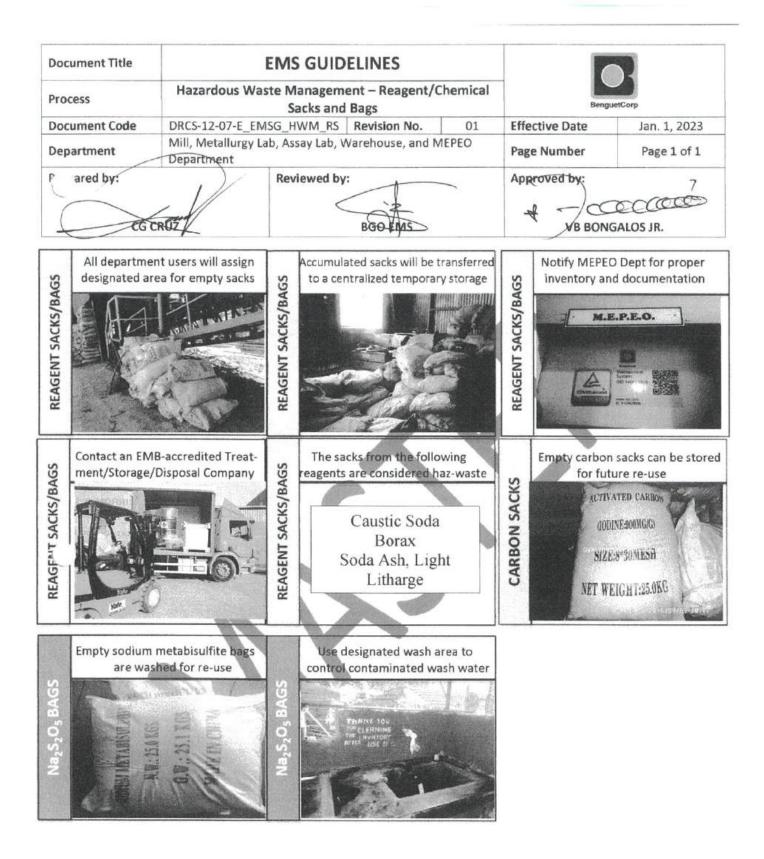
Mr. Halcy Lemon P. Orquina	-	Field Engineer
Mr. Edindo C. Fernando	-	QA/QC Manager
Mr. Joseph Dandy A. Quilet	4	Field Technician
Mr. Christian A. Soleta	-	Field Technician
Mr. Jimuel B. Torellino		Sampling Aide / Driver

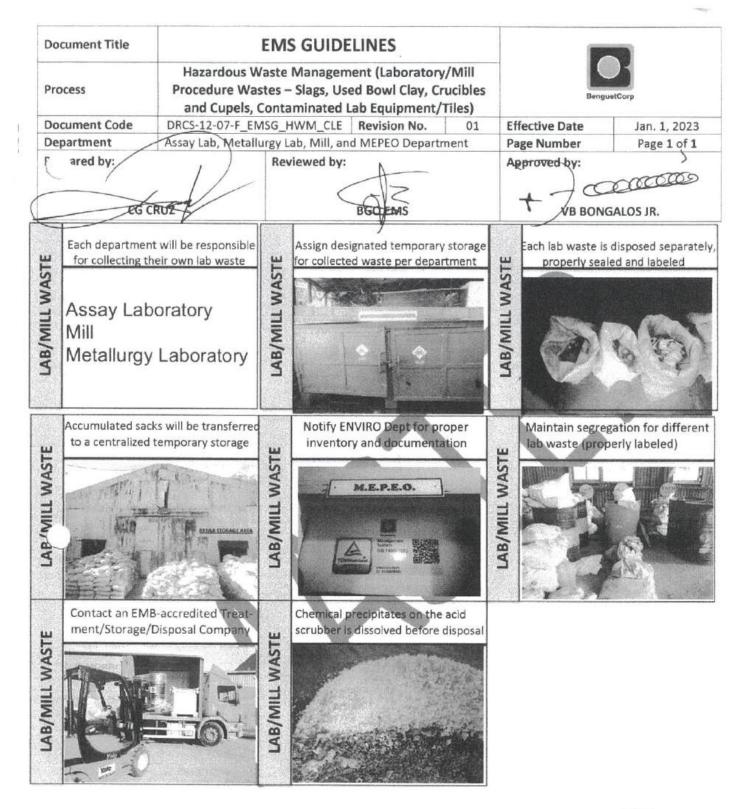


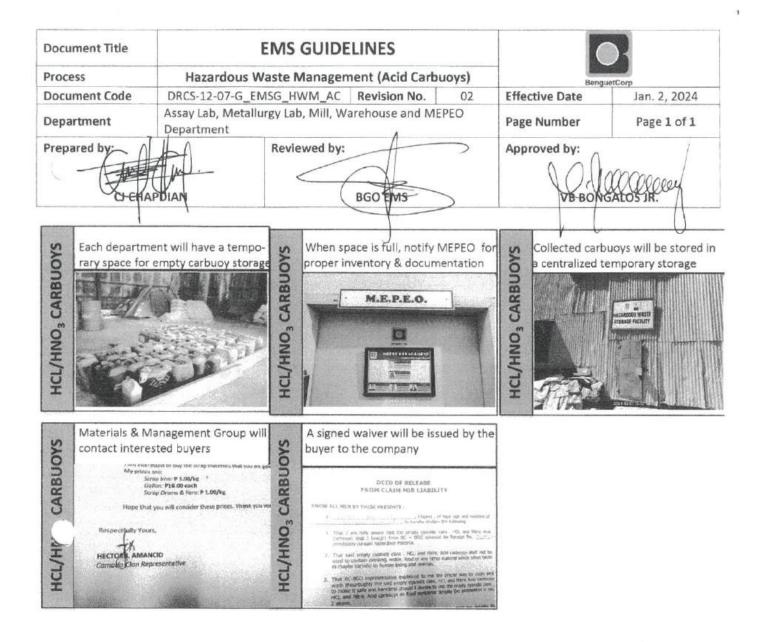
Document Title	EMS GUIDELINES Hazardous Waste Management (Used Oil, Oil and Grease Contaminated Items)				
Process				BenguetCorp	
Document Code	DRCS-12-07-A_EMSG_HWMCI	Revision No.	02	Effective Date	Jan. 2, 2024
Department	Mill, Mill Mechanical, Mine Mecha Warehouse, MEPEO Department	anical, Motorpool,		Page Number	Page 2 of 2

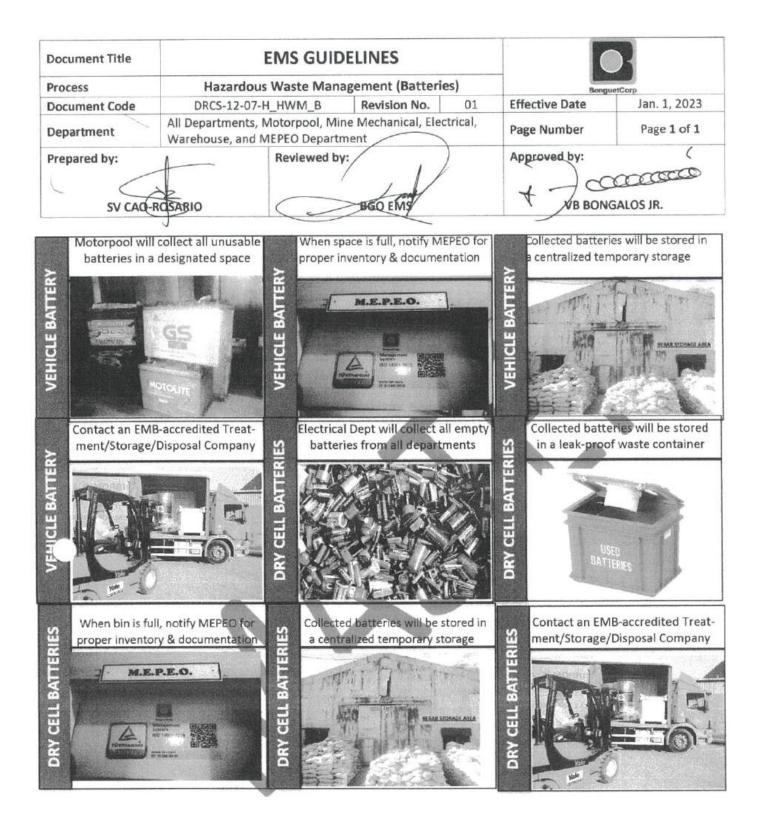

OIL CONTAMINATED	OIL CONTAMINATED	OIL CONTAMINATED
Collected containers will be stored in a centralized temporary storage facility	Contact an EMB-accredited Treatment/Storage/Disposal Company	Used spill kit materials are disposed in the hazardous trash bin
And		HAZARDOUS WASTE

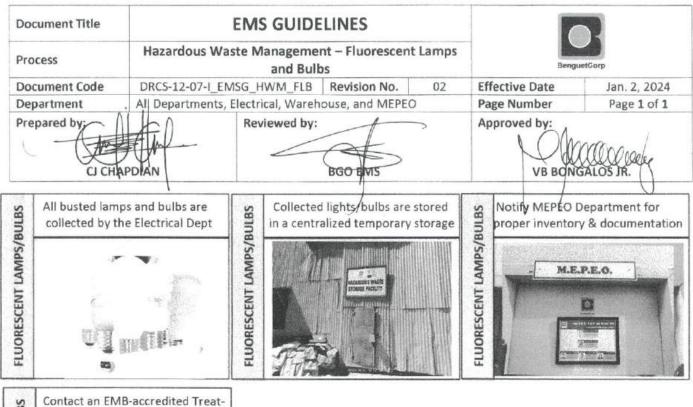




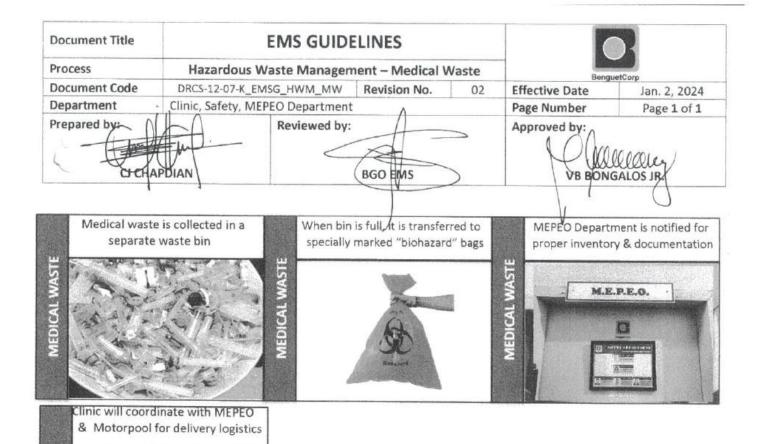

MASTER COPY

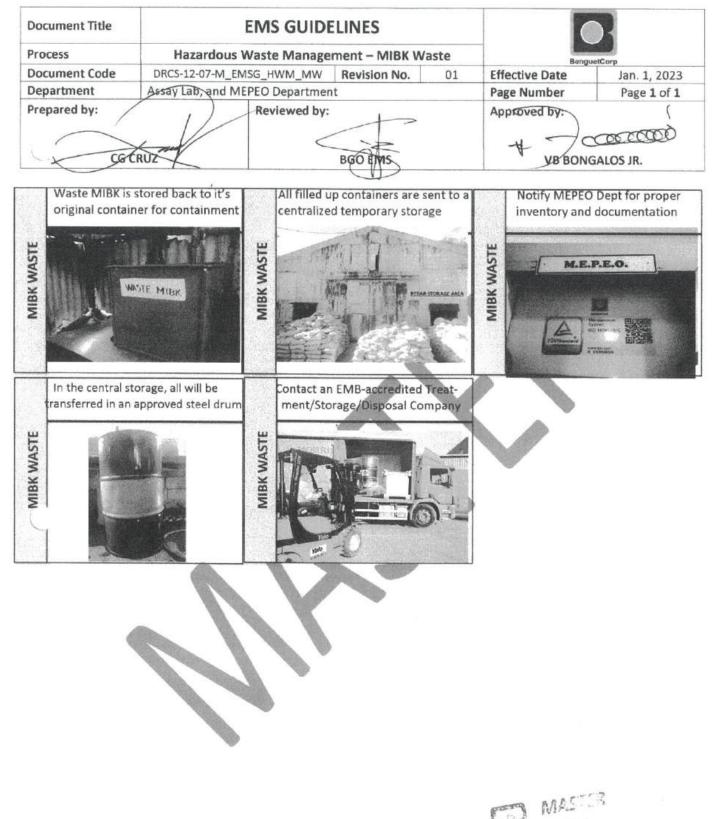


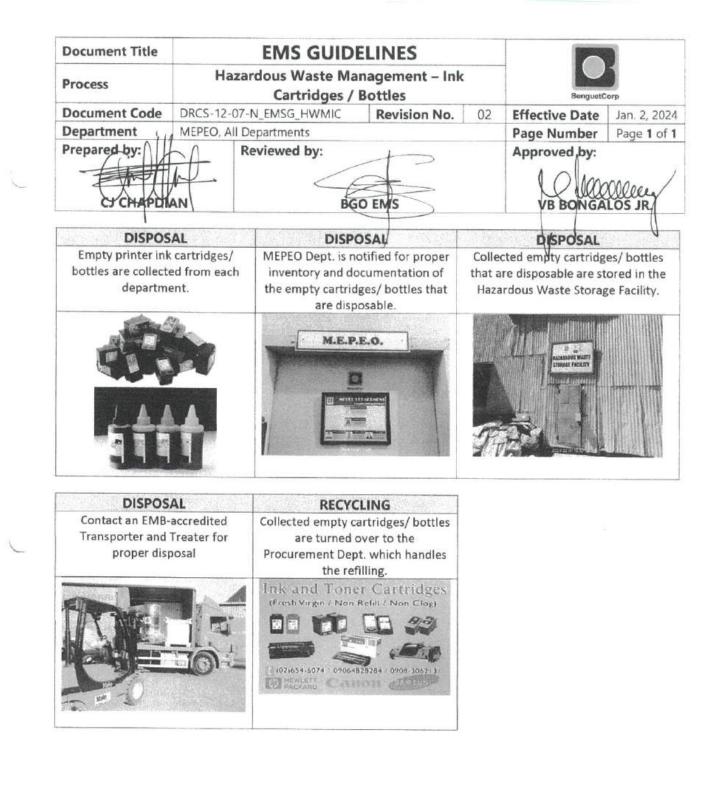




MASTER




MASTER


CAL WASTE

Appendix I

Republic of the Philippine Department of Environment and Natural Resources ENVIRONMENTAL MANAGEMENT BUREAU Cordillera Administrative Region

Baguio City

ENVIRONMENTAL COMPLIANCE CERTIFICATE

CAR 1012 - 174 - 2110 (Amended)

The Department of Environment and Natural Resources (DENR) thru the Environmental Management Bureau – Cordillera Administrative Region (EMB-CAR) hereby grants this Environmental Compliance Certificate (ECC) for the Acupan Contract Mining Project (ACMP) of Benguet Corporation located at the former Balatoc Power Station Area, Virac, Itogon, Benguet, after complying with the Environmental Impact Assessment (EIA) requirements as prescribed in the promulgated guidelines implementing section 3 (b) of P.D. 1586.

This Certificate is further specified as follows:

A. Scope:

- This Certificate is valid only for the abovecited project with a rated milling capacity not to exceed 300 dry metric tons per day (300 DMT/Day) and/or as described in the submitted documents.
- This Certificate does not exempt the project from the requirements of other concerned agencies;

B. Conditions:

- The development and operation of the project shall be in accordance with the plans and specifications described in the submitted documents. Any major modification and/or expansion shall be subject to the Environmental Impact Statement (EIS) System requirement;
- The proponent shall cause the implementation of the Environmental Management Plan (EMP) and all other BC commitments described in the submitted EIA documents;
- Tailings and other wastes generated from the operation of the plant shall be contained and disposed-off properly in the designated pollution control facility(ies) as described in the submitted EIA documents;
- Pond/plant effluent discharges shall conform with the standards set forth under RA 9275 otherwise known as the Clean Water Act of the Philippines and its implementing Rules and Regulations;

DENR Cmpd., Gibraltar Rd. Baguio City 2600 P.O. Box 1959 Telefax No. (074) 446-6440/ 443-4909 Tel. No. (074) 446-2881/442-2346

- Piezometer monitoring station(s) shall be installed along strategic area(s) at tailings pond nos. 1 and 2 (TP #1 & TP #2) to monitor phreatic level stability;
- 6. The legal requirements pursuant to RA 6969 also known as the Toxic Substances and Hazardous and Nuclear Waste Control Act of 1990, RA 9275 or the Philippine Clean Water Act of 2004 and, RA 8749 or the Philippine Clean Air Act of 1999 shall be secured consistent to the operations of the plant. Compliance to said requirements shall be coordinated with the EMB-CAR;
- 7. Should there be a breakdown in the pollution control appurtenances and/or major damage(s) incurred, the proponent shall voluntary cease its operation until such time that said damages incurred shall be rehabilitated or restored. Further, the proponent shall immediately inform the EMB, DENR-CAR of said damages and of the remedial measures undertaken;
- 8. The proponent shall submit to EMB-CAR one (1) year prior to the final shutdown of the plant a comprehensive abandonment plan. In relation, the EMB shall first review and approve the environmental aspects/components of the plan consistent with EMB functions prior to implementation;
- To oversee the compliance of the proponent with the ECC conditions, the proponent shall maintain the operation of the established Sectoral Monitoring Team including the Environmental Monitoring Fund (EMF) to cover all costs attendant to the said monitoring.
- The project is subject to on-the-spot monitoring/inspection at any reasonable time by the EMB-CAR which may be in coordination with concerned groups.
- The proponent shall cause the implementation of any undertaking which may be imposed by the EMB-CAR as a result of Technical Conference/s called relative hereof;
- This Certificate supersedes the Environmental Compliance Certificate (ECC) NO. CAR 0211-144-120 issued the project on November 29, 2002.
- This Certificate shall be deemed automatically expired if the project is not implemented within five (5) years from the date of issuance; and
- Any transfer of project proprietorship or project name carries the same conditions in this ECC for which notification to the EMB-CAR shall be made by the proponent within fifteen (15) days from such transfer.

Non-compliance with any of the above stipulations will be sufficient cause for the suspension or cancellation of this Certificate, administrative sanctions against the office head and/or imposition of fine in the amount not to exceed Fifty Thousand Pesos (P

50,000.00) for every violations thereof, at the discretion of the DENR (Section 9 of P. D. 1586).

- C. Recommendations (for the consideration of the project proponent, the PMRB-Benguet/MGB-CAR and, other concerned agencies in the issuance of applicable permits/authorities):
 - The recommendations cited in the Geotechnical Analysis of Dam and Review of the Hydrology for the Re-mining of Tailings from the BGO Tailings Ponds No. I, II, & III final report, where applicable, should be given preferential consideration under the requirements of the MGB-CAR;
 - Qualified local residents should be given priority employment during the development and operation of the project;
 - Construction works should be under the tight supervision of a technical personnel to ensure that standards and requirements of sound engineering, safety and health practices are strictly followed;
 - An emergency response and contingency plan in the event of failure of any of the project appurtenant facilities and/or during disaster/calamity; and
 - The appurtenant physical structures and equipment of the project, where applicable, are subject to the requirements of the National Building Code of the Philippines and the permitting requirements of MGB-CAR/LGUconcerned.

Issued this _____day of 5 DEC 2010 Year Two Thousand Ten.

RECOMMENDING APPROVAL:

APPROVED:

TISTIMO NESTOR M. DONAAL

Chief, EIA Division

PAQUÍTO T. MÓRENO, JR. Regional Director

 Amendment of ECC Condition <u>₽ 1,200.00</u> O.R. No.
 Date

 Legal Research Fee
 <u>₽ 240.00</u> O.R. No.
 Date

NOTE: NOT VALID WITHOUT SEAL

Republic of the Philippines Department of Environment and Natural Resources NVIRONMENTAL MANAGEMENT BUREAU Cordillera Administrative Region

Baguio City

February 22, 2018

MR. FRANCISCO O. FLAVIER Operations Manager BMC Forestry Corporation Km. 5, Naguilian Rd., Irisan, Baguio City

-089-18 of the Regional Directo. EMB-CAR LEASED

Date

ECC-AMEND-50-2018 26022016 1041 26 AM

SUBJECT

: AMENDMENT OF ECC NO. ECC-OL-CAR-2016-0058 ISSUED ON SEPTEMBER 15, 2016 TO BMC FORESTRY CORPORATION FOR THE IRISAN LIME PROCESSING PLANT LOCATED AT KM. 5, NAGUILIAN RD., IRISAN, BAGUIO CITY

Dear Mr. Flavier:

This has reference to the letter dated October 23, 2017 requesting for an amendment of the Environmental Compliance Certificate (ECC) numbered ECC-OL-CAR-2016-0058 issued on September 15, 2016 for maximizing the plant production capacity of the Irisan Lime Processing Plant.

After careful evaluation of the submitted documents and in consideration of the payment of PhP 2,035.00 under O.R. numbers 2673464 and 7643336 dated 11/23/2017, this office has decided to grant the ECC amendment. The project description of the ECC shall now read as follows:

PROJECT DESCRIPTION

The ECC covers the operation of the Irisan Lime Processing project with an annual production capacity of **19,420 MT** and the full operations of the three (3) vertical shaft kilns located within an 18,541 sq. m. lot at Km. 5, Naguilian Rd., Irisan, Baguio City covered by the Transfer Certificate of Title numbered 018-2013000103 in the name of Ifaratoc Mineral Resources Corporation (IMRC). The project involves the processing of raw lime stones into quicklime and slaked lime through calcination process by subjecting the limestone feeds into continuous heat in vertical shaft kilns.

All other provisions of the original ECC (No. ECC-OL-CAR-2016-0058 issued on September 15, 2016) not herein amended shall remain valid and existing. Consequently, non-compliance with the said conditions shall be sufficient cause for the imposition of fines in accordance with the penal provisions of PD 1586 and/or cancellation of the ECC.

DS UM

This letter shall be attached to and shall form part of the aforementioned ECC.

For information and record.

Very truly yours,

REY DO S. DIGAMO OIC, Regional Director

DENR Cmpd., Gibraltar R Baguio City 2600 P.O. Box 1959

Telefax No. (074) 444-6440 Tel. No. (074) 442-2346/ 442-3896 (074) 448-2881/ 443-4909

Republic of the Philippines Department of Environment and Natural Resource ENVIRONMENTAL MANAGEMENT BUREAU

DENR Compound, Gibraltar, Baguio City Telephone No.(074) 442-2346, (074) 446-2881, (074) 443-4909 Fax No.(074) 446-6440 car@sntb.gov.ph Visit us at http://www.emb.gov.ph/portal/car

September 15, 2016

ECC-OL-CAR-2016-0058

MR. FRANCISCO O. FLAVIER Operations Manager BMC Forestry Corporation Km. 5, Naguilian Rd., Irisan, Baguio City

ENVIRONMENTAL COMPLIANCE CERTIFICATE

Dear Mr. Flavier:

Subject:

This refers to the Environmental Compliance Certificate (ECC) application for the Irisan Lime Kilns operation at Km. 5, Naguilian, Irisan, Baguio City.

After satisfying the requirements of the said application, this Bureau has decided to grant an ECC for the above-mentioned project.

With the issuance of this ECC, you are expected to implement the measures presented in the Initial Environmental Examination Checklist (IEEC), intended to protect and mitigate the project's adverse impacts on community health, welfare and the environment. Environmental considerations shall be incorporated in all phases and aspects of the project. You may proceed with the project implementation after securing all the necessary permits from other pertinent Government agencies. This Office will be monitoring the project periodically to ensure your compliance with stipulations cited in the attached ECC.

Please be guided accordingly.

Very truly yours,

DO S. DIGAMO **OIC**, Regional Director

Republic of the Philippines Department of Environment and Natural Resource ENVIRONMENTAL MANAGEMENT BUREAU

DENR Compound, Gibraltar, Baguio City Telephone No.(074) 442-2346, (074) 446-2881, (074) 443-4909 Fax No.(074) 446-6440 can@emb.gov.ph Visit us at http://www.emb.gov.ph/portal/par

ENVIRONMENTAL COMPLIANCE CERTIFICATE

(Issued under Presidential Decree 1586)

ECC-OL-CAR-2016-0058

THIS IS TO CERTIFY THAT the BMC Forestry Corporation, a subsidiary of Benguet Corporation, Inc., herein represented by its Operations Manager, Francisco O. Flavier, is granted this ECC for the operation of the Irisan Lime Processing Plant, by the Department of Environment and Natural Resources (DENR), through the Environmental Management Bureau (EMB).

SUBJECT ONLY to the conditions and restrictions set in this ECC and in the attached document labelled as Annexes A and B.

This Certificate is issued with the following details and supersedes the unnumbered ECC issued by the National Environmental Protection Council (NEPC) on December 2, 1982.

PROJECT DESCRIPTION

The ECC covers the operation of the Irisan Line Processing project with an annual production capacity of 9,500 MT located within an 18,541 sq. m. lot at Km. 5, Naguilian Rd., Irisan, Baguio City covered by the Transfer Certificate of Title numbered 018-2013000103 in the name of Ifaratoc Mineral Resources Corporation (IMRC). The project involves the processing of raw lime stones into quicklime and slaked lime through calcination process by subjecting the limestone feeds into continuous heat in vertical shaft kilns. The details of the project components, amenities and facilities are found in Annex C hereof.

This Certificate is issued in compliance with the requirements of Presidential Decree No. 1586, and in accordance to DENR Administrative Order (D.A.O.) No. 2003-30. The EMB, however, is not precluded from reevaluating and correcting any deficiencies or errors that may be found after issuance of this Certificate.

Issued at EMB-CAR, DENR Compound, Gibraltar, Baguio City this September 15, 2016.

Recommending Approval:

NESTOR M. DONAAL OIC-Chief, Clearance & Permitting Division

Approved:

Environmental Compliance Certificate IRISAN LIME KILNS Km.5, Naguilian, Irisan Baguio City, Benguet BMC FORESTRY CORPORATION **OIC**, Regional Director

SWORN ACCOUNTABILITY STATEMENT

I, FRANCISCO O. FLAVIER, Operations Manager, representing the BMC FORESTRY CORPORATION with Office address at Km. 5, Naguilian Rd., Baguio City, takes full responsibility in complying with all conditions in this Environmental Compliance Certificate (ECC).

FRANCISCO O. FLAVIER Signature

TIN No. 103-481-016

presenting his G	at Baguie Ci	<u></u>	_, issued on vune of	affiant taking oath
		CRISTINA	I. VALDEZ	
Soundation			Notary Public	Benguet
Doc. No. 9/ Page No. 63 Book No. 19 Series of 2014				

Environmental Compliance Certificate IRISAN LIMEKILNS Km.5, Naguilian, Irisan Baguio City, Benguet BMC FORESTRY CORPORATION

I. CONDITIONS

Annex A

ENVIRONMENTAL MANAGEMENT

All commitments, mitigating measures and monitoring requirements, contained in the Initial Environmental Examination Checklist Report for the lime processing plant project, particularly in the Environmental Management Plan/ Environmental Monitoring Plan, including any modifications and/or additional information as approved by the EMB, shall be instituted to minimize any adverse impact of the project to the environment throughout its implementation, which shall include among others, to wit:

- Voluntary cease its operation in the event of any malfunction in any of the appurtenant facilities until the time that said damages are rehabilitated or restored, Further, the proponent shall immediately inform the EMB-CAR of said damages and of remedial measures undertaken;
- Uncalcined limestone/discards shall be prevented from deposition to and along drainage/natural waterways and water bodies, and shall be disposed – off properly in an appropriate/designated disposal site(s) which shall be maintained in a stable and non-polluting condition;
- Timely construction of adequate engineered earth retaining structures along affected and geologically unstable areas, especially in the stockyard of limestone and quarry areas, to protect adjacent properties/environment;
- The proponent shall plant appropriate/indigenous tree species along the periphery of the project site to serve as buffer for dust and noise and improvement of aesthetics and in the support of the National Greening Program and climate change initiatives of the government;

GENERAL CONDITIONS

- 5. The legal requirements pursuant to RA 6969 or the Toxic Substances and Hazardous and Nuclear Wastes Control Act of 1990, RA 8749 or the Philippine Clean Air Act of 1999, RA 9003 or the Ecological Solid Waste Management Act of 2000 and RA 9275 or the Philippine Clean Water Act of 2004 shall be secured whenever applicable. Compliance with said requirements shall be coordinated with the Clearance and Permitting Division (CPD) of EMBCAR, DENR;
- The proponent shall secure regularly necessary permit(s)/clearances/authority from concerned national and local offices relative to project implementation;
- The proponent shall allow entry of EMB-CAR personnel into the project site at all times to conduct monitoring and to validate project's compliance with the ECC conditions stipulated therein and EMP Mitigating Measures;
- The proponent shall submit to EMB-CAR within fifteen (15) days after every quarter a Selfmonitoring Report (SMR) and a Compliance Monitoring Report (CMR) semi-annually;

Environmental Compliance Certificate IRISAN LIMERILINS Km.5, Naguillian, Irisan Baguio City, Benguet BMC FORESTRY CORPORATION The proponent shall cause the implementation of any undertaking which may be imposed by EMB-CAR as a result of Technical Conference/s called relative to environmental issues arising from the implementation of the project;

II. RESTRICTIONS

- 10. Limestone feed materials shall be strictly sourced out from the company's permitted quarry areas and/or other sources sanctioned by government authorities. Violation of this condition shall automatically cause the cancellation/revocation of this ECC or imposition of fine;
- Project development shall be in accordance with the submitted documents. Major modifications and/or expansion shall be subject to a new Environmental Impact Assessment (EIA) requirement;
- 12. Any transfer of project ownership carries the same conditions and restriction in this ECC for which a written notification to the EMB-CAR shall be made by the transferee/transferor within fifteen (15) days from such transfer; and
- The project shall undergo the requirements specified in the implementing guidelines of the Department Administrative Order No. 2003-30 if the project construction has stopped for a period of five (5) years.

Non-compliance with any of the provisions of this Certificate shall be a sufficient cause for the cancellation of this Certificate and/or imposition of a fine in an amount not to exceed Fifty Thousand Pesos (P50, 000.00) for every violation thereof without prejudice to imposition of fines and penalties under other environmental laws.

*NOTE: This Certificate cancels the ECC issued by the National Environmental Protection Council (NEPC) on December 2, 1982.

Environmental Compliance Certificate IRISAN LIME KILNS Km.5, Naguilian, Irisan Baguio City, Benguet BMC FORESTRY CORPORATION

PROJECT ASSESSMENT PLANNING TOOL

For the assistance of the Proponent and the Government agencies concerned in the management of the Project and for better coordination in mitigation of the impacts of the Project on its surrounding areas and the environment, the following are recommended for appropriate action.

R	OTHER REGULATORY EQUIREMENTS/CONDITIONS	CONCERNED GOVERNMENT AGENCIES/ENTITIES
1.	Compliance with the Labor Code of the Philippines	DOLE - Bureau of Working Condition
2.	Compliance with the Sanitation Code of the Philippines	Department of Health (DOH)
3.	Compliance with the Ecological Solid Waste Management Act.	LGU Concerned
4.	Compliance to the Mining Act of the Philippines	MGB, DENR/LGU concerned
ENV	IRONMENTAL PLANNING RECON	IMENDATIONS FOR THE PROPONENT
5.		n to qualified local residents. Adequate public esidents in the affected areas shall be provided;
6.	Preservation of the existing trees development/improvement scheme;	be included as an essential part of the
7.	Undertake project during reasonable ti disturbance;	me periods of the day so as not to cause unduc
8.		entation by competent technical personnel to nts of sound engineering, safety and health
9.	Working areas should have appropriate barricade to prevent accident.	e warning signs, lighting during night time and

Environmental Compliance Certificate IRISAN LIME KILNS Km.5, Naguilian, Irisan Baguio City, Benguet BMC FORESTRY CORPORATION

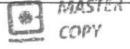
Annex C

PROJECT COMPONENTS, AMENITIES AND FACILITIES

Proces	sing Plant Components/Facilities
1.	Three (3) units 2 m. x 4 m. high vertical shaft kilns
2.	Three (3) units fuel oil pumps
3.	Seven (7) units - 15,000-liter each capacity fuel oil tanks
	One (1) unit - 60,000-liter capacity overhead fuel storage tank
5.	One (1) unit - 90 MT silo storage
6.	Two (2) units - 95 MT lime and limestone bins
7.	Two (2) units lump lime discharge bins
and the second se	Two (2) units crushed lime discharge bins
10.02	Two (2) units settling tanks
	Three (3) units - 66 m ³ /min each capacity gas scrubber
1	Three (3) units dust collector
1000	Three (3) units standby generator sets
	One (1) unit 50 KW capacity "CATERPILLAR" standby generator set
	 Two (2) units 200 KW each capacity "CUMMINS" standby generator set
13.	One (1) unit-three (3) compartments oil-water separator
	One (1) unit platform scale
	One (1) unit air compressor
100 A 100	One (1) unit skip bucket elevator
11111111111	One (1) unit belt conveyor
1.11/202	One (1) unit brick cutter
10.000	One (1) unit lime crusher
and the second s	ngs/Amenities/Others
1.	Two-storey 489.75 sq. m. office building with one unit - two-chambered septic tank
2.	Two-storey 520.0 sq. m. bunkhouse with two units - two-chambered septic tanks
	One-storey 310.50 sq. m. staff house with one unit - two-chambered septic tank
4.	225 sq. m. parking area
	4,340 sq. m. stockyard (raw materials sourced-out from legal sources and from lot development activities)
6.	A basketball court

NESTOR M. DONAAL OIC-Chief, Clearance & Permitting Division

REYNALDO S. DIGAMO OIC, Regional Director


Environmental Compliance Certificate IRISAN LIME KILNS Km.5, Naguilian, Irisan Baguio City, Benguet BMC FORESTRY CORPORATION

Appendix J

	Document Title	R	EGISTRY	OF COMPLIANCE OBLIG	ATIONS	· (#)
	Document Code	DRCS-11_EMS_	CO_01	Revision	10	
	BenguetCorp	MEPEO)	Effective Date	February 28, 2025	
Prep	Dared by:	Department M	5	Reviewed By: BGO ET	Approved By: VALERIANO	000000000 B. BONGALOS JR.
No.	Governing Laws, Rules and Regulations	Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks
1	General Environment PD 1586 Establishing an Environment Impact Statement System including other Environmental Manangement related measures and for other purposes DAO 2003-30 Implementing Rules and Regulations (IRR) for the Philippine Environmental Impact Statement (EIS) System	Securing ECC	DENR - EMB	<u>ECC NO: CAR 1012 - 174 - 2110 (Amended -</u> <u>December 15, 2010)</u>	COMPLIANT	Restricted to 300 tonnes per day
2	DAO 2014-02- Revised Guidelines for Pollution	Accreditation of Pollution Control Officer		Compliances\MEPEO\Accreditation of Pollution Control Officer-COA No. 2023- CAR-5329 Renewal.pdf	COMPLIANT	Accreditation is valid until April 17, 2026
3	Control Officer Accreditation	Training Course for Managing Head	DENR - EMB	EMB CAR 419-2015 (Training Course for Managing Head)	COMPLIANT	Attended by VBB on Feb. 17, 2020
4	DAO 2003-27 Amending DAO 26, DAO 29 and DAO 81, Among others on the Submission of Self-Monitoring-Report (SMR)	Preparation and Submission of Self-Monitoring- Report (SMR)	DENR/EMR	Self-Monitoring-Report 4th Quarter of 2024	COMPLIANT	Submitted on January 15, 2025
5				Solid Waste Management Guidelines	COMPLIANT	EMSG-09: Solid Waste Management Guidelines

No.	Governing Laws, Rules and Regulations	Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks
6	R.A. 9003 Ecological Solid Waste Management Act of 2000;	Section 4, Segragation, Collection and Transport of Solid Waste	DENR - EMB	Annual Environmental Protection and Enhancement Program for ACMP-Benguet Corp 2025	COMPLIANT	Proposed AEPEP Submited: Nov. 29, 2024 Revised AEPEP Submited: December 5, 2024 (Revised Solid waste management is included into the program)
7	DAO 2001-34 Implementing Rules & Regulations of RA 9003			Module-5, Self-Monitoring-Report 4th Quarter of 2024 (Solid Waste Collection and Monitoring Report)	COMPLIANT	Submitted on January 15, 2025
8	R.A. 9275 Philippine Clean Water Act of 2004;			<u>Discharge Permit for Phase II Tailings</u> Dam Application Permit Update	PARTIALLY COMPLIANT	The renewal of the Discharge Permit (DP) is already on processed and submitted through online application, though the releasing of the DP will depends on the water analysis results if the arsenic parameter will normalize.
9				Discharge Permit of Oil-Water Separator at Mine Mechanical Shop (DP-CAR-24-10617)	COMPLIANT	Expiry date: July 21, 2025
10		Section 14: Discharge Permit	DENR - EMB	Discharge Permit of Oil-Water Separator at Motorpool Shop (DP-CAR-23-07804)	COMPLIANT	Expiry date: July 21, 2025
11				Discharge Permit of one (1) unit 2- Chambered Septic Tank for the Administartion Building (DP-CAR-24- 08775)	COMPLIANT	Approved: Sep. 9, 2024 Valid Until: Sep. 9, 2025
12	DAO 2005-10 Implementing Rules & Regulations of RA 9275			Discharge Permit of one (1) unit 2- Chambered Septic Tank for the Assay Laboratory Building (DP-CAR-24-12186)	COMPLIANT	Approved: Dec. 3, 2024 Valid Until: Dec. 3, 2025

C

No.	Governing Laws, Rules and Regulations	Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks
13				Discharge Permit of one (1) unit 2- Chambered Septic Tank for the Metallurgy Laboratory (DP-CAR-24-11549)	COMPLIANT	Approved: Nov. 20, 2024 Valid Until: Nov. 20, 2025
14				Discharge Permit of one (1) unit 2- Chambered Septic Tank for the Motorpool Department (DP-CAR-24-08775)	COMPLIANT	Approved: Sep. 16, 2024 Valid Until: Sep. 16, 2025
15		Section 14.6: Self- Monitoring Report	DENR - EMB	Self-Monitoring-Report 4th Quarter of 2024	COMPLIANT	SMR 4th Qtr 2023 - Module 3
16				A. Latest Quarterly MMT Water Quality Sampling & Testing	COMPLIANT	Date sampled: November 12, 2024
17	DAO 2016-08 Water Quality and General Effluent Standards 0f 2019			B. Latest Monthly water quality sampling & testing.	COMPLIANT	Date sampled: January 16, 2025
18				C. Motorpool Shop Oil-Water Separator water quality testing	COMPLIANT	Date sampled: January 16, 2025
19				D. Mine Mechanical Shop Oil-Water Separator water quality testing	COMPLIANT	Date sampled: January 16, 2025
20				Permit to Operate 2-unit Thermo Digestion Chamber w/ 1-unit Scrubber at Assay Lab. PTO-OL-CAR-2021-03214-R	COMPLIANT	Date Issued: May 22, 2021 Date Expires: January 22, 2026
21				Permit to operate 2-unit Cupellation Furnace w/ 1-unit Lead fume scrubber system at Assay Lab. Permit No: PTO-OL- CAR-2023-00343-R	COMPLIANT	Date Issued: January 12, 2023 Date Expires: January 12, 2026
22				Permit to Operate Dust Collection Facility System (Application)	COMPLIANT	Date Issued: May 3, 2024 Date Expires: August 3, 2028
	R.A. 8749 Philippine Clean Air Act of 1999;					MASTER

-

No.	Governing Laws, Rules and Regulations	Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks
13				<u>Discharge Permit of one (1) unit 2-</u> <u>Chambered Septic Tank for the Metallurgy</u> <u>Laboratory (DP-CAR-24-11549)</u>	COMPLIANT	Approved: Nov. 20, 2024 Valid Until: Nov. 20, 2025
14				Discharge Permit of one (1) unit 2: Chambered Septic Tank for the Motorpool Department (DP-CAR-24-08775)	COMPLIANT	Approved: Sep. 16, 2024 Valid Until: Sep. 16, 2025
15		Section 14.6: Self- Monitoring Report	DENR - EMB	Self-Monitoring-Report 4th Quarter of 2024	COMPLIANT	SMR 4th Qtr 2023 - Module 3
16				A. Latest Quarterly MMT Water Quality Sampling & Testing	COMPLIANT	Date sampled: November 12, 2024
17	DAO 2016-08 Water Quality and General Effluent Standards 0f 2019			B. Latest Monthly water quality sampling & testing.	COMPLIANT	Date sampled: January 16, 2025
18				C. Motorpool Shop Oil-Water Separator water quality testing	COMPLIANT	Date sampled: January 16, 2025
19				D. Mine Mechanical Shop Oil-Water Separator water quality testing	COMPLIANT	Date sampled: January 16, 2025
20				Permit to Operate 2-unit Thermo Digestion Chamber w/ 1-unit Scrubber at Assay Lab. PTO-OL-CAR-2021-03214-R	COMPLIANT	Date Issued: May 22, 2021 Date Expires: January 22, 2026
21				Permit to operate 2-unit Cupellation Furnace w/ 1-unit Lead fume scrubber system at Assay Lab. Permit No: PTO-OL- CAR-2023-00343-R	COMPLIANT	Date Issued: January 12, 2023 Date Expires: January 12, 2026
22				Permit to Operate Dust Collection Facility System (Application)	COMPLIANT	Date Issued: May 3, 2024 Date Expires: August 3, 2028
	R.A. 8749 Philippine Clean Air Act of 1999;				-	MASTER

No.	Governing Laws, Rules and Regulations	Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks
23	Article 4, Section 21-Pollution From Motor Vehicles Article 5, Section 24 Pollution From Other Sources DAO 2000-81 Implementing Rules & Regulations of RA 8749	Permit to Operate of Air Polltion Sources	DENR - EMB	PTO One Unit Acid Fume Scrubber System at Mill Refinery PO No.	PARTIALLY COMPLIANT	Issued: March 11, 2020 Expires on February 16, 2025 Renewal is on process: Submited online: January 15, 2025
24				Permit to Operate Two Units 25 kVa Genarator Sets Permit No.: PTO-OL-CAR- 2023-08042-R	COMPLIANT	Issued: June 21, 2023 Expires on June 20, 2027
25				Permit to Operate 12 units 15kgs/hr eavh Assing Vessels	COMPLIANT	Issued: July 2, 2024 Expires on April 2, 2029
R.A.	6969, Toxic Substances and Hazardous and Nuclear Wa	stes Control Act	of 1990;			
DAC	1992-29 Implementing Rules & Regulations of RA 696	9				
DAC 26	1992-29 Implementing Rules & Regulations of RA 696 DAO NO. 1997-39 Chemical Control Order for Cyanide and Cyanide Compounds	9 Securing CCO Reg. Cert.		CCO Registration Certificate for Cyanide and Cyanide Compounds RCN: CCOr-CAR-CN-2020-00058	COMPLIANT	Online registration Issued on March 4, 2020
	DAO NO. 1997-39 Chemical Control Order for	Securing CCO		and Cyanide Compounds	COMPLIANT	
26	DAO NO. 1997-39 Chemical Control Order for Cyanide and Cyanide Compounds DAO NO. 2013-24 Chemical Control Order for Lead	Securing CCO Reg. Cert. Securing CCO	DENR - EMB	and Cyanide Compounds RCN: CCOr-CAR-CN-2020-00058 CCO Registration Certificate for Lead and Lead Compounds		March 4, 2020 Online registration Issued on

(

-

.

No.	Governing Laws, Rules and Regulations	Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks
30	MEMORANDUM CIRCULAR NO. 2003 – 008 Series of 2003-Procedural and Reference Manual for DAO 2003-27	Quarterly SMR submission/s		Quarterly Hazardous Waste Monitoring and Inventory	COMPLIANT	SMR 4th Qtr 2024- Module 2
31	DAO 2013-22, Revised Procedures and Standards for the Management of Hazardous Waste (Revising DAO 2004-36) 3.3 Requirement for Waste Generators	1. Hazardous Waste Genarator Registration Certificate		Hazardous Waste Genarator Registration Certificate	COMPLIANT	Genarator ID No. OL-GR-CAR- 11-000978
32	DAO 1992-29, Section 29. Hazardous Waste Storage and Labelling	2. Quarterly Report (SMR)		Self-Monitoring-Report 4th Quarter of 2024	COMPLIANT	Submitted on January 15, 2025
33	DOA 136-14 Guidelines for the Implementation of Globally harmonized System (GHS) in Chemical safety Program in the Workplace	3. Comprehensive Emergency Contingy PlanS		Contingency Program for Hazardous Waste- Benguet Corporation	COMPLIANT	Prepared by: JRS Reviewed by: GPG Approved by: VBB Jr.
34	DAO 1992-29, Section 29. Hazardous Waste Storage and Labelling DOA 136-14 Guidelines for the Implementation of Globally harmonized System (GHS) in Chemical safety Program in the Workplace	4. Storage and Labeling requirements	DENR - EMB	EMS Guidelines	COMPLIANT	DRCS-12-01_EMSG_HSCR, DRCS- 12-02_EMSG_HSDCC, DRCS-12- 03_EMSG_HTSD, DRCS-12- 03_EMSG_HTSD, DRCS-12-07- A_EMSG_HWMCI, DRCS-12-07- B_EMSG_HWMC_AC, DRCS-12-07- D_EMSG_HWM_CC, DRCS-12-07- D_EMSG_HWM_CLE, DRCS-12-07- G_EMSG_HWM_AC, DRCS-12-07- I_EMSG_HWM_PCB, DRCS-12-07- I_EMSG_HWM_PCB, DRCS-12-07- K_EMSG_HWM_PCB, DRCS-12-07- L_EMSG_HWM_MW, DRCS-12-07- U_EMSG_HWMFM, DRCS-12-07- D_EMSG_HWMFM, DRCS-12-07- N_EMSG_HWMFM, DRCS-12-07- N_EMSG_HWMFM, DRCS-12-07- N_EMSG_HWMFM, DRCS-12-07- N_EMSG_SWM, DRCS-12-11- N_EMSG_ACF MASTER

No.	Governing Laws, Rules and Regulations	Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks
35	DAO 2013-22, 4.0 Governing Rules and Regulation for Hazardous Waste Transporter Section 26. Waste Generators	Registered Waste Tranporters, Duly Authorized by DENR	DENR - EMB	All Waste Services, Inc. ECC	COMPLIANT	All Waste Services, Inc. ECC Amended Issued- March 18 2016
36	DAO 2013-22, 4.0 Governing Rules and Regulation for Hazardous Waste Transporter Section 27 Waste Transporter	Waste Generator ID	DENR - EMB	Transporter's Hazardous Wase Generator Registration Certificate	COMPLIANT	Genarator ID No.: OL-GR-R3- 14-000183
	DAO 2013-22, 4.0 Governing Rules and Regulation for Hazardous Waste Transporter, 50 Governing Rules and Regulations for Hazardous Waste Treatment Storage and Disposal (TSD) Facilities.	TSD Registration Certificate	DENR - EMB	TSD Registration Certificate	PARTIALLY COMPLIANT	The renewal is on process thru online registration of HWMS- EMB. Awaiting for the approval of the Discharge permit of the TSF 2 as it is one of the requirements for the releasing of the TSD Certificate <u>HWMS Portal update</u>
	7942 Philippine Mining Act of 1995 2010-21 Implementing Rules & Regulations of RA 7942	2				
38	Section 270. Reporting Requirements	Records of Extraction	MGB	Semi-Annual Report on Mine Waste and Mill Tailings Produced, Contained and/ or Utilized for the Period of July-December 2024	COMPLIANT	Submitted at MGB-CAR: Feb. 14, 2024 Submitted at MGB-CENTRAL: Feb. 10, 2024
39	Section 166. General Provision for Environmental protection Section 168. Environmental Work Program (EWP)	Establishment of Environmental		Environmental Protection and Enhance Program (EPEP)	COMPLIANT	Submitted: Nov. 08, 2019 (Hard copy Available at MEPEO Dept.)
40	Section 169. Environmental Protection and Enhancement Program Section 171. Annual Environmental Protection and Enhancement Program	Protection Program	MGB	Annual Environmental Protection and Enhancement Program of Benguet Corp- <u>ACMP for 2025</u>	COMPLIANT	Proposed AEPEPE Submited: Nov. 29, 2024 Revised AEPEP Submitted: Jan. 15, 2025

No.	Governing Laws, Rules and Regulations	Applicable Requirement	Interested Parties	Evidence of Compliance	Status of Compliance	Remarks	
41	Section 173. Organization of a Mine Environmental Protection and Enhancement Office (MEPEO)	Establishment of MEPEO as integral part of Mine Organization	MGB	Table of Organization of MEPEO Department	COMPLIANT	Updated: March 2025	
42	Section 174. Environmental Monitoring Audit	Monitoring by MMT at least every quarter	MGB	4th Quarter 2024 ACMP- MMT Compliance Monitoring and Validation Report (CMVR)	COMPLIANT	2024 4th Qtr. MRFC Meeting Conducted on: Dec. 5, 2024 Submited at EMB: Jan. 15, 2024	
43	Section 189. Mine Waste and Tailings Fess Reserve Fund Section 190. Mine Waste and Tailings Fees Section 191. Payment of Mine Waste and Tailings Fees Due	MWT payment semi-annually	MGB	Payment for BC - ACMP MWT Fee for July- December 2024	COMPLIANT	Awaiting for the scheduled Validation of MG8-CAR	
44	Section 270. Reporting Requirements: n. Semiannual Status Report on the Environmental Work Program DAO 2010-21 Revised Implementing Rules and Regulations of R.A. 7942, otherwise known as the Philippine Mining Act of 1995	Monthly, Quarterly and Integrated	d MGB	MGB	4th Quarter Compliance Monitoring Report (CMR) / Accomplishment Report relative to the Annual Environmental Protection and Enhancement Program (AEPEP)	COMPLIANT	Submitted: Jan. 15, 2025
45	DAO 2015-02 on the harmonization of the Philippine Environmental Impact System and the Philippine Mining Act of 1995 in relation to Mining Projects.	Annual Reporting		2024 AEPEP Annual Accomplishment <u>Report</u>	COMPLIANT	Submited: January 30, 2025	
46	Executive Order 26 of 2011 and Executive Order 193 of 2015 - Enhanced National Greening Program	Implementation and Quarterly Submission of National Greening Program (NGP) Report	MGB/CENRO	NGP Report 4th Qtr. 2024	COMPLIANT	Submitted: Jan. 15, 2025	

	Requirement	Parties	Evidence of Compliance	Status of Compliance	Remarks
Administrative Order (DAO) No. 22, series of 1989 - Adopt-A-Tree Adopt-A-Mining Forest Program	Implementation and Semi Annual Submission of Mining Forest Program Report	MGB	Mining Forest Program 2nd Sem. 2024	COMPLIANT	Submitted: Jan. 15, 2025
MGB-MEMORANDOM dated July 10, 2020 - Establishment of Bamboo Plantation in Mining Areas	Submission Quarterly Accomplishment Report	MGB	4th Quarter 2024 Bamboo Plantation Accomplishment Report	COMPLIANT	Submitted: Jan. 15, 2025
DAO 02 Series of 2017- The Revise Procedural Manual for DENR Administrative Orders No. 30, Series of 2003 DENR-EMB-MEMORANDUM CIRCULAR NO. 2016-001	Submission of online Semestral Compliance Monitoring Report (CMR)	EMB	Online CMR 2nd Sem 2024	COMPLIANT	Submitted: January 31, 2025
	SUMMARY OF	ENVIRONME	NTAL COMPLIANCE OBLIGATIONS		a to the second s
Total Number of Compliances Number of Compliant Number of Partially- Compliant			49	Percentage	
			46	93.88	%
			3	6.12	%
Number of Non- Compliant			0	0.00	%
Compliance Obligation Indicators:					
COMPLIANT Actions / requirements have t	peen fully impleme	ented, accomp	lished and approved.		
	Adopt-A-Tree Adopt-A-Mining Forest Program MGB-MEMORANDOM dated July 10, 2020 - Establishment of Bamboo Plantation in Mining Areas DAO 02 Series of 2017- The Revise Procedural Manual for DENR Administrative Orders No. 30, Series of 2003 DENR-EMB-MEMORANDUM CIRCULAR NO. 2016-001 Fotal Number of Compliances Number of Compliant Number of Partially- Compliant Number of Non- Compliant Compliance Obligation Indicators: COMPLIANT Actions / requirements have 1	Adopt-A-Tree Adopt-A-Mining Forest Program Submission of Mining Forest Program Report Submission Quarterly Accomplishment Report DAO 02 Series of 2017- The Revise Procedural Manual for DENR Administrative Orders No. 30, Series of 2003 DENR-EMB-MEMORANDUM CIRCULAR NO. 2016-001 Compliance Monitoring Report (CMR) SUMMARY OF Fotal Number of Compliant Number of Partially- Compliant Compliant Compliant Compliant Compliant Compliant Compliant Actions / requirements have been fully implement	Adopt-A-Tree Adopt-A-Mining Forest Program Adopt-A-Tree Adopt-A-Mining Forest Program MGB Mining Forest Program Report Submission Quarterly Accomplishment Report DAO 02 Series of 2017- The Revise Procedural Manual for DENR Administrative Orders No. 30, Series of 2003 DENR-EMB-MEMORANDUM CIRCULAR NO. 2016-001 SUMMARY OF ENVIRONME Fotal Number of Compliances Number of Compliant Number of Partially- Compliant Compliant Compliant Actions / requirements have been fully implemented, accomp	Adopt-A-Tree Adopt-A-Mining Forest Program Submission of Mining Forest Program Report MGB Mining Forest Program 2nd Sem. 2024 MGB-MEMORANDOM dated July 10, 2020 - Establishment of Bamboo Plantation in Mining Areas Submission Quarterly Accomplishment Report MGB 4th Quarter 2024 Bamboo Plantation. Accomplishment Report DAO 02 Series of 2017- The Revise Procedural Manual for DENR Administrative Orders No. 30, Series of 2003 Submission of online Semestral Compliance Monitoring Report (CMR) EMB Online CMR 2nd Sem 2024 DENR-EMB-MEMORANDUM CIRCULAR NO. 2016-001 SUMMARY OF ENVIRONMENTAL COMPLIANCE OBLIGATIONS Fotal Number of Compliances 49 Number of Compliant 3 Number of Non- Compliant 0 Submiser of Non- Compliant 0 Compliante Obligation Indicators: 0	Adopt-A-Tree Adopt-A-Mining Forest Program Submission of Mining Forest Program Report MGB Mining Forest Program 2nd Sem. 2024 COMPLIANT MGB-MEMORANDOM dated July 10, 2020 - Establishment of Bamboo Plantation in Mining Areas Submission d Quarterly Accomplishment Report MGB <u>4th Quarter 2024 Bamboo Plantation</u> <u>Accomplishment Report</u> COMPLIANT DAO 02 Series of 2017- The Revise Procedural Manual for DENR Administrative Orders No. 30, Series of 2003 DENR Administrative Orders No. 30, Series of 2003 DENR-EMB-MEMORANDUM CIRCULAR NO. 2016-001 Submission of online Semestral Compliance Monitoring Report (CMR) EMB Online CMR. 2nd Sem. 2024 COMPLIANT SUMMARY OF ENVIRONMENTAL COMPLIANCE OBLIGATIONS Fotal Number of Compliance Number of Compliant 49 Per Number of Compliant 3 6.12 Number of Non- Compliant 0 0.00 Compliance Suppliant

PARTIALLY COMPLIANT Actions have been taken to address the requirements, however, approval / implementation of the same is pending.

NON-COMPLIANT No actions have been taken to address the requirements.

Appendix K

Republic of the Philippines Department of Environment and Natural Resources MINES AND GEOSCIENCES BUREAU Cordillera Administrative Region 80 Diego Silang St., Baguio City 2600 Tel. No. 63 74 442 6392; Fax No. 63 74 304 2596; Website: www.car.mgh.gov.phr E-mail: car@mgb.gov.phr.car.mgb@yahoo.com.mgb.cordillera@gmail.com

CERTIFICATE OF APPROVAL

SHP # 04A-2024-CAR

The Mines and Geosciences Bureau-CAR, having evaluated the submitted amended 2024 Safety and Health Program (SHP) in accordance with the provisions of Department of Environment and Natural Resources Administrative Order (DAO) No. 2010-21, the Revised Implementing Rules and Regulations of Republic Act (RA) No. 7942, otherwise known as the "Philippine Mining Act of 1995", hereby grants this Certificate of Approval to BENGUET CORPORATION-ACUPAN CONTRACT MINING PROJECT (BC-ACMP), PC-ACMP-002-CAR, located at Virac, Itogon, Benguet.

This Certificate is issued subject to the pertinent provisions of the abovementioned laws, rules and regulations, and to the following conditions:

- This Certificate is valid only for programs, projects, and activities stipulated in the CY 2024 SHP;
- The committed budget for the CY 2024 SHP is Seven Million One Hundred Sixty-Two Thousand and Two Hundred Seventeen Pesos (PhP7,162,217.00);
- The implementation of identified programs, projects and activities shall be subject to validation by the MGB-CAR and auditing of the MGB Central Office (MGB-CO);
- Benguet Corporation-Acupan Contract Mining Project (BC-ACMP), shall submit to MGB-CAR a quarterly accomplishment reports within 15 working days at the end of each quarter and an annual accomplishment report 30 days after the end of the calendar year;
- The company shall notify the MGB-CAR of any amendment in the approved SHP. Provided that the amendments do not compromise the overall safety and health programs and conditions of the project; and

MGB-CAR-FO-MSESDD-MSHS-011-@@ (09.05.17)

"MINING SHALL BE PRO-PEOPLE AND PRO-ENVIRONMENT IN SUSTAINING WEALTH CREATION AND IMPROVED QUALITY OF LIFE."

Office of the Regional Director/Finance and Administrative Division – 63 74 442 6392; ICT – 63 74 661 7685; Geosciences Division/Laboratory Section 63 74 304 2500; Mine Management Division - 63 74 304 3068 (Monitoring and Technical Services Section/Mining Tenement Evaluation/Mineral Lands Survey Section); Mine Safety Environment and Social Development Section – 63 74 304 2595; Social Development Section/Environment Section 63 74 304 2530.

Republic of the Philippines Department of Environment and Natural Resources MINES AND GEOSCIENCES BUREAU Cordillera Administrative Region 80 Diego Silang St., Bagulo City 2600 Tel. No. 63 74 442 6392; Fax No. 63 74 304 2596; Website: www.car.mgb.gov.ph. E-mail: car@mgb.gov.ph. car.mgb@vahoo.com, mgb.cordillera@gmail.com

 Additional conditions may be imposed to effectively implement the approved SHP should the results of the monitoring by the MGB-CAR or audit by the MGB-CO warrants them.

Non-compliance with the above conditions shall be sufficient ground for the penalties indicated in the Philippine Mining Act of 1995 and its implementing rules and regulations.

Given this 18th day of June 2024 at the Mines and Geosciences Bureau-CAR, Baguio City

ent of Environment and Natural Rossums: res and Geosciences Bureau FAY W. APIL en Administerby Region Militaria Regional Director 061924-CAR-53560 1127 115 85107034

CONFORME:

MR. VALERIANO B. BONGALOS, JR. VP/Resident Manager Benguet Corporation-Acupan Contract Mining Project Virac, Itogon, Benguet

MGB-CAR-FO-MSESDD-MSHS-011-ØØ (09.05.17)

"MINING SHALL BE PRO-PEOPLE AND PRO-ENVIRONMENT IN SUSTAINING WEALTH CREATION AND IMPROVED QUALITY OF LIFE."

Office of the Regional Director/Finance and Administrative Division – 63 74 442 6392; ICT – 63 74 661 7685; Geosciences Division/Laboratory Section 63 74 304 2500; Mine Management Division - 63 74 304 3068 (Monitoring and Technical Services Section/Mining Tenement Evaluation/Mineral Lands Survey Section); Mine Safety Environment and Social Development Section – 63 74 304 2595; Social Development Section/Environment Section 63 74 304 2530

Appendix K-1

Republic of the Philippines Department of Environment and Natural Resources MINES AND GEOSCIENCES BUREAU Cordillera Administrative Region 80 Diego Silang St., Baguio City 2600 Tel. No. 63 74 442 6392; Fax No. 63 74 304 2596; Website: www.car.trigb.gov.ph E-mail: cars@rngb.gov.ph. car.trigb@vahoo.com.mgb.cordillera@gmail.com

CERTIFICATE OF APPROVAL

SHP # 07-2024-CAR

The Mines and Geosciences Bureau-CAR, having evaluated the submitted 2024 Safety and Health Program (SHP) in accordance with the provisions of Department of Environment and Natural Resources Administrative Order (DAO) No. 2010-21, the Revised Implementing Rules and Regulations of Republic Act (RA) No. 7942, otherwise known as the "Philippine Mining Act of 1995", hereby grants this Certificate of Approval to BMC FORESTRY CORPORATION-IRISAN LIME PROJECT (BMC FC-ILP), MPP No. 01C-2022-CAR, located at Km. 5 Naguilian Road, Irisan, Baguio City.

This Certificate is issued subject to the pertinent provisions of the abovementioned laws, rules and regulations, and to the following conditions:

- This Certificate is valid only for programs, projects, and activities stipulated in the CY 2024 SHP;
- The committed budget for the CY 2024 SHP is One Hundred Fifty Seven Thousand and Seven Hundred Eighty Pesos (PhP157,780.00);
- The implementation of identified programs, projects and activities shall be subject to validation by the MGB-CAR and auditing of the MGB Central Office (MGB-CO);
- BMC Forestry Corporation-Irisan Lime Project, shall submit to MGB-CAR a quarterly accomplishment reports within 15 working days at the end of each quarter and an annual accomplishment report 30 days after the end of the calendar year;
- The company shall notify the MGB-CAR of any amendment in the approved SHP. Provided that the amendments do not compromise the overall safety and health programs and conditions of the project; and

MGB-CAR-FO-MSESDD-MSHS-011-ØØ (09.05.17)

.

"MINING SHALL BE PRO-PEOPLE AND PRO-ENVIRONMENT IN SUSTAINING WEALTH CREATION AND IMPROVED QUALITY OF LIFE."

Office of the Regional Director/Finance and Administrative Division – 63 74 442 6392; ICT – 63 74 661 7685; Geosciences Division/Laboratory Section 63 74 304 2500; Mine Management Division - 63 74 304 3068 (Monitoring and Technical Services Section/Mining Tenement Evaluation/Mineral Lands Survey Section}; Mine Safety Environment and Social Development Section – 63 74 304 2595; Social Development Section/Environment Section 63 74 304 2530

Republic of the Philippines Department of Environment and Natural Resources MINES AND GEOSCIENCES BUREAU Cordillera Administrative Region 80 Diego Silang St., Baguio City 2600 Tel. No. 63 74 442 6392; Fax No. 63 74 304 2596; Website: www.cat.mgb.gov.ph E-mail: car@mgb.gov.ph, cat.mgb@vahsc.com, mgb.com/illera@gmail.com

 Additional conditions may be imposed to effectively implement the approved SHP should the results of the monitoring by the MGB-CAR or audit by the MGB-CO warrants them.

Non-compliance with the above conditions shall be sufficient ground for the penalties indicated in the Philippine Mining Act of 1995 and its implementing rules and regulations.

Given this 30th day of January 2024 at the Mines and Geosciences Bureau-CAR, Baguio City

naci e željuo mali ani Nomeni Rome Izel 200 Galeziero da Baremi Caref clients & Ritterior-Barthorn Ring and inge retaring and ingen FAY W. APIL **Regional Director** AP-51475 10327074 601 H

CONFORME:

MR. FRANCISCO O. FLAVIER Resident Manager BMC Forestry Corporation-ILP Km. 5 Naguilian Road, Irisan, Baguio City

MGB-CAR-FO-MSESDD-MSHS-011-ØØ (09.05.17)

"MINING SHALL BE PRO-PEOPLE AND PRO-ENVIRONMENT IN SUSTAINING WEALTH CREATION AND IMPROVED QUALITY OF LIFE."

Office of the Regional Director/Finance and Administrative Division – 63 74 442 6392; ICT – 63 74 661 7685; Geosciences Division/Laboratory Section 63 74 304 2500; Mine Management Division - 63 74 304 3068 (Monitoring and Technical Services Section/Mining Tenement Evaluation/Mineral Lands Survey Section); Mine Safety Environment and Social Development Section – 63 74 304 2595; Social Development Section/Environment Section 63 74 304 2590

Appendix L

Republic of the Philippines Department of Environment and Natural Resources MINES AND GEOSCIENCES BUREAU Cordillera Administrative Region

ANNUAL SOCIAL DEVELOPMENT AND MANAGEMENT PROGRAM (ASDMP)

CERTIFICATE OF APPROVAL ASDMP No. 2024-04-CAR (4th)

The Mines and Geosciences Bureau-CAR, having evaluated the 2024 Annual Social Development and Management Program (ASDMP), hereby grants this Certificate of Approval to **BENGUET CORPORATION** for its Acupan Contract Mining Project located in *Barangay Virac, Municipality of Itogon, Province of Benguet,* under the **Mining Patent No. PC-ACMP-002-CAR** after substantially complying with the requirements as mandated under DENR Administrative Order (D.A.O) No. 2010-21.

This Certificate is being issued subject to the pertinent provisions of the abovementioned DAO and to the following conditions:

- This Certificate is valid only for the Programs/Projects/Activities (P/P/As) stipulated in the submitted 2024 ASDMP;
- The budget allocation for this ASDMP amounts to Four Million Seven Hundred Seventy-four Thousand One Hundred Fifty-five and 24/100 (Php 4,774,155.24), which is equivalent to the 1.5% of the previous years' operating cost as declared in its Affidavit to implement the P/P/As stipulated in the Program which is broken down as follows:

Basis of Allocation	2024 ASDMP Total Amount (Php)
(75%) Development of Host and Neighboring Communities	3,580,616.43
Balance	456,866.29
(15%) Information, Education Communication	716,123.29
Balance	15,064.80
(10%) Development of Mining Technology and Geosciences	447,415.52
Balance	175,590.35
Sub-Total	4,774,155.24
Sub-total (Balance from previous ASDMP)	647,521.44
GRAND TOTAL	5,421,676.68
	(75%) Development of Host and Neighboring Communities Balance (15%) Information, Education Communication Balance (10%) Development of Mining Technology and Geosciences Balance Sub-Total Sub-total (Balance from previous ASDMP)

Republic of the Philippines Department of Environment and Natural Resources MINES AND GEOSCIENCES BUREAU Cordillera Administrative Region

- The Company shall include the remaining balance (*Php* 647,521.44) from its previous ASDMP after determination of the 1.5% projected/operating cost to implement the P/P/As stipulated in the Program. Said balance shall be treated separately on accomplishment/monitoring reports;
- The Company may incorporate any alterations and/or re-alignment of P/P/As and funds from the approved ASDMP. Provided that, such changes is the result of consultations with its host and neighboring communities, accompanied by supporting documents such as resolutions, and approved by the MGB RO;
- 5. The Company shall submit a quarterly monitoring report fifteen (15) calendar days after the end of each quarter to MGB RO. Likewise, the annual accomplishment report shall be submitted thirty (30) calendar days after the end of each calendar year to the MGB RO, copy furnished the MGB Central Office (CO); and
- Additional conditions may be imposed to effectively and efficiently implement the approved SDMP should the results of monitoring by the MGB RO or audit by the MGB CO warrant them.

Non-compliance with the above conditions shall be sufficient ground for the cancellation, revocation or termination of this Certificate or suffer the penalty prescribed in the Penal Provisions of Republic Act No. 7942, the Philippine Mining Act of 1995.

Given this 1st day of March 2024 at the Mines and Geoscience Bureau-CAR, Baguio City, Philippines.

FAY W. APIL **Regional Director** MGB-CAR

Appendix L-1

Republic of the Philippines Department of Environment and Natural Resources MINES AND GEOSCIENCES BUREAU Cordillera Administrative Region

ANNUAL SOCIAL DEVELOPMENT AND MANAGEMENT PROGRAM (ASDMP)

CERTIFICATE OF APPROVAL ASDMP No. 2024-01-CAR (3rd)

The Mines and Geosciences Bureau-CAR, having evaluated the 2024 Annual Social Development and Management Program (ASDMP), hereby grants this Certificate of Approval to **BMC FORESTRY CORPORATION** for its Irisan Lime Project located at *Barangay Irisan, in the City of Baguio, Province of Benguet,* under Mineral Processing Permit (MPP) No. 01C-2022-CAR after substantially complying with the requirements as mandated under DENR Administrative Order (D.A.O) No. 2010-21.

This Certificate is being issued subject to the pertinent provisions of the abovementioned DAO and to the following conditions:

- This Certificate is valid only for the Programs/Projects/Activities (P/P/As) stipulated in the submitted 2024 ASDMP;
- The budget allocation for this ASDMP amounts to Eight Hundred Fifty-nine Thousand Six Hundred Seventy-seven and 87/100 (Php 859,627.87), which is equivalent to the 1.5% of the previous years' operating cost as declared in its Affidavit to implement the P/P/As stipulated in the Program which is broken down as follows:

2023 Operating Cost (Php)	Basis of Allocation	2024 ASDMP Total Amount (Php)
57,308,524.51	(75%) Development of Host and Neighboring Communities	644,720.90
	Balance	0.00
	(15%) Information, Education Communication	128,944.18
	Balance	0.00
	(10%) Development of Mining Technology and Geosciences	85,962.79
	Balance	0.00
	Sub-Total	859,627.87
	Sub-total (Balance from previous ASDMP)	0.00
	GRAND TOTAL	859,627.87

Republic of the Philippines Department of Environment and Natural Resources MINES AND GEOSCIENCES BUREAU Cordillera Administrative Region

- The Company shall include the remaining balance (*Php 0.00*) from its previous ASDMP after determination of the 1.5% projected/operating cost to implement the P/P/As stipulated in the Program. Said balance shall be treated separately on accomplishment/monitoring reports;
- The Company may incorporate any alterations and/or re-alignment of P/P/As and funds from the approved ASDMP. Provided that, such changes is the result of consultations with its host and neighboring communities, accompanied by supporting documents such as resolutions, and approved by the MGB RO;
- 5. The Company shall submit a quarterly monitoring report fifteen (15) calendar days after the end of each quarter to MGB RO. Likewise, the annual accomplishment report shall be submitted thirty (30) calendar days after the end of each calendar year to the MGB RO, copy furnished the MGB Central Office (CO); and
- Additional conditions may be imposed to effectively and efficiently implement the approved SDMP should the results of monitoring by the MGB RO or audit by the MGB CO warrant them.

Non-compliance with the above conditions shall be sufficient ground for the cancellation, revocation or termination of this Certificate or suffer the penalty prescribed in the Penal Provisions of Republic Act No. 7942, the Philippine Mining Act of 1995.

Given this 20th day of February 2024 at the Mines and Geoscience Bureau-CAR, Baguio City, Philippines.

STATEMENT OF MANAGEMENT'S RESPONSIBILITY FOR CONSOLIDATED FINANCIAL STATEMENTS

The management of BENGUET CORPORATION and its Subsidiaries (the "Group") is responsible for the preparation and fair presentation of the consolidated financial statements including the schedules attached therein, for the years ended December 31, 2024, 2023 and 2022, in accordance with the prescribed financial reporting framework indicated therein, and for such internal control as management determines is necessary to enable the preparation of consolidated financial statements that are free from material misstatement, whether due to fraud or error.

In preparing the consolidated financial statements, management is responsible for assessing the Group's ability to continue as a going concern, disclosing, as applicable matters related to going concern and using the going concern basis of accounting unless management either intends to liquidate the Group or to cease operations, or has no realistic alternative but to do so.

The Board of Directors is responsible for overseeing the Group's financial reporting process.

The Board of Directors reviews and approves the consolidated financial statements including the schedules attached therein, and submits the same to the stockholders.

Sycip Gorres Velayo & Co., the independent auditor appointed by the stockholders, has audited the consolidated financial statements of the Group in accordance with Philippine Standards on Auditing, and in its report to the stockholders, has expressed its opinion on the fairness of presentation provide for completion of such audit.

Chairman of the Board

LINA G. FERNANDEZ President

MAX D. ARCEÑO Senior Vice President – Finance & Treasurer

Signed this March 26, 2025.

<u>ACKNOWLEDGMENT</u>

REPUBLIC OF THE PHILIPPINES City of Makati

MAR 2 6 2025

SUBSCRIBED AND SWORN to before me this	at Makati City, affiants
exhibited to me their valid identification: Mr. Bernardo	M. Villegas with SSS-No. 03-12455042;
Atty. Lina G. Fernandez with SSS No. 03-7537025-8; an	nd Mr. Max D. Arceño with SSS No. 03-
Atty. Lina G. Fernandez with SSS No. 03-7537025-8; an 82056688, all issued by the Office of the Social Security S DOCLIMENTARY STAMP TAX PAIR	ystem, Philippines. / X/
37	ATTY. JAMIE RUTH V. VIVERO
DOC. NO. 4': DOCHMENTARY STAMP TAY DATE	Notary Public for Makati City

Doc. No. ____; Page No. ____; Book No. ____; Series of 2025.

DOCUMENTARY STAMP TAX PAID
DOCUMENTARY STAMP TAX PAID SERIAL NO 2 0 1 6 7 1 3 8 MAR 2 6 2025
DATE:

) S.S.

Notary Public for Maketi City Appointment No. M-213 und December 31, 2026 D.S. Tantuico & Associates, 3rd Floor, Universal Re Building, 106 Paseo de Roxas, Makati City Roll No 60094 IBP No. 485926, December 20, 2024, Leyte

Universal Re-Building, 106 Paseo de Roxas, 1226 Makati City Philippine No. 485926, Decanole 20, 2024, Leyte MCPO Box 3488 • Phone: +632.812.1380 • Fax: +632.752.074. MCLE Compliance VIII - 0015422 valid until April 14, 2028

COVER SHEET

for AUDITED FINANCIAL STATEMENTS

	SEC Registration Number																												
																			1			1							
	COMPANY NAME																												
B	E	N	G	U	E	Τ		С	0	R	Р	0	R	Α	Т	Ι	0	N		Α	N	D		S	U	B	S	Ι	D
Ι	Α	R	Ι	E	S																								
			L OF					/ Bar	angay	/ Cit			_								Б			D					•
7	t	h		F	I	0	0	r	,		U	n	i	v	e	r	S	a	1		R	e	-	B	u	i	1	d	i
n	g	,		1	0	6		Р	a	S	e	0		d	e		R	0	X	a	S	,		1	2	2	6		M
a	k	a	t	i		С	i	t	у																				
	1	Α	Α	Form	F F	S					Department requiring the report					Secondary License Type, If Applicable													
		11	11	C	•	5							Ľ											1	'	11			
										со	MF	• A I	N Y	IN	FC) R	M A	ті	0 1	1									
			Com	pany'	s Em	ail Ad	dress	6		1		Com	pany	's Tel	ephor	ne Nu	Imber		1				Mob	ile Nu	Imber	•			1
	b	ccor	.pse	c@l	beng	guet	cor	p.co	m			((02)	88	12-1	138	0		09166100630										
			N	o. of	Stock	holde	ers					Ann	ual M	eeting	g (Mo	nth /	Day)					Fisca	al Yea	ar (Mo	onth /	Day)			
				1	6,8	57]				cem											er 3]
																													•
								Th	e des								ORM Office			rporat	tion								
		Nan	ne of	Conta	act Pe	erson				.9				Addre		o un	000					umbe	er/s	_		Mob	ile Nu	mber	
N	1r. 1	Rey	nal	do	P. I	Mer	ndo	za		re	y_n	1en'	777	@y	aho	0.C	om		(0	2) 8	812	2-12	20				N/A		
											ON	ΤΔΟ	T P	FR	ON	'e 4	DDI	RES	s										
																			-										
	5 Atipolo Bend St. Phase 2, Greenwoods Executive Village, Cainta, Rizal																												

NOTE 1: In case of death, resignation or cessation of office of the officer designated as contact person, such incident shall be reported to the Commission within thirty (30) calendar days from the occurrence thereof with information and complete contact details of the new contact person designated.

2: All Boxes must be properly and completely filled-up. Failure to do so shall cause the delay in updating the corporation's records with the Commission and/or non-receipt of Notice of Deficiencies. Further, non-receipt of Notice of Deficiencies shall not excuse the corporation from liability for its deficiencies.

SyCip Gorres Velayo & Co. 6760 Ayala Avenue 1226 Makati City Philippines Tel: (632) 8891 0307 Fax: (632) 8819 0872 sgv.ph

INDEPENDENT AUDITOR'S REPORT

The Board of Directors and Stockholders Benguet Corporation 7th Floor, Universal Re-Building 106 Paseo de Roxas, Makati City

Opinion

We have audited the consolidated financial statements of Benguet Corporation and its subsidiaries (the Group), which comprise the consolidated statements of financial position as at December 31, 2024 and 2023, and the consolidated statements of income, consolidated statements of comprehensive income, consolidated statements of changes in equity and consolidated statements of cash flows for each of the three years in the period ended December 31, 2024, and notes to the consolidated financial statements, including material accounting policy information.

In our opinion, the accompanying consolidated financial statements present fairly, in all material respects, the consolidated financial position of the Group as at December 31, 2024 and 2023, and its consolidated financial performance and its consolidated cash flows for each of the three years in the period ended December 31, 2024 in accordance with Philippine Financial Reporting Standards (PFRS) Accounting Standards.

Basis for Opinion

We conducted our audits in accordance with Philippine Standards on Auditing (PSAs). Our responsibilities under those standards are further described in the *Auditor's Responsibilities for the Audit of the Consolidated Financial Statements* section of our report. We are independent of the Group in accordance with the Code of Ethics for Professional Accountants in the Philippines (Code of Ethics) together with the ethical requirements that are relevant to our audit of the consolidated financial statements in the Philippines, and we have fulfilled our other ethical responsibilities in accordance with these requirements and the Code of Ethics. We believe that the audit evidence we have obtained is sufficient and appropriate to provide a basis for our opinion.

Key Audit Matters

Key audit matters are those matters that, in our professional judgment, were of most significance in our audit of the consolidated financial statements of the current period. These matters were addressed in the context of our audit of the consolidated financial statements as a whole, and in forming our opinion thereon, and we do not provide a separate opinion on these matters. For each matter below, our description of how our audit addressed the matter is provided in that context.

We have fulfilled the responsibilities described in the *Auditor's Responsibilities for the Audit of the Consolidated Financial Statements* section of our report, including in relation to these matters. Accordingly, our audit included the performance of procedures designed to respond to our assessment of the risks of material misstatement of the consolidated financial statements. The results of our audit procedures, including the procedures performed to address the matters below, provide the basis for our audit opinion on the accompanying consolidated financial statements.

Valuation of Land at Fair Value

The Group accounts for its land as investment properties using the fair value model and as property, plant and equipment using the revaluation model. As at December 31, 2024, land classified as investment properties amounting to $\mathbb{P}3,324.76$ million and land classified as property, plant and equipment amounting to $\mathbb{P}1,919.55$ million represented 31% and 18% of the consolidated total assets, respectively. The determination of the fair values of these properties involves significant management judgment and estimations. The valuation also requires the assistance of external appraisers whose calculations also depend on certain assumptions, such as sales and listing of comparable properties registered within the vicinity and adjustments to sales price based on internal and external factors. Thus, we considered the valuation of land as a key audit matter.

The disclosures relating to investment properties are included in Note 11 while those relating to property, plant and equipment are included in Note 9 to the consolidated financial statements.

Audit Response

We evaluated the competence, capabilities and objectivity of the external appraiser by considering their qualifications, experience and reporting responsibilities. We evaluated the methodology and assumptions used in the valuation of the investment properties and property, plant and equipment. We assessed the methodology adopted by referencing common valuation models and reviewed the relevant information supporting the sales and listings of comparable properties. We also inquired from the external appraisers the basis of adjustments made to the sales price.

Recoverability of Deferred Mine Exploration Costs

As at December 31, 2024, the carrying value of the Group's deferred mine exploration costs amounted to P550.50 million. These deferred mine exploration costs pertain to the expenditures incurred by the Group for the mining properties located in Benguet, Bataan and Nevada, USA. Under PFRS 6, *Exploration and Evaluation of Mineral Resources*, these deferred mine exploration costs shall be assessed for impairment when facts and circumstances suggest that the carrying amounts exceed the recoverable amounts. The ability of the Group to recover its deferred mine exploration costs would depend on the commercial viability of the projects. We considered this as a key audit matter because of the materiality of the amount involved, and the significant judgment required in assessing whether there is any indication of impairment.

The Group's disclosures in relation to deferred mine exploration costs are included in Note 10 to the consolidated financial statements.

Audit Response

We obtained management's assessment on whether there is any indication that deferred mine exploration costs may be impaired. We inspected the summary of the status of each exploration project as of December 31, 2024, as certified by the Group's technical group head, the type of expenses incurred, and assessed whether ongoing exploration activities exist to support the continued capitalization of these assets under the Group's accounting policies, and compared it with the disclosures submitted to regulatory agencies. We inspected contracts and agreements, inquired with management whether further evaluation is required in advance of a development decision and that such exploration is continuing, made reference with existing drilling results and inspected the approved budget for continuing the exploration and development costs. We inspected the licenses/permits of each exploration project to determine that the period for which the Group has the right to explore in the specific area has not expired, will not expire in the near future, and will be renewed accordingly. We also inquired about the existing concession areas that are expected to be abandoned or any exploration activities that are planned to be discontinued in those areas.

Impairment Testing of Property, Plant and Equipment

As at December 31, 2024 the Group's net assets exceeded its market capitalization. In the event that an impairment indicator is identified, the assessment of the recoverable amount of property, plant and equipment requires significant judgment and involves estimation and assumptions about future production levels and costs, as well as external inputs such as commodity prices, discount rate, and foreign currency exchange rates. Hence, such assessment is a key audit matter in our audit.

The disclosures in relation to property, plant and equipment are included in Note 9 to the consolidated financial statements.

Audit Response

We involved our internal specialist in evaluating the methodologies and the assumptions used. These assumptions include the expected life of the mining projects, future production levels and costs as well as external inputs such as commodity prices, discount rate and foreign currency exchange rates. We compared the key assumptions used against the mine life based on the ore reserve reports, production reports from the operations departments, forecasted average market price of gold and nickel, discount rate based on industry weighted average capital cost, and forecasted foreign currency exchange rates of various financial institutions. We tested the parameters used in the determination of the discount rate against market data. We also reviewed the Group's disclosures about those assumptions to which the outcome of the impairment test is most sensitive, specifically those that have the most significant effect on the determination of the recoverable amount of property, plant and equipment.

Other Information

Management is responsible for the other information. The other information comprises the information included in the SEC Form 20-IS (Definitive Information Statement), SEC Form 17-A and Annual Report for the year ended December 31, 2024, but does not include the consolidated financial statements and our auditor's report thereon. The SEC Form 20-IS (Definitive Information Statement), SEC Form 17-A and Annual Report for the year ended December 31, 2024 are expected to be made available to us after the date of this auditor's report.

Our opinion on the consolidated financial statements does not cover the other information and we will not express any form of assurance conclusion thereon.

In connection with our audits of the consolidated financial statements, our responsibility is to read the other information identified above when it becomes available and, in doing so, consider whether the other information is materially inconsistent with the consolidated financial statements or our knowledge obtained in the audits, or otherwise appears to be materially misstated.

Responsibilities of Management and Those Charged with Governance for the Consolidated Financial Statements

Management is responsible for the preparation and fair presentation of the consolidated financial statements in accordance with PFRS Accounting Standards, and for such internal control as management determines is necessary to enable the preparation of consolidated financial statements that are free from material misstatement, whether due to fraud or error.

In preparing the consolidated financial statements, management is responsible for assessing the Group's ability to continue as a going concern, disclosing, as applicable, matters related to going concern and using the going concern basis of accounting unless management either intends to liquidate the Group or to cease operations, or has no realistic alternative but to do so.

Those charged with governance are responsible for overseeing the Group's financial reporting process.

Auditor's Responsibilities for the Audit of the Consolidated Financial Statements

Our objectives are to obtain reasonable assurance about whether the consolidated financial statements as a whole are free from material misstatement, whether due to fraud or error, and to issue an auditor's report that includes our opinion. Reasonable assurance is a high level of assurance, but is not a guarantee that an audit conducted in accordance with PSAs will always detect a material misstatement when it exists. Misstatements can arise from fraud or error and are considered material if, individually or in the aggregate, they could reasonably be expected to influence the economic decisions of users taken on the basis of these consolidated financial statements.

As part of an audit in accordance with PSAs, we exercise professional judgment and maintain professional skepticism throughout the audit. We also:

- Identify and assess the risks of material misstatement of the consolidated financial statements, whether due to fraud or error, design and perform audit procedures responsive to those risks, and obtain audit evidence that is sufficient and appropriate to provide a basis for our opinion. The risk of not detecting a material misstatement resulting from fraud is higher than for one resulting from error, as fraud may involve collusion, forgery, intentional omissions, misrepresentations, or the override of internal control.
- Obtain an understanding of internal control relevant to the audit in order to design audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of the Group's internal control.
- Evaluate the appropriateness of accounting policies used and the reasonableness of accounting estimates and related disclosures made by management.
- Conclude on the appropriateness of management's use of the going concern basis of accounting and, based on the audit evidence obtained, whether a material uncertainty exists related to events or conditions that may cast significant doubt on the Group's ability to continue as a going concern. If we conclude that a material uncertainty exists, we are required to draw attention in our auditor's report to the related disclosures in the consolidated financial statements or, if such disclosures are inadequate, to modify our opinion. Our conclusions are based on the audit evidence obtained up to the date of our auditor's report. However, future events or conditions may cause the Group to cease to continue as a going concern.
- Evaluate the overall presentation, structure and content of the consolidated financial statements, including the disclosures, and whether the consolidated financial statements represent the underlying transactions and events in a manner that achieves fair presentation.
- Plan and perform the group audit to obtain sufficient appropriate audit evidence regarding the financial information of the entities or business activities within the Group as a basis for forming an opinion on the consolidated financial statements. We are responsible for the direction, supervision and review of the audit work performed for purposes of the group audit. We remain solely responsible for our audit opinion.

We communicate with those charged with governance regarding, among other matters, the planned scope and timing of the audit and significant audit findings, including any significant deficiencies in internal control that we identify during our audit.

We also provide those charged with governance with a statement that we have complied with relevant ethical requirements regarding independence, and to communicate with them all relationships and other matters that may reasonably be thought to bear on our independence, and where applicable, related safeguards.

- 6 -

From the matters communicated with those charged with governance, we determine those matters that were of most significance in the audit of the consolidated financial statements of the current period and are therefore the key audit matters. We describe these matters in our auditor's report unless law or regulation precludes public disclosure about the matter or when, in extremely rare circumstances, we determine that a matter should not be communicated in our report because the adverse consequences of doing so would reasonably be expected to outweigh the public interest benefits of such communication.

The engagement partner on the audit resulting in this independent auditor's report is Peter John R. Ventura.

SYCIP GORRES VELAYO & CO.

Piter John R. Ventura

Peter John R. Ventura Partner CPA Certificate No. 0113172 Tax Identification No. 301-106-741 BOA/PRC Reg. No. 0001, April 16, 2024, valid until August 23, 2026 BIR Accreditation No. 08-001998-158-2024, October 2, 2024, valid until October 1, 2027 PTR No. 10465400, January 2, 2025, Makati City

March 26, 2025

BENGUET CORPORATION AND SUBSIDIARIES

CONSOLIDATED STATEMENTS OF FINANCIAL POSITION (Amounts in Thousands)

	December			
	2024	2023		
ASSETS				
Current Assets				
Cash and cash equivalents (Note 4)	₽1,753,715	₽774,192		
Trade and other receivables (Note 5)	741,276	746,726		
Inventories (Note 6)	191,940	247,959		
Financial assets at fair value through profit or loss (Note 7)	704,637	1,328,780		
Other current assets (Note 8)	368,716	660,569		
Total Current Assets	3,760,284	3,758,226		
Noncurrent Assets				
Property, plant and equipment (Note 9)				
At revalued amount	1,972,598	1,776,614		
At cost	743,913	789,935		
Deferred mine exploration costs (Note 10)	550,505	520,367		
Investment properties (Note 11)	3,324,759	2,997,953		
Deferred tax assets - net (Note 30)	8,685	5,571		
Other noncurrent assets (Note 12)	506,577	488,952		
Total Noncurrent Assets	7,107,037	6,579,392		
TOTAL ASSETS	₽10,867,321	₽10,337,618		
	110,000,021	110,007,010		
LIABILITIES AND EQUITY				
Current Liabilities				
Trade and other payables (Note 13)	₽604,319	₽507,801		
Loans payable (Note 14)		339,238		
Lease liabilities - current (Note 15)	7,107	4,238		
Liability for mine rehabilitation - current (Note 16)	4,869	17,783		
Income tax payable	38,849	33,340		
Total Current Liabilities	655,144	902,400		
	000,111	,100		
Noncurrent Liabilities	9 1 5 9	4 002		
Lease liabilities - net of current portion (Note 15)	8,158	4,093		
Liability for mine rehabilitation - net of current portion (Note 16)	48,151	44,347		
Pension liability (Note 29)	39,963	58,194		
Deferred tax liabilities - net (Note 30)	826,761	775,867		
Other noncurrent liabilities (Note 17)	119,939	185,732		
Total Noncurrent Liabilities Total Liabilities	<u>1,042,972</u> 1,698,116	1,068,233 1,970,633		
	1,090,110	1,970,033		
Equity	714 077	(24.277		
Capital stock (Note 18)	714,277	624,277		
Capital surplus	686,627	415,547		
Cost of share-based payment (Note 19)	8,225	8,104		
Retained earnings	6,199,684 1,569,409	5,907,571		
Other components of equity (Note 18)	1,568,408	1,419,502		
$T_{\rm eff} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$	9,177,221	8,375,001		
Treasury shares (Note 18) Total Equity	<u>(8,016)</u> 9,169,205	(8,016) 8,366,985		
A V	, ,			
TOTAL LIABILITIES AND EQUITY	₽10,867,321	₽10,337,618		

BENGUET CORPORATION AND SUBSIDIARIES

CONSOLIDATED STATEMENTS OF INCOME

(Amounts in Thousands, Except Earnings Per Share)

	Y	ears Ended Decen	ıber 31
	2024	2023	2022
REVENUE (Note 20)	₽2,385,872	₽2,531,358	₽4,025,195
COSTS AND OPERATING EXPENSES			
Costs of mine products sold (Note 21)	(822,241)	(680,471)	(970,388)
Costs of services and other sales (Note 22)	(85,361)	(84,056)	(80,158)
Selling and general expenses (Note 23)	(866,539)	(906,015)	(1,078,542)
Excise taxes and royalty fees (Notes 20)	(162,311)	(182,425)	(299,747)
	(1,936,452)	(1,852,967)	(2,428,835)
INTEREST EXPENSE (Notes 14 and 15)	(7,355)	(2,776)	(1,102)
OTHER INCOME - net (Note 26)	106,908	56,994	164,014
INCOME BEFORE INCOME TAX	548,973	732,609	1,759,272
PROVISION FOR INCOME TAX (Note 30)	113,303	178,466	428,225
NET INCOME	₽435,670	₽554,143	₽1,331,047
BASIC EARNINGS PER SHARE (Note 31)	₽0.61	₽0.89	₽2.14
DILUTED EARNINGS PER SHARE (Note 31)	₽0.61	₽0.88	₽2.12

BENGUET CORPORATION AND SUBSIDIARIES CONSOLIDATED STATEMENTS OF COMPREHENSIVE INCOME (Amounts in Thousands)

	Y	ears Ended Decen	ıber 31
	2024	2023	2022
NET INCOME	₽435,670	₽554,143	₽1,331,047
OTHER COMPREHENSIVE INCOME			
(LOSS), NET OF TAX			
Item to be reclassified to profit or loss in			
subsequent periods:			
Translation adjustment on foreign subsidiaries	2,255	(336)	5,192
Items not to be reclassified to profit or loss in			
subsequent periods:			
Revaluation of land, net of tax (Note 9)	141,642	36,066	20,700
Remeasurement gain (loss) on pension liability,			
net of tax (Note 29)	4,491	(1,725)	6,960
Revaluation of artworks, net of tax (Note 9)	724	—	_
Unrealized gain (loss) on equity instruments			
designated at fair value through other			
comprehensive income (FVOCI)			
(Note 12)	(206)	43	603
Unrealized loss on intangible asset	_	—	(27)
	146,651	34,384	28,236
TOTAL OTHER COMPREHENSIVE			
INCOME, NET OF TAX	148,906	34,048	33,428
TOTAL COMPREHENSIVE INCOME	₽584,576	₽588,191	₽1,364,475

BENGUET CORPORATION AND SUBSIDIARIES CONSOLIDATED STATEMENTS OF CHANGES IN EQUITY FOR THE YEARS ENDED DECEMBER 31, 2024, 2023 AND 2022 (Amounts in Thousands)

						Othe	er components of equ	iity				
				_		Cumulative	* *	Unrealized				
					Revaluation	translation	Remeasurement	gain (loss) on				
					increment on	adjustment on	gain on	financial	Unrealized			
	Capital		Cost of		land and	foreign	pension	assets at	gain on	Total other	Treasury	
	stock	Capital	share-based	Retained	artworks	subsidiaries	liability	FVOCI	intangible asset	components of	shares	
	(Note 18)	surplus	payment	earnings	(Note 18)	(Note 18)	(Notes 18 and 29)	(Notes 12 and 18)	(Notes 12 and 18)	equity	(Note 18)	Total
Balances at January 1, 2022	₽624,015	₽409,929	₽9,198	₽4,021,846	₽1,305,820	₽36,208	₽10,673	(₽275)	₽135	₽1,352,561	(₽ 8,016)	₽6,409,533
Stock options expense (Notes 19 and 24)	-	-	2,258	-	-	-	-	_	_	_	_	2,258
Cancellation of stock options	_	5,181	(5,181)	_	_	_	_	_	_	_	_	-
Transfer of fair value reserve on financial asset at		· · · · · ·										
FVOCI (Note 12)	-	-	-	535	(535)	-	-	-	-	(535)	-	-
Net income	-	_	_	1,331,047	_	_	_	-	_		_	1,331,047
Other comprehensive income (loss)	_	_	_	-	20,700	5,192	6,960	603	(27)	33,428	_	33,428
Total comprehensive income (loss)	-	-	-	1,331,047	20,700	5,192	6,960	603	(27)	33,428	-	1,364,475
Balances at December 31, 2022	624,015	415,110	6,275	5,353,428	1,325,985	41,400	17,633	328	108	1,385,454	(8,016)	7,776,266
Stock options expense (Notes 19 and 24)	-		2,260					-			(0,010)	2,260
Exercise of stock options (Notes 18 and 19)	262	437	(431)	_	_	_	_	_	_	_	_	2,200
Net income		-	(131)	554,143	_	_	_	_	_	_	_	554,143
Other comprehensive income (loss)	_	_	_		36,066	(336)	(1,725)	43	_	34,048	_	34,048
Total comprehensive income (loss)	-	-	-	554,143	36,066	(336)	(1,725)	43	-	34,048	-	588,191
Balances at December 31, 2023	624.277	415,547	8,104	5,907,571	1,362,051	41,064	15,908	371	108	1,419,502	(8,016)	8,366,985
Stock issuance (Note 18)	90,000	270,000						-		-	(0,010)	360,000
Dividend declaration (Note 18)	-	270,000	_	(143,557)	_	_	_	_	_	_	_	(143,557)
Stock options expense (Notes 19 and 24)	_	_	1,201	(145,557)	_	_	_	_	_	_	_	1,201
Cancellation of stock options (Note 19)	_	1,080	(1,080)	_	_	_	_	_	_	_	_	
Net income	_	-	(1,000)	435,670	_	_	_	_	_	_	_	435,670
Other comprehensive income (loss)	_	_	_		142,366	2,255	4,491	(206)	_	148,906	_	148,906
Total comprehensive income (loss)	_	-	-	435,670	142,366	2,255	4,491	(206)	-	148,906	-	584,576
Balances at December 31, 2024	₽714,277	₽686,627	₽8,225	₽6,199,684	₽1,504,417	₽43,319	₽20,399	₽165	₽108	₽1,568,408	(₽8,016)	₽9,169,205

BENGUET CORPORATION AND SUBSIDIARIES

CONSOLIDATED STATEMENTS OF CASH FLOWS

(Amounts in Thousands)

	Years Ended Decemb			
	2024	2023	2022	
CASH FLOWS FROM OPERATING ACTIVITIES				
Income before income tax	₽548,973	₽732,609	₽1,759,272	
Adjustments for:		- ,, ,	,, -, -, _, _, _	
Depreciation and depletion (Notes 9 and 25)	62,644	55,630	81,214	
Interest income (Notes 4, 12 and 26)	(41,699)	(10,592)	(2,089)	
Movements in pension liability	(12,244)	(123)	(6,486)	
Movements in liability for mine rehabilitation	(11,687)	8,014	18,604	
Interest expense (Notes 14 and 16)	7,330	2,776	1,102	
Provision for (reversal of) impairment loss on other noncurrent assets	.,	_,,,,,	1,102	
(Notes 12, 23 and 26)	(2,281)	_	938	
Stock options expense (Notes 19 and 26)	1,201	2,260	2,258	
Loss (gain) on:	1,201	2,200	2,230	
Revaluation of investment properties (Notes 11 and 26)	(314 401)	136	(85 222)	
Settlement of loans (Notes 14 and 26)	(314,491) 309,396	150	(85,332)	
	309,390	—	—	
Change in fair value of financial assets at fair value through profit or $(TUR) \ge 0$ ($T = 120$)	(55 500)	(51.002)	(10.010)	
loss (FVPL) (Notes 7 and 26)	(55,500)	(51,893)	(18,213)	
Unrealized foreign currency exchange (Note 26)	(11,333)	5,929	2,655	
Disposal of intangible assets (Notes 12 and 26)	-	(150)		
Disposal of property, plant and equipment (Notes 9 and 26)	-	(105)	11,238	
Sale of investment properties (Notes 11 and 26)	-	-	(619)	
Operating income before working capital changes	480,309	744,491	1,764,542	
Decrease (increase) in:				
Trade and other receivables	5,450	35,779	(56,894)	
Inventories	56,019	(67,387)	(38,467)	
Input value-added taxes and creditable withholding taxes	(78,556)	131,824	76,837	
Other current assets	(78,443)	11,473	129,260	
Increase (decrease) in:				
Trade and other payables	(29,727)	(47,911)	(113,686)	
Noncurrent contract liabilities	_	(52,082)	(53,986)	
Net cash flows generated from operations	355,052	756,187	1,707,606	
Income taxes paid	(35,780)	(228,743)	(445,168)	
Interest received	41,699	10,592	2,089	
Interest paid	(814)	(573)	(1,102)	
Net cash flows generated from operating activities	360,157	537,463	1,263,425	
	300,157	557,405	1,203,423	
CASH FLOWS FROM INVESTING ACTIVITIES				
Proceeds from disposal of:				
Financial assets at FVPL (Note 7)	699,307	-	59,311	
Short-term investments (Note 8)	390,819	-	—	
Intangible assets (Note 12)	-	380	-	
Property, plant and equipment (Note 9)	-	105	157	
Investment properties (Note 11)	-	-	4,630	
Additions to:				
Short-term investments (Note 8)	(10,194)	(406,540)	-	
Financial assets at FVPL (Note 7)	(19,664)	(162,276)	(480,732)	
Investment properties (Note 11)	(18,540)	(6,225)		
Deferred mine exploration costs (Note 10)	(27,131)	(28,310)	(31,221)	
Property, plant and equipment (Note 9)	(1,710)	(68,253)	(45,383)	
Payments of advances to supplier of aircraft (Note 12)	(-,, -)	(4,054)	(257,889)	
Increase in other noncurrent assets	(16,235)	(79,586)	(99,581)	
Net cash flows generated from (used in) investing activities	996,652	(754,759)	(850,708)	

(Forward)

	Y	ears Ended Dece	mber 31
	2024	2023	2022
CASH FLOWS FROM FINANCING ACTIVITIES			
Payments of:			
Loans payable (Note 14)	(₽655,150)	₽-	₽-
Dividend declared (Note 18)	(108,068)	_	_
Principal portion of lease liabilities (Note 15)	(5,401)	(5,828)	(₽8,366)
Proceeds from:			
Issuance of shares (Note 18)	360,000	_	_
Deposit for future stock subscription (Note 18)	20,000	_	_
Employees' exercise of stock options (Note 19)	-	268	_
Net cash flows used in financing activities	(388,619)	(5,560)	(8,366)
NET INCREASE (DECREASE) IN CASH AND CASH EQUIVALENTS	968,190	(222,856)	404,351
EFFECT OF EXCHANGE RATE CHANGES ON CASH AND			
CASH EQUIVALENTS	11,333	(5,702)	(4,849)
CASH AND CASH EQUIVALENTS AT BEGINNING OF YEAR	774,192	1,002,750	603,248
CASH AND CASH EQUIVALENTS AT END OF YEAR (Note 4)	₽1,753,715	₽774,192	₽1,002,750

BENGUET CORPORATION AND SUBSIDIARIES

NOTES TO CONSOLIDATED FINANCIAL STATEMENTS (Amounts in Thousands, except number of shares, per share data and when indicated)

1. Corporate Information and Status of Business Operations

Corporate Information

Benguet Corporation (the Parent Company) was incorporated in the Philippines on August 12, 1903 and was listed in the Philippine Stock Exchange (PSE) on January 4, 1950.

The Parent Company is currently engaged in gold, nickel, and other metallic and nonmetallic mineral production, exploration, research and development and natural resource projects. The nature of business of the Parent Company's subsidiaries are summarized in Note 2 to the consolidated financial statements.

The Parent Company's registered office address is 7th Floor Universal Re-Building, 106 Paseo de Roxas, 1226 Makati City.

Status of Business Operations

Quasi-reorganization

On December 5, 2011, the Philippine Securities and Exchange Commission (SEC) approved the application of the Parent Company for quasi-reorganization to wipe out its deficit as at December 31, 2010, setting it off against its capital surplus and revaluation increment as follows:

		Effect of	
	Prior to quasi-	quasi-	After quasi-
	reorganization	reorganization	reorganization
Capital surplus	₽1,153,579	(₽1,153,579)	₽-
Revaluation increment	1,561,048	(1,010,848)	550,200
Deficit	(2,164,427)	2,164,427	_

For purposes of dividend declaration, the retained earnings of the Parent Company shall be restricted to the extent of the deficit wiped out by the revaluation increment amounting to $\mathbb{P}1.01$ billion until the asset to which the revaluation increment relates is disposed. In addition, the retained earnings of the Parent Company shall be restricted further by the accumulated fair valuation gains of investment properties of the Parent Company amounting to $\mathbb{P}1,262.69$ million and $\mathbb{P}978.96$ million as at December 31, 2024 and 2023, respectively.

Significant developments in the Parent Company and its subsidiaries' (collectively, the Group) operations follow:

a. Mining Projects

Benguet Gold Operations (BGO)

The Group produces gold from the Benguet mines, consisting of the Acupan and Kelly underground mines, that were suspended in 1992, following the 1991 earthquake, that flooded the said underground mines. In 2003, BGO resumed operations and production is partly carried out through independent mining contractors in Acupan Contract Mining Project (ACMP) which is a community-based underground mining project.

The Parent Company is currently working on exploration and drilling programs to upgrade BGO's capacity. The exploration and geology group completed the design for the surface and underground diamond drilling program for the Phase 1 of the Greater Acupan Project.

The related feasibility study for Greater Acupan Project was approved in 2013 and the Parent Company is still raising the necessary funds to start the execution of the project.

On October 28, 2016, the Parent Company received from the Department of Environment and Natural Resources (DENR) the mine audit report dated October 21, 2016, which was conducted pursuant to DENR Memorandum Circular No. 2016-01 requiring audit of all operating mines. The audit report recommended the suspension of the Parent Company's mining operations and required the Parent Company to submit an explanation. On November 1, 2016, the Parent Company submitted an explanation to the DENR stating that there are no legal and factual bases to suspend BGO's operations.

On February 14, 2017, the Parent Company received from DENR cancellation order dated February 8, 2017 which cancel the patent authority to undertake mining operations (PC-ACMP-002-CAR) in BGO for violation of mining and environmental laws, rules and regulations.

On February 22, 2017, the Parent Company filed Notice of Appeal before the Office of the President, which stayed the execution of the cancellation order. On March 22, 2017, the Parent Company submitted to the Office of the President its Appeal Memorandum. As of March 26, 2025, the Office of the President has not yet resolved the appeal.

In November 2019, the DENR directed the regional offices of the Mines and Geosciences Bureau (MGB) and Environmental Management Bureau (EMB) to validate the environmental compliance of BGO as input to early resolution of the appeal. In January 2020, MGB submitted a favorable validation report to DENR and recommended to set aside the cancellation order which was favorably acted upon. Hence as at December 31, 2024, the Parent Company continues to mine and operate.

On April 17 to 18, 2024, NQA Philippines, Inc. (NQA), an independent evaluation and certification body, conducted ISO 14001:2015 Surveillance Audit for BGO. The ISO certification is valid until March 15, 2025. As at March 26, 2025, BGO is in the process of rescheduling its recertification with NQA.

Sta. Cruz Nickel Project (SCNP)

On July 8, 2016, Benguetcorp Resources Management Corporation (BRMC) received from the regional offices of the DENR, MGB, and Environmental Management Bureau (EMB) a joint suspension order, which suspended the mining operations in Sta. Cruz, Zambales.

The Writ of Kalikasan case was referred by Supreme Court to the Court of Appeals for trial proceedings.

On October 18, 2016, BRMC received from DENR the mine audit report dated October 3, 2016 which was conducted pursuant to DENR Memorandum Circular No. 2016 -01 requiring audit of all operating mines. The audit report recommended the suspension of the Company's mining operations and required the Company to submit an explanation.

BRMC replied to the DENR taking strong exception to the mine audit report particularly on the recommendation to maintain the status quo of the Suspension Order issued by the DENR on July 7, 2016.

On November 1, 2016, the Company submitted an explanation to the DENR stating that there are no legal and factual basis to suspend BRMC's operations.

On February 13, 2017, BRMC received from the DENR a order cancelling its Mineral Production Sharing Agreement (MPSA). The cancellation order alleged that BRMC's operations had overlapped a watershed in the area and violated certain provisions of laws and regulations, majority of which were previously raised in the mine audit report.

On February 22, 2017, BRMC filed Notice of Appeal before the Office of the President to set aside the cancellation order. BRMC's nickel project is operated outside of any known critical or declared watershed. BRMC is operating within the Zambales Chromite Mineral Reservation, a mineral reservation which has been excluded from government declared watersheds. BRMC filed before the Office of the President its appeal memorandum on March 21, 2017.

On March 28, 2017, the local government of Zambales issued a Manifestation of Consent which lifted the moratorium and allowed BRMC to proceed with hauling and shipment of its nickel ore inventory, which was mined before the suspension took effect, to avoid any adverse impact on the environment.

On May 22, 2017, the Court of Appeals denied the petition for the Writ of Kalikasan case considering the case has become moot due to the DENR closure orders. Thereafter, the petitioners filed a Motion for Reconsideration.

On December 14, 2017, the Court of Appeals denied the Motion for Reconsideration. Accordingly, the prohibitory injunctive provisional Writ on the Kalikasan case issued by the Supreme Court was lifted. The denial of the petition was questioned in the Supreme Court then a Petition for Review by Certiorari. In March 2022, the Supreme Court gave due course to the Certiorari by remanding the case to the Court of Appeals for continuation of the proceedings. The case was set for preliminary conference.

On July 2, 2020, MGB Regional Office No. III in its Memorandum recommended granting the appeal of BRMC on the DENR order dated February 8, 2017 cancelling the MPSA agreement.

In August 2020, the DENR has determined that BRMC has fully addressed the violations and has complied with the recommendations of the Mining Industry Coordinating Council (MICC) Review Team. The recommendation was also approved by the Secretary of the DENR.

On October 29, 2020, BRMC received a Memorandum dated October 20, 2020 from DENR-MGB Regional Office No. III stating that the Regional Director DENR-MGB Regional Office No. III concurs with the directives of MGB Acting Director to lift the current suspension order subject to its compliance with the certain requirements.

On November 17, 2020, BRMC further notified the MGB Regional Office No. III through a letter dated November 18, 2020 the planned resumption of its mining operations on November 20, 2020.

BRMC now operates in Areas 2 and 3 of its MPSA, implementing activities pursuant to the Three-year Development and Work Program that it resubmitted on December 15, 2020, after

getting the previous version approved last July 1, 2020 by the Director of MGB Regional Office No. III.

Starting 2021, BRMC was able to fully operate its nickel mining project and continued to transport and hauled for shipment the ore inventory stockpiles in Areas 1 and 3 of the MPSA which were given Ore Transport Permit (OTP).

On October 10, 2022, NQA issued to BRMC ISO 14001:2015 Recertification audit. The certification is valid until February 3, 2026. This certification makes BRMC fully compliant with DAO 2015-07.

Irisan Lime Project (ILP)

The Parent Company's ILP in Irisan, Baguio is engaged in the production and trading of quicklime. ILP produced 6,177 tons, 6,553 tons and 7,340 tons of quicklime in 2024, 2023 and 2022, respectively. On March 22, 2022, the Mineral Processing Permit (MPP) for the ILP was renewed for a period of five years or until March 21, 2027.

Benguet Antamok Gold Operation (BAGO)

The Parent Company's BAGO in Itogon, Benguet has been suspended since August 1998. BAGO has an estimated resource of about 12.4 million tons, averaging 3.45 grams of gold per ton, at the end of 1999. Pursuant to DAO No. 2010-04, the Parent Company's Application for Mineral Production Sharing Agreement (APSA) in the Cordillera Administrative Region (CAR) was denied on February 8, 2011. Subsequently, the Parent Company filed an appeal on April 15, 2011 with MGB Central Office and elevated the appeal to the DENR. On October 5, 2021, the DENR granted the appeal and the APSA was reinstated back to the Parent Company.

In October 2016, a leak occurred in BAGO's tailings dam, which affected the Liang River. In response to the DENR show cause letter dated November 23, 2016, the Parent Company explained that there was no negligence because the incident was due to force majeure and the tailings leak was immediately remediated. The Parent Company also emphasized that it has no existing mining operations in BAGO as it has long been suspended. The BAGO open pit mine and the BAGO underground mine has not operated since 1998 and 1989, respectively. The Parent Company contended that its infrastructure in BAGO is under care and maintenance. On January 1, 2017, the case was elevated to the Pollution Adjudication Board (PAB) from the Environmental Management Bureau (EMB), where the Parent Company submitted its Position Paper. No subsequent updates as of March 26, 2025.

Masinloc Chromite Operation (MCO)

From 1934 to 2007, the Parent Company managed the Coto mines under an operating agreement with its claimowner, Consolidated Mines, Inc. (CMI). With the expiration of the operating agreement on July 8, 2007, the Parent Company has transferred back the mine to CMI. As at March 26, 2025, the Parent Company is still engaged in discussion with CMI over the liquidation of MCO's assets.

b. Exploration, Research and Development Projects

Balatoc Tailings Project (BTP)

The Parent Company's Board of Directors (BOD) approved an initial ₱10.0 million research and development fund for the BTP in Itogon, Benguet for the study on the feasibility of reprocessing 16.7 million tons of tailings resource with an average of 0.69 grams gold per ton and is estimated to contain 371,000 ounces of gold. A core research and development team, together with the

Beijing Geological Research Institute of Mining and Metallurgy, has done the analysis toward the preparation and completion of the bankable feasibility study.

On October 21, 2009, the Parent Company appointed ATR Kim Eng Capital Partners, Inc. as financial advisor to raise additional development capital for the BTP.

On the same date, the Parent Company entered into a processing agreement with Balatoc Gold Resources Corporation (BGRC), a subsidiary, to implement the BTP. The Parent Company has completed the bankable feasibility study of the BTP and engaged external Competent Persons to prepare and review reports as required under the Philippine Mineral Reporting Code modeled after the Joint Ore Reserve Committee of Australia.

In September 2010, the Parent Company signed a Deed of Assignment with BGRC, to transfer Mineral Processing Permit (MPP) No. 13-2010-Cordillera Administrative Region (CAR) covering the BTP and was approved by DENR-MGB in November 2011.

BGRC continued the activities on expansion and rehabilitation of its penstocks at Tailings Pond Nos. 2 and 3 and earthmoving works on the silt dam at Gold Creek and the Ambalanga River pumping station, and the ridge enhancement works on Tailings Ponds Nos. 2 and 3.

On January 17, 2013, the Parent Company's BOD authorized and approved the deed of exchange between the Parent Company and BGRC covering all of the Parent Company's rights and interest in BTP in exchange of BGRC's shares.

Following the expiration of MPP No. 13-2010-CAR, BGRC reconveyed to the Parent Company on March 16, 2016 and this was approved by the DENR-MGB on May 31, 2016.

Antamok Tailings Project (ATP)

The ATP, which targeted the BAGO mill tailings pond, was conceived as a possible additional resource that could be developed similar to BTP. The BAGO tailings pond, located a few hundred meters downstream from the BAGO open pit mine, contains some 7.64 million tons of tailings produced from the BAGO milling operations. In addition, a considerable tonnage of extraneous materials, estimated at about 1.95 million tons washed from the BAGO pit over the years from the Otek marginal grade material dump and from the numerous illegal miners' workings, found its way into the pond and is now resting on top of the tailings deposit. A preliminary sampling of these extraneous materials showed that these can be considered for exploitation together with the original tailings in the pond. More core drilling, however, may be required to firm up the resource estimate of these impounded materials.

The Parent Company has approved an initial ₱7.50 million research fund for the ATP for the feasibility study on the reprocessing. The Parent Company is conducting a feasibility study on the reprocessing of tailings from the BAGO, which are impounded in the tailings pond downstream of the old BAGO mill. The initial drilling conducted to test the impounded materials indicates a grade of 4.0 grams of gold per ton.

Surigao Coal Prospect (SCP)

Pre-development activities for the SCP were put on hold in 2011 due to DENR Circular Executive Order (EO) 23, series of 2011, which declares a moratorium on the cutting of timber in the natural and residual forests. The City Environment and Natural Resources Office of the Municipality of Lianga denied the Parent Company's request for a tree inventory, which is preparatory to the application for a cutting permit. The decision was reversed in January 2012 after the issuance of a memorandum from the Executive Secretary, which exempted exploration and mining activities from the said EO. The Parent Company is in the process of completing the requirements to secure permits for the development of the project. A preliminary hydrology study was done at the nearby Hubo river's water source to assess if the volume capacity of the river system can support a hydro plant, which will complement the Coal Power Plant Study. The Parent Company's application for new Coal Operating Contract (CoC) with the Department of Energy can now proceed with the submission of Certificate of No Mining Ban from the provincial Local Government Unit (LGU).

Ampucao Copper-Gold Prospect (Ampucao Prospect)

The Ampucao prospect is partly located inside the contract claims of Pugo Mining Company in the southern part of Benguet's Acupan gold mine. The initial exploration work conducted by the Parent Company's geologists indicates a porphyry copper-gold mineralization hosted in diorite below the 2000 level. Two test holes have been programmed to be drilled within the area, but have been put on-hold pending the approval of the Exploration Permit Application (EXPA).

Pantingan Copper Gold Prospect (PGP)

The PGP in Balanga, Bataan consists of 1,410 hectares covered by MPSA No. 154-2000-III. The property is under an operating agreement with Option to Purchase, with Balanga Bataan Minerals Corporation, signed in March 1996. Surface mineralization consists of quartz and clay veins, ranging from 0.70 meters to 10 meters wide, with gold and silver values. The Parent Company has implemented drilling programs in the property starting in 2020. On October 14, 2024, the DENR approved the renewal of the MPSA for the second 25-year term commencing March 31, 2025.

Recent geological works in the Pantingan property have also led to the identification of two parcels composed of Block-1 and Block-3 area called PAB-1 and PAB-2 located inside the mineral tenement hosting high quality mountain rock deposits with favorable potential for rock aggregates. The potential rock formations are composed of consolidated volcanic conglomerate and massive andesite units based on their actual ground analysis. The large-scale quarry in PAB-1 and PAB-2 within the MPSA still needs drilling for Declaration of Mining Project Feasibility (DMPF).

On the aggregates prospect outside the MPSA, the Parent Company continues to do topographical/road surveys and apply for permits including for road-right-of-way in the 40-hectares and 30-hectares Quarry Permit Area (QPA). The MGB has issued area clearance in the 30-hectares QPA, EMB has approved the ECC, and NCIP has given a certificate of non-coverage. The Parent Company is working on LGU consent and tree inventory.

BOLCO Gold Prospect (BOLCO)

BOLCO in R.T. Lim, Zamboanga Sibugay consists of 340.3 hectares of land area and is under an operating agreement with Oreline Mining Corporation (OMC). An exploration program to evaluate the mineral potential of the main structure at depth is being undertaken following the DENR approval of the Exploration Permit (EP) on December 5, 2023. Before, the APSA was denied on May 12, 2010 and subject of an appeal on January 30, 2013, until it was reinstated by the DENR on November 4, 2020. It was afterwards converted to EXPA.

Financial or Technical Assistance Agreement (FTAA) Application

The Parent Company and its subsidiary, Sagittarius Alpha Realty Corporation (SARC), have two pending FTAA applications consisting of land area totaling 72,806,291 hectares. The FTAA application in Ilocos Norte (denominated as AFTA-000003-1) and Apayao (denominated as AFTA No. 033-CAR) are undergoing Free, Prior and Informed consent requirement through the

Regional Office of the NCIP. Exploration work for the two areas will be undertaken as soon as the applications have been approved by the Philippine government.

c. Water Projects

Baguio City Bulk Water Supply Project (BCBWSP)

On August 16, 2005, the BOD of the Baguio Water District (BWD) issued to the Parent Company a Notice of Award covering the BCBWSP. The Parent Company's proposal is to convert its mined-out 440 Vein Open Pit into a water reservoir to supply 50,000 cubic meters of potable water per day to Baguio City.

On September 7, 2007, the BWD issued Board Resolution Number 30-2007, which resolved to terminate the bulk water supply contract negotiation and to scrap the project. The Parent Company filed request for reconsideration on September 13, 2007.

On November 29, 2007, the BWD issued a Board Resolution denying the request for reconsideration. The Parent Company then filed a case against BWD with the Regional Trial Court.

In 2020, pursuant to a Memorandum of Agreement (MOA) with Manila Water Company, Inc. (MWCI) regarding the assignment of water rights in Laboy River in connection with MWCI's bulk water supply proposal to Baguio City, the Parent Company withdrew the case against BWD without prejudice to filing of a new case for recovery of cost and damages due to the aborted bidding award. The MOA with MWCI lapsed in 2023 and the Parent Company invoked the long stop date of 3 years to demand reversion of water rights over Laboy River. In February 2024, MWCI and the Parent Company executed a Deed of Assignment for the reconveyance of the Water Permit subject for National Water and Resources Board (NWRB) approval of the transfer.

Water Rights of Agua de Oro Ventures Corporation (ADOVC)

ADOVC, a subsidiary of BMC, has water permits in various locations in Tuba, Benguet: Kairuz Spring granted on September 12, 2001, Amliang Spring granted on October 17, 2002, and Kias Creek granted on August 13, 2004.

The water permits give ADOVC water access to these water sources, except for Kairuz Spring. The owner sold the water source on August 2012. The new owner denied ADOVC to access the water source. In an order dated September 12, 2001, the transfer of the water permit was approved subject to the rights of ADOVC equivalent to 11.60 liters per second. The diversion of the water shall be from the source and for the purpose indicated in the permit and in no case should said use exceed the quantity and period indicated therein. As of March 26, 2025, management is still awaiting resolution of the issue.

As at December 31, 2024 and 2023, the cost and accumulated amortization of the water rights amounted to P4.59 million. ADOVC accrued and paid water permit fees amounting to P0.05 million and P0.04 million in 2024 and 2023, respectively.

d. Land Development Project

Kelly Special Economic Zone (KSEZ)

The Parent Company has approved an initial $\mathbb{P}4.90$ million for the feasibility study covering the KSEZ and the potential of other real estate project of the Group. The Parent Company plans to transfer the said properties to BC Property Management, Inc. (BCPMI), a subsidiary of BMC. The capital expenditures related to the implementation of the project will then be infused as

equity of the Parent Company in BCPMI. As at March 26, 2025, the said project has not yet materialized.

e. Logistics Services

On August 31, 2017, the BOD approved the dissolution of Calhorr 1 Marine Services Corporation (CMSC) and Calhorr 2 Marine Services Inc. (CMSI), wholly owned subsidiaries of Keystone Port Logistics and Management Services Corporation (KPLMSC), by shortening their corporate term until September 30, 2017. CMSC and CMSI are awaiting the clearance letter from the Bureau of Internal Revenue (BIR) before it could apply for liquidation with the Philippine SEC. Final liquidation will take place after the Philippine SEC's approval of the said application. In 2021, CMSC and CMSI received the clearance letter from the BIR. As at March 26, 2025, CMSC and CMSI have not yet filed the application of liquidation with the Philippine SEC.

f. Health Care Services

The Parent Company spun off its Benguet Laboratories (BL) Division on September 19, 2012 through its wholly owned subsidiary, Benguetcorp Laboratories, Inc. (BLI), to undertake the expansion of BL into a distinct operating unit that can raise the necessary development funds and create value for the Group. BLI operates two full-fledged tertiary multi-specialty facilities in Baguio under the trade name Benguet Laboratories.

Authorization for the Issuance of the Consolidated Financial Statements

The consolidated financial statements of the Group as at December 31, 2024 and 2023 and for each of the three years in the period ended December 31, 2024 were authorized for issuance by the Parent Company's BOD on March 26, 2025.

2. Summary of Material Accounting Policies

Basis of Preparation

The consolidated financial statements of the Group have been prepared on a historical cost basis, except for land and artworks classified as property, plant and equipment, financial assets at FVOCI, financial assets at FVPL and investment properties, which have been measured at fair value. The consolidated financial statements are presented in Philippine peso, which is the Parent Company's functional and presentation currency. All values are rounded to the nearest thousands (P000), except when otherwise indicated.

Statement of Compliance

The consolidated financial statements of the Group have been prepared in compliance with the Philippine Financial Reporting Standards (PFRS) Accounting Standards.

Basis of Consolidation and Group Information

As at December 31, 2024 and 2023, the consolidated financial statements include the accounts of the Parent Company and the following subsidiaries:

Nature of businessincorporationownershipBerec Land Resources Inc. (BLRI)*Exploration and developmentPhilippines100.00BRMCExploration and developmentPhilippines100.00ADOVC*Selling of treated and untreated waterPhilippines100.00BCPMI*Management servicesPhilippines100.00BMC*FoundryPhilippines100.00
BRMCExploration and developmentPhilippines100.00ADOVC*Selling of treated and untreated waterPhilippines100.00BCPMI*Management servicesPhilippines100.00BMC*FoundryPhilippines100.00
ADOVC*Selling of treated and untreated water Philippines100.00BCPMI*Management servicesPhilippines100.00BMC*FoundryPhilippines100.00
BCPMI*Management servicesPhilippines100.00BMC*FoundryPhilippines100.00
BMC* Foundry Philippines 100.00
BMC's Subsidiaries:
Arrow Freight and Construction Corporation Logistics Philippines
(AFCC) 100.00
Benguetrade, Inc. (BTI)* Trading Philippines 100.00
BMC Forestry Corporation (BFC) Real estate Philippines 100.00
BPGC* Exploration and development Philippines 100.00
KPLMSC Logistics Philippines 100.00
KPLMSC's Subsidiaries:
CMSC** Logistics Philippines 100.00
CMSI** Logistics Philippines 100.00
Media Management Corporation (MMC)* Management services Philippines 100.00
BenguetCorp International Limited (BIL)* Holding company Hong Kong 100.00
Aglao Development Corporation (ADC)Land use developmentPhilippines100.00
BIL Subsidiaries:
Benguet United States of America (USA), Inc.* Exploration and development USA 100.00
Benguet Canada Limited* Exploration and development Canada 100.00
Pillars of Exemplary Consultants, Inc. (PECI)* Professional services Philippines 100.00
SARC* Real estate holding Philippines 100.00
SARC's Subsidiary: Exploration and development Philippines
BGRC* 100.00
Benguetcorp Construction and Development Exploration and development Philippines
Corporation (BCDC) (formerly Batong Buhay
Mineral Resources Corporation)* 100.00
Ifaratoc Mineral Resources Corporation (IMRC)* Exploration and development Philippines 100.00
Acupan Gold Mines Inc.* Exploration and development Philippines 100.00
Benguetcorp Laboratories Inc. (BLI)Health servicesPhilippines100.00
Samar Agricultural Farm Corporation (SAFC)AgriculturePhilippines100.00
* Non-operating ** In process of liquidation

** In process of liquidation

Profit or loss and each component of other comprehensive income (OCI) are attributed to the equity holders of the parent of the Group and to the non-controlling interests, even if this results in the non-controlling interests having a deficit balance. When necessary, adjustments are made to the financial statements of subsidiaries to bring their accounting policies in line with the Group's accounting policies. All intra-group assets and liabilities, equity, income, expenses and cash flows relating to transactions between members of the Group are eliminated in full on consolidation.

New Standards, Interpretations and Amendments

The accounting policies adopted are consistent with those of the previous financial year, except for the adoption of amended standards effective in 2024. The Group has not early adopted any standard, interpretation or amendment that has been issued but is not yet effective. Adoption of these amended standards did not have an impact on the consolidated financial statements of the Group:

- Amendments to PAS 1, Classification of Liabilities as Current or Non-current
- Amendments to PFRS 16, *Lease Liability in a Sale and Leaseback*
- Amendments to PAS 7 and PFRS 7, Disclosures: Supplier Finance Arrangements

Standards issued but not yet effective

Pronouncements issued but not yet effective are listed below. Unless otherwise indicated, the Group does not expect that the future adoption of the said pronouncements will have a significant impact on its consolidated financial statements. The Group intends to adopt the following pronouncements when they become effective.

Effective beginning on or after January 1, 2025

• Amendments to PAS 21, Lack of exchangeability

Effective beginning on or after January 1, 2026

- Amendments to PFRS 9 and PFRS 7, Classification and Measurement of Financial Instruments
- Amendments to PFRS 9 and PFRS 7, Contracts Referencing Nature-dependent Electricity
- Annual Improvements to PFRS Accounting Standards—Volume 11
 - Amendments to PFRS 1, Hedge Accounting by a First-time Adopter
 - o Amendments to PFRS 7, Gain or Loss on Derecognition
 - o Amendments to PFRS 9, Lessee Derecognition of Lease Liabilities and Transaction Price
 - o Amendments to PFRS 10, Determination of a 'De Facto Agent'
 - o Amendments to PAS 7, Cost Method

Effective beginning on or after January 1, 2027

- PFRS 17, Insurance Contracts
- PFRS 18, Presentation and Disclosure in Financial Statements
- PFRS 19, Subsidiaries without Public Accountability

Deferred effectivity

• Amendments to PFRS 10, Consolidated Financial Statements, and PAS 28, Sale or Contribution of Assets between an Investor and its Associate or Joint Venture

Financial Instruments

Financial Assets

Initial recognition and measurement

Financial assets are classified, at initial recognition, as subsequently measured at amortized cost, FVOCI, and FVPL.

The classification of financial assets at initial recognition depends on the financial asset's contractual cash flow characteristics and the Group's business model for managing them. With the exception of trade receivables that do not contain a significant financing component or for which the Group has applied the practical expedient, the Group initially measures a financial asset at its fair value plus, in the case of a financial asset not at FVPL, transaction costs. Trade receivables that do not contain a

significant financing component or for which the Group has applied the practical expedient are measured at the transaction price determined under PFRS 15.

Subsequent Measurement

The subsequent measurement of financial assets depends on their classification as follows:

• *Financial assets at amortized cost (debt instruments)* Financial assets at amortized cost are subsequently measured using the effective interest rate (EIR) method and are subject to impairment. Gains and losses are recognized in the consolidated statement of income when the asset is derecognized, modified or impaired.

The Group's financial assets at amortized cost include cash and cash equivalents, trade receivables, loan receivable, receivables from lessees of bunkhouses and short-term investments under "Other current assets" (see Notes 4, 5 and 8).

• Financial assets at FVPL

Financial assets at FVPL are carried in the consolidated statement of financial position at fair value with net changes in fair value recognized in the consolidated statement of income.

The Group's financial assets at FVPL include its investments in unit investment trust fund (UITF) (see Note 7).

• Financial assets at FVOCI

Gains and losses on these financial assets are never recycled to profit or loss. Dividends are recognized as other income in the consolidated statement of income when the right of payment has been established, except when the Group benefits from such proceeds as a recovery of part of the cost of the financial asset, in which case, such gains are recorded in the consolidated statement of comprehensive income. Equity instruments designated at FVOCI are not subject to impairment assessment.

The Group's financial assets at FVOCI include investments in quoted shares (see Note 12).

Impairment

The Group recognizes an allowance for expected credit losses (ECLs) for all debt instruments not held at FVPL. ECLs are based on the difference between the contractual cash flows due in accordance with the contract and all the cash flows that the Group expects to receive, discounted at an approximation of the original EIR. The expected cash flows will include cash flows from the sale of collateral held or other credit enhancements that are integral to the contractual terms.

ECLs are recognized in two stages. For credit exposures for which there has not been a significant increase in credit risk since initial recognition, ECLs are provided for credit losses that result from default events that are possible within the next 12 months (a 12-month ECL). For those credit exposures for which there has been a significant increase in credit risk since initial recognition, a loss allowance is required for credit losses expected over the remaining life of the exposure, irrespective of the timing of the default (a lifetime ECL).

For cash and cash equivalents and short-term investments, the Group applies the low credit risk simplification. The probability of default and loss given defaults are publicly available and are considered to be low credit risk investments. It is the Group's policy to measure ECLs on such instruments on a 12-month basis. However, when there has been a significant increase in credit risk since origination, the allowance will be based on the lifetime ECL. The Group uses publicly

available ratings to determine whether the debt instrument has significantly increased in credit risk and to estimate ECLs.

For trade receivables, the Group applies a simplified approach in calculating ECLs. Therefore, the Group does not track changes in credit risk, but instead recognizes a loss allowance based on lifetime ECLs at each reporting date. The Group has established a provision matrix that is based on its historical credit loss experience, adjusted for forward-looking factors specific to the debtors and the economic environment.

For other receivables, the Group calculates ECLs at initial recognition by considering the consequences and probabilities of possible defaults only for the next 12 months, rather than the life of the asset. It continues to apply this method until a significant increase in credit risk has occurred, at which point the loss allowance is measured based on lifetime ECLs.

At each reporting date, the Group assesses whether there has been a significant increase in credit risk for financial assets since initial recognition by comparing the risk of default occurring over the expected life between the reporting date and the date of initial recognition. The Group considers reasonable and supportable information that is relevant and available without undue cost or effort for this purpose. This includes quantitative and qualitative information and forward-looking analysis.

Exposures that have not deteriorated significantly since origination, or where the deterioration remains within the Group's investment grade criteria are considered to have a low credit risk. The provision for credit losses for these financial assets is based on a 12-month ECL. The low credit risk exemption has been applied on debt investments that meet the investment grade criteria of the Group from the time of origination.

An exposure will migrate through the ECL stages as asset quality deteriorates. If, in a subsequent period, asset quality improves and also reverses any previously assessed significant increase in credit risk since origination, then the loss allowance measurement reverts from lifetime ECL to 12-months ECL.

The Group considers a financial asset in default when contractual payments are 90 days past due. However, in certain cases, the Group may also consider a financial asset to be in default when internal or external information indicates that the Group is unlikely to receive the outstanding contractual amounts in full before taking into account any credit enhancements held by the Group. A financial asset is written off when there is no reasonable expectation of recovering the contractual cash flows.

Financial Liabilities

Initial recognition, measurement

Financial liabilities are classified, at initial recognition, as financial liabilities at FVPL, loans and borrowings, payables, or as derivatives designated as hedging instruments in an effective hedge, as appropriate.

All financial liabilities are recognized initially at fair value and, in the case of loans and borrowings and payables, net of directly attributable transaction costs.

Subsequent Measurement - Financial liabilities at amortized cost (loans and borrowings) After initial measurement, loans and borrowings and payables are subsequently measured at amortized cost using the EIR method. Gains and losses are recognized in the consolidated statement of income when the liabilities are derecognized as well as through the EIR amortization process.

The Group's financial liabilities include loans payable, trade payables and accrued expenses under "Trade and other payables", lease liabilities and equity of claim owners on contract operations under "Other noncurrent liabilities" (see Notes 13, 14, 15 and 17).

Fair Value Measurement

Fair value is the price that would be received to sell an asset or paid to transfer a liability in an orderly transaction between market participants at the measurement date. The fair value measurement is based on the presumption that the transaction to sell the asset or transfer the liability takes place either:

- In the principal market for the asset or liability, or
- In the absence of a principal market, in the most advantageous market for the asset or liability.

The principal or the most advantageous market must be accessible to the Group.

The fair value of an asset or a liability is measured using the assumptions that market participants would use when pricing the asset or liability, assuming that market participants act in their best economic interest.

A fair value measurement of a non-financial asset takes into account a market participant's ability to generate economic benefits by using the asset in its highest and best use or by selling it to another market participant that would use the asset in its highest and best use.

The Group uses valuation techniques that are appropriate in the circumstances and for which sufficient data are available to measure fair value, maximizing the use of relevant observable inputs and minimizing the use of unobservable inputs.

All assets and liabilities for which fair value is measured or disclosed in the consolidated financial statements are categorized within the fair value hierarchy, described as follows, based on the lowest level input that is significant to the fair value measurement as a whole:

- Level 1 Quoted (unadjusted) market prices in active markets for identical assets or liabilities
- Level 2 Valuation techniques for which the lowest level input that is significant to the fair value measurement is directly or indirectly observable
- Level 3 Valuation techniques for which the lowest level input that is significant to the fair value measurement is unobservable.

For assets and liabilities that are recognized in the consolidated financial statements at fair value on a recurring basis, the Group determines whether transfers have occurred between levels in the hierarchy by re-assessing categorization (based on the lowest level input that is significant to the fair value measurement as a whole) at the end of each reporting period.

For the purpose of fair value disclosures, the Group has determined classes of assets and liabilities on the basis of the nature, characteristics and risks of the asset or liability and the level of the fair value hierarchy as explained above.

Inventories

Costs incurred in bringing each product to its present location and condition are accounted for, as follows:

- 14 -

Materials and supplies	-	at purchase price less purchase discount, returns and rebates on a first-in, first-out method
Beneficiated nickel ore	-	at cost on a moving average production method during the year exceeding a determined cut-off grade
Quicklime and slakelime	-	at cost on a moving average production method
Gold buttons	-	at cost on a moving average production method
Subdivision lots	-	at land costs, amounts paid to contractors for costs incurred in the development and improvement of the properties (planning and design costs, cost of site preparation, professional fees, property taxes, construction overheads and other related costs)

Net realizable value (NRV) for materials and supplies represents the current replacement cost. NRV for beneficiated nickel ore, quicklime and slakelime, gold bullions or buttons, and subdivision lots is the estimated selling price in the ordinary course of business less costs of completion and estimated costs necessary to make the sale.

Value-added Taxes (VAT)

Revenues, expenses, and assets are recognized net of the amount of VAT, if applicable. When VAT from sales of goods and/or services (output VAT) exceeds VAT passed on from purchases of goods or services (input VAT), the excess is recognized as payable in the consolidated statement of financial position. When VAT passed on from purchases of goods or services (input VAT) exceeds VAT from sales of goods and/or services (output VAT), the excess is recognized as an asset in the consolidated statement of financial position to the extent of the recoverable amount.

Deferred Mine Exploration Costs

Exploration and evaluation activity involve the search for mineral resources, the determination of technical feasibility and the assessment of commercial viability of an identified resource.

Exploration and evaluation activity include:

- Researching and analyzing historical exploration data
- Gathering exploration data through geophysical studies
- Exploratory drilling and sampling
- Determining and examining the volume and grade of the resource
- Surveying transportation and infrastructure requirements
- Conducting market and finance studies

License costs paid in connection with a right to explore in an existing exploration area are capitalized and amortized over the term of the permit.

Once the legal right to explore has been acquired, exploration and evaluation expenditure is charged to consolidated statement of income as incurred, unless the Group concludes that a future economic benefit is more likely than not to be realized. These costs include directly attributable employee remuneration, materials and fuel used, surveying costs, drilling costs and payments made to contractors.

In evaluating whether the expenditures meet the criteria to be capitalized, several different sources of information are used. The information that is used to determine the probability of future benefits depends on the extent of exploration and evaluation that has been performed.

Expenditure on exploration and evaluation is accounted for in accordance with the area of interest method. Exploration and evaluation expenditure is capitalized provided the rights to tenure of the area of interest is current and either: the exploration and evaluation activities are expected to be recouped through successful development and exploitation of the area of interest or, alternatively, by its sale; or exploration and evaluation activities in the area of interest have not, at the reporting date, reached a stage that permits a reasonable assessment of the existence or otherwise of economically recoverable reserves, and active and significant operations in, or relating to, the area of interest are continuing.

When the technical feasibility and commercial viability of extracting a mineral resource have been demonstrated, then, any fulfillment exploration and evaluation expenditure is reclassified as mine and mining properties and mine development costs included as part of property, plant and equipment. Prior to reclassification, exploration and evaluation expenditure is assessed for impairment.

When a project is abandoned, the related deferred mine exploration costs are written off. Exploration areas are considered permanently abandoned if the related permits of the exploration have expired and/or there are no definite plans for further exploration and/or development.

Property, Plant and Equipment

Property, plant and equipment, except land and artworks, are stated at cost, excluding the costs of day-to-day servicing, less accumulated depreciation, depletion and amortization and accumulated impairment in value, if any. Such cost includes the cost of replacing part of such property, plant and equipment if the recognition criteria are met.

When significant parts of property, plant and equipment are required to be replaced at intervals, the Group recognizes such parts as individual assets with specific useful lives and depreciates, depletes and amortizes them accordingly. Likewise, when a major inspection is performed, its cost is recognized in the carrying amount of the property, plant and equipment as a replacement if the recognition criteria are satisfied. All other repair and maintenance costs are recognized in the consolidated statement of income when incurred. The present value of the expected cost for the decommissioning of an asset after its use is included in the cost of the respective asset if the recognition criteria for a provision are met.

CIP is recorded at cost. This includes costs of construction and other direct costs. CIP is not depreciated until such time that the relevant asset is completed, transferred to the appropriate account and put into operational use.

Land is carried at revalued amount less any impairment in value. Valuations are performed with sufficient frequency to ensure that the carrying amount of a revalued asset does not differ materially from its fair value.

Artworks, which the Group holds for aesthetic purposes, are also stated at revalued amount less any accumulated depreciation and accumulated impairment in value. Depreciable amount is determined after considering the residual value. The initial cost of artworks includes purchase consideration, the fair value in the case of vested assets, and those costs that are directly attributable to bringing the asset to its location and condition necessary for its intended purpose.

The increment from valuation of land and artworks, net of deferred tax liability, resulting from the revaluation is credited to revaluation increment under the other components of equity caption included in the equity section in the consolidated statement of financial position. However, to the extent that it reverses a revaluation deficit of the same asset previously recognized in the consolidated statement of income. A revaluation deficit is recognized in the consolidated statement of income. A revaluation deficit is recognized in the consolidated statement of income. A revaluation deficit is recognized in the consolidated statement of income. A revaluation deficit is recognized in the consolidated statement of income, except to the extent that it offsets an existing surplus on the same asset recognized in the revaluation increment. Upon derecognition of the revalued property, the relevant portion of the revaluation increment realized in respect of previous valuations is released from the revaluation increment directly to retained earnings.

Depreciation and amortization are computed on a straight-line basis over the estimated useful lives of the assets as follows:

Category	Number of years
Port facilities	25
Land improvements	3-25
Buildings	5-20
Machinery, tools and equipment	2-15

Right-of-Use Assets

The Group recognizes right-of-use assets at the commencement date of the lease (i.e., the date the underlying asset is available for use). Right-of-use assets are initially measured at cost, less any accumulated depreciation and impairment losses, and adjusted for any remeasurement of lease liabilities. The initial cost of right-of-use assets includes the amount of lease liabilities recognized, initial direct costs incurred, lease payments made at or before the commencement date less any lease incentives received and estimate of costs to be incurred by the lessee in dismantling and removing the underlying asset, restoring the site on which it is located or restoring the underlying asset to the condition required by the terms and conditions of the lease, unless those costs are incurred to produce inventories.

Unless the Group is reasonably certain to obtain ownership of the leased asset at the end of the lease term, the recognized right-of-use assets are depreciated on a straight-line basis over the shorter of their estimated useful life and lease term, as follows:

Leased assets	Lease terms
Land	10 to 25 years
Office spaces	5 to 8 years
Clinic spaces	3 years
Vehicle	2 years

Right-of-use assets are subject to impairment.

The estimated useful lives, residual values and depreciation and amortization method are reviewed periodically to ensure these are consistent with the expected pattern of economic benefits from items of property, plant and equipment. The useful lives and residual values are reviewed at the end of each reporting period and adjusted prospectively, if appropriate.

Fully depreciated assets are retained in the accounts until these are no longer in use. No further depreciation is charged to current operation for these items.

Mine and Mining Properties

Capitalized expenditure is assessed for impairment and is transferred from deferred exploration costs to mine development costs when it has been established that a mineral deposit is commercially mineable, development sanctioned, and a decision has been made to formulate a mining plan (which occurs upon completion of a positive economic analysis of the mineral deposit).

After transfer of the deferred exploration costs, all subsequent expenditure on the construction, installation or completion of infrastructure facilities is capitalized in mine development costs. Development expenditure includes costs considered integral to the development of the mine. Any costs incurred in testing the assets to determine if they are functioning as intended, are capitalized, while any proceeds received from selling any product during testing shall be recognized in the consolidated statement of income.

No depletion is charged during the mine development phases.

When the Group has already achieved commercial levels of production, mine development costs are moved to mine and mining properties. Commercial production is deemed to have commenced when management determines that the completion of operational commissioning of major mine and plant components is completed, operating results are being achieved consistently for a period of time and that there are indicators that these operating results will be continued.

The carrying value of mine and mining properties represents total expenditures incurred to date on the area of interest, less accumulated depletion and any impairment.

When a mine construction project moves into the production phase, the capitalization of certain mine construction costs ceases, and costs are either regarded as part of the cost of inventory or expensed, except for costs which qualify for capitalization relating to mining asset additions, improvements or new developments, underground mine development or mineable reserve development.

Mine and mining properties are subject to depletion, which is computed using the units-of-production method based on the economically recoverable reserves. Mine and mining properties include the initial estimate of provision for mine rehabilitation and decommissioning, for which the Group is constructively liable.

Investment Properties

Investment properties pertain to properties, which are held to earn rentals or for capital appreciation or both.

Investment properties are measured initially at cost, including transaction costs. Subsequent to initial recognition, investment properties are stated at fair value, which reflects market conditions at the end of the reporting period. Gains or losses arising from changes in the fair values of investment properties are included in the consolidated statement of income in the period in which these arise. Fair values are determined based on the revaluation performed by an accredited external independent appraiser. Upon derecognition of the investment property, the portion of the revaluation increment realized in respect of previous valuation is released from the revaluation increment directly to retained earnings.

Investment properties are derecognized either when they have been disposed of or when they are permanently withdrawn from use and no future economic benefit is expected from their disposal. Any gains or losses on the retirement or disposal of investment property is recognized in the consolidated statement of income in the year of retirement or disposal.

Transfers are made to investment property when, and only when, there is a change in use, evidenced by ending of owner-occupation, commencement of an operating lease to another party or ending of construction or development. Transfers are made from investment property when, and only when, there is a change in use, evidenced by commencement of owner-occupation or commencement of development with a view to sale. Transfers between investment property and owner-occupied property do not change the carrying amount of the investment property transferred and they do not change the cost of the property.

If an owner-occupied property becomes an investment property that will be carried at fair value, the Group shall apply PAS 16, *Property, Plant and Equipment*, up to the date of change in use. The Group shall treat any difference at that date between the carrying amount of the property and its fair value in the same way as a revaluation in accordance with PAS 16. On subsequent disposal of the investment property, the revaluation surplus included in equity shall be transferred to retained earnings.

Impairment of Nonfinancial Assets

The Group assesses, at the end of each reporting period, whether there is an indication that an asset may be impaired. If any indication exists, or when annual impairment testing for an asset is required, the Group estimates the asset's recoverable amount. An asset's recoverable amount is the higher of an asset's or cash-generating unit's (CGU) fair value less costs of disposal and its value in use. The recoverable amount is determined for an individual asset, unless the asset does not generate cash inflows that are largely independent of those from other assets or groups of assets. When the carrying amount of an asset or CGU exceeds its recoverable amount, the asset is considered impaired and is written down to its recoverable amount.

In assessing value in use, the estimated future cash flows are discounted to their present value using a pre-tax discount rate that reflects current market assessments of the time value of money and the risks specific to the asset. In determining fair value less costs of disposal, recent market transactions are taken into account. If no such transactions can be identified, an appropriate valuation model is used. These calculations are corroborated by valuation multiples, quoted share prices for publicly traded companies or other available fair value indicators.

The Group bases its impairment calculation on detailed budgets and forecast calculations, which are prepared separately for each of the Group's CGUs to which the individual assets are allocated. These budgets and forecast calculations generally cover a period of five years.

Impairment losses of continuing operations, including impairment on inventories, are recognized in the consolidated statement of income in expense categories consistent with the function of the impaired asset, except for properties previously revalued with the revaluation taken to consolidated statement of comprehensive income. For such properties, the impairment is recognized in consolidated statement of comprehensive income up to the amount of any previous revaluation.

For the other assets, an assessment is made at the end of each reporting period to determine whether there is an indication that previously recognized impairment losses no longer exist or have decreased. If such indication exists, the Group estimates the asset's or CGU's recoverable amount. A previously recognized impairment loss is reversed only if there has been a change in the assumptions used to determine the asset's recoverable amount since the last impairment loss was recognized. The reversal is limited so that the carrying amount of the asset does not exceed its recoverable amount, nor exceed the carrying amount that would have been determined, net of depreciation, depletion or amortization, had no impairment loss been recognized for that asset in prior years. Such reversal is recognized in the consolidated statement of income unless the asset is carried at revalued amount, in which case, the reversal is treated as a revaluation increase.

Deferred Mine Exploration Costs

The Group assesses whether facts and circumstances suggest that the carrying amount of deferred mine exploration costs may exceed its recoverable amount. Below are some of the facts and circumstances, which the Group considers in determining whether there is impairment on deferred mine exploration costs:

- the period for which the Group has the right to explore in the specific area has expired during the period or will expire in the near future, and is not expected to be renewed
- substantive expenditure on further exploration for and evaluation of mineral resources in the specific area is neither budgeted nor planned
- exploration for and evaluation of mineral resources in the specific area have not led to the discovery of commercially viable quantities of mineral resources and the entity has decided to discontinue such activities in the specific area, and
- sufficient data exist to indicate that, although a development in the specific area is likely to proceed, the carrying amount of the deferred mine exploration costs is unlikely to be recovered in full of successful development or by sale

Full provision is made for the impairment unless it is probable that such costs are expected to be recouped through successful exploration and development of the area of interest, or alternatively, by its sale. If the project does not prove to be viable or is abandoned, all revocable cost associated with the project and the related impairment provisions are written off.

Recovery of impairment losses recognized in prior years is recorded if, and only if, there has been a change in the estimates used to determine the asset's recoverable amount since the last impairment loss was recognized. The recovery is recorded in the consolidated statement of income.

Leases

The Group assesses at contract inception whether a contract is, or contains, a lease. That is, if the contract conveys the right to control the use of an identified asset for a period of time in exchange for consideration.

Group as a Lessee

At the commencement date of the lease, the Group recognizes lease liabilities measured at the present value of lease payments to be made over the lease term. The lease payments include fixed payments (including in substance fixed payments) less any lease incentives receivable, variable lease payments that depend on an index or a rate, and amounts expected to be paid under residual value guarantees. The lease payments also include the exercise price of a purchase option reasonably certain to be exercised by the Group and payments of penalties for terminating a lease, if the lease term reflects the Group exercising the option to terminate. The variable lease payments that do not depend on an index or a rate are recognized as expense in the period on which the event or condition that triggers the payment occurs.

In calculating the present value of lease payments, the Group uses the incremental borrowing rate at the lease commencement date if the interest rate implicit in the lease is not readily determinable. After the commencement date, the amount of lease liabilities is increased to reflect the accretion of interest and reduced for the lease payments made. In addition, the carrying amount of lease liabilities is remeasured if there is a modification, a change in the lease term, a change in the in-substance fixed lease payments or a change in the assessment to purchase the underlying asset.

The Group has elected to classify interest paid on lease liabilities as cash flows from operating activities.

Short-term Leases

The Group applies the short-term lease recognition exemption to its short-term leases of clinic spaces (i.e., those leases that have a lease term of 12 months or less from the commencement date and do not contain a purchase option). Lease payments on short-term leases are recognized as expense on a straight-line basis over the lease term.

Provisions

General

Provisions are recognized when the Group has a present obligation (legal or constructive) as a result of a past event, it is probable that an outflow of resources embodying economic benefits will be required to settle the obligation and a reliable estimate can be made of the amount of the obligation. When the Group expects some or all of the provision to be reimbursed, for example, under an insurance contract, the reimbursement is recognized as a separate asset, but only when the reimbursement is virtually certain. The expense relating to a provision is presented in the consolidated statement of income, net of any reimbursement.

If the effect of the time value of money is material, provisions are discounted using a current pre-tax rate that reflects, when appropriate, the risks specific to the liability. When discounting is used, the increase in the provision due to the passage of time is recognized as interest expense in the consolidated statement of income.

Liability for Mine Rehabilitation

Mine rehabilitation costs will be incurred by the Group either while operating, or at the end of the operating life of, the Group's facilities and mine and mining properties. The Group assesses its mine rehabilitation provision at each reporting date. The Group recognizes a rehabilitation provision where it has a legal and constructive obligation as a result of past events, and it is probable that an outflow of resources will be required to settle the obligation, and a reliable estimate of the amount of obligation can be made. The nature of these restoration activities includes: dismantling and removing structures; rehabilitating mines and tailings dams; dismantling operating facilities; closing plant and waste sites; and restoring, reclaiming and re-vegetating affected areas.

The obligation generally arises when the asset is installed, or the ground/environment is disturbed at the mining operation's location. When the liability is initially recognized, the present value of the estimated costs is capitalized by increasing the carrying amount of the related mining assets to the extent that it was incurred as a result of the development or construction of the mine. Any rehabilitation obligations that arise through the production of inventory are recognized as part of the related inventory item. Additional disturbances that arise due to further development or construction at the mine are recognized as additions or charges to the corresponding assets and rehabilitation liability when these occur. Costs related to restoration of site damage (subsequent to start of commercial production) that is created on an ongoing basis during production are provided for at their net present values and recognized in the consolidated statement of income as extraction progresses.

Changes in the estimated timing of rehabilitation or changes to the estimated future costs are dealt with prospectively by recognizing an adjustment to the rehabilitation liability and a corresponding adjustment to the asset to which it relates, if the initial estimate was originally recognized as part of an asset measured in accordance with PAS 16.

Any reduction in the rehabilitation liability and, therefore, any deduction from the asset to which it relates, may not exceed the carrying amount of that asset. If it does, any excess over the carrying value is taken immediately to the consolidated statement of income.

If the change in estimate results in an increase in the rehabilitation liability and, therefore, an addition to the carrying value of the asset, the Group considers whether this is an indication of impairment of

the asset as a whole, and if so, tests for impairment. If, for mature mines, the estimate for the revised mine assets net of rehabilitation provisions exceeds the recoverable value, that portion of the increase is charged directly to expense.

Over time, the discounted liability is increased for the change in present value based on the discount rates that reflect current market assessments and the risks specific to the liability. The periodic unwinding of the discount is recognized in the consolidated statement of income as part of interest expense.

For closed sites, changes to estimated costs are recognized immediately in the consolidated statement of income.

Rehabilitation trust funds committed for use in satisfying environmental obligations are included in other noncurrent assets in the consolidated statement of financial position.

Capital Stock and Capital Surplus

Common and preferred shares are classified as equity. Incremental costs directly attributable to the issue of new shares or options are shown in equity as a deduction from proceeds. The excess of proceeds from issuance of shares over the par value of shares less any incremental costs directly attributable to the issuance, net of tax, is credited to capital surplus.

Revenue Recognition

The Group is principally engaged in the business of producing gold and nickel ore. Revenue from contracts with customers is recognized when control of the goods or services is transferred to the customer at an amount that reflects the consideration to which the Group expects to be entitled in exchange for those goods or services.

The Group has generally concluded that it is the principal in its revenue contracts because it typically controls the goods or services before transferring them to the customer.

Sale of Mine Products

Revenue from sale of mine products is recognized at the point in time when the control of the asset is transferred to the customer which is normally at the time of shipment, and the selling prices are known or can be reasonably estimated. Revenue from sale of gold is measured at the prevailing international gold buying price and prevailing Philippine peso to United States dollar buying rate set by the Bangko Sentral ng Pilipinas (BSP) Treasury department on a daily basis and is recognized based on the initial weight and assay tests, which represent the best estimate. Revenue from sale of nickel ore is measured based on contract at the prevailing price at Ferro Alloy and prevailing Philippine peso to United States dollar buying rate and is recognized based on the initial weight and assay tests, which represent the best estimate to revenue due to quantity and/or quality changes are recognized upon determination of the final weight and assay tests.

BSP Refining Charges

BSP refining charges are deducted from revenue to arrive at revenue from contracts with customers since BSP refining charges are necessary expenses by BSP in determining the final gold content.

Despatch/Demurrage

Despatch/demurrage is added/deducted from revenue to arrive at revenue from contracts with customers. Despatch is earned when shipment is loaded earlier than the allowable lay time while demurrage is incurred when shipment is not loaded on time.

Medical and Dental Services

The Group has contracts with customers to provide medical and dental services. Each individual service is either sold separately or bundled together with other medical services. In determining the transaction price for the sale of medical and dental services, the Group considers the effects of variable consideration.

Revenue from medical and dental services are recognized over the period in which the medical and dental services are provided, and are included as part of the Group's sale of goods and services in Note 20.

Trucking Services

The Group provides trucking services for the transportation of mining materials and construction supplies.

Revenue from trucking services is computed as actual delivered cubic meters multiplied by the contract price. The Group has concluded that revenue from trucking services is recognized over time since the customers simultaneously benefits as the Group performs the services. Revenue from trucking services is included as part of the Group's sale of goods and services.

Port Services

Revenue from port service is recognized over time upon loading of ores to the vessel and is included as part of the Group's sale of goods and services.

Excise Taxes and Royalty Fees

Excise taxes and royalty fees pertain to the taxes paid or accrued by the Group arising from the production of gold and nickel ore. These taxes and royalties are recognized once revenue from the sale of the related mine product is recognized.

Pension and Other Post-employment Benefits

The Parent Company, BRMC, BLI and AFCC have separate, noncontributory, defined benefit pension plans, covering all permanent, regular and full-time employees.

The net defined benefit liability or asset is the aggregate of the present value of the defined benefit obligation at the end of the reporting period reduced by the fair value of plan assets, adjusted for any effect of limiting a net defined benefit asset to the asset ceiling. The asset ceiling is the present value of any economic benefits available in the form of refunds from the plan or reductions in future contributions to the plan.

The cost of providing benefits under the defined benefit plan is determined using the projected unit credit method.

Remeasurements, comprising of actuarial gains or losses, excluding amounts included in net interest on the net defined benefit liability and the return on plan assets (excluding amounts included in the net interest on the net defined benefit liability), are recognized immediately in the consolidated statement of financial position with a corresponding debit or credit to retained earnings through OCI in the period in which these occur. Remeasurements are not reclassified to consolidated statement of income in subsequent periods.

Past services costs are recognized in the consolidated statement of income on the earlier of:

- The date of the plan amendment or curtailment, and
- The date that the Group recognizes related restructuring costs

Net interest is calculated by applying the discount rate to the net defined benefit liability or asset. The Group recognizes the following changes in the net defined benefit obligation under "costs of mine products sold", "costs of services and other sales" and "selling and general expenses" in the consolidated statement of income:

- Service costs comprising current service costs, past-service costs, gains and losses on curtailments and non-routine settlements
- Net interest expense or income

Plan assets are assets that are held by a long-term employee benefit fund or qualifying insurance policies. Plan assets are not available to the creditors of the Group, nor can they be paid directly to the Group. Fair value of plan assets is based on market price information. When no market price is available, the fair value of plan assets is estimated by discounting expected future cash flows using a discount rate that reflects both the risk associated with the plan assets and the maturity or expected disposal date of those assets (or, if they have no maturity, the expected period until the settlement of the related obligations). If the fair value of the plan assets is higher than the present value of the present value of the measurement of the resulting defined benefit asset is limited to the present value of economic benefits available in the form of refunds from the plan or reductions in future contributions to the plan.

Share-based Payment Transactions

Employees (including senior executives) of the Group receive remuneration in the form of sharebased payment transactions, whereby employees render services as consideration for equity instruments (equity-settled transactions).

The cost of equity-settled transactions is determined by the fair value at the date when the grant is made using an appropriate valuation model. That cost is recognized, together with a corresponding increase in equity, over the period in which the performance and/or service conditions are fulfilled, in employee benefits expense.

The cumulative expense recognized for equity-settled transactions at each reporting date until the vesting date reflects the extent to which the vesting period has expired and the Group's best estimate of the number of equity instruments that will ultimately vest. The profit and loss charge or credit for a period represents the movement in cumulative expense recognized as at the beginning and end of that period and is recognized in employee benefits.

No expense is recognized for awards that do not ultimately vest, except for equity settled transactions for which vesting is conditional upon a market or non-vesting condition. These are treated as vesting irrespective of whether or not the market or non-vesting condition is satisfied, provided that all other performance and/or service conditions are satisfied.

Where the terms of an equity-settled award are modified, the minimum expense recognized is the expense computed based on the grant date fair value of the unmodified award, provided the original terms of the award are met. An additional expense, measured as at the date of modification, is recognized for any modification that increases the total fair value of the share-based payment transaction, or is otherwise beneficial to the employee. Where an award is cancelled by the Group or by the counterparty, any remaining element of the fair value of the award is expensed immediately in the consolidated statement of income.

When the terms of an equity-settled award are cancelled, it is treated as if it had vested on the date of cancellation, and any expense not yet recognized for the award is recognized immediately. However, if a new award is substituted for the cancelled award and designated as a replacement award on the

date that it is granted, the cancelled and new awards are treated as if they were a modification of the original award, as described in the previous paragraph.

Where an equity-settled award expires or is cancelled, its cost is transferred to capital surplus.

Forfeitures revise the expense to reflect the best available estimate of the number of equity instruments expected to vest.

The dilutive effect of outstanding options is reflected as additional share dilution in the computation of diluted earnings per share.

Foreign Currencies

The Group's consolidated financial statements are presented in Philippine peso, which is also the Parent Company's functional currency. For each entity, the Group determines the functional currency and items included in the financial statements of each entity are measured using that functional currency. The Group uses the direct method of consolidation and on disposal of a foreign operation, the gain or loss that is reclassified to profit or loss reflects the amount that arises from using this method.

Transactions and Balances

Transactions in foreign currencies are initially recorded by the Group's entities at their respective functional currency spot rates at the date the transaction first qualifies for recognition.

Monetary assets and liabilities denominated in foreign currencies are translated at the functional currency spot rates of exchange at the reporting date.

Differences arising on settlement or translation of monetary items are recognized in consolidated statement of income with the exception of monetary items that are designated as part of the hedge of the Group's net investment of foreign operation. These are recognized in OCI until the net investment is disposed of, at which time, the cumulative amount is reclassified to consolidated statement of income. Tax charges and credits attributable to exchange differences on those monetary items are also recorded in OCI.

Non-monetary items that are measured in terms of historical cost in a foreign currency are translated using the exchange rates at the dates of the initial transactions. Non-monetary items measured at fair value in a foreign currency are translated using the exchange rates at the date when the fair value is determined. The gain or loss on translation of non-monetary items measured at fair value of the item is treated in line with the recognition of the gain or loss arising on the change in fair value of the item (i.e., translation differences on items whose fair value gain or loss is recognized in OCI or consolidated statement of income are also recognized in OCI or consolidated statement of income, respectively).

Foreign Subsidiaries

On consolidation, the assets and liabilities of foreign operations are translated into Philippine peso at the rate of exchange prevailing at the reporting date and their statements of income are translated at the average exchange rates for the year. The exchange differences arising on the translation for consolidation are recognized in OCI. On disposal of a foreign operation, the component of OCI relating to that particular foreign operation is recognized in the consolidated statement of income.

Income Taxes

Current Tax

Current tax assets and liabilities for the current and prior periods are measured at the amount expected to be recovered from or paid to the tax authorities. The tax rates and tax laws used to compute the amount are those that are enacted or substantively enacted as of the end of the reporting period in the country where the Group operates and generates taxable income.

Current tax relating to items recognized directly in equity is recognized in equity and not in the consolidated statement of income.

Deferred Tax

Deferred tax is provided using the liability method on all temporary differences between the tax bases of assets and liabilities and their carrying amounts for financial reporting purposes at the reporting date.

Deferred tax liabilities are recognized for all taxable temporary differences, except:

- Where the deferred tax liability arises from the initial recognition of goodwill or an asset or liability in a transaction that is not a business combination and, at the time of the transaction, affects neither the accounting profit nor taxable profit (tax loss)
- In respect of taxable temporary differences associated with investments in subsidiaries, associates and interests in joint ventures, where the timing of the reversal of the temporary differences can be controlled by the parent, investor or venturer and it is probable that the temporary differences will not reverse in the foreseeable future

Deferred tax assets are recognized for all deductible temporary differences, carry-forward of unused tax credits from excess of minimum corporate income tax (MCIT) over regular corporate income tax (RCIT) and unused net operating loss carry-over (NOLCO), to the extent that it is probable that sufficient future taxable profit will be available against which the deductible temporary differences, excess of MCIT over RCIT and unused NOLCO can be utilized, except:

- Where the deferred tax asset relating to the deductible temporary difference arises from the initial recognition of an asset or liability in a transaction that is not a business combination and, at the time of the transaction, affects neither the accounting profit nor taxable profit or loss
- In respect of deductible temporary differences associated with investments in subsidiaries, associates and interests in joint ventures, deferred tax assets are recognized only to the extent that it is probable that the temporary differences will reverse in the foreseeable future and taxable profit will be available, against which the temporary differences can be utilized

The carrying amount of deferred tax assets is reviewed at each reporting date and reduced to the extent that it is no longer probable that sufficient future taxable profit will be available to allow all or part of the deferred tax assets to be utilized. Unrecognized deferred tax assets are reassessed at each reporting date and are recognized to the extent that it has become probable that sufficient future taxable profit will allow the deferred tax asset to be recovered.

Deferred tax assets and liabilities are measured at the tax rates that are expected to apply to the year when the asset is realized, or the liability is settled based on tax rates (and tax laws) that have been enacted or substantively enacted at the end of the reporting period.

Deferred tax relating to items recognized outside consolidated statement of income is recognized outside consolidated statement of income. Deferred tax items are recognized in correlation to the underlying transaction either in OCI or directly in equity.

Deferred tax assets and deferred tax liabilities are offset, if a legally enforceable right exists to set off current tax assets against current tax liabilities and the deferred taxes relate to the same taxable entity and the same taxation authority.

Uncertainty Over Income Tax Treatments

The Group assesses at the end of each financial reporting period whether it has any uncertain tax treatments by reviewing the assumptions about the examination of tax treatments by the taxation authority, determining taxable profit (tax loss), tax bases, unused tax losses, unused tax credits and tax rates, and considering changes in relevant facts and circumstances. The Group then evaluates how likely is it that a certain tax treatment will be accepted by the taxation authority. If it is probable that the taxation authority will accept a certain tax treatment, the Group concludes that it has no uncertain tax treatment and will measure tax amounts in line with the income tax filings. It is not probable that the taxation authority will accept a certain tax treatment, the Group measures tax amounts based on the 'most likely amount' method (better predicts uncertainty if the possible outcomes are binary or are concentrated on one value) or 'expected value' method (better predicts uncertainty if there is a range of possible outcomes that are neither binary nor concentrated on one value). The Group presents uncertain tax as part of current income tax liabilities or deferred income tax liabilities.

Earnings Per Share (EPS)

Basic EPS amount is calculated by dividing net income for the year attributable to ordinary equity holders of the Parent Company by the weighted average number of ordinary shares outstanding, adjusted for any stock dividends declared during the year.

Diluted EPS amount is calculated by dividing the net profit attributable to ordinary equity holders of the Parent Company (after deducting interest on the convertible cumulative preference shares) by the weighted average number of ordinary shares outstanding, adjusted for any stock dividends declared during the year plus the weighted average number of ordinary shares that would be issued on the conversion of all the dilutive potential ordinary shares into ordinary shares.

If the number of ordinary or potential ordinary shares outstanding increases as a result of a capitalization, bonus issue or share split, or decreases as a result of a reverse share split, the calculation of basic and diluted earnings per share for all periods presented shall be adjusted retrospectively. If these changes occur after the reporting period but before the financial statements are authorized for issue, the per share calculations for those and any prior period financial statements presented shall be based on the new number of shares. The fact that per share calculations reflect such changes in the number of shares shall be disclosed. In addition, basic and diluted earnings per share of all periods presented shall be adjusted for the effects of errors and adjustments resulting from changes in accounting policies accounted for retrospectively.

Operating Segments

The Group's operating businesses are recognized and managed according to the nature of the products or services offered, with each segment representing a strategic business unit that serves different markets.

Segment assets include operating assets used by a segment and consist principally of operating cash, trade and other receivables, inventories and property, plant and equipment, net of allowances and provisions.

Segment liabilities include all operating liabilities and consist principally of trade and other payables, accrued expenses and bank loans. Segment assets and liabilities do not include deferred taxes.

Segment revenue, expenses and profit include transfers between business segments. The transfers are accounted for at competitive market prices charged to unaffiliated customers for similar products. Such transfers are eliminated in the consolidation.

Events After the Reporting Period

Post year-end events that provide additional information about the Group's position at the end of the reporting period (adjusting events) are reflected in the consolidated financial statements. Post year-end events that are not adjusting events are disclosed when material.

3. Summary of Significant Accounting Judgments, Estimates and Assumptions

The preparation of the consolidated financial statements in accordance with PFRS Accounting Standards requires the Group to make judgments, estimates and assumptions that affect the reported amounts of assets, liabilities, income and expenses and the accompanying disclosures, and the disclosure of contingent liabilities. Uncertainty about these judgements, estimates and assumptions could result in outcomes that require a material adjustment to the carrying amount of assets or liabilities affected in future periods.

Judgments, estimates and assumptions are continually evaluated and are based on historical experience and other factors, including expectations of future events that are believed to be reasonable under the circumstances. Actual results could differ from such estimates.

Judgments

In the process of applying the Group's accounting policies, management has made following judgments, which have the most significant effect on the amounts recognized in the consolidated financial statements.

Assessing Provisions and Contingencies

The Group is currently involved in various legal proceedings. The estimate of the probable costs for the resolution of these claims has been developed in consultation with outside counsel handling the Group's defense in these matters and is based upon an analysis of potential results. The Group assessed that these proceedings will not have a material adverse effect on its financial position. It is possible, however, that future results of operations could be materially affected by changes in the estimates or in the effectiveness of the strategies relating to these proceedings (see Note 36).

Distinction between Investment Property and Owner-Occupied Property

The Group determines whether a property qualifies as investment property. In making its judgment, the Group considers whether the property is not occupied substantially for use by, or in operations of the Group, not for sale in the ordinary course of business, but is held primarily to earn rental income or capital appreciation. Owner-occupied properties generate cash flows that are attributable not only to the property but also to the other assets used in the production or supply.

Principal versus Agent Considerations

The Group enters into contracts with customers wherein the Group charges the customers for the services rendered. The Group determined that it does not control the goods or services before they are transferred to customers, and it does not have the ability to direct the use of the services or obtain benefits from the services. The following factors indicate that the Group does not control the services before they are being transferred to customers. Therefore, the Group determined that it is an agent in these contracts.

- The Group is not primarily responsible for fulfilling the promise to provide the professional services.
- The Group has no discretion in establishing the price for the services provided. The Group's consideration in these contracts is only based on the difference between the Group and the customer.

The Group determined that it is an agent with respect to the professional fees of its tenant doctors. Meanwhile, the Group concluded that it is the principal in all its other revenue streams.

Assessing Recoverability of Deferred Mine Exploration Costs

The Group reviews the recoverability of deferred mine exploration costs when events or changes in circumstances indicate that the carrying amount of deferred mine exploration costs may exceed its estimated recoverable amount. The Group considers the following factors, among others, in its assessment:

- Status of each mine exploration project and plans on exploration and evaluation activities
- Validity of the licenses, permits and correspondences related to each mine exploration project
- Plans to abandon existing mine areas and plans to discontinue exploration activities
- Availability of information suggesting that the recovery of expenditure is unlikely

The Group's ability to realize its deferred exploration costs depends on the success of exploration and development work in proving the viability of its mining properties to produce minerals in commercial quantities, and the success of converting the Group's exploration permits to new mineral agreements, which cannot be determined at this time. The consolidated financial statements do not include any adjustment that might result from these uncertainties.

As at December 31, 2024 and 2023, deferred mine exploration costs amounted to ₱550.51 million and ₱520.37 million, respectively (see Note 10).

Estimates and Assumptions

The key estimates and assumptions concerning the future and other key sources of estimation uncertainty at reporting date, that have a significant risk of causing a material adjustment to the carrying amounts of assets within the next financial year, are discussed below. The Group based its assumptions and estimates on parameters available when the consolidated financial statements were prepared. Existing circumstances and assumptions about future developments, however, may change due to market changes or circumstances arising that are beyond the control of the Group. Such changes are reflected in the assumptions when these occur.

Provision for ECL on Trade and Other Receivables

The Group uses the simplified approach in the assessment of the ECL for its trade receivables and general approach model for its other receivables excluding advances to officers and employees. An assessment of the ECL relating to this financial asset is undertaken upon initial recognition and each financial year and involves exercise of significant judgment. Key areas of judgment include defining default, determining assumptions to be used such as timing and amounts of expected net recoveries from defaulted accounts, determining debtor's capacity to pay, and incorporating forward looking information.

The Group recognized provision for ECL amounting to $\mathbb{P}4.83$ million in 2024 while provision, net of recoveries, amounting to $\mathbb{P}0.92$ million in 2023. The carrying amount of trade and other receivables, excluding advances to officers and employees, amounted to $\mathbb{P}683.06$ million and $\mathbb{P}601.91$ million as at December 31, 2024 and 2023, respectively (see Note 5).

Estimating Ore Reserves

Ore reserves estimates are, to a large extent, based on the interpretation of geological data obtained from drill holes and other sampling techniques and feasibility studies. The Group estimates its ore reserves based on information compiled by appropriately qualified persons relating to the geological data on the size, depth and shape of the ore body, and requires complex geological judgments to interpret the data. The Group also makes estimates and assumptions regarding a number of economic and technical factors affecting ore reserves estimates, such as production rates, grades, foreign exchange rates, production and transport costs, and commodity prices.

These geological, economic and technical estimates and assumptions may change in the future in ways, which can affect the quality and quantity of the ore reserves. The Group reviews and updates estimates as required to reflect actual production, new exploration data or developments and changes in other assumptions or parameters. These estimates will change from time to time to reflect mining activities, analyses of new engineering and geological data, changes in ore reserve and mineral resource holdings, modifications of mining plans or methods, changes in nickel or gold prices or production costs, and other factors.

Changes in the ore reserves estimates may impact the carrying values of mine and mining properties under "property, plant and equipment, liability for mine rehabilitation and decommissioning and depletion charges.

As at December 31, 2024 and 2023, carrying values of mine and mining properties amounted to P645.36 million and P651.56 million, respectively (see Note 9). Depletion charges recognized amounted to P25.67 million, P25.92 million and P41.76 million in 2024, 2023 and 2022, respectively (see Notes 9 and 25).

As at December 31, 2024 and 2023, liability for mine rehabilitation amounted to ₱53.02 million and ₱62.13 million, respectively (see Note 16).

Estimating Recoverability of Property, Plant and Equipment

The Group assesses impairment on property, plant and equipment whenever events or changes in circumstances indicate that the carrying amount of the property, plant and equipment may not be recoverable.

The factors that the Group considers important which could trigger an impairment review include the following:

- Significant underperformance relative to expected historical or projected future operating results
- Significant changes in the manner of use of the acquired assets or the strategy for overall business, and
- Significant negative industry or economic trends

In determining the present value of estimated future cash flows expected to be generated from the continued use of the property, plant and equipment, the Group is required to make estimates and assumptions such as commodity prices (considering current and historical prices, price trends and related factors), discount rates and foreign currency exchange rates, operating costs, future production levels and costs. These estimates and assumptions are subject to risk and uncertainty. Therefore, there is a possibility that changes in circumstances will impact these projections, which may impact the recoverable amount of assets. In such circumstances, some or all of the carrying amount of the assets may be further impaired or the impairment charge reduced with the impact recognized in the consolidated statement of income.

The Group did not recognize any impairment loss in 2024, 2023 and 2022 on property, plant and equipment.

As at December 31, 2024 and 2023, property, plant and equipment (at cost) amounted to ₽743.91 million and ₽789.94 million, respectively (see Note 9).

Estimating Allowance for Inventory Obsolescence

The Group maintains allowance for inventory losses at a level considered adequate to reflect the excess of cost of inventories over their NRV. NRV of inventories are assessed regularly based on prevailing estimated selling prices of inventories and the corresponding cost of disposal. Decrease in the NRV of inventories resulting in an amount lower than the original acquisition cost is accounted for as an impairment loss that is recognized in profit or loss.

As at December 31, 2024 and 2023, the carrying value of inventories amounted to P191.94 million and P247.96 million, respectively (see Note 6).

Assessing Impairment of Input VAT and Advances to Contractors and Suppliers

The Group provides allowance for impairment losses on input VAT under other current assets and advances to contractors and supplies and input VAT under noncurrent assets when these can no longer be realized. The amounts and timing of recorded expenses for any period would differ if the Group made different judgments or utilized different estimates. An increase in allowance for probable loss would increase recorded expenses and decrease other current and noncurrent assets.

The total carrying value of input VAT and advances to contractors and suppliers amounted to P582.13 million and P450.58 million as at December 31, 2024 and 2023, respectively (see Notes 8 and 12).

Revaluation of Property, Plant and Equipment and Investment Properties

The Group carries its investment properties at fair value, with changes in fair value being recognized in the consolidated statement of income. In addition, it measures the land and artworks at revalued amounts, with changes in fair value being recognized in other comprehensive income. The land, artworks and investment properties were valued using the sales comparison approach. The determination of the fair values of these properties involves significant management judgment and estimations. The valuation also requires the assistance of external appraisers whose calculations also depend on certain assumptions, such as sales and listing of comparable properties registered within the vicinity and adjustments to sales price based on internal and external factors.

As at December 31, 2024 and 2023, the appraised value of land and artworks, and investment properties amounted to ₱5,297.36 million and ₱4.774.57 million, respectively (see Notes 9 and 11).

Unit-of-production (UOP) depreciation

Estimated economically recoverable reserves are used in determining the depreciation and/or amortization of mine-specific assets. This results in a depreciation/amortization charge proportional to the depletion of the anticipated remaining life-of-mine production. The life of each item, which is assessed at least annually, has regard to both its physical life limitations and present assessments of economically recoverable reserves of the mine property at which the asset is located. These calculations require the use of estimates and assumptions, including the amount of recoverable reserves and estimates of future capital expenditure. The calculation of the UOP rate of depreciation/amortization could be impacted to the extent that actual production in the future is different from current forecast production based on economically recoverable reserves, or if future capital expenditure estimates change. Changes to economically recoverable reserves could arise due to changes in the factors or assumptions used in estimating reserves, including:

- The effect on economically recoverable reserves of differences between actual commodity prices and commodity price assumptions
- Unforeseen operational issues

Changes in estimates are accounted for prospectively.

As at December 31, 2024 and 2023, the carrying amount of mine and mining properties amounted to P645.36 million and P651.56 million, respectively (see Note 9).

Leases – Estimating the Incremental Borrowing Rate

The Group cannot readily determine the interest rate implicit in the lease, therefore, it uses its incremental borrowing rate (IBR) to measure lease liabilities. The IBR is the rate of interest that the Group would have to pay to borrow over a similar term, and with a similar security, the funds necessary to obtain an asset of a similar value to the right-of-use asset in a similar economic environment. The IBR therefore reflects what the Group 'would have to pay', which requires estimation when no observable rates are available (such as for subsidiaries that do not enter into financing transactions) or when they need to be adjusted to reflect the terms and conditions of the lease (for example, when leases are not in the subsidiary's functional currency). The Group estimates the IBR using observable inputs (such as market interest rates) when available and is required to make certain entity-specific estimates (such as the subsidiary's stand-alone credit rating).

The Group's lease liabilities amounted to P15.27 million and P8.33 million as at December 31, 2024 and 2023, respectively (see Note 15).

Estimating Liability for Mine Rehabilitation

The Group estimates the costs of mine rehabilitation based on previous experience in rehabilitating fully mined areas in sections of the mine site. These costs are adjusted for inflation factor based on the average annual inflation rate as of adoption date or re-evaluation of the asset dismantlement, removal or restoration costs. Such adjusted costs are then measured at present value using the market interest rate for a comparable instrument adjusted for the Group's credit standing. While management believes that its assumptions are reasonable and appropriate, significant differences in actual experience or significant changes in the assumptions may materially affect the Group's liability for mine rehabilitation.

Liability for mine rehabilitation amounted to P53.02 million and P62.13 million as at December 31, 2024 and 2023, respectively (see Note 16).

Estimating Pension Benefits

The cost of defined benefit pension benefits as well as the present value of the pension obligation are determined using actuarial valuations. The actuarial valuation involves making various assumptions. These include the determination of the discount rates, future salary increases, mortality rates and future pension increases. Due to the complexity of the valuation, the underlying assumptions and its long-term nature, defined benefit obligations are highly sensitive to changes in these assumptions. All assumptions are reviewed at the end of each reporting period.

In determining the appropriate discount rate, management considers the interest rates of government bonds that are denominated in the currency in which the benefits will be paid, with extrapolated maturities corresponding to the expected duration of the defined benefit obligation.

The mortality rate is based on publicly available mortality tables for the Philippines and is modified accordingly with estimates of mortality improvements. Future salary increases, and pension increases are based on expected future inflation rates for the Philippines.

Further details about the assumptions used are provided in Note 29.

Net pension liability of the Group amounted to P39.96 million and P58.19 million as at December 31, 2024 and 2023 respectively (see Note 29).

Assessing Realizability of Deferred Tax Assets

The Group reviews the carrying amounts of deferred tax assets at each end of the reporting period and reduces deferred tax assets to the extent that it is no longer probable that sufficient future taxable profit will be available to allow all or part of the deferred tax assets to be utilized. Management believes that there is no assurance that the Group will generate sufficient taxable profit to allow all or part of its deferred tax assets to be utilized.

The Group recognized deferred tax assets amounting to P103.59 million and P105.07 million as at December 31, 2024 and 2023, respectively (see Note 30).

The Group did not recognize deferred tax assets on the remaining unused NOLCO and excess MCIT and deductible temporary differences amounting to P407.90 million and P399.41 million as at December 31, 2024 and 2023, respectively (see Note 30).

4. Cash and Cash Equivalents

	2023	2022
Cash on hand and in banks	₽832,105	₽630,810
Short-term deposits	921,610	143,382
	₽1,753,715	₽774,192

Cash in banks earn interest at the prevailing bank deposit rates. Cash equivalents are made for varying periods of up to three (3) months depending on the immediate cash requirements of the Group and earn interest at the respective short-term deposit rates.

Interest income from cash and cash equivalents amounted to P38.66 million, P3.34 million and P1.35 million in 2024, 2023, and 2022, respectively (see Note 26).

5. Trade and Other Receivables

	2023	2022
Trade	₽256,643	₽183,429
Nontrade	251,290	230,250
Loan receivable	246,682	258,622
Advances to officers and employees	60,048	146,649
Employee stock ownership incentive plan (ESOIP)	-	
(Note 27)	58,416	58,416
Receivables from lessees of bunkhouses	9,972	9,648
Others	20,447	17,101
	903,498	904,115
Less allowance for ECLs and impairment losses	162,222	157,389
	₽741,276	₽746,726

Trade and nontrade receivables, and receivables from lessees of bunkhouses are noninterest-bearing and are generally collectible within a period of one year.

Loan Receivable

On March 3, 2010, MMC granted an unsecured loan facility which is payable on demand, to a third party with an interest rate of 9% per annum. Outstanding receivable from this loan, including accrued interest, amounted to P196.92 million and P208.86 million, net of allowance amounting to P49.76 million as at December 31, 2024 and 2023, respectively. No interest earned for this loan in 2024, 2023 and 2022.

Other receivables comprise various receivables of the Group which are normally settled within the period, while advances to officers and employees pertain to cash advances that are used in the operations of the Group and are subject to liquidation.

Movements in allowance for ECL and impairment losses in 2024 and 2023 are as follows:

		2024						
	Tuodo	Nontrade	Advances to officers and	ESOIP	Loong	Receivables from lessees of		
	Trade Receivables	Receivables	employees		Loans receivable	bunkhouses	Others	Total
Balances at beginning								
of year	₽32,996	₽8,409	₽1,830	₽58,416	₽49,763	₽3,855	₽2,120	₽157,389
Provisions (Note 23)	4,678	-	2	_	_	153	-	4,833
Balances at end of year	₽37,674	₽8,409	₽1,832	₽58,416	₽49,763	₽4,008	₽2,120	₽162,222

				202	3			
						Receivables		
			Advances to			from		
	Trade	Nontrade	officers and	ESOIP	Loans	lessees of		
	Receivables	Receivables	employees	(Note 27)	receivable	bunkhouses	Others	Total
Balances at beginning of year	₽31,890	₽8,409	₽1,830	₽58,416	₽49,763	₽3,855	₽2,302	₽156,465
Provisions (Note 23)	1,118	_	-	_	_	-	_	1,118
Recoveries (Note 23)	(12)	_	-	_	_	_	(182)	(194)
Balances at end of year	₽32,996	₽8,409	₽1,830	₽58,416	₽49,763	₽3,855	₽2,120	₽157,389

Except for those impaired accounts, the Group assessed trade and other receivables as collectible and in good standing.

6. Inventories

	2024	2023
At Cost:		
Beneficiated nickel ore	₽149,212	₽193,506
Quicklime and slakelime	6,902	8,850
Subdivision lots and housing units for sale	1,122	1,122
	157,236	203,478
At NRV:		
Materials and supplies	191,445	201,095
Less provision for inventory obsolescence	(156,741)	(156,614)
	34,704	44,481
	₽191,940	₽247,959

As at December 31, 2024 and 2023, the NRV of the Group's beneficiated nickel ore, gold button, quicklime and slakelime, and subdivision lots is higher than the related cost.

The amount of beneficiated nickel ore inventory recognized as expense, included in the costs of mine products sold in the consolidated statements of income amounted to P224.85 million, P120.79 million and P152.00 million in 2024, 2023 and 2022, respectively.

The aggregate cost of beneficiated nickel ore inventory that decreased cost of mine products sold amounted to P72.13 million in 2023 and increased cost of mine products sold amounted to P43.48 million and P5.09 million in 2024 and 2022, respectively. (see Note 21).

Movements of provision for inventory obsolescence on materials and supplies are as follows:

	2024	2023
Balances at beginning of year	₽156,614	₽156,614
Provision (Note 23)	127	_
Balances at end of year	₽156,741	₽156,614

Materials and supplies charged to current operations amounted to P175.02 million, P205.95 million and P283.31 million in 2024, 2023 and 2022, respectively (see Notes 21, 22 and 23). There are no purchase commitments related to inventories or inventories pledged as security for liabilities as at December 31, 2024 and 2023.

7. Financial Assets at FVPL

The Group's financial assets at FVPL are investments in UITF.

Movements in financial assets at FVPL are as follows:

	2024	2023
Beginning balance	₽1,328,780	₽1,114,611
Additions	19,664	162,276
Disposals	(699,307)	_
Changes in fair value (Note 26)	55,500	51,893
Ending balance	₽704,637	₽1,328,780

Movements in cumulative gain from change in fair value are as follows:

	2024	2023
Beginning balance	₽59,340	₽7,447
Realized gain on disposals	(65,462)	_
Changes in fair value (Note 26)	55,500	51,893
Ending balance	₽49,378	₽59,340

8. Other Current Assets

	2024	2023
Input VAT - net	₽172,855	₽175,276
Input VAT refund	112,043	_
CWTs	40,567	28,400
Short-term investments	26,908	407,533
Deferred input VAT	9,508	43,482
Prepaid expenses	5,300	3,714
Others	12,264	10,888
	379,445	669,293
Less allowance for impairment losses on input VAT	10,729	8,724
	₽368,716	₽660,569

In 2024, BRMC applied for input VAT refund for the taxable year 2023 amounting to ₱112.04 million. On February 27, 2025, the BIR granted the refund. BRMC determined that input VAT amounting to ₱5.02 million does not have sufficient supports or does not meet invoicing requirement, thus, written off as a loss in 2024 (see Note 23).

In 2023, BRMC applied for input VAT refund for taxable years 2020 and 2022. The BIR disallowed input VAT claims amounting to 7.95 million and ₱12.69 million, thus, written off as a loss in 2023 and 2024, respectively (see Notes 23 and 26).

Short-term investments pertain to time deposits with maturities of more than three (3) months but less than one (1) year and earn interest at the respective short-term placement rates.

Movement in short-term investments are as follows:

	2024	2023
Beginning balance	₽407,533	₽–
Additions	10,194	407,533
Disposal	(390,819)	-
Ending balance	₽26,908	₽407,533

Interest income from short-term investments amounted to ₱3.02 million, ₱6.56 million and nil in 2024, 2023 and 2022, respectively (see Note 26).

Deferred input VAT arises from the Group's unsettled purchase of services and will be claimed as input VAT upon payment.

Others include surety bonds and security deposits. Surety bonds pertain to the agreement to guarantee compliance with MGB in putting a trust fund for Mineral Ore Export Permit issuance. This is valid for one year and is subject for renewal. Security deposits are deposits to satisfy lease obligation of the Group. These are refundable at the end of the lease term.

In 2024 and 2023, the Group recognized provision for impairment losses on input VAT amounting to $\mathbb{P}2.01$ million and $\mathbb{P}0.01$ million while in 2022, the Group recognized reversal for impairment loss on advances to contractors amounting to $\mathbb{P}39.25$ million (see Notes 23 and 26).

Movements of allowance for impairment loss on other current assets are as follows:

	2024	2023
Balances at beginning of year	₽8,724	₽8,719
Provision (Note 23)	2,005	5
Balances at end of year	₽10,729	₽8,724

9. Property, Plant and Equipment

a. Property, plant and equipment - at revalued amount

The Group's property, plant and equipment items carried at revalued amounts are as follows:

	2024	2023
Land	₽1,919,554	₽1,724,475
Artworks	53,044	52,139
	₽1,972,598	₽1,776,614

Land - at revalued amount

The Group engaged independent firms of appraisers to determine the fair value of its land and artworks classified under property, plant and equipment in the consolidated statements of financial position. The appraisers determined the fair value of the Group's land based on its market value in 2024 and is categorized under level 3. The assigned values were estimated using the sales comparison approach, which considers the sales of similar or substitute properties and their related market values and establishes value estimates through processes involving comparisons.

		2024				
	Revaluation					
	Cost	increment	Total			
Balances at beginning of year	₽68,518	₽1,655,957	₽1,724,475			
Change in fair value	-	188,854	188,854			
Reclassification (Note 11)	6,225	_	6,225			
Balances at end of year	₽74,743	₽1,844,811	₽1,919,554			
	2023					
	Revaluation					
	Cost	increment	Total			
Balances at beginning of year	₽68,398	₽1,609,167	₽1,677,565			
Change in fair value	_	46,790	46,790			
Reclassification (Note 11)	120	_	120			
Balances at end of year	₽68,518	₽1,655,957	₽1,724,475			

Artworks - at revalued amount

Independent revaluations are performed every three to five years by an independent appraiser. The latest appraisal was performed by Heritage Arts & Antiquities, Inc., an independent appraiser for the year ended December 31, 2024, in which the fair value measurement is categorized under Level 3. The assigned value was estimated using the sales comparison approach, which considers the sales of similar or substitute properties and related market values and establishes value estimates by processes involving comparisons. In general, a property being valued is compared

with sales of similar properties that have been transacted in the open market. Listings and offerings may also be considered.

Carrying values of artworks at revalued amounts amounted to P53.04 million and P52.14 million as at December 31, 2024 and 2023, respectively.

The artworks would have been recorded at P0.90 million in the consolidated statement of financial position had these been carried at cost.

Management assessed that the residual value of the artworks approximates the revalued amount as at December 31, 2024 and 2023, and therefore, no depreciation was recognized in both years.

	2024 Revaluation				
	Cost	increment	Total		
Balances at beginning of year	₽ 896	₽51,243	₽52,139		
Change in fair value	_	905	905		
Balances at end of year	₽ 896	₽52,148	₽53,044		
		2023			
		Revaluation			
	Cost	increment	Total		
Balances at beginning and end of year	₽896	₽51,243	₽52,139		

Movements in the revaluation increment on land and artworks shown as part of other components of equity are as follows:

	2024	2023	2022
Beginning balance	₽1,362,051	₽1,325,985	₽1,305,820
Revaluation during the year	142,366	36,066	20,700
Transfer to retained earnings			
(Note 11)	-	_	(535)
Ending balance	₽1,504,417	₽1,362,051	₽1,325,985

b. Property, Plant and Equipment – at cost

	2024								
			Machinery, Mine and]	Right-of-use		
	Land	Land	tools and mini	mining	nining Port		assets		
	improvements	Buildings	equipment	properties	facilities	CIP	(Note 15)	Total	
Cost:									
Beginning balance	₽75,209	₽311,773	₽1,043,410	₽1,664,511	₽117,142	₽21,143	₽17,157	₽3,250,345	
Additions	_	499	81	1,130	_	_	12,335	14,045	
Derecognition	-	-	_	_	-	-	(5,310)	(5,310)	
Reclassification	-	-	449	15,768	-	(16,217)	-	-	
Change in estimate of the liability for	•								
mine rehabilitation (Note 16)	_	_	_	2,577	_	-	_	2,577	
Ending balance	75,209	312,272	1,043,940	1,683,986	117,142	4,926	24,182	3,261,657	
Accumulated depreciation and depletion	•								
Beginning balance	75,209	311,773	1,006,325	1,012,954	44,422	_	9,727	2,460,410	
Depreciation and depletion (Note 25)	_	499	25,529	25,672	5,387	-	5,557	62,644	
Derecognition	-	_	_	_	_	-	(5,310)	(5,310)	
Ending balance	75,209	312,272	1,031,854	1,038,626	49,809	_	9,974	2,517,744	
Net book values	₽-	₽-	₽12,086	₽645,360	₽67,333	₽4,926	₽14,208	₽743,913	

				20	23			
			Machinery,	Mine and			Right-of-use	
	Land		tools and	mining			assets	
	improvements	Buildings	equipment	properties	Port facilities	CIP	(Note 15)	Total
Cost:								
Beginning balance	₽75,209	₽311,390	₽1,024,797	₽1,633,095	₽101,517	₽24,912	₽31,090	₽3,202,010
Additions	—	196	19,658	36,356	_	12,043	2,052	70,305
Disposals and derecognition	-	—	(1,045)	—	_	_	(15,985)	(17,030)
Reclassification	-	187	_	—	15,625	(15,812)	_	—
Change in estimate of the liability for								
mine rehabilitation (Note 16)	_	_	_	(4,940)	_	_	_	(4,940)
Ending balance	75,209	311,773	1,043,410	1,664,511	117,142	21,143	17,157	3,250,345
Accumulated depreciation and depletion:								
Beginning balance	75,209	310,757	988,594	987,031	40,091	_	20,128	2,421,810
Depreciation and depletion (Note 25)	_	1,016	18,776	25,923	4,331	_	5,584	55,630
Disposals and derecognition	—	_	(1,045)	_	—	—	(15,985)	(17,030)
Ending balance	75,209	311,773	1,006,325	1,012,954	44,422	_	9,727	2,460,410
Net book values	₽_	₽_	₽37,085	₽651,557	₽72,720	₽21,143	₽7,430	₽789,935

The Group's CIP includes the development of an enhanced mill production line in Balatoc, Benguet to increase the milling capacity of its gold operations.

Proceeds totaling $\neq 0.11$ million and $\neq 0.16$ million in 2023 and 2022, respectively, from the disposal of fully depreciated property, plant and equipment resulted in net gain of $\neq 0.11$ million and $\neq 0.16$ million in 2023 and 2022, respectively (see Note 26). There is no disposal of property, plant and equipment in 2024.

The cost of fully depreciated property, plant and equipment still being used in the Group's operations amounted to ₱725.47 million and ₱701.74 million as at December 31, 2024 and 2023, respectively.

Movements in mine and mining properties in 2024 and 2023 are as follows:

	2024			
	Mine and mining properties	Mine rehabilitation asset	Total	
Cost:				
Balances at beginning of year	₽1,581,835	₽82,676	₽1,664,511	
Addition	1,130	_	1,130	
Reclassification	15,768	_	15,768	
Change in estimate of the liability for mine rehabilitation (Note 16)	_	2,577	2,577	
Balances at end of year	1,598,733	85,253	1,683,986	
Accumulated depletion:				
Balances at beginning of year	965,973	46,981	1,012,954	
Depletion (Note 25)	24,155	1,517	25,672	
Balances at end of year	990,128	48,498	1,038,626	
Net book values	₽608,605	₽36,755	₽645,360	

	2023				
-	Mine and mining	Mine development	Mine rehabilitation		
	properties	cost	asset	Total	
Cost:					
Balances at beginning of year	₽1,521,554	₽23,925	₽87,616	₽1,633,095	
Addition	36,356	_	_	36,356	
Reclassification	23,925	(23,925)	_	_	
Change in estimate of the liability					
for mine rehabilitation (Note 16)	_	_	(4,940)	(4,940)	
Balances at end of year	1,581,835	_	82,676	1,664,511	
Accumulated depletion:					
Balances at beginning of year	941,373	_	45,658	987,031	
Depletion (Note 25)	24,600	_	1,323	25,923	
Balances at end of year	965,973	_	46,981	1,012,954	
Net book values	₽615,862	₽	₽35,695	₽651,557	

	2024				
	Office		Fransportation		
	Space C	linic Space	Equipment	Land	Total
Cost:					
Balances at beginning of year	₽4,439	₽5,310	₽2,052	₽5,356	₽17,157
Additions	_	12,335	_	_	12,335
Termination	_	(5,310)	_	_	(5,310)
Balances at end of year	4,439	12,335	2,052	5,356	24,182
Accumulated depreciation:					
Balances at beginning of year	2,220	4,773	239	2,495	9,727
Depreciation (Note 15)	887	3,760	171	739	5,557
Termination	_	(5,310)	-	_	(5,310)
Balances at end of year	3,107	3,223	410	3,234	9,974
Net book values	₽1,332	₽9,112	₽1,642	₽2,122	₽14,208

Movements in right-of-use of assets in 2024 and 2023 are as follows:

	2023				
	Office Space	Clinic Space	Transportation Equipment	Land	Total
Cost:					
Balances at beginning of year	₽20,424	₽5,310	₽	₽5,356	₽31,090
Additions	-	-	2,052	-	2,052
Termination	(15,985)	-	_	-	(15,985)
Balances at end of year	4,439	5,310	2,052	5,356	17,157
Accumulated depreciation:					
Balances at beginning of year	14,072	3,924	_	2,132	20,128
Depreciation (Note 15)	4,133	849	239	363	5,584
Termination	(15,985)	_	-	_	(15,985)
Balances at end of year	2,220	4,773	239	2,495	9,727
Net book values	₽2,219	₽537	₽1,813	₽2,861	₽7,430

10. Deferred Mine Exploration Costs

Movements in deferred mine exploration costs are as follows:

	2024	2023
Balances at beginning of year	₽687,356	₽659,494
Additions	27,131	28,310
Translation adjustment	3,007	(448)
Balances at end of year	717,494	687,356
Less allowance for impairment losses	166,989	166,989
Net book value	₽550,505	₽520,367

Additions pertain to drilling, hauling, and other ongoing exploration and evaluation activities of the Group.

No movement in allowance for impairment loss on deferred mine exploration costs in 2024 and 2023.

11. Investment Properties

	2024	2023
Balances at beginning of year	₽2,997,953	₽2,991,984
Addition	18,540	6,225
Revaluation (Note 26)	314,491	(136)
Reclassification (Note 9)	(6,225)	(120)
Balances at end of year	₽3,324,759	₽2,997,953

Investment properties include parcels of land located in Itogon, Benguet, Irisan, Baguio City and San Pedro, Laguna.

In April 2022, AFCC sold its parcel of land located in Barangay San Antonio, San Pedro, Laguna with an area of 2,045 sqm for P2,500 per sqm. The corresponding revaluation increment on this land amounting to P0.54 million recognized under other comprehensive income was transferred to retained earnings upon sale. The proceeds from the sale amounted to P4.63 million resulting in a gain amounting to P0.62 million (see Note 26).

In 2023, AFCC reclassified investment property amounting to P0.12 million into property and equipment due to the change in use of the property from being an investment property that is no longer held for long-term capital appreciation.

The Group engaged an independent appraiser to assess the fair market value of land under investment properties as at December 31, 2024 and 2023, respectively. The appraisal was performed by Cuervo Appraisers, Inc. and Top Consult, Inc., an independent appraiser. The fair value of the investment properties was estimated using the sales comparative approach, which considers the sales of similar or substitute properties and related market values and establishes value estimates by processes involving comparisons (level 3).

Movements in accumulated fair valuation gains of investment properties are as follows:

	2024	2023
Balances at beginning of year	₽1,405,028	₽1,405,164
Revaluation (Note 26)	314,491	(136)
Balances at end of year	₽1,719,519	₽1,405,028

12. Other Noncurrent Assets

	2024	2023
Advances to contractors and suppliers	₽447,428	₽407,665
Mine rehabilitation fund (MRF)	85,961	78,165
CWTs	75,469	97,483
Input VAT	19,996	47,589
Prepaid rent	2,343	2,334
Financial assets at FVOCI	794	1,110
Others	34,049	25,833
	666,040	660,179
Less allowance for ECLs and impairment losses	159,463	171,227
	₽506,577	₽488,952

The Group made advance payments to a supplier of aircraft amounting $\mathbb{P}4.05$ million and $\mathbb{P}245.95$ million in 2023 and 2022, respectively, bringing the total balance to $\mathbb{P}250.00$ million and as at December 31, 2024 and 2023, respectively. Meanwhile, the rest of the advances to contractors and supplier are for exploration and other related activities and projects.

In 2014 and 2015, AFCC applied for refund of CWTs totaling \clubsuit 51.97 million. On November 15, 2021, a notice of decision was received which partially granted as refundable amount representing excess and unutilized CWTs for the taxable year 2014 amounting to \clubsuit 15.59 million. On May 6, 2022, AFCC filed a Petition for Review with the CTA En Banc to appeal the denial of the Motion for Partial Reconsideration.

On December 7, 2020, AFCC received a notice of decision was received which partially grants the Company $\mathbb{P}9.20$ million as refundable amount representing excess and unutilized CWTs for the taxable year 2015. On March 26, 2024, CTA Special First Division issued Amended Writ of Execution to implement the Decision dated December 7, 2020, and ordered the Commission on Internal Revenue to refund AFCC the amount of $\mathbb{P}9.20$ million. The Decision dated December 7, 2020, is final and executory. As at March 26, 2025, the Company is currently processing the issuance of the refund with the BIR.

In 2024, AFCC has written off its allowance for unrecoverable CWTs for the taxable year 2015 amounting to P9.48 million while BLI has reversed an allowance for impairment of input VAT amounting to P2.28 million (see Note 23).

MRF pertains to accounts opened with local banks in compliance with the requirements of DAO No. 2010-21, otherwise known as The Revised Implementing Rules and Regulations of the Philippine Mining Act of 1995. The MRF shall be used for physical and social rehabilitation of areas and communities affected by the mine operations, and for research in the social, technical and preventive aspects of the mine's rehabilitation. The funds earn interest at the respective bank deposit rates. Interest income earned from MRF amounted to P0.02 million, P0.69 million and P0.74 million in 2024, 2023 and 2022, respectively (see Note 26).

Financial assets at FVOCI pertain to investments in nonlisted and listed shares of stock in the Philippine Stock Exchange and Toronto Stock Exchange, which are carried at fair value based on bid market prices.

Movements in financial assets at FVOCI in 2024 and 2023 are as follows:

	2024	2023
Balances at beginning of year	₽1,110	₽1,709
Change in fair value	(206)	43
Disposals	(110)	(642)
Balances at end of year	₽ 794	₽1,110

The unrealized gain amounting to P0.17 million and P0.37 million representing the change in fair value of these financial assets as at December 31, 2024 and 2023 is shown as part of the other components of equity in the consolidated statements of financial position and in the consolidated statements of changes in equity (see Note 18). The fluctuations in value of these investments are also reported as part of other comprehensive income in the consolidated statements of comprehensive income.

Movements in unrealized gains (losses) on financial assets at FVOCI recognized as a separate component of equity are as follows (see Note 18):

	2024	2023	2022
Balances at beginning of year	₽ 371	₽328	(₽275)
Change in fair value	(206)	43	603
Balances at end of year	₽ 165	₽371	₽328

In 2023, the Group sold the intangible asset with a net carrying amount of P0.23 million for a cash consideration of P0.38 million, thus, recognizing a gain amounting to P0.15 million (see Note 26).

Others pertain to various assets of the Group, which are individually insignificant and are expected to be realized beyond 12 months after the reporting period.

Movements in the allowance for impairment loss on advances to contractors and suppliers and input VAT are as follows:

		2024	
	Advances to contractors and suppliers	Input VAT	Total
Balances at beginning of year	₽140,976	₽30,251	₽171,227
Write-off	-	(9,483)	(9,483)
Reversal (Note 23)	-	(2,281)	(2,281)
Balances at end of year	₽140,976	₽18,487	₽159,463
		2023	
	Advances to		
	contractors and		
	suppliers	Input VAT	Total
Balances at beginning and end of year	₽140,976	₽30,251	₽171,227

13. Trade and Other Payables

	2024	2023
Trade	₽277,569	₽345,933
Nontrade	57,674	53,003
Accrued expenses:		
Power and utilities	20,984	10,226
Taxes, fees and licenses	19,969	9,872
Payroll	2,631	3,315
Professional fees and contracted services	998	671
Others	372	58
Excise taxes and royalties	18,782	15,716
Contract liabilities – current	164,579	_
Dividends payable (Note 18)	35,490	_
Output VAT - net	2,866	60,392
Others	2,405	8,615
	₽604,319	₽507,801

Trade payables include import and local purchases of equipment, inventories and various parts and supplies used in the operations of the Group. These are noninterest-bearing and are normally settled in 60 to 90 days' terms.

Nontrade payables represent withholding taxes and other payables to regulatory agencies which are normally settled within one year.

Accrued expenses pertain to liabilities for professional fees, power and utilities, taxes, fees and licenses, unclaimed wages, accrued vacation and sick leave credits, payroll and other administrative expenses which are normally settled within 60-90 days.

Excise taxes and royalties pertain to taxes payable by the Group for its legal obligation arising from the production of mine products.

Contract liabilities pertain to advances from the off take agreements and downpayments made by BRMC's customers for the sale of nickel. On April 11, 2014, BRMC entered into an off-take agreement with a Korean trading company for a total amount of US\$6.00 million in exchange for future shipments. The advances under the said offtake agreement are noninterest-bearing and will be settled through deductions from the selling price of every shipment. (see Note 17).

2024 2023 Balances at beginning of year ₽104,596 ₽203,912 Additions during the year 136,442 155,606 Effect of foreign exchange (3,019)(1,640)Revenue recognized (54, 637)(253, 282)Balance at end of year 183,382 104,596 Less noncurrent portion (Note 17) 104,596 18,803 ₽164,579 ₽– Current portion

Movements in contract liabilities are shown below:

Others include individually insignificant payables which are normally settled within one year.

14. Loans Payable

	2024	2023
Secured loan	₽–	₽48,348
Unsecured loan	_	36,715
Accrued interest and penalties	_	254,175
	₽-	₽339,238

Secured loan

The Parent Company has a loan secured by investment properties with carrying value of ₱2,553.62 million as at December 31, 2023.

Nominal interest rates vary from floating rate of 91-day Philippine PhP T-bill rate for peso loans and 3-month Sterling Overnight Indexed Average (SONIA) for foreign loans, plus margin of 2.5%.

Unsecured loan

The Parent Company has an unsecured loan from a third party with interest rate of 3% per annum which is due and demandable.

On September 3, 2024, the Parent Company signed an Amendment to Mortgage Trust Indenture and Deed of Chattel Mortgage with Philippine Veterans Bank replacing Philippine National Bank as trustee in connection with the loan.

On October 22, 2024, the Parent Company executed with the remaining creditors a mutual rescission agreement terminating the loans payable and release from mortgage the investment properties by settling its secured and unsecured loans in full amounting to P600.00 million and P55.15 million, respectively. The carrying amount of secured and unsecured loans paid off amounted to P290.60 million and P55.15 million, respectively. This resulted to a loss on debt settlement for secured and unsecured loans amounting to P309.40 million in 2024 (see Note 26).

Total interest expense recognized in consolidated statement of income amounted to P6.55 million, P2.20 million and nil in 2024, 2023 and 2022, respectively.

15. Lease Commitments

Lease Agreements

Group as a lessee

The Group has lease contracts for various office spaces, clinic spaces, transportation equipment, and land. The lease terms of these lease contracts are ranging from 2 years to 25 years. The renewals of these leases are subject to the mutual agreement of the parties. Lease payments are fixed.

The Group also has certain leases of clinic space with lease terms of 12 months or less. The Group applies the 'short-term lease' recognition exemption for these leases. The Group's obligations under its leases are secured by the lessor's title to the leased assets.

The following are the amounts recognized in consolidated statement of income:

	2024	2023	2022
Depreciation expense of right-of-use			
assets included in property, plant and			
equipment (Note 9)	₽5,557	₽5,584	₽8,829
Expenses related to short-term leases			
included in selling and general			
expenses (Note 23)	13,219	45,299	54,646
Expenses related to short-term leases			
included in cost of services (Note 22)	3,631	6,578	4,293
Interest expense on lease liabilities	814	573	1,102
Total amount recognized in the			
consolidated statements of income	₽23,221	₽58,034	₽68,870

	2024	2023
Balances at beginning of year	₽8,331	₽12,107
Additions	12,335	2,052
Interest expense	814	573
Payments of:		
Principal portion	(5,401)	(5,828)
Interest portion	(814)	(573)
Balances at the end of the year	15,265	8,331
Less noncurrent portion	8,158	4,093
Current portion	₽7,107	₽4,238

The rollforward analysis of lease liabilities follows:

Shown below is the maturity analysis of the undiscounted lease payments:

	2024	2023
Lease payments due in:		
Less than one year	₽2,269	₽3,717
Between one to two years	1,793	2,269
Between two to three years	1,281	1,793
Between three to four years	1,376	1,281
More than five years	_	1,376

Non-cancellable lease agreements pertain to the Parent's lease of land in Itogon, Benguet for the easement and right of way agreement over the land which the Parent Company needs for its existing water pipelines, and other future installation it may deem desirable for its operations.

Group as a lessor

The Group rented its condominium units under investment properties condominium units as office spaces. The Group has entered into lease contracts, which typically have a lease term of one (1) year. The lease agreements are renewable upon mutual agreement between the Group and its lessees. The Group has determined, based on an evaluation of the terms and conditions of the arrangements, that it retains all the significant risks and rewards of ownership of these properties and so accounts for the leases as operating leases.

Rent income from these leases amounted to P0.79 million, P0.87 million and P0.88 million in 2024, 2023 and 2022, respectively (Note 20).

Future minimum rentals receivable under non-cancellable operating leases as at December 31, 2024 and 2023 are as follows:

	2024	2023
Within one year	₽153	₽170

16. Liability for Mine Rehabilitation

Movements in this account are as follows:

	2024	2023
Balances at beginning of year	₽62,130	₽59,056
Actual rehabilitation costs	(14,117)	(6,990)
Change in estimate:		
Recognized as adjustment to the mine		
rehabilitation asset (Note 9)	2,577	(4,940)
Recognized in consolidated statement of		
income (Note 26)	(163)	12,826
Accretion (Note 26)	2,593	2,178
Balances at end of year	53,020	62,130
Less noncurrent portion	48,151	44,347
Current portion	₽4,869	₽17,783

This provision is based on the Group's estimates. Assumptions based on the current economic environment have been made, which management believes are reasonable bases upon which to estimate the future liability.

In 2022, the revised Antamok Final Mine Rehabilitation and Decommissioning Plan (FMRDP) was endorsed by the MGB-CAR to the Contingent Liability and Rehabilitation Fund Steering Committee (CLRFSC) for approval based on new development, particularly on the actual rehabilitation needs considering the current physical status and condition of the area. The total cost to be incurred over a 4-year period of rehabilitation was reduced from $\mathbb{P}43.0$ million to $\mathbb{P}30.0$ million. The aim of the FMRDP is principally to mitigate environmental risks and provide a sustainable final land use over the area. It includes long-term programs including Minahang Bayan. The Parent Company implemented various activities such as continuous propagation of various seedlings in nurseries and maintenance of its established reforestation areas. In 2023, the Parent Company's additional activities included progressive rehabilitation of waste dumps and other areas of the mine.

The final rehabilitation costs are uncertain, and cost estimates can vary in response to many factors, including estimates of the extent and costs of rehabilitation activities, technological changes, regulatory changes and changes in inflation rates (3.20% in 2024 and 3.03% in 2023) and changes in discount rates (4.90% in 2024 and 5.43% 2023).

These uncertainties may result in future actual expenditure differing from the amounts currently provided. Therefore, significant estimates and assumptions are made in determining the provision for mine rehabilitation. As a result, there could be significant adjustments to the provision established that could affect future financial results.

The provision at the end of each reporting period represents management best estimate of the present value of the future rehabilitation cost required. This estimate is reviewed regularly to take into account any material changes in the assumptions. However, actual rehabilitation costs will ultimately depend upon future market prices for the necessary decommissioning works required, which will reflect market conditions at the relevant time. The timing of rehabilitation is likely to depend on when the mine ceases to produce at economically viable rates. This, in turn, will depend upon future gold and nickel prices, which are inherently uncertain.

17. Other Noncurrent Liabilities

	2024	2023
Contract liabilities (Note 13)	₽18,803	₽104,596
Equity of claimowners in contract operations	49,136	49,136
Deposits for future stock subscriptions	52,000	32,000
	₽119,939	₽185,732

Contract liabilities of BRMC may be settled through future nickel ore shipments to its customers. The current portion of the said advances is presented as part of trade and other payables.

As at December 31, 2024 and 2023, the US\$ denominated portion of the advances amounted to US\$1.54 million (P85.27 million) and US\$1.54 million ($\oiint{P}85.27$ million), respectively, while the rest of advances are denominated in peso.

Equity of claim owners in contract operations pertain to the outstanding equity of CMI, gross of advances. Discussions on the settlement of said liability are still on-going as at March 26, 2025.

In 2024, the Parent Company received cash as deposit for future stock subscriptions from Red Earth Mineral Resources Corporation, a third party, amounted to ₱20.00 million (see Note 18). In 2016, deposit for future stock subscriptions was received by BLI from Almega Management and Investment, Inc., a third party, amounted to ₱32.00 million. The related increase in authorized capital stock of BLI has been approved by BLI's BOD and majority of its stockholders on March 16, 2016. As of March 26, 2025, the Parent Company and BLI were yet to submit its application for increase in authorized capital stock with the Philippine SEC.

18. Equity

Capital stock as at December 31, 2024 and 2023 follows:

	2024		2023	
	No. of shares	Amount	No. of shares	Amount
Authorized				
Convertible Preferred				
Class A – ₱3.43 par value	19,652,912	₽67,500	19,652,912	₽67,500
Common Class A – ₱1 par value	430,380,000	430,380	430,380,000	430,380
Common Class B – ₱1 par value	286,920,000	286,920	286,920,000	286,920
	736,952,912	₽784,800	736,952,912	₽784,800
Issued				
Convertible Preferred Class "A"	217,061	₽745	217,061	₽745
Common Class "A"	428,430,802	428,431	375,430,802	375,431
Common Class "B"	285,101,396	285,101	248,101,396	248,101
Total shares issued and subscribed	713,749,259	₽714,277	623,749,259	₽624,277
Treasury Shares				
Common Class "A"	310,794	₽7,158	310,794	₽7,158
Common Class "B"	37,275	858	37,275	858
Total treasury shares	348,069	₽8,016	348,069	₽8,016
Outstanding				
Convertible Preferred Class "A"	217,061	₽745	217,061	₽745
Common Class "A"	428,120,008	421,273	375,120,008	368,273
Common Class "B"	285,064,121	284,243	248,064,121	247,243
Total outstanding shares	713,401,190	₽706,261	623,401,190	₽616,261

The amount of unrestricted retained earnings equivalent to the cost of the treasury shares being held shall be restricted from being declared and issued as dividends.

No movement in the Parent Company's authorized and treasury shares in 2024 and 2023. The movement in the Parent Company's issued shares in 2024, 2023 and 2022 are as follows:

	2024		
	Balance at beginning of year	Issuance of shares through subscription	Balance at end of year
Convertible Preferred Class "A"	217,061	_	217,061
Common Class "A"	375,430,802	53,000,000	428,430,802
Common Class "B"	248,101,396	37,000,000	285,101,396
	623,749,259	90,000,000	713,749,259
		2023	
		Issuance of shares	
	Balance at	for stock options	Balance at
	beginning of year	exercised (Note 19)	end of year
Convertible Preferred Class "A"	217,061	_	217,061
Common Class "A"	375,307,052	123,750	375,430,802
Common Class "B"	247,963,396	138,000	248,101,396
	623,487,509	261,750	623,749,259
		2022	
		Issuance of shares	
	Balance at	for stock options	Balance at
	beginning of year	exercised (Note 19)	end of year
Convertible Preferred Class "A"	217,061	_	217,061
Common Class "A"	375,307,052	_	375,307,052
Common Class "B"	247,963,396	_	247,963,396
	623,487,509	-	623,487,509

The two classes of common shares of the Parent Company are identical in all respects, except that ownership of Common Class A is restricted to Philippine nationals.

The convertible preferred shares are limited to Philippine nationals and convertible into Common Class A shares at a conversion premium of $\mathbb{P}12.83$ per share. Each preferred share is convertible into nine (9.4875) Common Class A shares. The convertible preferred shares are also entitled to have one vote for each full share of Common Class A stock into which such share of convertible preferred stock is, at any stockholders' meeting, then convertible. It does not enjoy the same dividend right as the two classes of common stock but is entitled to a fixed cumulative dividend of 8% a year if there is surplus profit and when declared by the BOD.

On March 21, 2018, the BOD approved the increase in the Parent Company's authorized capital stock from P717.30 million (consisting of 430,380,000 Common Class A shares and 286,920,000 Common Class B shares, both having a par value of P1.00 each) to P762.30 million (consisting of 475,380,000 Common Class A shares and 286,920,000 Common Class B shares, both having a par value of P1.00 each). The application for the increase was approved by the stockholders during the annual meeting held last November 8, 2018.

On August 29, 2024, the BOD approved the increase in the Parent Company's authorized capital stock of P2,400.0 million, which is inclusive of P45.0 million capital increase previously approved by the BOD on March 21, 2018, or 2,400,000,000 shares (consisting of 1,440,000,000 Common Class A shares and 960,000,000 Common Class B shares, both having a par value of P1.00 each). The increase was approved by the stockholders during the annual meeting held last December 20, 2024.

After the amendment, the total authorized capital stock of the Parent Company will increase from P784.80 million to P3,184.8 million. As at March 26, 2025, the Company has not yet filed its application for the increase in authorized capital stock with the Philippine SEC.

In 2021, the Parent Company issued 4,086,798 Common Class A shares and 2,713,199 Common Class B shares as a result of employees' exercise of stock options at a total consideration of ₱9.81 million; ₱1.37 million of which were from 431,198 Common Class A shares and from 334,176 Common Class B at an average selling price of ₱1.80 per share and ₱8.45 million from 3,655,600 Common Class A shares and 2,379,023 Common Class B shares at an average exercise price of ₱1.41 per share. As at December 31, 2021, total shares issued and outstanding for Common Class A and B shares are 374,996,258 and 247,926,121 respectively.

In 2023, the Parent Company issued 123,750 Common Class A shares and 138,000 Common Class B shares as a result of employees' exercise of stock options at a total consideration of $\mathbb{P}0.27$ million, net of lodging fee of $\mathbb{P}0.10$ million, $\mathbb{P}0.17$ million of which was from 123,750 Common Class A shares at an average selling price of $\mathbb{P}1.38$ per share and $\mathbb{P}0.20$ million from 138,000 Common Class B at an average selling price of $\mathbb{P}1.43$ per share.

In 2024, Red Earth made additional subscription to the proposed increase in capital stock of 20,000,000 shares (consisting of 13,000,000 Common Class A shares and 7,000,000 Common Class B shares, both having a par value of $\mathbb{P}1.00$ each) at subscription price of $\mathbb{P}4.00$ per share. The Parent Company received cash amounting to $\mathbb{P}20.0$ million as deposit for future stock subscription. The balance of deposit for future stock subscription related to this private placement as December 31, 2024 amounted to $\mathbb{P}20.0$ million (see Note 17).

On October 29, 2024, in its special Board meeting, the Company's BOD approved the declaration of cash dividend amounting to $\mathbb{P}143.56$ million or equivalent to $\mathbb{P}0.28$ per share of the Company's Convertible Preferred Class A shares and $\mathbb{P}0.20$ per share of outstanding Common Class A and B shares to stockholders of record as of November 14, 2024 with the payment set date on December 10, 2024. Total amount of dividend paid and still outstanding as at December 31, 2024 amounted to $\mathbb{P}108.07$ million and $\mathbb{P}35.49$ million, respectively.

On November 5, 2024, Red Earth Mineral Resources Corporation (Red Earth) subscribed to 53,000,000 Common Class A unissued shares and 37,000,000 Common Class B unissued shares of the Parent Company at a subscription price of ₱4.00 per share. The total consideration for this subscription amounted to ₱360.0 million.

As at December 31, 2024, total shares issued and outstanding for Common Class A and B shares are 428,120,008 and 285,064,121 respectively.

Date of Registration		Number of	Par value	Total amount
(SEC Approval)	Description	shares	per share	(in 000's)
June 18, 1956	Capital upon registration:			
	Common shares	18,000,000	₽1.00	₽18,000
November 25, 1960	Increase in number and par value of			
	common shares:			
	Common shares	20,000,000	2.00	40,000
November 9, 1964	Increase in par value of common shares:			
	Common shares	20,000,000	3.00	60,000
October 22, 1968	Increase in number of common shares and			
	introduction of preferred shares:			
	Common shares	50,000,000	3.00	150,000
	Preferred shares	6,000,000	5.00	30,000
March 12, 1974	Split of common share into two classes			
	and change in number and par value and			
	addition of conversion feature to the			
	preferred shares:			
	Common class A	30,000,000	3.00	90,000
	Common class B	20,000,000	3.00	60,000
	Convertible preferred shares	19,652,912	3.43	67,500
July 27, 1989	Increase in number of common shares			
-	Common class A	120,000,000	3.00	360,000
	Common class B	80,000,000	3.00	240,000
	Convertible preferred shares	19,652,912	3.43	67,500
September 28, 2015	Increase in number of common shares			
	Common class A	143,460,000	3.00	430,380
	Common class B	95,640,000	3.00	286,920
	Convertible preferred shares	19,652,912	3.43	67,500
July 29, 2016	Increase in number of common shares and			
•	reduction in par value			
	Common class A	430,380,000	1.00	430,380
	Common class B	286,920,000	1.00	286,920
	Convertible preferred shares	19,652,912	3.43	67,500
As at December 31, 2024	Common class A	430,380,000	₽1.00	₽430,380
~	Common class B	286,920,000	1.00	286,920
	Convertible preferred shares	19,652,912	3.43	67,500

Below is the Parent Company's track record of registration of securities under the Philippine SEC:

As at December 31, 2024 and 2023, the Parent Company has 16,857 and 16,870 stockholders, respectively.

As at December 31, 2024 and 2023, the Parent Company has 348,069 shares held in treasury amounting to P8.02 million at P23 per share

Other Components of Equity

	2024	2023
Revaluation increment on land and artworks	₽1,504,417	₽1,362,051
Cumulative translation adjustments of foreign		
subsidiaries	43,319	41,064
Remeasurement gain on pension liability		
(Note 29)	20,399	15,908
Unrealized gain on financial assets at FVOCI		
(Note 12)	165	371
Unrealized gain on intangible asset	108	108
	₽1,568,408	₽1,419,502

19. Stock Option Plan

Under the 1975 Nonqualified Stock Option Plan (Plan), as amended, 9,906,661 shares of the unissued common stock of the Parent Company have been reserved for stock options to selected managers, directors and consultants of the Parent Company. The option price is payable on exercise date and should not be less than the fair market value of the shares quoted on the date of the grant. The Plan, valid up to May 31, 1998, allows a maximum of 632,500 shares to be available to any one optionee. On May 26, 1998, the BOD and the stockholders approved the extension of the Plan until May 31, 2003, which was extended further on December 18, 2002 with the BOD and the stockholders approved a further extension of the Plan until May 31, 2013.

On March 23, 2012, the BOD and the stockholders approved the proposed amendments to the existing Amended Stock Option Plan and to extend the termination date of the existing Plan for five years or until May 31, 2018.

The amendments include an increase in the maximum award per employee from 200,000 shares over the life of the plan to 500,000 shares per grant and an increase in the shares reserved for issuance under the Plan from the total of 9,906,661 shares to 22,000,000 shares.

Options granted to Filipino optionees are exercisable in the form of 60% Common Class A and 40% Common Class B shares. Options for Common Class B shares may be exercised only if Common Class A shares had been previously or simultaneously exercised so as to maintain a minimum 60:40 ratio of Common Class A to Common Class B shares.

The options under the Plan are non-transferable and are exercisable to the extent of 30% after one year from the date of the grant, 60% after two years from the date of the grant, and 100% after three years from the date of grant. The options authorized under this plan is exercisable for a period of 10 years from the date of grant.

On November 8, 2018, the BOD and the stockholders approved the proposed amendment to the existing Amended Stock Option Plan to extend the termination date of the existing Plan for five years or until May 31, 2023.

On August 24, 2022, the BOD approved the proposed amendment to the existing Amended Stock Option Plan to extend the termination date of the existing Plan for eight (8) years or until May 31, 2031, which the stockholders ratified on November 9, 2022.

On March 17, 2017, upon endorsement of the Stock Option Committee, the BOD approved a new stock option grant to the Group's qualified directors, officer, employees and consultant, provided they have rendered at least two years of service as of March 11, 2017. Total number of common shares available for distribution under the plan is 8,414,375 shares at an exercise price of ₱1.38 and ₱1.43 for Class "A" and Class "B" shares, respectively.

On March 18, 2021, upon endorsement of the Stock Option Committee, the BOD approved a new stock option grant to the Group's officer, employees and consultant and to all members of the BOD, provided they have rendered at least two years of service as of March 15, 2021. Total number of common shares available for distribution under the plan is 3,003,612 shares at an exercise price of P2.19 and P2.05 for Class "A" and Class "B" shares, respectively.

		Exercisable share options as at		Cancelled/ Expired	Exercisable share options as at
		January 1, 2024	Additions	in 2024	December 31, 2024
Class A	- May 2014 Grant	648,000	-	(648,000)	-
	- March 2017 Grant	352,475	-	-	352,475
	- March 2021 Grant	1,081,308	720,871	-	1,802,179
Class B	- May 2014 Grant	432,000	-	(432,000)	-
	- March 2017 Grant	237,527	-	_	237,527
	- March 2021 Grant	720,860	480,573	-	1,201,433
Total		3,472,170	1,201,444	(1,080,000)	3,593,614
		Exercisable share options as at January 1, 2023	Additions	Exercised in 2023	Exercisable share options as at December 31, 2023
Class A	- May 2014 Grant	648,000	-	-	648,000
	- March 2017 Grant	476,225	-	(123,750)	352,475
	- March 2021 Grant	540,654	540,654	_	1,081,308
Class B	- May 2014 Grant	432,000	_	_	432,000
	- March 2017 Grant	375,527	-	(138,000)	237,527
	- March 2021 Grant	360,430	360,430	-	720,860
Total		2,832,836	901,084	(261,750)	3,472,170

Exercisable share options per grant are as follows:

On August 31, 2016, the Parent Company's BOD approved the following amendments to the Plan due to the effect of the share split on July 29, 2016:

- change in the exercise price of outstanding options
- change in the maximum number of shares per grant from 500,000 to 1,500,000
- repricing of the unexercised share options brought about by the low turn-out in the availment of the grant due to high exercise price compared to market price. The repricing was based on the closing price on August 18, 2016 of Class A and Class B common shares amounting to ₱2.25 and ₱2.55, respectively, less 25% discount pursuant to the provisions of the amended stock option plan of the Parent Company.
- change in the shares reserved issuance under the Plan from 22,000,000 shares to 66,000,000 shares.

The exercise prices of outstanding options consider the effect of the stock split and the change in exercise prices, are as follows:

		After effect of stock		
		At grant date	split	As modified
Class A	- September 2012 Grant	₽17.96	₽5.99	₽1.69
	- May 2014 Grant	7.13	2.38	1.69
	- March 2017 Grant	1.38	n/a	n/a
	- March 2021 Grant	2.19	n/a	n/a
Class B	- September 2012 Grant	17.63	5.88	1.91
	- May 2014 Grant	7.13	2.38	1.91
	- March 2017 Grant	1.43	n/a	n/a
	- March 2021 Grant	2.05	n/a	n/a

Average exercise price per share in 2024 and 2023 amounted to $\mathbb{P}1.92$ and $\mathbb{P}1.90$, respectively. Total number of shares available for future option grants is 41,069,864 and 39,989,864 shares as at December 31, 2024 and 2023.

Stock option expense relating to the Plan recognized amounted to ₱1.20 million in 2024 and ₱2.26 million in 2023 and 2022 (see Note 24).

A summary of the number of shares under the Plan is shown below:

	2024	2023
Outstanding at beginning of year	4,673,614	4,935,364
Cancellation/expiration	(1,080,000)	_
Exercised during the year	_	(261,750)
Outstanding at end of year	3,593,614	4,673,614
Exercisable at end of year	3,593,614	3,472,170

The Parent Company used the binomial options pricing model to determine the fair value of the stock options.

The following assumptions were used to determine the fair value of the stock options:

				Expected volatility			
		Share	Exercise	increase	Option	Expected	Risk-free
		price	price	(decrease)	life	Dividends	Interest rate
San 0 2012 Grant	А	23.95	17.96	57.35%	10 years	0.00%	4.80%
Sep 9, 2012 Grant	В	23.50	17.63	65.53%	10 years	0.00%	4.80%
Mar. 26 2014 Crant	Α	9.50	7.13	77.28%	10 years	0.00%	3.90%
May 26, 2014 Grant	В	9.50	7.13	84.29%	10 years	0.00%	3.90%
Max 17 2017 Crant	Α	1.83	1.38	95.46%	10 years	0.00%	5.09%
May 17, 2017 Grant	В	1.90	1.43	101.96%	10 years	0.00%	5.09%
May 18, 2021 Grant	Α	2.92	2.19	(106.57%)	10 years	0.00%	4.44%
May 18, 2021 Grant	В	2.73	2.05	92.75%	10 years	0.00%	4.44%

The expected volatility measured at the standard deviation of expected share price returns was based on the analysis of share prices for the past 365 days. The cost of share-based payment amounted to $\mathbb{P}8.23$ million and $\mathbb{P}8.10$ million as at December 31, 2024 and 2023, respectively.

20. Revenue

	2024	2023	2022
Revenue from contracts with customers:			
Sale of mine products	₽2,339,861	₽2,481,560	₽3,967,002
Sale of goods and services	45,222	47,128	55,470
Sale of land	_	1,800	1,844
Total revenue from contracts with			
customers	2,385,083	2,530,488	4,024,316
Rental income (Note 15)	789	870	879
	₽2,385,872	₽2,531,358	₽4,025,195

Sale of mine products includes sales of nickel, gold, silver and lime, which are subject to 4% excise tax based on gross revenues in 2024, 2023 and 2022.

As a requirement under DAO No. 2010-21, 'The Mining Act Implementing Rules and Regulations', BRMC pays royalty to the MGB for every shipment of nickel ore equivalent to 5% of the peso equivalent of the nickel ore shipped since the SCNP is within a Mineral Reservation.

Excise taxes and royalty fees related to the sale of mine products amounted to ₱162.31 million, ₱182.43 million and ₱299.75 million in 2024, 2023 and 2022, respectively.

		2024	
_		Health	
Segments	Mining	Services	Total
Type of product:			
Nickel	₽1,451,350	₽-	₽1,451,350
Gold	790,474	_	790,474
Lime	96,765	_	96,765
Silver	1,272	_	1,272
Health services	_	45,222	45,222
Total revenue from contracts with customers	₽2,339,861	₽45,222	₽2,385,083
Location of customer:			
Within the Philippines	₽888,511	₽45,222	₽933,733
Outside the Philippines	1,451,350	_	1,451,350
Total revenue from contracts with customers	₽2,339,861	₽45,222	₽2,385,083
Timing of revenue recognition:			
Transferred at a point in time	₽2,339,861	₽_	₽2,339,861
Transferred overtime	_	45,222	45,222
Total revenue from contracts with customers	₽2,339,861	₽45,222	₽2,385,083

Set out below is the disaggregation of the Group's revenue from contracts with customers in 2024, 2023 and 2022:

		2023	
		Health	
Segments	Mining	Services	Total
Type of product:			
Nickel	₽1,757,578	₽–	₽1,757,578
Gold	623,399	_	623,399
Lime	96,516	_	96,516
Silver	4,067	_	4,067
Health services	_	47,128	47,128
Land	1,800	-	1,800
Total revenue from contracts with customers	₽2,483,360	₽47,128	₽2,530,488
Location of customer:			
Within the Philippines	₽725,782	₽47,128	₽772,910
Outside the Philippines	1,757,578	_	1,757,578
Total revenue from contracts with customers	₽2,483,360	₽47,128	₽2,530,488
Timing of revenue recognition:			
Transferred at a point in time	₽2,483,360	₽_	₽2,483,360
Transferred overtime	-	47,128	47,128
Total revenue from contracts with customers	₽2,483,360	₽47,128	₽2,530,488

		2022	
		Health	
Segments	Mining	Services	Total
Type of product:			
Gold	₽2,952,272	₽–	₽2,952,272
Nickel	911,594	_	911,594
Lime	99,976	_	99,976
Silver	3,160	_	3,160
Health services	_	55,470	55,470
Land	1,844	_	1,844
Total revenue from contracts with customers	₽3,968,846	₽55,470	₽4,024,316
Location of customer:			
Within the Philippines	₽1,016,574	₽55,470	₽1,072,044
Outside the Philippines	2,952,272	_	2,952,272
Total revenue from contracts with customers	₽3,968,846	₽55,470	₽4,024,316
Timing of revenue recognition:			
Transferred at a point in time	₽3,968,846	₽_	₽3,968,846
Transferred overtime	_	55,470	55,470
Total revenue from contracts with customers	₽3,968,846	₽55,470	₽4,024,316

21. Costs of Mine Products Sold

	2024	2023	2022
Outside services	₽328,584	₽255,347	₽302,738
Materials and supplies (Note 6)	114,454	144,396	219,320
Contractor fees	100,605	109,262	101,447
Personnel expenses (Note 24)	77,129	94,647	86,100
Power, rent and utilities	56,007	58,365	107,092
Depreciation and depletion (Note 25)	35,332	28,410	54,440
Contractor labor	24,955	13,583	23,241
Taxes and licenses	19,886	22,316	28,315
Repairs and maintenance	12,603	19,007	32,370
Smelting, refining and marketing	7,958	4,858	7,154
Travel and transportation	204	212	200
Others	1,040	2,197	2,882
	778,757	752,600	965,299
Net change in beneficiated			
nickel ore (Note 6)	43,484	(72,129)	5,089
	₽822,241	₽680,471	₽970,388

Outside services pertain to the amounts paid to service providers involved in the mining operations of the Group.

Other expenses consist of various direct charges to cost of mine products, which are individually insignificant.

	2024	2023	2022
Materials and supplies (Note 6)	₽18,910	₽20,671	₽19,259
Personnel expenses (Note 24)	18,735	20,819	19,604
Depreciation and depletion (Note 25)	18,364	13,711	8,534
Outside services	12,109	6,899	9,648
Retainers and consultancy fees	9,681	10,963	15,458
Rent (Note 15)	3,631	6,578	4,293
Professional fees	1,070	1,100	1,595
Travel and transportation	957	1,242	977
Taxes and licenses	325	303	159
Repairs and maintenance	303	232	136
Cost of real estate sold	_	387	387
Others	1,276	1,151	108
	₽85,361	₽84,056	₽80,158

22. Cost of Services and Other Sales

Others consist of various direct charges, which are individually insignificant.

23. Selling and General Expenses

	2024	2023	2022
Outside services	₽433,164	₽440,555	₽572,927
Personnel expenses (Note 24)	141,701	141,154	136,625
Taxes and licenses	51,620	31,199	26,391
Community development programs	49,507	54,477	53,193
Materials and supplies (Note 6)	41,653	40,885	44,729
Professional fees	27,652	20,432	35,218
Wharfage fees	18,738	19,795	10,770
Repairs and maintenance	18,246	23,098	17,173
Contract labor	15,011	_	63
Rent (Note 15)	13,219	45,299	54,646
Depreciation and depletion (Note 25)	8,948	13,509	18,240
Representation	8,946	17,287	19,818
Communication, light and power	8,938	10,113	15,075
Transportation and travel	7,450	8,698	5,592
Loss on disallowance of input VAT			
(Note 8)	5,022	7,946	_
Provision of allowance for ECLs – net			
(Note 5)	4,833	924	_
Insurance	1,600	3,225	4,173
Provision (reversal) for impairment on			
input VAT - net (Notes 8 and 12)	(276)	5	_
Penalties	223	1,431	_
Provision for inventory obsolescence			
(Note 6)	127	_	_
Freight and handling	4	1,111	3,959
Subscription and membership fees	_	2,907	2,907
Others	10,213	21,965	57,043
	₽866,539	₽906,015	₽1,078,542

- 59 -

Others consist of various administrative expenses, which are individually insignificant.

24. Personnel Expenses

	2024	2023	2022
Salaries and wages	₽180,467	₽220,612	₽184,810
Benefits and allowances	51,727	20,819	41,014
Pension expense (Note 29)	4,170	12,929	14,247
Stock option expense (Note 19)	1,201	2,260	2,258
	₽237,565	₽256,620	₽242,329

Total personnel expenses were distributed as follows:

	2024	2023	2022
Cost of mine products sold (Note 21)	₽77,129	₽94,647	₽86,100
Cost of services and other sales (Note 22)	18,735	20,819	19,604
Selling and general expenses (Note 23)	141,701	141,154	136,625
	₽237,565	₽256,620	₽242,329

25. Depreciation and Depletion

Total depreciation and depletion are composed of the following (see Notes 6 and 9):

	2024	2023	2022
Depreciation	₽36,972	₽29,707	₽39,498
Depletion	25,672	25,923	41,762
	₽62,644	₽55,630	₽81,260

Depreciation and depletion are broken down as follows:

	2024	2023	2022
Cost of mine products sold (Note 21)	₽35,332	₽28,410	₽54,440
Cost of services and other sales (Note 22)	18,364	13,711	8,534
Selling and general expenses (Note 23)	8,948	13,509	18,240
Gold button inventory (Note 6)	-	_	46
	₽62,644	₽55,630	₽81,260

26. (Other	Income	(Charges)	– net
-------	-------	--------	-----------	-------

	2024	2023	2022
Gains (losses) on:			
Revaluation of investment properties			
(Note 11)	₽314,491	(₱136)	₽85,332
Settlement of loans (Note 14)	(309,396)	_	_
Foreign currency exchange	11,333	8,061	39,676
Disposal of property, plant and equipment			
(Note 9)	_	105	157
Disposal of intangible asset (Note 12)	_	150	_
Loss on disallowed input VAT (Note 8)	_	_	(12,687)
Write-off of CIP	_	_	(11,395)
Sale of investment properties (Note 11)	_	_	619
Change in fair value of financial assets at FVPL			
(Note 7)	55,500	51,893	18,213
Interest income (Notes 4, 8 and 12)	41,699	10,592	2,089
Accretion on the liability for mine rehabilitation			
(Note 16)	(2,593)	(2,178)	(1,746)
Change in estimate of liability for mine			
rehabilitation (Note 16)	163	(12,826)	(16,858)
Provision for (recovery of):			
Impairment on loss on advances to			
contractors (Note 8)	_	_	39,253
Inventory obsolescence	_	_	18,888
ECLs	_	_	6,659
Impairment on other noncurrent assets	_	_	(938)
Others – net	(4,289)	1,333	(3,248)
	₽106,908	₽56,994	₽164,014

Others consist of various income and expenses, which are not directly related to the operations of the Group.

27. ESOIP

The ESOIP, as approved by the stockholders in 1986, allows employees of the Parent Company to buy up to 6,000,000 shares of the Common Class A shares of the Parent Company at either of two prices. If the shares are acquired by the Parent Company from a seller or are treasury shares, these can be bought at acquisition cost. If the shares are sourced from the authorized but unissued shares of the Parent Company, these can be bought at the average closing price quoted in the PSE on the last day that such shares were traded prior to the start of the purchase period. Payment for the shares purchased shall be advanced by the Parent Company on behalf of the employees and repaid through salary deduction without interest. The shares acquired by employees under the ESOIP may be subjected to a holding period from the date of purchase.

In January 1990, the BOD approved the Employees Stock Purchase Plan, which allows the employees of the Parent Company (but excluding directors of the Parent Company) to buy, basically under similar terms and conditions as that of the ESOIP, 2,000,000 shares of the Common Class A shares of the Parent Company.

The balance of the employees' stock ownership pursuant to the said plan shown as part of the trade and other receivables in the consolidated statements of financial position amounted to P58.42 million as at December 31, 2024 and 2023 and was provided an allowance for the same amount (see Note 5).

28. Related Party Disclosure

Enterprises and individuals that directly, or indirectly through one or more intermediaries, control or are controlled by, or are under common control with the Group, including holding companies, subsidiaries and fellow subsidiaries, are related parties of the Group. Associates and individuals owning, directly or indirectly, an interest in the voting power of the Group that gives them significant influence over the enterprise, key management personnel, including directors and officers of the Group and close members of the family of these individuals, and companies associated with these individuals also constitute related parties. In considering each possible related entity relationship, attention is directed to the substance of the relationship and not merely the legal form.

The Group's related party transactions which are, individually or in aggregate over a 12-month period, 10% and above of the latest audited consolidated total assets are reviewed and evaluated by the Related Party Transaction Committee and Management Committee. Afterwards, these are approved by at least two-thirds (2/3) vote of the BOD, with at least a majority of the independent directors voting to approve the material related party transaction. In case that a majority of the independent directors' vote is not secured, the material related party transaction may be ratified by the majority vote of the shareholders, or two-thirds (2/3) of the outstanding capital stock.

All intercompany transactions are eliminated at the consolidated level. Items eliminated are separately disclosed in a schedule in accordance with Philippine SEC requirements under the Revised SRC Rule 68.

Compensation of Key Management Personnel of the Group

The Group considered all senior officers as key management personnel. Below are the details of compensation of the Group's key management personnel.

	2024	2023	2022
Short-term benefits	₽40,133	₽39,869	₽38,730
Post-employment benefits	14,445	12,297	16,638
	₽54,578	₽52,166	₽55,368

Short-term benefits include salaries and stock compensation expense. Post-employment benefits include net pension expense.

29. Pension Benefits Plans

The existing regulatory framework, RA No. 7641, The Retirement Pay Law, requires a provision for retirement pay to qualified private sector employees in the absence of any retirement plan in the entity, provided however that the employee's retirement benefits under any collective bargaining and other agreements shall not be less than those provided under the law. The law does not require minimum funding of the plan.

The Group noncontributory pension benefit plan covering substantially all of their regular employees. The benefits are based on a certain percentage of the final monthly basic salary for every year of credited service of the employees in accordance with RA 7641. The defined pension benefit obligation is determined using the projected unit credit method.

The following tables summarize the components of net pension benefit in the consolidated statements of income and fund status, and the amounts recognized in the consolidated statements of financial position.

The component of pension expense is as follows:

	2024	2023	2022
Current service cost	₽10,869	₽12,355	₽10,597
Net interest cost	3,518	574	3,650
Past service cost	(10,217)	—	_
Pension expense	₽4,170	₽12,929	₽14,247

Pension liability as at December 31, 2024 and 2023 are as follows:

	2024	2023
Present value of defined benefit obligation	108,377	₽114,701
Fair value of plan assets	(68,414)	(56,507)
Pension liability	₽39,963	₽58,194

Movements of remeasurement gains on pension liability recognized in OCI:

	2024	2023	2022
Balances at beginning of year	₽15,908	₽17,633	₽10,673
Loss (gain) on remeasurement of pension			
liability	(5,987)	(2,301)	9,571
Tax effect	1,496	576	(2,611)
Remeasurement loss (gain) on pension liability -			
net of tax	4,491	(1,725)	6,960
Balances at end of year	₽20,399	₽15,908	₽17,633

Changes in the present value of defined benefits obligation are as follow:

	2024	2023
Balances at beginning of year	₽114,701	₽102,004
Interest cost	6,939	1,040
Current service cost	10,869	12,355
Past service cost	(10,217)	_
Actuarial losses (gains)	(8,001)	2,353
Benefits paid	(5,914)	(3,051)
Balances at end of year	₽108,377	₽114,701

Breakdown of actuarial gains (losses) on defined benefits obligation are as follows:

	2024	2023
Change in financial assumptions	(₽ 347)	(₱10,414)
Experience adjustments	(7,654)	8,061
	(₽8,001)	(₽2,353)

Fair value of plan assets of the Group follows:

	2024	2023
Balances at beginning of year	₽56,507	₽45,989
Contributions	10,500	10,000
Remeasurement gain (loss)	(2,014)	52
Asset return in net interest cost	3,421	466
Balances at end of year	₽68,414	₽56,507

The Parent Company, BRMC and BLI's plan assets are being managed by a trustee bank. The retirement fund includes cash in bank only as at December 31, 2024 and 2023. The Parent Company, BRMC and BLI has no transactions with its retirement fund and the retirement fund has no investments in shares of stocks of the Parent Company.

The Group expects to contribute ₱19.91 million to the defined benefits retirement plan in 2025.

Shown below is the maturity analysis of the undiscounted benefit payments as at December 31, 2024 and 2023:

Plan Year	2024	2023
Less than 1 year	₽76,327	₽77,668
More than 1 year to 5 years	6,744	14,321
More than 5 years to 10 years	24,313	27,143
More than 10 years to 15 years	54,539	52,333
More than 15 years to 20 years	106,975	124,323
More than 20 years	573,603	735,633
	₽842,501	₽1,031,421

The overall expected rate of return on assets is determined based on the market prices prevailing on the date applicable to the period over which the obligation is to be settled. The average duration of the defined benefit obligations of the Group is 9-22 years in 2024 and 8-22 years in 2023.

The principal assumptions used in determining the pension liability of the Group's plans are shown below.

	2024	2023
Discount rate	6.11% to 6.15%	5.98% to 6.07%
Salary increase rate	5.00% to 11.00%	5.00% to 11.00%

The sensitivity analysis below has been determined based on reasonably possible changes of each significant assumption on the pension liability as at the end of the reporting period, assuming if all other assumptions were held constant:

		December 31, 2024
		Present value of the
	Increase (decrease)	defined benefit obligation
Discount rates	7.11% to 7.15% (+1.00%)	₽103,135
	6.11% to 6.15% (actual)	108,463
	5.11% to 5.15% (-1.00%)	114,309
Salary increase rate	6.00% to 12.00% (+1.00%)	₽114,362
	5.00% to 11.00% (actual)	108,463
	4.00% to 10.00% (-1.00%)	103,378
		D 1 21 2022
		December 31, 2023
		Present value of the defined
	Increase (decrease)	
Discount rates	Increase (decrease) 6.98% to 7.07% (+1.00%)	Present value of the defined
Discount rates		Present value of the defined benefit obligation
Discount rates	6.98% to 7.07% (+1.00%)	Present value of the defined benefit obligation ₽108,823
Discount rates Salary increase rate	6.98% to 7.07% (+1.00%) 5.98% to 6.07% (actual)	Present value of the defined benefit obligation ₱108,823 114,701
	6.98% to 7.07% (+1.00%) 5.98% to 6.07% (actual) 4.98% to 5.07% (-1.00%)	Present value of the defined benefit obligation ₱108,823 114,701 121,776

30. Income Taxes

The provision for current and deferred tax in 2024, 2023 and 2022 include the following:

	2024	2023	2022
Provision for current taxes:			
RCIT	₽110,201	₽177,595	₽413,073
MCIT	-	130	138
	110,201	177,725	413,211
Provision for deferred taxes	3,102	741	15,014
Total	₽113,303	₽178,466	₽428,225

The components of the Group's deferred tax assets and liabilities are as follows:

	Deferred tax assets – net		Deferred tax liabilities - net	
-	2024	2023	2024	2023
Deferred tax assets on:				
Allowance for impairment losses on:				
Trade and other receivables	₽10,546	₽9,005	₽16,170	₽16,140
Other current assets	2,003	2,371	_	_
Inventories	_	_	39,185	39,153
Liability for mine rehabilitation	5,795	5,762	7,460	9,768
Lease liabilities	2,711	608	1,105	_
Amortization of past service cost	2,504	882	2,472	1,229
Unrealized foreign exchange loss	1,580	1,426	_	_
Pension liability	1,386	1,504	8,605	13,882
Share-based payment	_	_	2,056	2,026
Unearned rental	_	_	9	1,318
	26,525	21,558	77,062	83,516
Deferred tax liabilities on: Cumulative fair value gain of financial assets at FVPL Right-of-use assets Unrealized foreign exchange gain	14,185 2,611 1,044	14,099 555 1,060	1,301 941	415 1,169 -
Mine rehabilitation asset	,	273	9,189	8,650
Revaluation increment on property, plant and equipment	_	_	867,501	825,212
Revaluation increment on artworks	-	_	10,430	10,249
Unearned revenue	_	_	22	_
Cumulative translation adjustment of foreign			1 4 420	10 (00
subsidiaries	-		14,439	13,688
	17,840	15,987	903,823	859,383
Net deferred tax assets (liabilities)	₽8,685	₽5,571	(₽826,761)	(₽775,867)

The Group did not recognize deferred tax assets relating to the following temporary differences because management believes that it is more likely than not that the carry-forward benefits will not be realized in the near future:

	2024	2023	2022
Allowance for inventory loss			
impairment loss and others	₽351,415	₽353,194	₽353,936
NOLCO	47,857	37,188	60,498
Accrued expenses	8,002	8,002	8,002
Lease liabilities	627	627	387
Unrealized foreign exchange losses	3	_	1
Straight-line amortization of accrued rent	_	_	250
MCIT	_	396	226
Share-based payment	_	_	9,198
	₽407,904	₽399,407	₽432,498

On September 30, 2020, the BIR issued Revenue Regulations No. 25-2020 implementing Section 4(bbbb) of "Bayanihan to Recover As One Act" which states that the NOLCO incurred for taxable years 2020 and 2021 can be carried over and claimed as a deduction from gross income for the next five (5) consecutive taxable years immediately following the year of such loss.

As of December 31, 2024, the Group has incurred NOLCO in taxable years 2021 and 2020 which can be claimed as deduction from the regular taxable income for the next five (5) consecutive taxable years pursuant to the Bayanihan to Recover As One Act, as follows:

			NOLCO		NOLCO	
Year	Availment		Applied	NOLCO	Applied Current	NOLCO
Incurred	Period	Amount	Previous Year/s	Expired	year	Unapplied
2020	2021-2025	₽18,637	(₽3,189)	₽-	(₽491)	₽14,957
2021	2022-2026	4,515	-	-	_	4,515
		₽23,152	(₱3,189)	₽-	(₽491)	₽19,472

As of December 31, 2024, the Group has incurred NOLCO after taxable year 2021 which can be claimed as deduction from the regular taxable income for the next three (3) consecutive taxable years, as follows:

			NOLCO		NOLCO	
Year	Availment		Applied	NOLCO	Applied Current	NOLCO
Incurre	ed Period	Amount	Previous Year/s	Expired	year	Unapplied
2022	2023-2025	₽8,308	₽-	₽-	₽-	₽8,308
2023	2024-2026	8,917	_	_	-	8,917
2024	2024-2027	11,160	-	—	_	11,160
		₽28,385	₽–	₽–	₽-	₽28,385

As of December 31, 2024, the Group has MCIT that can be applied against payment of regular income tax as follows:

			MCIT			
Year	Availment		Applied		MCIT Applied	MCIT
Incurred	Period	Amount	Previous Year/s	MCIT Expired	Current year	Unapplied
2020	2021-2023	₽-	₽-	₽-	₽-	₽-
2021	2022-2024	128	_	_	(128)	_
2022	2023-2025	138	_	-	(138)	_
2023	2024-2026	130	_	_	(130)	_
		₽396	₽_	₽_	(₱396)	₽-

Movements of NOLCO are as follow:

	2024	2023	2022
Balances at beginning of year	₽37,188	₽31,460	₽60,498
Additions	11,160	8,917	8,308
Application	(491)	(3,189)	—
Expirations	_	_	(37,346)
Balances at end of year	₽ 47 , 857	₽37,188	₽31,460

Movements of MCIT are as follow:

	2024	2023	2022
Balances at beginning of year	₽ 396	₽345	₽226
Expirations	(396)	(79)	(19)
Additions	_	130	138
Balances at end of year	₽-	₽396	₽345

The reconciliation of pretax income computed at the statutory income tax rate to provision for income tax shown in the consolidated statements of income is as follows:

	2024	2023	2022
Tax computed at statutory rate	₽129,997	₽169,775	₽439,818
Add (deduct) effects of:			
Nontaxable income	(91,252)	(14,782)	(21,333)
Nondeductible expenses	84,224	5,035	18,153
Interest income subject to final tax	(9,749)	(1,629)	(522)
Unrealized gain on financial assets at			
FVPL	3,557	14,451	_
Changes in unrecognized deferred tax			
assets	(2,559)	4,477	(17,247)
Deductible expenses	(1,252)	_	_
Application of MCIT	396	_	_
Application of NOLCO	(123)	(797)	-
Effect of change in tax rates	64	_	_
Additional of MCIT	_	1,857	_
Expiration of MCIT	_	79	19
Expiration of NOLCO			9,337
	₽113,303	₽178,466	₽428,225

31. Basic/Diluted EPS

Basic EPS is calculated by dividing the profit attributable to equity holders of the Parent Company by the weighted average number of common shares on issue during the year, excluding any ordinary shares purchased by the Parent Company and held as treasury shares.

In computing for the 2024 and 2023 diluted EPS, the Parent Company considered the effect of stock options outstanding since these are dilutive.

	2024	2023	2022
Net income	₽ 435,670	₽554,143	₽1,331,047
Current dividends on preference shares	(60)	(60)	(60)
Adjusted net income	₽435,610	₽554,083	₽1,330,987

Number of shares for computation of EPS as a result of stock split:

	2024	2023	2022
Basic EPS			
Weighted average common shares issued	713,532,198	623,532,198	623,270,448
Less: treasury shares	348,069	348,069	348,069
Weighted average common shares outstanding	713,184,129	623,184,129	622,922,379
Diluted EPS			
Weighted average common shares issued	713,532,198	623,532,198	623,270,448
Less: treasury shares	348,069	348,069	348,069
	713,184,129	623,184,129	622,922,379
Convertible preferred shares	2,059,366	2,059,366	2,059,366
Stock options	3,593,614	3,472,170	2,832,836
Weighted average common shares outstanding	718,837,109	628,715,665	627,814,581
Basic EPS	₽0.6 1	₽0.89	₽2.14
Diluted EPS	₽0.61	₽0.88	₽2.12

32. Segment Information

PFRS 8, *Operating Segments*, requires operating segments to be identified on the basis of internal reports about components of the Group that are regularly reviewed by the chief operating decision maker, who is the President of the Parent Company.

For management purposes, the Group is organized into business units based on its products and services and has four reportable segments, as follows:

- The mining segment is engaged in exploration, nickel and gold mining operations.
- The health services segment is engaged in the business of offering medical and clinical diagnostic examinations and health care services on pre-employment.
- The logistics segment is engaged in logistics services to the supply-chain requirements of various industries.
- The other segments comprise aggregated operating segments of the Group engaged in research, development, real estate and water projects.

Management monitors the operating results of its business units separately for the purpose of making decisions about resource allocation and performance assessment. Segment performance is evaluated based on operating income or loss and is measured consistently with income or loss before income tax as reported in the consolidated financial statements.

Intersegment revenues are eliminated upon consolidation and reflected in the 'eliminations' column. All other adjustments and eliminations are presented in the table below.

Segment assets include operating assets used by a segment and consist principally of operating, trade and other receivables, inventories and property, plant and equipment, net of allowances and provisions. Segment liabilities include all operating liabilities and consist principally of trade and other payables, accrued expenses and bank loans. Segment assets and liabilities do not include deferred taxes.

Business Segments

Segment reporting is consistent in all periods presented as there are no changes in the structure of the Group's internal organization that will cause the composition of its reportable segment to change.

				2024			
		Health		2024			
	Mining	services	Logistics	Others	Total	Eliminations	Consolidated
Revenue	8		8				
External customers	₽2,339,861	₽45,222	₽-	₽918	₽2,386,001	(₽129)	₽2,385,872
Interest income	36,959	_	512	1,881	39,352	2,347	41,699
Inter-segment	_	-	139,850	2,807	142,657	(142,657)	-
Other income	477,421	-	91	113,637	590,949	(212,823)	378,126
	2,854,041	45,222	140,453	119,243	3,158,959	(353,262)	2,805,697
Cost and Expenses							
Interest expense	7,004	-	-	351	7,355	-	7,355
Direct costs	801,030	-	33,683	33,314	868,027	(14,121)	853,906
Selling and general							
expenses	1,068,473	761	26,807	16,429	1,112,470	(255,491)	856,979
Accretion expense	2,593	-	-	_	2,593	-	2,593
Impairment losses	589	-	-	23	612	-	612
Depreciation, depletion and							
amortization (Note 25)	107,255	-	13,392	6,003	126,650	(64,006)	62,644
Excise taxes and royalty fees							
(Note 20)	162,311	-	-	-	162,311	-	162,311
Other expenses	314,418	13	30	3,314	317,775	(7,451)	310,324
Income before tax	389,386	44,448	66,541	59,809	561,166	(12,193)	548,973
Provision for income tax	100,917	-	14,623	(2,301)	113,239	10	113,303
Net income	₽289,397	₽44,448	₽51,918	₽62,110	₽447,873	(₽12,203)	₽435,670
Operating assets	₽13,101,952	₽2,321	₽454,833	₽2,061,852	₽15,620,958	(₽4,762,322)	₽10,858,636
Operating liabilities	(₽1,920,844)	(₽619)	(₽254,235)	(₽934,001)	(₽3,109,699)	₽2,238,344	(₽871,355)
Other disclosure:							
Capital expenditure	₽16,065	₽-	₽12,776	₽-	₽28,841	₽-	₽28,841

	2023								
	-	Health							
	Mining	services	Logistics	Others	Total	Eliminations	Consolidated		
Revenue									
External customers	₽2,481,560	₽47,128	₽	₽2,670	₽2,531,358	₽	₽2,531,358		
Interest income	9,848	3	2	739	10,592	-	10,592		
Inter-segment	-	-	156,295	3,276	159,571	(159,571)	-		
Other income	698,969	2	12	80,961	779,944	(736,961)	42,983		
	3,190,377	47,133	156,309	87,646	3,481,465	(896,532)	2,584,933		
Cost and Expenses									
Interest expense	2,575	131	68	2	2,776	-	2,776		
Direct costs	691,493	36,715	46,826	387	775,421	(53,015)	722,406		
Selling and general									
expenses	1,095,738	4,840	8,598	6,114	1,115,290	(243,446)	871,844		
Accretion expense	2,178	-	-	-	2,178	-	2,178		
Impairment losses	843	-	-	80	923	-	923		
Depreciation, depletion and									
amortization (Note 25)	106,403	1,865	13,609	1,826	123,703	(68,073)	55,630		
Excise taxes and royalty fees									
(Note 20)	182,425	-	-	-	182,425	-	182,425		
Other expenses	28,087	-	1,665	3,594	33,346	(19,204)	14,142		
Income before tax	1,080,635	3,582	85,543	75,643	1,245,403	(512,794)	732,609		
Provision for income tax	155,347	128	21,716	1,275	178,466	-	178,466		
Net income	₽925,288	₽3,454	₽63,827	₽74,368	₽1,066,937	(₽512,794)	₽554,143		
Operating assets	₽12,343,859	₽36,280	₽424,751	₽1,923,452	₽14,728,342	(₽4,396,294)	₽10,332,048		
Operating liabilities	(₽1,795,417)	(₱62,713)	(₽279,160)	(₽871,614)	(₱3,008,904)	₽1,814,138	(₽1,194,766)		
Other disclosure:									
Capital expenditure	₽71,900	₽137	₽24,526	₽	₽96,563	₽	₽96,563		

	2022							
	Mining	services	Logistics	Others	Total	Eliminations	Consolidated	
Revenue								
External customers	₽3,967,002	₽55,470	₽-	₽2,723	₽4,025,195	₽	₽4,025,195	
Interest income	1,631	3	2	453	2,089	-	2,089	
Inter-segment	-	-	165,882	-	165,882	(165,882)	-	
Other income	840,489	22	2,304	18,573	861,388	(640,740)	220,648	
	4,809,122	55,495	168,188	21,749	5,054,554	(806,622)	4,247,932	
Cost and Expenses								
Interest expense	1,102	_	-	-	1,102	-	1,102	
Direct costs	952,312	40,254	31,032	386	1,023,984	(36,412)	987,572	
Selling and general								
expenses	1,284,869	5,761	21,968	13,289	1,325,887	(265,581)	1,060,306	
Impairment losses	-	-	-	-	1,746	-	1,746	
Accretion expense	-	-	-	196	196	-	196	
Depreciation, depletion and								
amortization (Note 25)	134,589	1,268	10,117	1,953	147,927	(66,667)	81,260	
Excise taxes and royalty fees								
(Note 20)	299,747	-	-	-	299,747	-	299,747	
Other expenses	44,938	24	10,714	1,042	56,718	13	56,731	
Income (loss) before tax	2,091,565	8,188	94,357	3,137	2,197,247	(437,975)	1,759,272	
Provision for income tax	89,943	138	11,860	6	101,883	-	101,883	
Net income (loss)	₽2,001,622	₽8,114	₽82,497	₽3,131	₽2,095,364	(₽437,975)	1,657,389	
Operating assets	₽10,093,544	₽31,131	₽414,919	₽1,409,636	₽11,026,296	(₽4,553,726)	₽7,372,570	
Operating liabilities	(₽2,617,380)	(₽75,897)	(₽365,202)	(₽878,517)	(₽3,920,256)	₽2,203,530	(₽1,716,726)	
Other disclosure:								
Capital expenditure	₽41,652	₽2,752	₽27,999	₽4,201	₽76,604	₽	₽76,604	

- Notes to operating segments: a. Inter-segment revenue, cost and expenses, assets and liabilities are eliminated upon consolidation and reflected in the 'eliminations' column.
- b. Capital expenditures consist of additions to property, plant and equipment and deferred mine exploration costs.
- c. Further information of the Group's revenue about products and services as well as geographical areas are presented in Note 20.

d. Gross revenues from each of the customers from the mining segment that exceeded 10% of the Group's revenue for the years ended December 31, 2024, 2023 and 2022 are presented below:

	2024	2023	2022
Customer 1	₽ 790,474	₽623,399	₽911,594
Customer 2	1,451,350	1,744,009	2,920,734
	₽2,241,824	₽2,367,408	₽3,832,328

33. Financial Risk Management Objectives and Policies

The Group has various other financial instruments such as cash and cash equivalents, trade receivables, receivable from lessees of bunkhouses, and loan receivable under "other noncurrent assets", trade and accrued expenses under trade and other payables and lease liabilities, which arise directly from its operations. Other financial assets include financial assets at FVPL and FVOCI.

The significant risks arising from the Group's financial instruments are liquidity risk, credit risk and interest rate risk. The BOD reviews and agrees policies for managing each of these risks and these are summarized below.

Liquidity Risk

Liquidity risk arises from the possibility that the Group may encounter difficulties in meeting the obligations associated with its financial liabilities that are settled by delivering cash or another financial asset. The Group's objective is to maintain a balance between continuity of funding and flexibility through the use of bank loans and availment of suppliers' credit. The long-term relationship of the Group to its suppliers gives it the advantage to negotiate the payment terms.

As part of its liquidity risk management, the Group has access to sufficient external funding and loans payable maturing within 12 months can be rolled over with existing lenders. It also continuously assesses conditions in the financial markets for opportunities to avail bank loans and capital market issues. Accordingly, its loan maturity profile is regularly reviewed to ensure availability of funding through an adequate amount of credit facilities with financial institutions. As at December 31, 2024 and 2023, cash and cash equivalents may be withdrawn anytime while quoted FVOCI may be converted to cash by selling them during the normal trading hours in any business day.

The tables below summarize the maturity profile of the Group's financial liabilities as of December 31, 2024 and 2023 based on contractual undiscounted cash flows. The table also analyses the maturity profile of the Group's financial assets in order to provide a complete view of the Group's contractual commitments. The analysis into relevant maturity groupings is based on the remaining period at the end of the reporting period to the contractual maturity dates

			2024		
	On demand	0-90 days	91-365 days	More than one year	Total
Financial assets		*			
Cash and cash equivalents					
Cash on hand and in banks	₽832,105	₽-	₽-	₽-	₽832,105
Short-term deposits	-	921,610	_	-	921,610
Trade and other receivables*	104,557	439,800	196,919	_	741,276
FVPL	704,637	· –		_	704,637
Short-term deposits under "other current	,				,
assets"	-	_	26,908	-	26,908
FVOCI	-	_		794	794
	₽1,641,299	₽1,361,410	₽223,827	₽ 794	₽3,227,330

	2024					
	On		91-365	More than		
	demand	0-90 days	days	one year	Total	
Financial liabilities						
Trade and other payables						
Trade	₽-	₽277,569	₽-	₽-	₽277,569	
Nontrade**	3,721		_	-	3,721	
Accrued expenses	-	23,615	28,691	-	52,306	
Lease liabilities	-	2,269		4,450	6,719	
Other noncurrent liabilities				,		
Equity of claimowners in contract						
operations	-	_	_	49,136	49,136	
•	3,721	303,453	28,691	53,586	389,451	
Net financial assets (liabilities)	₽1.637.578	₽1.057.957	₽195,136	(₽52,792)	₽2.837.879	

*Excluding advances to officers and employees

**Excluding statutory payables

			2023		
	On		91-365	More than	
	demand	0-90 days	days	one year	Total
Financial assets					
Cash and cash equivalents					
Cash on hand and in banks	₽630,810	₽-	₽_	₽-	₽630,810
Short-term deposits	_	143,382	_	_	143,382
Trade and other receivables*	330,074	62,974	208,859	_	601,907
FVPL	1,328,780	_	_	_	1,328,780
Short-term deposits under "other current					
assets"	_	_	407,533	_	407,533
FVOCI	_	_	_	1,110	1,110
	2,289,664	206,356	616,392	1,110	3,113,522
Financial liabilities					
Loans payable	339,238	_	_	_	339,238
Trade and other payables					
Trade	_	345,933	_	_	345,933
Nontrade**	4,093	_	_	_	4,093
Accrued expenses	_	14,212	9,930	_	24,142
Lease liabilities	_	929	2,788	6,719	10,436
Other noncurrent liabilities					
Equity of claimowner in contract					
operations	_			49,136	49,136
	343,331	361,074	12,718	55,855	772,978
Net financial assets (liabilities)	₽1,946,333	(₽154,718)	₽603,674	(₽54,745)	₽2,340,544

*Excluding advances to officers and employees

**Excluding statutory payables

Credit Risk

Credit risk refers to the potential loss arising from any failure by counterparties to fulfill their obligations as these falls due. It is inherent to the business that potential losses may arise due to the failure of its customers and counterparties to fulfill their obligations on maturity dates or due to adverse market conditions.

The Group trades only with recognized, creditworthy third parties. It is the Group's policy that all customers who wish to trade on credit terms are subject to credit verification procedures.

With respect to credit risk arising from other financial assets of the Group, which comprise of cash and cash equivalents, trade receivables, receivables from lessees of bunkhouses and loans receivable under trade and other receivables and advances under other noncurrent assets, the Group's exposure

....

to credit risk arises from default of the counterparty, with a maximum exposure equal to the carrying amount of these instruments.

Since the Group trades only with recognized third parties, there is no requirement for collateral.

The table below shows the maximum exposure to credit risk for the components of the consolidated statements of financial position. The maximum exposure is shown at each instrument's carrying amount, before the effect of mitigation through the use of master netting and collateral agreements.

	2024	2023
Cash and cash equivalents		
Cash in banks	₽832,105	₽630,028
Short-term deposits	921,610	143,382
Trade and other receivables, except advances to officers	,	
and employees	741,276	601,907
Short-term investments under "other current assets"	26,908	407,533
	₽2,521,899	₽1,782,850

Impairment of financial assets

The Group has financial assets consisting of cash and cash equivalents, trade receivables, receivables from lessees of bunkhouses, and loans receivable that are subjected to ECL model.

General Approach

Cash and cash equivalents

The ECL relating to the cash of the Group is minimal as these are deposited in reputable banks which have good credit rating, and are considered to have lower credit risk.

Other receivables and loans receivable

The Group has an allowance for ECLs for these financial assets amounting to ₱122.72 million and ₱122.56 million as at December 31, 2024 and 2023, respectively.

Simplified Approach

Trade receivables

An impairment analysis is performed at each reporting date using a provision matrix to measure expected credit losses. The provision rates are based on days past due of trade receivables. The calculation reflects the probability-weighted outcome, the time value of money and reasonable and supportable information that is available at the reporting date about past events, current conditions and forecasts of future economic conditions.

The Group establishes credit limits at the level of the individual borrower, corporate relationship and industry sector. It also provides for credit terms with the consideration for possible application of intercompany accounts between affiliated companies. Also, the Group transacts only with related parties and recognized third parties, hence, there is no requirement for collateral.

Below is the information about the credit risk exposure on the Group's trade receivables using a provision matrix:

As at December 31, 2024

		Past due			Specific	
	Current	30 days	60 days	>90 days	Identification	Total
Expected credit loss rate	0%	4%	6%	22%	100%	
Estimated total gross carrying						
amount at default	₽85,566	₽20,352	₽31,690	₽114,213	₽4,823	₽256,644
	₽-	₽954	₽1,582	₽30,315	₽4,823	₽37,674

As at December 31, 2023

		Past due			Specific	
	Current	30 days	60 days	>90 days	Identification	Total
Expected credit loss rate	2%	7%	6%	23%	100%	
Estimated total gross carrying						
amount at default	₽43,243	₽20,723	₽1,290	₽113,350	₽4,823	₽183,429
	₽1,042	₽1,419	₽74	₽25,638	₽4,823	₽32,996

Market Risks

Interest Rate Risk

Interest rate risk is the risk that the fair value or future cash flows of a financial instrument will fluctuate because of changes in market interest rates. The Group's exposure to interest rate risk relates primarily to the Group's long-term debt obligations with floating interest rates.

As at December 31, 2024 and 2023, the Group's exposure to the risk for changes in market interest rate relates primarily to its secured bank loans. The Group regularly monitors its interest due to exposure from interest rates movements.

The Group's unsecured loans payable are both payable on demand. Nominal interest rates vary from floating rate of 91-day Philippine Php T-bill rate for peso loans and 3-month SONIA foreign loans, plus a margin of 3.5% for unsecured loans. The Group has no material exposure to interest rate risk as at December 31, 2024 and 2023.

Foreign Currency Risk

Foreign currency risk is the risk to earnings or capital arising from changes in foreign exchange rates. The Group takes on exposure to effects of fluctuations in the prevailing foreign currency exchange rates on its financial performance and cash flows.

The Group has transactional currency exposures. Such exposure arises from the sale of gold and nickel ore and the purchase of certain goods and services denominated in US\$.

All sales of gold and nickel ore are denominated in US\$. Dollar conversion of metal sales to Philippine peso is based on the prevailing exchange rate at the time of sale.

The Group's policy is to maintain foreign currency exposure within acceptable limits. The Group believes that its profile of foreign currency exposure on its assets and liabilities is within conservative limits for an institution engaged in the type of business in which the Group is involved. The Group did not seek to hedge the exposure on the change in foreign exchange rates between the US\$ and the Philippine peso. The Group believes that active currency hedging would not provide long-term benefits to stockholders.

	2024		2023	
		Peso		Peso
	US\$	equivalent	US\$	equivalent
Cash in banks	\$5,015	₽290,106	\$5,581	₽309,020
Trade receivables under "trade				
and other receivables"	1,478	85,473	538	13,178
Short-term investments	_	_	6,000	332,220
Interest receivables	11	652	34	1,883
Total monetary assets	\$6,504	₽376,231	\$12,153	₽656,301

The Group's foreign currency-denominated monetary assets and liabilities as at December 31, 2024 and 2023 follow:

As at December 31, 2024 and 2023, the exchange rates of the Philippine peso to the US\$ based on the Bankers Association of the Philippines are ₱57.85 and ₱55.37, respectively.

The sensitivity to a reasonably possible change in the US\$ exchange rate, with all other variables held constant, of the Group's income before income tax as at December 31, 2024 and 2023 is as follows:

		Increase (decrease) of income
	Change in dollar	before income
2024	exchange rate	tax
	Strengthens by	
	2.08%	₽ 14,229
	Weaken by	
	-1.82%	(12,458)
		Increase (decrease)
	Change in	of income
	dollar exchange	before income
2023	rate	tax
	Strengthens by	
	0.60%	₽1,993
	Weaken by	
	-2.56%	(8,510)

Equity Price Risk

Equity price risk is the risk to earnings or capital arising from changes in stock exchange indices relating to its quoted equity securities. The Group's exposure to equity price risk relates primarily to its quoted shares under financial assets at FVOCI.

The Group's policy is to maintain its risk to an acceptable level. Movement of share prices is monitored regularly to determine impact on the consolidated statement of financial position.

Since the amount of financial assets at FVOCI subject to equity price risk is not significant relative to the consolidated financial statements, management deemed that it is not necessary to disclose equity price risk sensitivity analysis for 2024 and 2023.

Capital Management

The Group maintains a capital base to cover risks inherent in the business. The primary objective of the Group's capital management is to optimize the use and earnings potential of the Group's resources, ensuring that the Group complies with externally imposed capital requirements, if any, and considering changes in economic conditions and the risk characteristics of the Group's activities.

The Group manages its capital structure and makes adjustments to it in light of changes in economic conditions. To maintain or adjust the capital structure, the Group may obtain additional advances from stockholders or issue new shares. No changes were made in the objectives, policies or processes in 2024, 2023 and 2022. The Group monitors capital using the consolidated financial statements. As at December 31, 2024 and 2023, the Group has met its capital management objectives.

The following table summarizes the total capital considered by the Group:

	2024	2023
Capital stock	₽714,277	₽624,277
Capital surplus	686,627	415,547
Retained earnings	6,199,684	5,907,571
Cost of share-based payment	8,225	8,104
Other components of equity	1,568,408	1,419,502
Treasury shares	(8,016)	(8,016)
	₽9,169,205	₽8,366,985

Further, the Group monitors capital using debt to equity ratio, which is total liabilities divided by total equity. Debt to equity ratios of the Group as at December 31, 2024 and 2023 are as follows:

	2024	2023
Total liabilities (a)	₽1,698,116	₽1,970,633
Total equity (b)	9,169,205	8,366,985
Debt-to-equity ratio (a/b)	0.19:1	0.24:1

34. Changes in Liabilities arising from Financing Activities

Movements on the reconciliation of liabilities arising from financing activities are as follows:

	January 1, 2024	Cash flows	Additions	Others	December 31, 2024
Loans payable	₽339.238	(655,150)	₽_	₽315.912	<u></u> ₽_
Dividends payable		(108,068)	143,557		35,489
Lease liabilities-current	4,238	(5,401)		8,270	7,107
Lease liabilities-net of current)			- , -	· · ·
portion	4,093	_	12,335	(8,270)	8,158
	₽347,569	(₽768,619)	₽155,892	₽315,912	(₽50,754)
					December 31,
	January 1, 2023	Cash flows	Additions	Others	2023
Loans payable	₽337,035	₽_	₽-	₽2,203	₽339,238
Lease liabilities-current	6,309	(5,828)	_	3,757	4,238
Lease liabilities-net of current					
portion	5,798	_	2,052	(3,757)	4,093
	₽349,142	(₽5,828)	₽2,052	₽2,203	₽347,569

- 76 -

Others include interest expense (see Notes 14 and 15).

35. Fair Value Measurement

Fair Values

Set out below is a comparison by category and class of carrying amounts and estimated fair values of the Group's significant financial assets and liabilities as at December 31, 2024 and 2023:

	Carrying amounts		Fair values	
	2024	2023	2024	2023
Financial Assets:				
FVPL	₽704,637	₽1,328,780	₽704,637	₽1,328,780
FVOCI	794	1,110	794	1,110
Loan receivable	196,919	208,859	196,919	208,859

The following methods and assumptions were used to estimate the fair value of each class of financial instruments for which it is practicable to estimate such value:

Cash and cash equivalents, Trade receivables and receivables from lessees of bunkhouses under Trade and Other Receivables, Loan receivable and Advances under Other Current Assets, and trade and accrued expenses under Trade and Other Payables

The fair values of these instruments approximate their carrying amounts as of reporting date due to the short-term nature.

Equity of claimowner in contract operations under Other Noncurrent Liabilities The estimated fair value of equity of claimowner is based on the discounted value of future cash flows using the interest rate of 1% per annum.

Financial assets measured at FVPL

The fair value of investments is based on published net asset value per unit or the price per unit of the UITF.

Financial assets measured at FVOCI

The fair value of investments that are actively traded in organized markets is determined by reference to quoted market bid prices at the close of business on reporting date.

Fair Value Hierarchy

Set out below is the fair value hierarchy of the Group's assets measured at fair value.

		2024		
	Fair valu	ie measurement us	sing	
	Quoted prices in active market	Significant observable inputs	Significant unobservable inputs	
	(Level 1)	(Level 2)	(Level 3)	
Land at revalued amounts	₽-	₽–	₽1,919,554	
Artworks at revalued amounts	_	-	53,044	
Investment properties	_	-	3,324,759	
Financial assets at FVPL	704,637	-	-	
Financial assets at FVOCI	794	-	-	
Lease liabilities	-	-	15,565	

	2023		
	Fair value	e measurement usir	ng
		Significant	Significant
	Quoted prices in	observable	unobservable
	active market	inputs	inputs
	(Level 1)	(Level 2)	(Level 3)
Land at revalued amounts	₽	₽–	₽1,724,475
Artworks at revalued amounts	_	_	52,139
Investment properties	_	_	2,997,953
Financial assets at FVPL	1,328,780	_	_
Financial assets at FVOCI	1,110	_	_
Lease liabilities	_	_	8,331

Sensitivity of the fair value measurements that are categorized within Level 3

A 5% increase (decrease) in internal factors used in determining the price per square meter such as use, size and location would decrease (increase) the fair value of land at revalued amounts and investment properties by P249.27 million (P245.52 million) and P641.87 million (P615.14 million) as at December 31, 2024 and 2023, respectively.

A 5% increase (decrease) in leeway discount in determining the price of each artwork would decrease (increase) the fair value of artworks by ₱3.08 million (₱3.08 million) as at December 31, 2024 and 2023.

As at December 31, 2024 and 2023, the fair value of land at revalued amounts, artworks at revalued amounts and investment property are calculated using the sales comparative approach, which resulted in measurement being classified as Level 3 in the fair value hierarchy.

As at December 31, 2024 and 2023, the Group's financial assets at FVPL and FVOCI are classified under Level 1 of the fair value hierarchy since these are based on quoted market prices or binding dealer price quotations.

There are no other assets and liabilities measured at fair value using any of the valuation techniques as at December 31, 2024 and 2023. There were no transfers between levels in 2024 and 2023.

36. Agreements and Contingencies

a. The Parent Company and certain subsidiaries are contingently liable for liabilities arising from lawsuits or claims (mostly labor, civil, mines administrative and ports related cases) filed by third parties, which are either pending decision by the courts or are subject to settlement agreements. The outcome of these lawsuits or claims cannot be presently determined. In the opinion of management and its legal counsel, the eventual liability from these lawsuits or claims, if any, will not have a material effect on the consolidated financial statements.

SyCip Gorres Velayo & Co. 6760 Ayala Avenue 1226 Makati City Philippines Tel: (632) 8891 0307 Fax: (632) 8819 0872 sqv.ph

INDEPENDENT AUDITOR'S REPORT ON SUPPLEMENTARY SCHEDULES

The Board of Directors and Stockholders Benguet Corporation 7th Floor Universal Re-Building 106 Paseo de Roxas, Makati City

We have audited in accordance with Philippine Standards on Auditing, the consolidated financial statements of Benguet Corporation (the Company) as at December 31, 2024 and 2023, and for each of the three years in the period ended December 31, 2024, and have issued our report thereon dated March 26, 2025. Our audits were made for the purpose of forming an opinion on the basic consolidated financial statements taken as a whole. The schedules listed in the Index to the Supplementary Schedules are the responsibility of the Company's management. These schedules are presented for purposes of complying with the Revised Securities Regulation Code Rule 68, and are not part of the basic consolidated financial statements. These schedules have been subjected to the auditing procedures applied in the audit of the basic consolidated financial statements and, in our opinion, fairly state, in all material respects, the financial information required to be set forth therein in relation to the basic consolidated financial statements taken as a whole.

SYCIP GORRES VELAYO & CO.

Piter Juhn R. Ventura

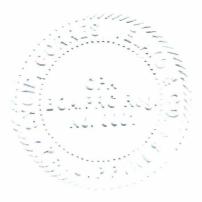
Peter John R. Ventura Partner CPA Certificate No. 0113172 Tax Identification No. 301-106-741 BOA/PRC Reg. No. 0001, April 16, 2024, valid until August 23, 2026 BIR Accreditation No. 08-001998-158-2024, October 2, 2024, valid until October 1, 2027 PTR No. 10465400, January 2, 2025, Makati City

March 26, 2025

SyCip Gorres Velayo & Co. 6760 Ayala Avenue 1226 Makati City Philippines Tel: (632) 8891 0307 Fax: (632) 8819 0872 sqv.ph

INDEPENDENT AUDITOR'S REPORT ON COMPONENTS OF FINANCIAL SOUNDNESS INDICATORS

The Board of Directors and Stockholders Benguet Corporation 7th Floor Universal Re-Building 106 Paseo de Roxas, Makati City


We have audited in accordance with Philippine Standards on Auditing, the consolidated financial statements of Benguet Corporation (the Company) as at December 31, 2024 and 2023 and for each of the three years in the period ended December 31, 2024, and have issued our report thereon dated March 26, 2025. Our audits were made for the purpose of forming an opinion on the basic consolidated financial statements taken as a whole. The Supplementary Schedule on Financial Soundness Indicators, including their definitions, formulas, calculation, and their appropriateness or usefulness to the intended users, are the responsibility of the Company's management. These financial soundness indicators are not measures of operating performance defined by Philippine Financial Reporting Standards (PFRS) Accounting Standards and may not be comparable to similarly titled measures presented by other companies. This schedule is presented for the purpose of complying with the Revised Securities Regulation Code Rule 68 issued by the Securities and Exchange Commission, and is not a required part of the basic consolidated financial statements prepared in accordance with PFRS Accounting Standards. The components of these financial soundness indicators have been traced to the Company's consolidated financial statements as at December 31, 2024 and 2023 and for each of the three years in the period ended December 31, 2024 and no material exceptions were noted.

SYCIP GORRES VELAYO & CO.

Piter Juhn R. Ventura

Peter John R. Ventura Partner CPA Certificate No. 0113172 Tax Identification No. 301-106-741 BOA/PRC Reg. No. 0001, April 16, 2024, valid until August 23, 2026 BIR Accreditation No. 08-001998-158-2024, October 2, 2024, valid until October 1, 2027 PTR No. 10465400, January 2, 2025, Makati City

March 26, 2025

BENGUET CORPORATION AND SUBSIDIARIES FINANCIAL RATIOS PURSUANT TO REVISED SRC RULE 68 DECEMBER 31, 2024

Ratio	Formula	December 2024	December 2023	2024	2023
<u>Profitability</u>	v Ratio				
Return to	Net income	₽435,670	₽554,143	4.11%	5.47%
assets	Total average asset	10,602,470	10,123,347		,,,,
Return on	Net income	₽435,670	₽554,143	4.75%	6.62%
equity	Total shareholder's equity	9,169,205	8,366,985	H. / 5 / 0	0.0270
Current	Total revenue	₽2,385,872	Đ2 521 258	55.16%	(2,500/
Gross	Less: Cost of mine products sold	822,241	<u>₽2,531,358</u> 680,471	55.10%	62.59%
profit	Cost of services and other sales		84,056		
margin	Excise tax and royalties' fees	162,311	182,425		
		1,069,913	946,952		
	Gross Profit	1,315,959	1,584,406		
	Gross profit	1,315,959	1,584,406		
	Total revenue	2,385,872	2,531,358		
Operating	Total revenue	₽2,385,872	₽2,531,358	18.84%	26.80%
profit	Less: Operating costs and expenses	1,936,452	1,852,967	10.04 /0	20.8070
margin	Operating income	449,420	678,391		
	Operating income	449,420	678,391		
	Total revenue	2,385,872	2,531,358		
	N	D125 (70	D554140		
Net Profit Margin	Net income Total revenue	₽435,670 2,385,872	<u>₽554,143</u> 2,531,358	18.26%	21.89%
<u>Liquidity an</u>	nd Solvency Ratio				
Current	Total current assets	₽3 760 284	₽3 758 226	5 74.1	1 16.1

Current	Total current assets	₽3,760,284	₽3,758,226	5.74:1	4.16:1
ratio	Total current liabilities	655,144	902,400		

Quick ratio	Total current assets Less: Inventories Other current assets Quick assets Quick assets Total current liabilities	₱3,760,284 191,940 1,073,353 1,265,293 2,494,991 2,494,991 655,144	₱3,758,226 247,959 1,989,349 2,237,308 1,520,918 1,520,918 902,400	3.81:1	1.69:1
Solvency Ratio	Total assets Total liabilities	<u>₽10,867,321</u> 1,698,116	<u>₽10,337,618</u> 1,970,633	6.40:1	5.25:1
<u>Financial Le</u>	everage Ratio				
Asset to equity ratio	Total assets Total equity	<u>₽10,867,321</u> 9,169,205	<u>₽10,337,618</u> 8,366,985	1.19:1	1.24:1
Debt ratio	Total liabilities Total assets	<u>₽1,698,116</u> 10,867,321	₽ 1,970,633 10,337,618	0.16:1	0.19:1
Debt to equity ratio	Total liabilities Total equity	<u>₽1,698,116</u> 9,169,205	₽ 1,970,633 8,366,985	0.19:1	0.24:1
Interest Coverage ratio	Income before income tax and interest Total interest expense	<u>₽541,618</u> 7,355	<u>₽735,385</u> 2,776	73.64:1	264.91:1

BENGUET CORPORATION AND SUBSIDIARIES

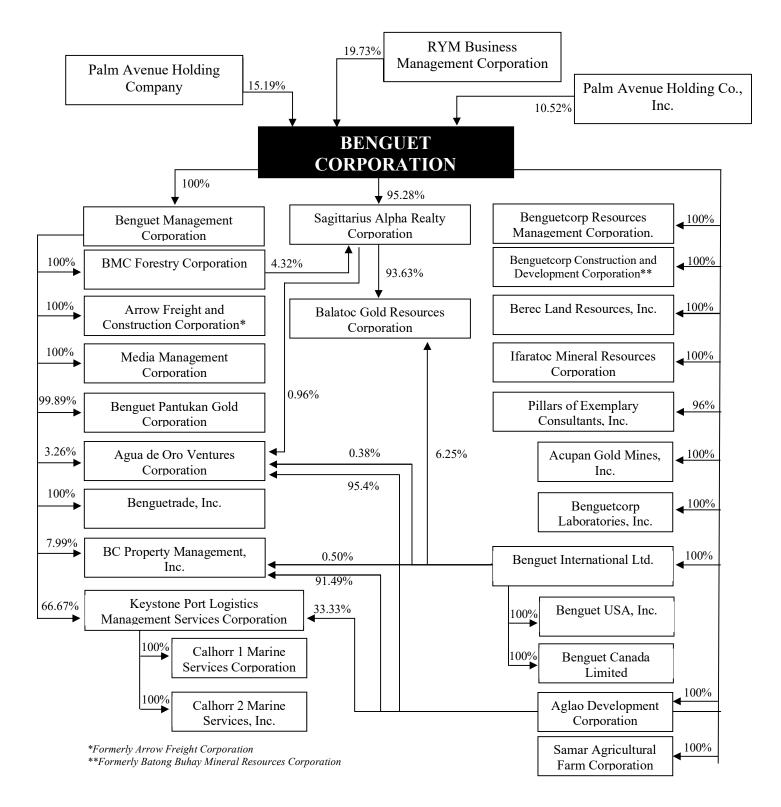
INDEX TO THE SUPPLEMENTARY SCHEDULES FOR THE YEAR ENDED DECEMBER 31, 2024

Schedule

Reconciliation of retained earnings available for dividend declaration	Ι
Map showing the relationships of the Companies within the Group	II
Supplementary Schedules Required by Annex 68-J	
Financial assets	А
Amounts receivable from directors, officers, employees, related parties and principal stockholders	В
Amounts receivable from related parties which are eliminated during the consolidation of financial statements	C
Long-term debt	D
Indebtedness to related parties	E
Guarantees of securities of other issuers	F
Capital stock	G
Schedule of external auditor fee-related information	Н

SCHEDULE I

Reconciliation of Retained Earnings Available for Dividend Declaration


For the reporting period ended December 31, 2024 (Amount in Thousands)

Benguet Corporation

7th Floor Universal Re-Building, 106 Paseo de Roxas, Makati City

Unappropriated Retained Earnings, beginning		₽2,070,835
Add: Category A: Items that are directly credited to		
unappropriated retained earnings:		
Reversal of Retained Earnings Appropriation/s	_	
Effect of restatements or prior-period adjustments	—	
Others	_	
Less: Category B: Items that are directly debited to unappropriated retained earnings		
Dividend declaration during the reporting period	143,557	
Retained earnings appropriated during the reporting period	_	
Effect of restatements or prior-period adjustments	_	
Others	_	
Subtotal		143,557
Unappropriated retained earnings, as adjusted		1,927,278
Add: Net income actually earned/realized during the		
period	83,363	
Less: <u>Category C.1:</u> Unrealized income recognized in profit		
or loss during the reporting period		
Unrealized fair value gain of Investment Property	283,735	
Adjusted Net income		(200,372)
Add: <u>Category D</u> : Non-actual losses recognized in profit or		
loss during the reporting period		
Loss on fair value adjustment of investment property		
Add: <u>Category F</u> : Other items that should be excluded		
from the determination of the amount of retained earnings available for dividend distribution		
Net movement in recognized deferred tax asset not		
considered in the reconciling items under the		
previous categories	4,715	
Net movement in recognized deferred tax liability	2	
related to excess of mine rehabilitation asset over		
liability for mine rehabilitation	1,103	
Subtotal		5,818
TOTAL RETAINED EARNINGS, END		
AVAILABLE FOR DIVIDEND		₽1,732,724

SCHEDULE II BENGUET CORPORATION AND SUBSIDIARIES MAP SHOWING THE RELATIONSHIPS OF THE COMPANIES WITHIN THE GROUP PURSUANT TO SRC RULE 68, AS AMENDED DECEMBER 31, 2024

SCHEDULE A

BENGUET CORPORATION AND SUBSIDIARIES FINANCIAL ASSETS DECEMBER 31, 2024 (Amounts in Thousands)

	Number of Share or Principal Amount of	Amount in the Statement of	Income Received
Name of Issuing Entity and Association of Each Issue	Bonds and Notes	Financial Position	and Accrued
Financial assets at amortized cost			
A. Cash in banks			
BDO Unibank, Inc.	_	593,094	14,115
Malayan Savings Bank	_	4,939	117
Metropolitan Bank & Trust Company	_	18,401	438
Union Bank of the Philippines	_	141	3
China Banking Corporation	_	187	4
Philippine National Bank	_	7,986	190
Rizal Commercial Banking Corporation	_	184,341	4,383
United Coconut Planters Bank	_	_	_
Landbank of the Philippines	_	20,837	495
Others	_	835	20
B. Short Term Deposits			
BDO Unibank, Inc.	310,000	329,103	7,826
Malayan Savings Bank	90,000	92,317	2,195
Metropolitan Bank & Trust Company	500,000	500,049	11,891
Others	_	141	3
C. Trade and Other receivables			
Trade	_	218,969	_
Loan receivable	_	196,919	_
Nontrade	_	242,881	_
Receivables from lessees of bunkhouses	_	5,964	_
Others	_	18,327	
D. Short-term investments under "other current assets"	10,000	26,908	
E. Financial assets at fair value through profit or loss (FVPL)	_	_	
Unit Investment Trust Fund	_	704,637	
F. Financial assets at fair value through Other Comprehensive Income (FVOCI)			
PLDT, Inc.	_	267	_
Sherwood Hills Development, Incorporated	_	300	
TVI Pacific	-	227	

SCHEDULE B

BENGUET CORPORATION AND SUBSIDIARIES AMOUNTS RECEIVABLE FROM DIRECTORS, OFFICERS, EMPLOYEES, RELATED PARTIES AND PRINCIPAL STOCKHOLDERS (OTHER THAN RELATED PARTIES) DECEMBER 31, 2024 (Amounts in Thousands)

Name and Designation of Debtor	Balance at beginning period	Additions	Amounts collected / settlements	Amounts written off	Current	Not current	Balance at end period
Max D. Arceno							
SVP - Accounting & Treasurer	₽392	₽-	₽-	₽-	₽392	₽_	₽392
Reynaldo P. Mendoza							
EVP & Asst. Corporate Secretary	1,281	8	13	—	1,276	-	1,276
Cynthia Lazaro							
Sec. Mgr - Insurance (Treasury)	536	—	1	-	535	—	535
Sheena Irish Barra							
Division Manager – Accounting & Budget	403	8	43	-	368	-	368
Eden Barcelona							
Section Manager-Stockholders Relation Office	111	200	85	_	226	_	226
Marlene Q. Villanueva							
Unit Manager – Purchasing Assistant	99	-	44	-	55		55
Jessa P. Repasa							
Asst. Unit Manager – Admin. Asst. to the							
President	195	8	111	-	92	-	92
Maricel Ulep							
Group Asst for SVP-Finance & SVP Nickel Op'n	119	_	_	_	119		119
Gaudencio P. Repasa							
Company Driver – Admin	-	50	17	_	33	-	33

SCHEDULE C

BENGUET CORPORATION AND SUBSIDIARIES AMOUNTS RECEIVABLE FROM RELATED PARTIES WHICH ARE ELIMINATED DURING THE CONSOLIDATION OF FINANCIAL STATEMENTS DECEMBER 31, 2024 (Amounts in Thousands)

Name and Designation of Debtor	Balance at Beginning period	Additions	Amounts collected/ settlements	Amounts Written off	Current	Not Current	Balance at end period
Benguetcorp Resources Management Corporation	₽32,021	₽139,763	601,407	₽-	(₽429,623)	₽	(₽429,623)
Balatoc Gold Resources Corporation	78,626	1	_	_	78,627	_	78,627
Benguetrade, Inc.	15,560	_	201	_	15,359	_	15,359
Benguetcorp Laboratories, Inc.	48,547	-	4,781	_	43,766	_	43,766
Berec Land Resources, Inc.	(35,147)	-	2,122	_	(37,269)	_	(37,269)
BC Property Management, Inc.	30,584	63	_	_	30,647	—	30,647
Ifaratoc Mineral Resources Corporation	36,196	_	20	_	36,176	_	36,176
Benguet-Pantukan Gold Corporation	29,746	113	_	_	29,859	_	29,859
BMC Forestry Corporation	(23,275)	_	3,760	_	(27,035)	—	(27,035)
Media Management Corporation	100,183	2	_	_	100,185	_	100,185
Arrow Freight Corporation	(5,393)	890	780	_	(5,283)	_	(5,283)
Benguet Management Corporation	100,416	215	_	_	100,631	_	100,631
Agua de Oro Ventures Corporation	12,970	6	_	_	12,976	_	12,976
Keystone Port Logistics Management Services Corporation	18,818	-	28	_	18,790	_	18,790
BenguetCorp International Limited	8,653	778	_	_	9,431	_	9,431
Sagittarius Alpha Realty Corporation	(100,890)	-	9	_	(100,899)	_	(100,899)
Batong Buhay Mineral Resources Corporation	3,216	2	_	_	3,218	_	3,218
Acupan Gold Mines, Inc.	81	40	_	_	121	_	121
Pillars of Exemplary Consultants, Inc.	865	47	_	_	912	_	912
Samar Agricultural Farm Corporation		802			802	_	802
	₽351,777	₽142,722	₽613,108	₽-	(₱118,609)	₽	(₱118,609)

SCHEDULE D

BENGUET CORPORATION AND SUBSIDIARIES LONG-TERM DEBT DECEMBER 31, 2024 (Amounts in Thousands)

 Title of issue and type of obligation
 Amount authorized by indenture
 Amount shown under the caption 'Current Portion of long-term
 Amount shown under the caption 'Long-term borrowings - net of current

NOT APPLICABLE

SCHEDULE E

BENGUET CORPORATION AND SUBSIDIARIES INDEBTEDNESS TO RELATED PARTIES (LONG-TERM LOANS FROM RELATED COMPANIES) DECEMBER 31, 2024

Name of related party

Balance at beginning of period

Balance at end of period

NOT APPLICABLE

SCHEDULE F

BENGUET CORPORATION AND SUBSIDIARIES GUARANTEES OF SECURITIES OF OTHER ISSUERS DECEMBER 31, 2024

Name of issuing entity of securities guaranteed by the Group for which this statement is filed	Title of issue of each class of securities guaranteed	Total amount guaranteed and outstanding	Amount owed by person for which statement is filed	Nature of guarantee
		NOT APPLICABLE		

SCHEDULE G

BENGUET CORPORATION AND SUBSIDIARIES CAPITAL STOCK DECEMBER 31, 2024

The Parent Company's authorized share capital is P784.8 million divided into 737.0 million shares consisting of 19.7 million Convertible Preferred Class A shares with par value of P3.43 each and 430.4 million Class A common shares and 286.9 million Class B common shares with par value of P1.00 each. As at December 31, 2024, shares issued and outstanding totaled 713,401,190 held by 16,857 shareholders.

	Number of shares	Number of shares issued and outstanding as shown under related financial	Number of shares reserved for option,		of shares held b	y:
Title of Issue	authorized	condition caption	and other rights	Affiliates	Officers	Others
Convertible Preferred Stock		-				
Class A	19,652,912	217,061	_	_	—	217,061
Common Stock						
Class A	430,380,000	428,120,008	—	_	920,655	427,199,353
Class B	286,920,000	285,064,121	-	_	479,007	284,585,114

SCHEDULE H

BENGUET CORPORATION AND SUBSIDIARIES SCHEDULE OF EXTERNAL AUDITOR FEE-RELATED INFORMATION DECEMBER 31, 2024

	Current Year	Prior Year
	(2024)	(2023)
Total Audit Fees	₽5,540,000	₽5,320,000
Non-audit service fees:		
Tax Services	_	_
All other services	_	_
Total Non-audit fees	_	_
Total Audit and Non-audit fees	₽5,540,000	₽5,320,000
	Current Year	Prior Year
Audit and Non-audit fees of other related entities	(2024)	(2023)
Audit fees	₽ _	₽_
Non-audit service fees:		
Other assurance services	_	-
Tax services	_	-
All other services	_	_
Total Audit and Non-Audit Fees of other related entities	₽	₽-

Eleanor Detran

From:	eafs@bir.gov.ph
Sent:	Tuesday, April 29, 2025 1:55 PM
То:	BenguetCorp Accounting
Cc:	BenguetCorp Accounting
Subject:	Your BIR AFS eSubmission uploads were received

You don't often get email from eafs@bir.gov.ph. <u>Learn why this is important</u> Hi BENGUET CORPORATION,

Valid files

- EAFS000051037AFSTY122024.pdf
- EAFS000051037OTHTY122024.pdf
- EAFS000051037ITRTY122024.pdf
- EAFS000051037RPTTY122024.pdf
- EAFS000051037TCRTY122024-01.pdf

Invalid file

None>

Transaction Code: AFS-0-9DJAB9KB06F9H97CAMQQ3MYWS0A6FGA88J Submission Date/Time: Apr 29, 2025 01:55 PM Company TIN: 000-051-037

Please be reminded that you accepted the terms and conditions for the use of this portal and expressly agree, warrant and certify that:

- The submitted forms, documents and attachments are complete, truthful and correct based on the personal knowledge and the same are from authentic records;
- The submission is without prejudice to the right of the BIR to require additional document, if any, for completion and verification purposes;
- The hard copies of the documents submitted through this facility shall be submitted when required by the BIR in the event of audit/investigation and/or for any other legal purpose.

This is a system-generated e-mail. Please do not reply.

For Encrypted Emails click <u>here</u> for instructions ======= DISCLAIMER ======= This email and its attachments may be confidential and are intended solely for the use of the individual or entity to whom it is addressed. If you are not the intended recipient of this email and its attachments, you must take no action based upon them, nor must you disseminate, distribute or copy this e-mail. Please contact the sender immediately if you believe you have received this email in error. E-mail transmission cannot be guaranteed to be secure or error-free. The recipient should check this email and any attachments for the presence of viruses. The Bureau of Internal Revenue does not accept liability for any errors or omissions in the contents of this message which arise as a result of e-mail transmission. For Encrypted Emails click <u>here</u> for instructions

====== DISCLAIMER ======== This email and its attachments may be confidential and are intended solely for the use of the individual or entity to whom it is addressed. If you are not the intended recipient of this email and its attachments, you must take no action based upon them, nor must you disseminate, distribute or copy this e-mail. Please contact the sender immediately if you believe you have received this email in error. E-mail transmission cannot be guaranteed to be secure or error-free. The recipient should check this email and any attachments for the presence of viruses. The Bureau of Internal Revenue does not accept liability for any errors or omissions in the contents of this message which arise as a result of e-mail transmission.

STATEMENT OF MANAGEMENT'S RESPONSIBILITY FOR FINANCIAL STATEMENTS

The management of BENGUET CORPORATION (the "Company") is responsible for the preparation and fair presentation of the financial statements including the schedules attached therein, for the years ended December 31, 2024 and 2023, in accordance with the prescribed financial reporting framework indicated therein, and for such internal control as management determines is necessary to enable the preparation of financial statements that are free from material misstatement, whether due to fraud or error.

In preparing the financial statements, management is responsible for assessing the Company's ability to continue as a going concern, disclosing, as applicable matters related to going concern and using the going concern basis of accounting unless management either intends to liquidate the Company or to cease operations, or has no realistic alternative but to do so.

The Board of Directors is responsible for overseeing the Company's financial reporting process.

The Board of Directors reviews and approves the financial statements including the schedules attached therein, and submits the same to the stockholders.

Sycip Gorres Velayo & Co., the independent auditor appointed by the stockholders, has audited the financial statements of the Company in accordance with Philippine Standards on Auditing, and in its report to the stockholders, has expressed its opinion on the fairness of presentation upon completion of such audit.

RDO M. VILLEGAS

Chairman of the Board

<u>LINA G. FERNANDEZ</u> President

MAX D. ARCEÑO Senior Vice President-Finance & Treasurer

Signed this March 26, 2025.

<u>ACKNOWLEDGMENT</u>

REPUBLIC OF THE PHILIPPINES City of Makati

SUBSCRIBED AND SWORN to before me this <u>MAR 2 6 2025</u> at Makati City, affiants	
exhibited to me their valid identification: Mr. Bernardo M. Villegas with SSS No. 03-12455042; Atty.	
Lina G. Fernandez with SSS No. 03-7537025-8; and Mr. Max D. Arceño with SSS No. 03-82056688,	
all issued by the Office of the Social Security System, Philippines.	

Doc. No. Page No. Book No. Series of 2025.

DOCUMENTARY STAMP TAX PAID
SERIAL NU.
DATE: MAR 2 6 2025

)

) S.S.

ATTY. JAMIE RUTH //. VIVERO Notary Public for Makati City Appointment No. M-213 until December 31, 2026 O.S. Tantuico & Associates, Grd Floor, Universal Re Building, 106 Paseo de Roxas, Makati City Roll No 80094

Universal Re-Building, 106 Paseo de Roxas, 1226 Makati City Philippine BP No. 485926, December 20, 2024, Leyte MCPO Box 3488 • Phone: +632.812.1380 • Fax: +632.752.07#7R No. MKT 10469748, Makati City, January 8, 2025 MCLE Compliance VIII - 0015422 valid until April 14, 2028

COVER SHEET

for

AUDITED FINANCIAL STATEMENTS

																				T	gistrat			er		1			
																			1	1	3	4	1						
; 0	M F	PA	NY	N	AM	E	1	1	1	1			1																1
B	E	Ν	G	U	Е	Τ		С	0	R	Р	0	R	A	Τ	Ι	0	Ν											
					- / .	1- / 0		(. / T-																		
7	t	h		F	E (/\]	0.78 0	otreet	/Bara	angay ,	(/ City	U	n n	i	v v	e	r	S	a	l		R	e	-	B	u	i	1	d	j
n	g	,		1	0	6		Р	a	s	e	0		d	e		R	0	x	a	s	,		1	2	2	6		N
a	k	a	t	i		С	i	t	у																				
		A	A	Туре F	S]							С	R	uiring M	D						Sec	conda	N	/	Туре А	, IT A	opiica	DIE
			Com	nanv'	s Fm	ail Ad	dress			со	MP							TI	ON	l			Mobi	le Nu	mber				
	bo		Company's Email Address Company's Telephone Number orpsec@benguetcorp.com (02) 8812-1380															N/A					1						
			N	o of	Stock	holde	ire			-		Δnn	ual M	ootina	n (Mo	nth / I	Jav)					Fisca	l Voa	ar (Mc	onth /	Dav)			
	No. of Stockholders 16,857							Annual Meeting (Month / Day) December 20						Fiscal Year (Month / Day) December 31															
										co	NT	АСТ	PE	RSC	DN I	NFC	RM	ΑΤΙ	ON										
				_				Th	e des	ignate	ed co					e an (Office	r of th											
N	[m]			Conta			do	70		ro	7 12		-	ddres	aho	0.00					one Nu 812					Mobi	e Nu N/A		
1.		ncy	nal	uU .	I • 1	101	uU	La		IC	<u>_</u> 11		, , /	wy:	a110	0.0	7111		(04	-) 0	012	-14	20			1		L	
										C	ON	тΔС	`T D	EDG	2				~										

NOTE 1: In case of death, resignation or cessation of office of the officer designated as contact person, such incident shall be reported to the Commission within thirty (30) calendar days from the occurrence thereof with information and complete contact details of the new contact person designated.
 2: All Boxes must be properly and completely filled-up. Failure to do so shall cause the delay in updating the corporation's records with the Commission

and/or non-receipt of Notice of Deficiencies. Further, non-receipt of Notice of Deficiencies shall not excuse the corporation from liability for its deficiencies.

SyCip Gorres Velayo & Co. 6760 Ayala Avenue 1226 Makati City Philippines

Tel: (632) 8891 0307 Fax: (632) 8819 0872 sgv.ph

INDEPENDENT AUDITOR'S REPORT

The Board of Directors and Stockholders Benguet Corporation 7th Floor, Universal Re-Building 106 Paseo de Roxas, Makati City

Report on the Audit of the Parent Company Financial Statements

Opinion

We have audited the parent company financial statements of Benguet Corporation (the Company), which comprise the parent company statements of financial position as at December 31, 2024 and 2023, and the parent company statements of income, parent company statements of comprehensive income, parent company statements of cash flows for the years then ended, and notes to the parent company financial statements, including material accounting policy information.

In our opinion, the accompanying parent company financial statements present fairly, in all material respects, the financial position of the Company as at December 31, 2024 and 2023, and its financial performance and its cash flows for the years then ended in accordance with Philippine Financial Reporting Standards (PFRS) Accounting Standards.

Basis for Opinion

We conducted our audits in accordance with Philippine Standards on Auditing (PSAs). Our responsibilities under those standards are further described in the *Auditor's Responsibilities for the Audit of the Parent Company Financial Statements* section of our report. We are independent of the Company in accordance with the Code of Ethics for Professional Accountants in the Philippines (Code of Ethics) together with the ethical requirements that are relevant to our audit of the parent company financial statements in the Philippines, and we have fulfilled our other ethical responsibilities in accordance with these requirements and the Code of Ethics. We believe that the audit evidence we have obtained is sufficient and appropriate to provide a basis for our opinion.

Responsibilities of Management and Those Charged with Governance for the Parent Company Financial Statements

Management is responsible for the preparation and fair presentation of the parent company financial statements in accordance with PFRS Accounting Standards, and for such internal control as management determines is necessary to enable the preparation of parent company financial statements that are free from material misstatement, whether due to fraud or error.

In preparing the parent company financial statements, management is responsible for assessing the Company's ability to continue as a going concern, disclosing, as applicable, matters related to going concern and using the going concern basis of accounting unless management either intends to liquidate the Company or to cease operations, or has no realistic alternative but to do so.

Those charged with governance are responsible for overseeing the Company's financial reporting process.

Auditor's Responsibilities for the Audit of the Parent Company Financial Statements

Our objectives are to obtain reasonable assurance about whether the parent company financial statements as a whole are free from material misstatement, whether due to fraud or error, and to issue an auditor's report that includes our opinion. Reasonable assurance is a high level of assurance, but is not a guarantee that an audit conducted in accordance with PSAs will always detect a material misstatement when it exists. Misstatements can arise from fraud or error and are considered material if, individually or in the aggregate, they could reasonably be expected to influence the economic decisions of users taken on the basis of these parent company financial statements.

As part of an audit in accordance with PSAs, we exercise professional judgment and maintain professional skepticism throughout the audit. We also:

- Identify and assess the risks of material misstatement of the parent company financial statements, whether due to fraud or error, design and perform audit procedures responsive to those risks, and obtain audit evidence that is sufficient and appropriate to provide a basis for our opinion. The risk of not detecting a material misstatement resulting from fraud is higher than for one resulting from error, as fraud may involve collusion, forgery, intentional omissions, misrepresentations, or the override of internal control.
- Obtain an understanding of internal control relevant to the audit in order to design audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of the Company's internal control.
- Evaluate the appropriateness of accounting policies used and the reasonableness of accounting estimates and related disclosures made by management.
- Conclude on the appropriateness of management's use of the going concern basis of accounting and, based on the audit evidence obtained, whether a material uncertainty exists related to events or conditions that may cast significant doubt on the Company's ability to continue as a going concern. If we conclude that a material uncertainty exists, we are required to draw attention in our auditor's report to the related disclosures in the parent company financial statements or, if such disclosures are inadequate, to modify our opinion. Our conclusions are based on the audit evidence obtained up to the date of our auditor's report. However, future events or conditions may cause the Company to cease to continue as a going concern.
- Evaluate the overall presentation, structure and content of the parent company financial statements, including the disclosures, and whether the parent company financial statements represent the underlying transactions and events in a manner that achieves fair presentation.

- 3 -

We communicate with those charged with governance regarding, among other matters, the planned scope and timing of the audit and significant audit findings, including any significant deficiencies in internal control that we identify during our audit.

We also provide those charged with governance with a statement that we have complied with relevant ethical requirements regarding independence, and communicate with them all relationships and other matters that may reasonably be thought to bear on our independence, and where applicable, related safeguards.

Report on the Supplementary Information Required Under Revenue Regulations 15-2010

The supplementary information required under Revenue Regulations 15-2010 for purposes of filing with the Bureau of Internal Revenue is presented by the management of Benguet Corporation in a separate schedule. Revenue Regulations 15-2010 requires the information to be presented in the notes to parent company financial statements. Such information is not a required part of the basic financial statements. The information is also not required by the Revised Securities Regulation Code Rule 68. Our opinion on the parent company financial statements is not affected by the presentation of this information in a separate schedule.

The engagement partner on the audit resulting in this independent auditor's report is Peter John R. Ventura.

SYCIP GORRES VELAYO & CO.

Piter John R. Ventura

Peter John R. Ventura Partner CPA Certificate No. 0113172 Tax Identification No. 301-106-741 BOA/PRC Reg. No. 0001, April 16, 2024, valid until August 23, 2026 BIR Accreditation No. 08-001998-158-2024, October 2, 2024, valid until October 1, 2027 PTR No. 10465400, January 2, 2025, Makati City

March 26, 2025

PARENT COMPANY STATEMENTS OF FINANCIAL POSITION (Amounts in Thousands, Except Number of Shares)

Decer					
	2024	2023			
ASSETS					
Current Assets					
Cash and cash equivalents (Note 4)	₽453,658	₽227,097			
Trade and other receivables (Note 5)	329,495	395,252			
Inventories (Note 6)	40,584	52,168			
Amounts owed by related parties (Note 24)	370,377	373,316			
Financial assets at fair value through profit or loss (FVPL) (Note 7)		21,441			
Other current assets (Note 8)	82,770	146,893			
Total Current Assets	1,276,884	1,216,167			
Noncurrent Assets					
Investments in subsidiaries (Note 9)	2,497,130	2,494,630			
Property, plant, and equipment (Note 10)	, , ,	, - ,			
At revalued amount	1,687,394	1,574,558			
At cost	428,935	444,376			
Investment properties (Note 32)	2,837,355	2,553,620			
Deferred mine exploration costs (Note 11)	475,597	449,037			
Other noncurrent assets (Note 12)	417,032	313,081			
Total Noncurrent Assets	8,343,443	7,829,302			
TOTAL ASSETS	₽9,620,327	₽9,045,469			
LIABILITIES AND EQUITY					
Current Liabilities					
Trade and other payables (Note 13)	₽187,968	₽146,149			
Loans payable (Note 14)	-	327,299			
Amounts owed to related parties (Note 24)	611,232	164,028			
Liability for mine rehabilitation – current (Note 16)	4,869	17,783			
Lease liabilities - current (Note 31)	942	2,695			
Total Current Liabilities	805,011	657,954			
Noncurrent Liabilities					
Pension liability (Note 26)	34,419	54,555			
Liability for mine rehabilitation - net of current portion (Note 16)	24,972	21,290			
Lease liabilities - net of current portion (Note 31)	3,479	2,576			
Deferred tax liabilities - net (Note 27)	748,590	714,006			
Deposit for future stock subscription (Note 17)	20,000	_			
Other noncurrent liability (Note 15)	49,136	49,136			
Total Noncurrent Liabilities	880,596	841,563			
Total Liabilities	1,685,607	1,499,517			
Equity					
Capital stock (Note 17)	714,277	624,277			
Capital surplus	686,627	415,547			
Cost of share-based payment (Note 18)	8,225	8,104			
Other components of equity:					
Revaluation increment on land (Note 10)	1,435,696	1,351,069			
Unrealized gain on transfer of mining rights (Note 1)	1,000,000	1,000,000			
Remeasurement gain on pension liability (Note 26)	18,162	15,031			
Unrealized loss on financial assets at FVOCI (Note 12)	(177)	(180)			
Retained earnings	4,079,926	4,140,120			
	7,942,736	7,553,968			
Treasury shares (Note 17)	(8,016)	(8,016)			
Total Equity	7,934,720	7,545,952			
TOTAL LIABILITIES AND EQUITY	₽9,620,327	₽9,045,469			

PARENT COMPANY STATEMENTS OF INCOME (Amounts in Thousands)

	Years Ended	December 31
	2024	2023
REVENUE (Note 19)	₽888,511	₽723,982
OPERATING COSTS AND EXPENSES		
Cost of mine products sold (Note 20)	593,782	546,103
Selling, general and administrative (Note 21)	263,502	237,094
Taxes on sale of mine products (Note 19)	31,642	25,464
	888,926	808,661
INTEREST EXPENSE (Notes 14 and 31)	7,294	2,521
OTHER INCOME - net (Note 23)	109,179	625,267
INCOME BEFORE INCOME TAX	101,470	538,067
PROVISION FOR INCOME TAX (Note 27)	18,107	10,070
NET INCOME	₽83,363	₽527,997

PARENT COMPANY STATEMENTS OF COMPREHENSIVE INCOME (Amounts in Thousands)

Years Ended	December 31
2024	2023
₽83,363	₽527,997
84,627	45,174
3,131	(2,024)
3	42
87,761	43,192
₽171,124	₽571,189
	2024 ₽83,363 84,627 3,131 3 87,761

BENGUET CORPORATION PARENT COMPANY STATEMENTS OF CHANGES IN EQUITY FOR THE YEARS ENDED DECEMBER 31, 2024 AND 2023 (Amounts in Thousands)

		Other components of equity									
	Capital stock (Note 17)	Capital surplus		Unrealized losses on financial assets at FVOCI (Note 12)	Unrealized gain from transfer of mining right (Note 1)	Revaluation increment on land (Note 10)	Remeasurement gains on pension liability (Note 26)	Total other comprehensive income	Retained earnings	Treasury stock (Note 17)	Total
Balances at January 1, 2023	₽624,015	₽415,110	₽6,275	(₽222)	₽1,000,000	₽1,305,895	₽17,055	₽2,322,728	₽3,612,123	(₽8,016)	₽6,972,235
Stock options expense (Notes 18 and 22)	-	-	2,260	_	-	_	_	-	-	=	2,260
Stock options exercised (Note 17)	262	437	(431)	-	-	-	-	-	-	_	268
Net income	-	-	-	-	-	-	-	-	527,997	_	527,997
Other comprehensive income (loss)	_	_	-	42	-	45,174	(2,024)	43,192	-	_	43,192
Total comprehensive income		-	-	42		45,174	(2,024)	43,192	527,997	-	571,189
Balances at December 31, 2023	₽624,277	₽415,547	₽8,104	(₽180)	₽1,000,000	₽1,351,069	₽15,031	₽2,365,920	₽4,140,120	(₽8,016)	₽7,545,952
Stock issuance (Note 17)	90,000	270,000	-	-	-	-	_	-	_	_	360,000
Stock options expired (Note 18)	-	1,080	(1,080)	-	-	-	-	-	-	-	-
Stock options expense (Notes 18 and 22)	—	—	1,201	-	-	_	-	-	-	-	
Dividend declaration (Note 17)	-	_	-	-	-	-	-	-	(143,557)	_	(143,557)
Net income	-	-	-	-	-	-	-	-	83,363	-	83,363
Other comprehensive income	-	-	-	3	-	84,627	3,131	87,761	-	-	87,761
Total comprehensive income	-	-	-	3		84,627	3,131	87,761	(60,194)	-	27,567
Balances at December 31, 2024	₽714,277	₽686,627	₽8,225	(₽177)	₽1,000,000	₽1,435,696	₽18,162	₽2,453,681	₽4,079,926	(₽8,016)	₽7,934,720

PARENT COMPANY STATEMENTS OF CASH FLOWS (Amounts in Thousands)

	Years Ended December 31	
	2024	2023
OPERATING ACTIVITIES		
Income before tax	₽ 101,470	₽538,067
Adjustments for:		
Loss on debt settlement (Note 23)	309,396	-
Revaluation loss (gain) on investment properties (Notes 23 and 32)	(283,735)	20,140
Depreciation and depletion (Notes 6, 10, 20 and 21)	21,603	19,779
Movements in pension liability	(15,961)	7,379
Movements in liability for mine rehabilitation	(12,836)	6,563
Interest expense (Notes 14 and 31)	7,294	2,521
Interest income (Notes 4, 8, 12 and 23)	(3,208)	(4,450)
Stock options expense (Notes 18 and 22)	1,201	2,260
Unrealized foreign exchange gains (Note 23)	(3)	(82)
Dividend income (Notes 9 and 23)	-	(518,333)
Unrealized gain on financial assets at FVPL (Notes 7 and 23)		(638)
Operating income before working capital changes	125,221	73,206
Decrease (increase) in:		(102.240)
Trade and other receivables	65,757	(102,240)
Inventories	11,584	3,844
Other current assets	37,069	49,036
Increase (decrease) in trade and other payables	12,845	(44,177)
Net cash generated from (used in) operations	252,476	(20,331)
Interest paid	(7,294)	(318)
Interest received	3,208	4,450
Net cash generated from (used in) operating activities	248,390	(16,199)
INVESTING ACTIVITIES		
Additions to:		
Deferred mine exploration costs (Note 11)	(26,560)	(27,245)
Short-term investments (Note 8)	(10,000)	(24,280)
Mine rehabilitation fund	(7,779)	-
Property, plant and equipment (Note 10)	(2,559)	(43,011)
Investment in subsidiaries (Note 9)	(2,500)	(11,875)
Financial assets at FVPL (Note 7)	-	(20,005)
Proceed from:		
Disposal of short-term investments (Note 8)	24,280	-
Disposal of financial assets at FVPL (Note 7)	21,441	-
Dividends income (Notes 9 and 23)	-	518,333
Decrease (increase) in		
Amounts owed by related parties	2,939	1,957
Other noncurrent assets	(96,169)	(13,045)
Payments of advances to supplier of aircraft (Note 12)	-	(4,054)
Net cash generated from (used in) investing activities	(96,907)	376,775
FINANCING ACTIVITIES		
Increase (decrease) in amounts owed to related parties	447,204	(289,812)
Proceeds from	, -	()-)
Stock issuance (Note 17)	360,000	_
Deposit for future stock subscription (Note 17)	20,000	_
Exercise of stock option (Note 17)		268
Payments of:		
Loans payable (Note 14)	(643,211)	_
Dividends (Note 17)	(108,068)	_
Principal portion of lease liabilities (Note 31)	(850)	(1,495)
Net cash generated from (used in) financing activities	75,075	(291,039)
NET INCREASE IN CASH AND CASH EQUIVALENTS	226,558	69,537
EFFECT OF EXCHANGE RATE CHANGES ON CASH AND CASH		~~
EQUIVALENTS	3	82
CASH AND CASH EQUIVALENTS AT BEGINNING OF YEAR	227,097	157,478
CASH AND CASH EQUIVALENTS AT END OF YEAR (Note 4)	₽453,658	₽227,097

See accompanying Notes to Financial Statements.

NOTES TO PARENT COMPANY FINANCIAL STATEMENTS (Amounts in Thousands, Except Number of Shares, Per Share Data and When Indicated)

1. Corporate Information, Status of Business Operations and Authorization for the Issuance of the Parent Company Financial Statements

Corporate Information

Benguet Corporation (the Company) was incorporated in the Philippines on August 12, 1903 and was listed in the Philippine Stock Exchange (PSE) on January 4, 1950.

The Company is currently engaged in gold and other metallic and nonmetallic mineral production, exploration, research and development and natural resource projects.

The Company's registered office address is 7th Floor, Universal Re-Building, 106 Paseo de Roxas, 1226 Makati City.

Status of Business Operations

Quasi-reorganization

On December 5, 2011, the Philippine Securities and Exchange Commission (SEC) approved the application of the Company for quasi-reorganization to wipe out its deficit as at December 31, 2010 against its capital surplus

and revaluation increment as follows:

		Effect of	
	Prior to quasi-	quasi-	After quasi-
	reorganization	reorganization	reorganization
Capital surplus	₽1,153,579	(₽1,153,579)	₽-
Revaluation increment	1,561,048	(1,010,848)	550,200
Deficit	(2,164,427)	2,164,427	_

For purposes of dividend declaration, the retained earnings of the Company shall be restricted to the extent of the deficit wiped out by the revaluation increment amounting to P1.01 billion until the asset to which the revaluation increment relates is disposed. In addition, the retained earnings of the Company shall be restricted further by the accumulated fair valuation gains of investment properties amounting to P1,262.69 million and P978.96 million as at December 31, 2024 and 2023, respectively (see Note 32).

On December 10, 2010, the Company and Benguetcorp Resources Management Corporation (BRMC) entered into a Deed of Exchange, whereby the Company transferred its interest in the nickel laterite mine in Sta. Cruz, Zambales. The transfer covers Mineral Production Sharing Agreement (MPSA) No. 226-2005-III, mine technical data and all related environmental and other permits of the nickel laterite mine valued at a total of ₱1,000,000. BRMC issued 1,000,000,000 ordinary shares to the Company, with par value of ₱1.00 per share, as consideration for the transfer. The transfer of the MPSA was approved by the Mines and Geosciences Bureau (MGB) on January 16, 2012.

Business Operations

Significant developments in the Company's operations follow:

a. Mining Projects

Benguet Gold Operations (BGO)

The Company produces gold from the Benguet mines, consisting of the Acupan and Kelly underground mines which were suspended in 1992, following the 1991 earthquake, that flooded the said underground mines. In 2003, BGO resumed operations and production is partly carried out through independent mining contractors in Acupan Contract Mining Project (ACMP) which is a community-based underground mining project.

The Company is currently working on exploration and drilling programs to upgrade BGO's capacity. The exploration and geology group completed the design for the surface and underground diamond drilling program for the Phase 1 of the Greater Acupan Project.

The related feasibility study for Greater Acupan Project was approved in 2013 and the Company is still raising the necessary funds to start the execution of the project.

On October 28, 2016, the Company received from the DENR the mine audit report dated October 21, 2016, which was conducted pursuant to DENR Memorandum Circular No. 2016-01 requiring audit of all operating mines. The audit report recommended the suspension of the Company's mining operations and required the Company to submit an explanation.

On November 1, 2016, the Company submitted an explanation to the DENR stating that there are no legal and factual bases to suspend the Company's operations.

On February 14, 2017, the Company received from DENR cancellation order dated February 8, 2017 which cancel the patent authority to undertake mining operations (PC-ACMP-002-CAR) in BGO for violation of mining and environmental laws, rules and regulations.

On February 22, 2017, the Company filed a Notice of Appeal before the Office of the President, which stayed the execution of the cancellation order. On March 22, 2017, the Company submitted to the Office of the President its Appeal Memorandum. As of March 26, 2025, the Office of the President has not yet resolved the appeal.

In November 2019, the DENR directed the regional offices of the Mines and Geosciences Bureau (MGB) and Environmental Management Bureau (EMB) to validate the environmental compliance of BGO as input to early resolution of the appeal. In January 2020, MGB submitted a favorable validation report to DENR. and recommended to set aside the cancellation order which was favorably acted upon. Hence, as at December 31, 2024, the Company continues to mine and operate.

On April 17, to 18, 2024, NQA Philippines, Inc. (NQA), an independent evaluation and certification body, conducted ISO 14001:2015 Surveillance Audit for BGO. The ISO certification is valid until March 15, 2025. As at March 26, 2025, BGO is in the process of rescheduling its recertification with NQA.

Irisan Lime Project (ILP)

The Company's ILP in Irisan, Baguio is engaged in the production and trading of quicklime. ILP produced 6,177 tons and 6,553 tons of quicklime in 2024 and 2023, respectively. On March 22, 2022, the Mineral Processing Permit (MPP) for the ILP was renewed for a period of five years or until March 21, 2027.

Benguet Antamok Gold Operation (BAGO)

The Company's BAGO in Itogon, Benguet has been suspended since August 1998. BAGO has an estimated resource of about 12.4 million tons, averaging 3.45 grams of gold per ton, at the end of 1999. Pursuant to DAO No. 2010-04, the Company's Application for Mineral Production Sharing Agreement (APSA) in the Cordillera Administrative Region (CAR) was denied on February 8, 2011. Subsequently, the Company filed an appeal on April 15, 2011 with MGB Central Office and elevated the appeal to the DENR. On October 5, 2021, the DENR granted the appeal and the APSA was reinstated back to the Company.

In October 2016, a leak occurred in BAGO's tailings dam, which affected the Liang River. In response to the DENR show cause letter dated November 23, 2016, the Company explained that there was no negligence because the incident was due to force majeure and the tailings leak was immediately remediated. The Company also emphasized that it has no existing mining operations in BAGO as it has long been suspended. The BAGO open pit mine and the BAGO underground mine has not operated since 1998 and 1989, respectively. The Company contended that its infrastructure in BAGO is under care and maintenance. On January 1, 2017, the case was elevated to the Pollution Adjudication Board (PAB) from the Environmental Management Bureau (EMB), where the Company submitted its Position Paper. No subsequent updates as of March 26, 2025.

Masinloc Chromite Operation (MCO)

From 1934 to 2007, the Company managed the Coto Mine under an operating agreement with its claim owner, Consolidated Mines, Inc. (CMI). With the expiration of the operating agreement last July 8, 2007, the Company has transferred back the mine to CMI. As at March 26, 2025, the Company is still engaged in discussion with CMI over the liquidation of MCO's assets.

b. Exploration, Research and Development Projects

Balatoc Tailings Project (BTP)

The Company's Board of Directors (BOD) approved an initial ₱10.00 million research and development fund for the BTP in Itogon, Benguet for the study on the feasibility of reprocessing 16.70 million tons of tailings resource with an average of 0.69 grams gold per ton and is estimated to contain 371,000 ounces of gold. A core research and development team, together with the Beijing Geological Research Institute of Mining and Metallurgy, has done the analysis toward the preparation and completion of the bankable feasibility study.

On October 21, 2009, the Company appointed ATR Kim Eng Capital Partners, Inc. as financial advisor to raise additional development capital for the BTP.

On the same date, the Company entered into a processing agreement with the Balatoc Gold Resources Corporation (BGRC), a subsidiary, to implement the BTP. The Company has completed the bankable feasibility study of the BTP and engaged external Competent Persons to prepare and review reports as required under the Philippine Mineral Reporting Code modeled after the Joint Ore Reserve Committee of Australia.

In September 2010, the Company signed a Deed of Assignment with BGRC to transfer MPP No. 13-2010-CAR covering the BTP subject to approval by the DENR. The MPP allows reprocessing of the impounded mill tailings from the Acupan mines for recovery of residual gold. In November 2011, the transfer of the MPP was approved by the DENR-MGB.

BGRC continued the activities on expansion and rehabilitation of its penstocks at Tailings Pond Nos. 2 and 3 and earthmoving works on the silt dam at Gold Creek and the Ambalanga River pumping station, and the ridge enhancement works on Tailings Ponds Nos. 2 and 3.

On January 17, 2013, the Company's BOD authorized and approved the deed of exchange between the Company and BGRC covering all of the Company's rights and interest in BTP in exchange of BGRC's shares.

Following the expiration of MPP No. 13-2010-CAR, BGRC reconveyed to the Company on March 16, 2016 and this was approved by the DENR-MGB on May 31, 2016.

Antamok Tailings Project (ATP)

The ATP, which targeted the BAGO mill tailings pond, was conceived as a possible additional resource that could be developed similar to the Balatoc Tailings Project. The BAGO tailings pond, located a few hundred meters downstream from the BAGO open pit mine, contains some 7.64 million tons of tailings produced from the BAGO milling operations. In addition, a considerable tonnage of extraneous materials, estimated at about 1.95 million tons washed from the BAGO pit over the years from the Otek marginal grade material dump and from the numerous illegal miners' workings, found its way into the pond and is now resting on top of the tailings deposit. A preliminary sampling of these extraneous materials showed that these can be considered for exploitation together with the original tailings in the pond. More core drilling, however, may be required to firm up the resource estimate of these impounded materials.

The Company has approved an initial P7.50 million research fund for the ATP for the feasibility study on the reprocessing. The Company is conducting a feasibility study on the reprocessing of tailings from the BAGO, which are impounded in the tailings pond downstream of the old BAGO mill. The initial drilling conducted to test the impounded materials indicates a grade of 4.0 grams of gold per ton.

Surigao Coal Prospect (SCP)

Pre-development activities for the SCP were put on hold in 2011 due to DENR Circular Executive Order (EO) 23, series of 2011, which declares a moratorium on the cutting of timber in the natural and residual forests. The City Environment and Natural Resources Office of the Municipality of Lianga denied the Company's request for a tree inventory, which is preparatory to the application for a cutting permit. The decision was reversed in January 2012 after the issuance of a memorandum from the Executive Secretary, which exempted exploration and mining activities from the said EO. The Company is in the process of completing the requirements to secure permits for the development of the project. A preliminary hydrology study was done at the nearby Hubo river's water source to assess if the volume capacity of the river system can support a hydro plant, which will complement the Coal Power Plant Study. The Company's application for new Coal Operating Contract (CoC) with the Department of Energy can now proceed with the submission of Certificate of No Mining Ban from the provincial Local Government Unit (LGU).

Ampucao Copper-Gold Prospect (Ampucao Prospect)

The Ampucao Prospect is partly located inside the contract claims of Pugo Mining Company in the southern part of Benguet's Acupan gold mine. The initial exploration work conducted by the Company's geologists indicates a porphyry copper-gold mineralization hosted in diorite below the 2000 level. Two test holes have been programmed to be drilled within the area but have been put on-hold pending the approval of the Exploration Permit Application (EXPA).

Pantingan Gold Prospect (PGP)

The PGP in Balanga, Bataan consists of 1,410 hectares covered by MPSA No. 154-2000-III. The property is under an operating agreement with Option to Purchase, with Balanga Bataan Minerals Corporation, signed in March 1996. Surface mineralization consists of quartz and clay veins, ranging from 0.70 meters to 10 meters wide, with gold and silver values. The Company has implemented drilling programs in the property starting in 2020. On October 14, 2024, the DENR approved the renewal of the MPSA for the second 25 year term commencing March 31, 2025.

Recent geological works in the Pantingan property have also led to the identification of two parcels composed of Block-1 and Block-3 area called PAB-1 and PAB-2 located inside the mineral tenement hosting high quality mountain rock deposits with favorable potential for rock aggregates. The potential rock formations are composed of consolidated volcanic conglomerate and massive andesite units based on their actual ground analysis. The large-scale quarry in PAB-1 and PAB-2 within the MPSA still needs drilling for Declaration of Mining Project Feasibility (DMPF).

On the aggregates prospect outside the MPSA, the Company continues to do topographical/road surveys and apply for permits including for road-right-of-way in the 40-hectares and 30-hectares Quarry Permit Area (QPA). The MGB has issued area clearance in the 30-hectares QPA, EMB has approved the ECC, and NCIP has given a certificate of non-coverage. The Company is working on LGU consent and tree inventory.

BOLCO Gold Prospect (BOLCO)

BOLCO in R.T. Lim, Zamboanga Sibugay consists of 340.3 hectares of land area and is under an operating agreement with Oreline Mining Corporation (OMC). An exploration program to evaluate the mineral potential of the main structure at depth is being undertaken following the DENR approval of the Exploration Permit (EP) on December 5, 2023. Before, the APSA was denied on May 12, 2010 and subject of an appeal on January 30, 2013, until it was reinstated by the DENR on November 4, 2020. It was afterwards converted to EXPA.

Financial and Technical Assistance Agreement (FTAA) Application

The Company and its subsidiary, Sagittarius Alpha Realty Corporation (SARC) have two pending FTAA applications consisting of land area totaling 72,806,291 hectares. The Company's FTAA application in Ilocos Norte (denominated as AFTA-003-I) and Apayao (denominated as AFTA No. 00033-CAR) are undergoing Free, Prior and Informed consent requirement through the Regional Office of the National Commission of Indigenous Peoples. Exploration work for the two areas will be undertaken as soon as the applications have been approved by the Philippine government.

c. Water Projects

Baguio City Bulk Water Supply Project (BCBWSP) On August 16, 2005, the BOD of the Baguio Water District (BWD) issued to the Company a Notice of Award covering the BCBWSP. The Company's proposal is to convert its mined-out 440 Vein Open Pit into a water reservoir to supply 50,000 cubic meters of potable water per day to Baguio City.

On September 7, 2007, the BWD issued Board Resolution Number 30-2007, which resolved to terminate the bulk water supply contract negotiation and to scrap the project. The Company filed request for reconsideration on September 13, 2007.

On November 29, 2007, the BWD issued a Board Resolution denying the request for reconsideration. The Company then filed a case against BWD with the Regional Trial Court.

In 2020, pursuant to a Memorandum of Agreement (MOA) with Manila Water Company, Inc. (MWCI) regarding the assignment of water rights in Laboy River in connection with MWCI's bulk water supply proposal to Baguio City, the Company withdrew the case against BWD without prejudice to filing of a new case for recovery of cost and damages due to the aborted bidding award. The MOA with MWCI lapsed in 2023 and the Company invoked the long stop date of 3 years to demand reversion of water rights over Laboy River. In February 2024, MWCI and the Company executed a Deed of Assignment for the reconveyance of the Water Permit subject for National Water and Resources Board (NWRB) approval of the transfer. I

d. Land Development Projects

Kelly Special Economic Zone (KSEZ)

The Company has approved an initial budget of $\mathbb{P}4.90$ million for the feasibility study covering the KSEZ and the potential of other real estate properties of the Company. On March 18, 2022, the Company transferred a portion of the said properties to Agua de Oro Ventures Corporation (ADOVC), a wholly owned subsidiary of BMC. The capital expenditures related to the implementation of the project will then be infused as equity of the Company in ADOVC. As at March 26, 2025, the said project has not yet materialized.

Authorization for the Issuance of the Parent Company Financial Statements

The parent company financial statements as at and for the years ended December 31, 2024 and 2023 were authorized for issuance by the BOD on March 26, 2025.

2. Summary of Material Accounting Policies

Basis of Preparation

The parent company financial statements have been prepared on a historical cost basis, except for land classified as property, plant and equipment which has been measured at revalued amount, and financial assets at fair value through profit or loss (FVPL), financial assets at fair value through other comprehensive income (FVOCI) and investment properties, which have been measured at fair value. The parent company financial statements are presented in Philippine peso, which is the Company's functional and presentation currency. All amounts are rounded to the nearest thousands (P000), except as otherwise indicated.

Statement of Compliance

The parent company financial statements have been prepared in accordance with Philippine Financial Reporting Standard (PFRS) Accounting Standards.

New Standards, Interpretations and Amendments

The accounting policies adopted are consistent with those of the previous financial year, except for the adoption of amended standards effective in 2024. The Company has not early adopted any standard, interpretation or amendment that has been issued but is not yet effective. Adoption of these amended standards did not have an impact on the parent company financial statements:

- Amendments to PAS 1, Classification of Liabilities as Current or Non-current
- Amendments to PFRS 16, *Lease Liability in a Sale and Leaseback*
- Amendments to PAS 7 and PFRS 7, Disclosures: Supplier Finance Arrangements

Standards Issued but not yet Effective

Pronouncements issued but not yet effective are listed below. Unless otherwise indicated, the Company does not expect that the future adoption of the said pronouncements will have a significant impact on the parent company financial statements. The Company intends to adopt the following pronouncements when they become effective.

Effective beginning on or after January 1, 2025

• Amendments to PAS 21, Lack of exchangeability

Effective beginning on or after January 1, 2026

- Amendments to PFRS 9 and PFRS 7, Classification and Measurement of Financial Instruments
- Amendments to PFRS 9 and PFRS 7, Contracts Referencing Nature-dependent Electricity
- Annual Improvements to PFRS Accounting Standards-Volume 11
 - o Amendments to PFRS 1, Hedge Accounting by a First-time Adopter
 - o Amendments to PFRS 7, Gain or Loss on Derecognition
 - Amendments to PFRS 9, Lessee Derecognition of Lease Liabilities and Transaction Price
 - o Amendments to PFRS 10, Determination of a 'De Facto Agent'
 - o Amendments to PAS 7, Cost Method

Effective beginning on or after January 1, 2027

- PFRS 17, Insurance Contracts
- PFRS 18, Presentation and Disclosure in Financial Statements
- PFRS 19, Subsidiaries without Public Accountability

Deferred effectivity

• Amendments to PFRS 10, Consolidated Financial Statements, and PAS 28, Sale or Contribution of Assets between an Investor and its Associate or Joint Venture

Financial Instruments

Financial Assets

Initial recognition and measurement

Financial assets are classified, at initial recognition, and subsequently measured at amortized cost, FVOCI, and FVPL.

The classification of financial assets at initial recognition depends on the financial asset's contractual cash flow characteristics and the Company's business model for managing them. With the exception of trade receivables that do not contain significant financing component or for which the Company has applied the practical expedient, the Company initially measures a financial asset at fair value plus, in the case of a financial asset not at fair value through profit or loss, transaction costs. Trade receivables that do not contain a significant financing component or which the Company has applied the practical expedient at transaction price determined under PFRS 15.

In order for a financial asset to be classified and measured at amortized cost or FVOCI, it needs to give rise to cash flows that are 'solely payments of principal and interest on the principal amount outstanding' (the SPPI criterion). This assessment is referred to as the SPPI test and is performed at an instrument level. Financial assets with cash flows that are not SPPI are classified and measured at FVPL, irrespective of the business model.

The Company's business model for managing financial assets refers to how it manages its financial assets in order to generate cash flows. The business model determines whether cash flows will result from collecting contractual cash flows, selling the financial assets, or both. Financial assets classified and measured at amortized cost are held within a business model with the objective to hold financial assets in order to collect contractual cash flows while financial assets classified and measured at FVOCI are held within a business model with the objective of both holding to collect contractual cash flows and selling.

Subsequent Measurement

The subsequent measurement of financial assets depends on their classification as follows:

• *Financial assets at amortized cost (debt instruments)* Financial assets at amortized cost are subsequently measured using the effective interest rate (EIR) method and are subject to impairment. Gains and losses are recognized in the Company statement of income when the asset is derecognized, modified or impaired.

The Company's financial assets at amortized cost include cash and cash equivalents, trade and other receivables (excluding advances to officers and employees), short- term investments and refundable deposits which are included under "Other current assets" and "Other noncurrent assets", respectively in the parent company statements of financial position, and amounts owed by related parties (see Notes 4, 5, 8, and 24).

• Financial assets at FVPL

Financial assets at FVPL are carried in the parent company statement of financial position at fair value with net changes in fair value recognized in the parent company statement of income.

The Company's financial assets at FVPL include its investments in unit investment trust fund (UITF) (see Note 7).

• *Financial assets at FVOCI (equity instruments)*

Gains and losses on these financial assets are never recycled to profit or loss. Dividends are recognized as other income in the parent company statement of income when the right of payment has been established, except when the Company benefits from such proceeds as a recovery of part of the cost of the financial asset, in which case, such gains are recorded OCI. Equity instruments designated at FVOCI are not subject to impairment assessment.

The Company's financial assets at FVOCI include investment in quoted shares which is included under "Other Noncurrent assets" in the parent company statements of financial position (see Note 12).

Impairment

The Company recognizes an allowance for expected credit losses (ECLs) for all debt instruments not held at FVPL. ECLs are based on the difference between the contractual cash flows due in accordance with the contract and all the cash flows that the Company expects to receive, discounted at an approximation of the original effective interest rate. The expected cash flows will include cash flows from the sale of collateral held or other credit enhancements that are integral to the contractual terms.

For cash and cash equivalents and short-term investments, the Company applies the low credit risk simplification. The probability of default and loss given defaults are publicly available and are considered to be low credit risk investments. It is the Company's policy to measure ECLs on such instruments on a 12-month basis. However, when there has been a significant increase in credit risk since origination, the allowance will be based on the lifetime ECL. The Company uses publicly available ratings to determine whether the debt instrument has significantly increased in credit risk and to estimate ECLs.

For trade receivables, the Company applies a simplified approach in calculating ECLs. Therefore, the Company does not track changes in credit risk, but instead recognized a loss allowance based on lifetime ECL at each reporting date. The Company has established a provision matrix that is based on its historical credit loss experience, adjusted for forward-looking factors specific to the debtors and the economic environment.

For amounts owed by related parties, other receivables, and refundable deposits, the Company calculates ECLs at initial recognition by considering the consequences and probabilities of possible defaults only for the next 12 months, rather than the life of the asset. It continues to apply this method until a significant increase in credit risk has occurred, at which point the loss allowance is measured based on lifetime ECLs.

At each reporting date, the Company assesses whether there has been a significant increase in credit risk for financial assets since initial recognition by comparing the risk of default occurring over the expected life between the reporting date and the date of initial recognition. The Company considers reasonable and supportable information that is relevant and available without undue cost or effort for this purpose. This includes quantitative and qualitative information and forward-looking analysis.

Exposures that have not deteriorated significantly since origination, or where the deterioration remains within the Company's investment grade criteria are considered to have a low credit risk. The provision for credit losses for these financial assets is based on a 12-month ECL. The low credit risk exemption has been applied on debt investments that meet the investment grade criteria of the Company from the time of origination.

An exposure will migrate through the ECL stages as asset quality deteriorates. If, in a subsequent period, asset quality improves and also reverses any previously assessed significant increase in credit risk since origination, then the loss allowance measurement reverts from lifetime ECL to 12-months ECL.

The Company considers a financial asset in default when contractual payments are 90 days past due. However, in certain cases, the Company may also consider a financial asset to be in default when internal or external information indicates that the Company is unlikely to receive the outstanding contractual amounts in full before taking into account any credit enhancements held by the Company. A financial asset is written off when there no reasonable expectation of recovering the contractual cash flows.

Financial Liabilities

Initial recognition, measurement

Financial liabilities are classified, at initial recognition, as financial liabilities at FVPL, loans and borrowings, payables, or as derivatives designated as hedging instruments in an effective hedge, as appropriate.

All financial liabilities are recognized initially at fair value and, in the case of loans and borrowings and payables, net of directly attributable transaction costs.

Subsequent Measurement - Financial liabilities at amortized cost (loans and borrowings) After initial measurement, loans and borrowings and payables are subsequently measured at amortized cost using the EIR method.

Derecognition - Financial liabilities at amortized cost (loans and borrowings)

Derecognition of a financial liability occurs when the liability is removed from the balance sheet. This typically happens when the obligation specified in the contract is discharged, cancelled, or expires. Financial liability is derecognized through payment, or the terms of the liability are modified, and the modification results in a substantial change in the cash flows. The difference between the carrying amount of a financial liability derecognized and the consideration paid is recognized in profit or loss.

The Company's financial liabilities include trade and other payables (excluding payables to government agencies), loans payable, lease liabilities, amounts owed to related parties, and other noncurrent liability (see Notes 13, 14, 15, 24 and 31).

Fair Value Measurement

Fair value is the price that would be received to sell an asset or paid to transfer a liability in an orderly transaction between market participants at the measurement date. The fair value measurement is based on the presumption that the transaction to sell the asset or transfer the liability takes place either:

- In the principal market for the asset or liability, or
- In the absence of a principal market, in the most advantageous market for the asset or liability

The principal or the most advantageous market must be accessible to the Company. The fair value of an asset or a liability is measured using the assumptions that market participants would use when pricing the asset or liability, assuming that market participants act in their economic best interest.

A fair value measurement of a non-financial asset takes into account a market participant's ability to generate economic benefits by using the asset in its highest and best use or by selling it to another market participant that would use the asset in its highest and best use. The Company uses valuation techniques that are appropriate in the circumstances and for which sufficient data are available to measure fair value, maximizing the use of relevant observable inputs and minimizing the use of unobservable inputs.

All assets and liabilities for which fair value is measured or disclosed in the financial statements are categorized within the fair value hierarchy described as follows, based on the lowest level input that is significant to the fair value measurement as a whole:

- Level 1 Quoted (unadjusted) market prices in active markets for identical assets or liabilities
- Level 2 Valuation techniques for which the lowest level input that is significant to the fair value measurement is directly or indirectly observable
- Level 3 Valuation techniques for which the lowest level input that is significant to the fair value measurement is unobservable

For assets and liabilities that are recognized in the parent company financial statements at fair value on a recurring basis, the Company determines whether transfers have occurred between levels in the hierarchy by re-assessing categorization (based on the lowest level input that is significant to the fair value measurement as a whole) at the end of each reporting period.

For the purpose of fair value disclosures, the Company has determined classes of assets and liabilities on the basis of the nature, characteristics and risks of the asset or liability and the level of the fair value hierarchy.

Inventories

Inventories are valued at the lower of cost or net realizable value (NRV). Costs incurred in bringing each product to its present location and condition are accounted for as follows:

Materials and supplies -	at purchase price less purchase discount, returns and rebates on a first-in, first-out method
Quicklime and slaked limeGold buttons	at cost on a moving average production method at cost on a moving average production method

NRV for materials and supplies represents the current replacement cost. NRV of gold buttons is the estimated selling price in the ordinary course of business less estimated costs of completion and the estimated costs necessary to make the sale.

Value Added Tax (VAT)

Revenues, expenses, and assets are recognized net of the amount of VAT, if applicable.

When VAT from sales of goods and/or services (output VAT) exceeds VAT passed on from purchases of goods or services (input VAT), the excess is recognized as payable in the parent company statement of financial position. When VAT passed on from purchases of goods or services (input VAT) exceeds VAT from sales of goods and/or services (output VAT), the excess is recognized as an asset in the parent company statement of financial position to the extent of the recoverable amount.

Investments in Subsidiaries

The investment in subsidiaries is carried in the parent company statement of financial position at cost less any impairment in value. Dividends received are recognized as income.

Property, Plant and Equipment

Property, plant and equipment, except land, are stated at cost, excluding the costs of day-to-day servicing, less accumulated depreciation, depletion and amortization and accumulated impairment in value. Such cost includes the cost of replacing part of such property, plant and equipment and borrowing costs for long-term construction projects if the recognition criteria are met.

When significant parts of property, plant and equipment are to be replaced at intervals, the Company recognizes such parts as individual assets with specific useful lives and depreciates them accordingly. Likewise, when a major inspection is performed, its cost is recognized in the carrying amount of the property, plant and equipment as a replacement if the recognition criteria are satisfied. All other repair and maintenance costs are recognized in the parent company statement of income as incurred. The present value of the expected cost for the decommissioning of an asset after its use is included in the cost of the respective asset if the recognition criteria for a provision are met.

Construction in progress (CIP) is stated at cost. This includes costs of construction and other direct costs related to the asset being constructed. CIP is not depreciated until such time that the relevant asset is completed, transferred to the appropriate account and put into operational use.

Land is carried at revalued amount less any impairment in value. Valuations are performed with sufficient frequency to ensure that the carrying amount of a revalued asset does not differ materially from its fair value.

The increment, net of deferred tax liability, resulting from the revaluation of land is credited to revaluation increment on land under the other components of equity caption included in the equity section in the parent company statement of financial position. However, to the extent that it reverses a revaluation deficit of the same asset previously recognized in the parent company statement of income, the increase is recognized in parent company statement of income. A revaluation deficit is recognized in the parent company statement of income, except to the extent that it offsets an existing surplus on the same asset recognized in the revaluation increment. Upon derecognition of the revalued property, the relevant portion of the revaluation increment realized in respect of previous valuations is released from the revaluation increment directly to retained earnings.

Depreciation and amortization are computed on a straight-line basis over the estimated useful lives of the assets as follows:

Category	Number of years
Land improvements	10-25
Buildings	10-20
Machinery, tools and equipment	2-15

Depreciation of an item of property, plant and equipment begins when it becomes available for use, i.e., when it is in the location and condition necessary for it to be capable of operating in the matter intended by management. Depreciation, depletion and amortization ceases at the earlier of the date that the item is classified as held for sale (or included in a disposal Company that is classified as held for sale) in accordance with PFRS 5 and the date the asset is derecognized.

The useful lives and depreciation methods are reviewed periodically to ensure that the periods and methods of depreciation are consistent with the expected pattern of economic benefits from items of property, plant and equipment.

Right-of-Use Assets

The Company recognizes right-of-use assets at the commencement date of the lease (i.e., the date the underlying asset is available for use). Right-of-use assets are initially measured at cost, less any accumulated depreciation and impairment losses, and adjusted for any remeasurement of lease liabilities. The initial cost of right-of-use assets includes the amount of lease liabilities recognized, initial direct costs incurred, lease payments made at or before the commencement date less any lease incentives received and estimate of costs to be incurred by the lessee in dismantling and removing the underlying asset, restoring the site on which it is located or restoring the underlying asset to the condition required by the terms and conditions of the lease, unless those costs are incurred to produce inventories.

Unless the Company is reasonably certain to obtain ownership of the leased asset at the end of the lease term, the recognized right-of-use assets are depreciated on a straight-line basis over the shorter of their estimated useful life and lease term, as follows:

Right-of-use asset	Number of years
Land	15-25
Office space	3-8
Machinery, tools and equipment	2

Right-of-use assets are subject to impairment.

An item of property, plant and equipment and any significant part initially recognized is derecognized upon disposal or when no future economic benefits are expected from its use or disposal. Any gain or loss arising on derecognition of the asset (calculated as the difference between the net disposal proceeds and the carrying amount of the asset) is included in the parent company statement of income in the year the asset is derecognized.

Fully depreciated assets are retained in the accounts until these are no longer in use. No further depreciation is charged to current operation for these items.

Mine and Mining Properties

Capitalized expenditure is assessed for impairment and is transferred from deferred exploration costs to mine development costs when it has been established that a mineral deposit is commercially mineable, development sanctioned, and a decision has been made to formulate a mining plan (which occurs upon completion of a positive economic analysis of the mineral deposit).

After transfer of the deferred exploration costs, all subsequent expenditure on the construction, installation or completion of infrastructure facilities is capitalized in mine development costs. Development expenditure includes costs considered integral to the development of the mine. Any costs incurred in testing the assets to determine if they are functioning as intended, are capitalized while any proceeds received from selling any product during testing shall be recognized in profit or loss.

No depletion is charged during the mine exploration or development phases.

When the Company has already achieved commercial levels of production, mine development costs are moved to mine and mining properties. Commercial production is deemed to have commenced when management determines that the completion of operational commissioning of major mine and plant components is completed, operating results are being achieved consistently for a period of time and that there are indicators that these operating results will be continued.

The carrying value of mine and mining properties represents total expenditures incurred to date on the area of interest, less accumulated depletion and any impairment.

When a mine construction project moves into the production phase, the capitalization of certain mine construction costs ceases, and costs are either regarded as part of the cost of inventory or expensed, except for costs which qualify for capitalization relating to mining asset additions, improvements or new developments, underground mine development or mineable reserve development.

Mine and mining properties are subject to depletion, which is computed using the units-of production method based on the economically recoverable reserves. Mine and mining properties include the initial estimate of provision for mine rehabilitation and decommissioning, for which the Company is constructively liable.

Investment Properties

Investment properties consist of assets that are held for rentals or for capital appreciation or both.

Investment properties are measured initially at cost, including transaction costs. Subsequent to initial recognition, investment properties are stated at fair value, which reflects market conditions at the reporting date. Gains or losses arising from changes in the fair values of investment properties are recognized in the parent company statements of income in the year in which they arise, including the corresponding tax effect. Fair values are determined based on the revaluation performed by an accredited external independent appraiser.

Investment properties are derecognized either when they have been disposed of, or when they are permanently withdrawn from use and no future economic benefit is expected from their disposal. The difference between the net disposal proceeds and the carrying amount of the asset is recognized in the parent company statements of income in the period of derecognition.

Transfers are made to or from investment properties only when there is a change in use. For a transfer from investment property to owner-occupied property, the deemed cost for subsequent accounting is the fair value at the date of change in use. If owner-occupied property becomes an investment property, the Company accounts for such property in accordance with PAS 16, *Property, Plant and Equipment* up to the date of change in use.

Deferred Mine Exploration Costs

Exploration and evaluation activity involve the search for mineral resources, the determination of technical feasibility and the assessment of commercial viability of an identified resource.

Exploration and evaluation activity include:

- Researching and analyzing historical exploration data
- Gathering exploration data through geophysical studies
- Exploratory drilling and sampling
- Determining and examining the volume and grade of the resource
- Surveying transportation and infrastructure requirements
- Conducting market and finance studies

License costs paid in connection with a right to explore in an existing exploration area are capitalized and amortized over the term of the permit.

Once the legal right to explore has been acquired, exploration and evaluation expenditure is charged to profit or loss as incurred, unless the Company concludes that a future economic benefit is more likely than not to be realized. These costs include directly attributable employee remuneration, materials and fuel used, surveying costs, drilling costs and payments made to contractors.

In evaluating whether the expenditures meet the criteria to be capitalized, several different sources of information are used. The information that is used to determine the probability of future benefits depends on the extent of exploration and evaluation that has been performed.

Expenditure on exploration and evaluation is accounted for in accordance with the area of interest method. Exploration and evaluation expenditure is capitalized provided the rights to tenure of the area of interest is current and either: the exploration and evaluation activities are expected to be recouped through successful development and exploitation of the area of interest or, alternatively, by its sale; or exploration and evaluation activities in the area of interest have not, at the reporting date, reached a stage that permits a reasonable assessment of the existence or otherwise of economically recoverable reserves, and active and significant operations in, or relating to, the area of interest are continuing.

When the technical feasibility and commercial viability of extracting a mineral resource have been demonstrated, then, any fulfillment exploration and evaluation expenditure is reclassified as mine properties and mine development costs included as part of property, plant and equipment. Prior to reclassification, exploration and evaluation expenditure is assessed for impairment.

When a project is abandoned, the related deferred mine exploration costs are written off. Exploration areas are considered permanently abandoned if the related permits of the exploration have expired and/or there are no definite plans for further exploration and/or development.

Impairment of Nonfinancial Assets

The Company assesses, at the end of each reporting period, whether there is an indication that an asset may be impaired. If any such indication exists, or when annual impairment testing for an asset is required, the Company makes an estimate of the asset's recoverable amount. An asset's recoverable amount is the higher of an asset's or cash-generating unit's (CGU) fair value less costs of disposal and its value in use. The recoverable amount is determined for an individual asset, unless the asset does not generate cash inflows that are largely independent of those from other assets or groups of assets. When the carrying amount of an asset or CGU exceeds its recoverable amount, the asset is considered impaired and is written down to its recoverable amount.

In assessing value in use, the estimated future cash flows are discounted to their present value using a pre-tax discount rate that reflects current market assessments of the time value of money and the risks specific to the asset. In determining fair value less costs of disposal, recent market transactions are taken into account. If no such transactions can be identified, an appropriate valuation model is used. These calculations are corroborated by valuation multiples, quoted share prices for publicly traded companies or other available fair value indicators.

The Company bases its impairment calculation on most recent budgets and forecast calculations, which are prepared separately for each of the Company's CGUs to which the individual assets are allocated. These budgets and forecast calculations generally cover a period of five years.

Impairment losses of continuing operations, including impairment on inventories, are recognized in the parent company statements of income in expense categories consistent with the function of the impaired asset, except for properties previously revalued with the revaluation taken to OCI. For such properties, the impairment is recognized in OCI up to the amount of any previous revaluation.

For the other assets, an assessment is made at each end of the reporting period to determine whether there is an indication that previously recognized impairment losses no longer exist or have decreased. If such indication exists, the Company estimates the asset's or CGU's recoverable amount. A previously recognized impairment loss is reversed only if there has been a change in the assumptions used to determine the asset's recoverable amount since the last impairment loss was recognized. The reversal is limited so that the carrying amount of the asset does not exceed its recoverable amount, nor exceed the carrying amount that would have been determined, net of depreciation, depletion or amortization, had no impairment loss been recognized for that asset in prior years. Such reversal is recognized in the parent company statements of income unless the asset is carried at revalued amount, in which case, the reversal is treated as a revaluation increase.

Deferred Mine Exploration Costs

The Company assesses whether facts and circumstances suggest that the carrying amount of deferred mine exploration costs may exceed its recoverable amount. Below are some of the facts and circumstances, which the Company considers in determining whether there is impairment on deferred mine exploration costs:

- the period for which the Company has the right to explore in the specific area has expired during the period or will expire in the near future, and is not expected to be renewed
- substantive expenditure on further exploration for and evaluation of mineral resources in the specific area is neither budgeted nor planned
- exploration for and evaluation of mineral resources in the specific area have not led to the discovery of commercially viable quantities of mineral resources and the entity has decided to discontinue such activities in the specific area, and
- sufficient data exist to indicate that, although a development in the specific area is likely to proceed, the carrying amount of the deferred mine exploration costs is unlikely to be recovered in full of successful development or by sale
- Full provision is made for the impairment unless it is probable that such costs are expected to be recouped through successful exploration and development of the area of interest, or alternatively, by its sale. If the project does not prove to be viable or is abandoned, all revocable cost associated with the project and the related impairment provisions are written off.

Recovery of impairment losses recognized in prior years is recorded if, and only if, there has been a change in the estimates used to determine the asset's recoverable amount since the last impairment loss was recognized. The recovery is recorded in the parent company statements of income.

Provisions

General

Provisions are recognized when the Company has a present obligation (legal or constructive) as a result of a past event, it is probable that an outflow of resources embodying economic benefits will be required to settle the obligation, and a reliable estimate can be made of the amount of the obligation. If the effect of the time value of money is material, provisions are discounted using a current pre-tax rate that reflects, when appropriate, the risks specific to the liability. When discounting is used, the increase in the provision due to the passage of time is recognized as interest expense in the parent company statements of income.

When the Company expects some or all of the provision to be reimbursed, the reimbursement is recognized as a separate asset, but only when the reimbursement is virtually certain. The expense relating to a provision is presented in the parent company statements of income, net of any reimbursement.

Liability for Mine Rehabilitation

Mine rehabilitation costs will be incurred by the Company either while operating, or at the end of the operating life of, the Company's facilities and mine properties. The Company assesses its mine rehabilitation provision at each reporting date. The Company recognizes a rehabilitation provision where it has a legal and constructive obligation as a result of past events, and it is probable that an outflow of resources will be required to settle the obligation, and a reliable estimate of the amount of obligation can be made. The nature of these restoration activities includes: dismantling and removing structures; rehabilitating mines and tailings dams; dismantling operating facilities; closing plant and waste sites; and restoring, reclaiming and re-vegetating affected areas.

The obligation generally arises when the asset is installed or the ground/environment is disturbed at the mining operation's location. When the liability is initially recognized, the present value of the estimated costs is capitalized by increasing the carrying amount of the related mining assets to the extent that it was incurred as a result of the development or construction of the mine. Any rehabilitation obligations that arise through the production of inventory are recognized as part of the related inventory item. Additional disturbances that arise due to further development or construction at the mine are recognized as additions or charges to the corresponding assets and rehabilitation liability when these occur. Costs related to restoration of site damage (subsequent to start of commercial production) that is created on an ongoing basis during production are provided for at their net present values and recognized in profit or loss as extraction progresses.

Changes in the estimated timing of rehabilitation or changes to the estimated future costs are dealt with prospectively by recognizing an adjustment to the rehabilitation liability and a corresponding adjustment to the asset to which it relates, if the initial estimate was originally recognized as part of an asset measured in accordance with PAS 16.

Pension and Other Post-employment Benefits

The Company has noncontributory, defined benefit pension plan, covering all permanent, regular and full-time employees.

The net defined benefit liability or asset is the aggregate of the present value of the defined benefit obligation at the end of the reporting period reduced by the fair value of plan assets, adjusted for any effect of limiting a net defined benefit asset to the asset ceiling. The asset ceiling is the present value of any economic benefits available in the form of refunds from the plan or reductions in future contributions to the plan.

The cost of providing benefits under the defined benefit plan is determined using the projected unit credit method.

Remeasurements, comprising of actuarial gains or losses, the effect of the ceiling, excluding amounts included in net interest on the net defined benefit liability and the return on plan assets (excluding amounts included in the net interest on the net defined benefit liability), are recognized immediately in the parent company statements of financial position with a corresponding debit or credit to retained earnings through OCI in the period in which these occur. Remeasurements are not reclassified to parent company statement of income in subsequent periods.

Past services costs are recognized in the parent company statement of income on the earlier of:

- The date of the plan amendment or curtailment, and
- The date that the Company recognizes related restructuring costs

Net interest is calculated by applying the discount rate to the net defined benefit liability or asset. The Company recognizes the following changes in the net defined benefit obligation under costs of mine products sold, costs of services and selling and general expenses in the parent company statement of income:

- Service costs comprising current service costs, past-service costs, gains and losses on curtailments and non-routine settlements
- Net interest expense or income

Plan assets are assets that are held by a long-term employee benefit fund or qualifying insurance policies. Plan assets are not available to the creditors of the Company, nor can they be paid directly to the Company. Fair value of plan assets is based on market price information. When no market price is available, the fair value of plan assets is estimated by discounting expected future cash flows using a discount rate that reflects both the risk associated with the plan assets and the maturity or expected disposal date of those assets (or, if they have no maturity, the expected period until the settlement of the related obligations). If the fair value of the plan assets is higher than the present value of the defined benefit obligation, the measurement of the resulting defined benefit asset is limited to the present value of economic benefits available in the form of refunds from the plan or reductions in future contributions to the plan.

Share-based Payment Transactions

Employees (including senior executives) of the Company receive remuneration in the form of sharebased payment transactions, whereby employees render services as consideration for equity instruments (equity-settled transactions).

The cost of equity-settled transactions is determined by the fair value at the date when the grant is made using an appropriate valuation model.

That cost is recognized, together with a corresponding increase in equity, over the period in which the performance and/or service conditions are fulfilled, in employee benefits expense. The cumulative expense recognized for equity-settled transactions at each reporting date until the vesting date reflects the extent to which the vesting period has expired and the Company's best estimate of the number of equity instruments that will ultimately vest. The expense or credit in the parent company statement of income for a period represents the movement in cumulative expense recognized as at the beginning and end of that period and is recognized in employee benefits.

No expense is recognized for awards that do not ultimately vest, except for equity settled transactions for which vesting is conditional upon a market or non-vesting condition. These are treated as vesting irrespective of whether or not the market or non-vesting condition is satisfied, provided that all other performance and/or service conditions are satisfied.

Where the terms of an equity-settled award are modified, the minimum expense recognized is the expense computed based on the grant date fair value of the unmodified award, provided the original terms of the award are met. An additional expense, measured as at the date of modification, is recognized for any modification that increases the total fair value of the share-based payment transaction, or is otherwise beneficial to the employee. Where an award is cancelled by the Company or by the counterparty, any remaining element of the fair value of the award is expensed immediately through the parent company statement of income.

When the terms of an equity-settled award are cancelled, it is treated as if it had vested on the date of cancellation, and any expense not yet recognized for the award is recognized immediately. However, if a new award is substituted for the cancelled award and designated as a replacement award on the date that it is granted, the cancelled and new awards are treated as if they were a modification of the original award, as described in the previous paragraph.

Where an equity-settled award expires or is cancelled, its cost is transferred to additional paid-in capital.

Forfeitures revise the expense to reflect the best available estimate of the number of equity instruments expected to vest.

Foreign Currency-denominated Transactions and Translations

Transactions in foreign currencies are initially recorded by the Company using the functional currency exchange rate at the date of the transaction. Monetary assets and liabilities denominated in foreign currencies are translated at the functional currency spot rates of exchange at the reporting date.

Differences arising on settlement or translation of monetary items are recognized in the parent company statement of income with the exception of monetary items that are designated as part of the hedge of the Company's net investment of foreign operation. These are recognized in OCI until the net investment is disposed of, at which time, the cumulative amount is reclassified to the parent company statements of income. Tax charges and credits attributable to exchange differences on those monetary items are also recorded in OCI.

Non-monetary items that are measured in terms of historical cost in a foreign currency are translated using the exchange rates at the dates of the initial transactions. Non-monetary items measured at fair value in a foreign currency are translated using the exchange rates at the date when the fair value is determined. The gain or loss on translation of non-monetary items measured at fair value is treated in line with the recognition of the gain or loss on the change in fair value of the item (i.e., translation differences on items whose fair value gain or loss is recognized in OCI or parent company statement of income are also recognized in OCI or parent company statement of income, respectively).

Income Taxes

Current Tax

Current tax assets and liabilities for the current and prior periods are measured at the amount expected to be recovered from or paid to the tax authority. The income tax rates and income tax laws used to compute the amount are those that have been enacted or substantively enacted at the end of the reporting period.

Current income tax relating to items recognized directly in equity is recognized in equity and not in the parent company statements of income. Management periodically evaluates positions taken in the tax returns with respect to situations in which applicable tax regulations are subject to interpretation and establishes provisions where appropriate.

Deferred Tax

Deferred tax is provided using the liability method on temporary differences at the reporting period between the tax bases of assets and liabilities and their carrying amounts for financial reporting purposes.

Deferred tax liabilities are recognized for all taxable temporary differences.

Deferred tax assets are recognized for all deductible temporary differences, to the extent that it is probable that sufficient future taxable profit will be available against which the deductible temporary differences can be utilized.

The carrying amount of deferred tax assets is reviewed at the end of each reporting period and reduced to the extent that it is no longer probable that sufficient future taxable profit will be available to allow all or part of the deferred tax asset to be utilized. Unrecognized deferred tax assets are reassessed at the end of each reporting period and are recognized to the extent that it has become probable that sufficient future taxable profit will allow the deferred tax asset to be recovered.

Deferred tax assets and liabilities are measured at the tax rates that are expected to apply to the period when the asset is realized, or the liability is settled, based on tax rates and tax laws that have been enacted or substantively enacted at the end of the reporting period.

Deferred tax relating to items recognized outside profit of loss is recognized outside profit or loss. Deferred tax items are recognized in correlation to the underlying transactions either in other comprehensive income or directly in equity.

Capital Stock and Capital Surplus

Common and preferred shares are classified as equity. Incremental costs directly attributable to the issue of new shares or options are shown in equity as a deduction from proceeds. The excess of proceeds from issuance of shares over the par value of shares less any incremental costs directly attributable to the issuance, net of tax, is credited to capital surplus.

Revenue Recognition

The Company is principally engaged in the business of producing gold and limes. Revenue from contracts with customers is recognized when control of the goods or services is transferred to the customer at an amount that reflects the consideration to which the Company expects to be entitled in exchange for those goods or services.

The Company has generally concluded that it is the principal in its revenue contracts because it typically controls the goods or services before transferring them to the customer.

Sale of Mine Products

Revenue from sale of mine products is recognized at the point in time when the control of the asset is transferred to the customer which is normally at the time of shipment, and the selling prices are known or can be reasonably estimated. Revenue from sale of gold is measured at the prevailing international gold buying price and prevailing Philippine peso to United States dollar buying rate set by the BSP Treasury department on a daily basis and is recognized based on the initial weight and assay tests, which represent the best estimate. Subsequent adjustments to revenue due to quantity and/or quality changes are recognized upon determination of the final weight and assay tests.

BSP Refining Charges

BSP refining charges are deducted from revenue to arrive at revenue from contracts with customers since BSP refining charges are necessary expenses by BSP in determining the final gold content.

Contingencies

Contingent liabilities are not recognized in the financial statements. These are disclosed unless the possibility of an outflow of resources embodying economic benefits is remote. Contingent assets are not recognized in the financial statements but are disclosed in the notes to parent company financial statements when an inflow of economic benefits is probable.

Events After the Reporting Period

Events after the end of the reporting period up to the auditor's report that provide additional information about the Company's position at the reporting period (adjusting events) are reflected in the parent company financial statements. Events after the end of the reporting period up to the auditor's report that are not adjusting events are disclosed in the notes to parent company financial statements when material.

3. Summary of Significant Accounting Judgments, Estimates and Assumptions

The preparation of the parent company financial statements in accordance with PFRS Accounting Standards requires the Company to make judgments, estimates and assumptions that affect the reported amounts of assets, liabilities, income and expenses and the accompanying disclosures, and the disclosure of contingent liabilities. Uncertainty about these judgements, estimates and assumptions could result in outcomes that require a material adjustment to the carrying amount of assets or liabilities affected in future periods.

Judgments, estimates and assumptions are continually evaluated and are based on historical experience and other factors, including expectations of future events that are believed to be reasonable under the circumstances. Actual results could differ from such estimates.

Judgments

In the process of applying the Company's accounting policies, management has made the judgment below, apart from those involving estimations, that have the most significant effect on the amounts recognized in the parent company financial statements.

Assessing Provisions and Contingencies

The Company is currently involved in various legal proceedings. The estimate of the probable costs for the resolution of these claims has been developed in consultation with outside counsel handling the Company's defense in these matters and is based upon an analysis of potential results. The Company currently assessed that these proceedings will not have a material adverse effect on its financial position. It is possible, however, that future results of operations could be materially affected by changes in the estimates or in the effectiveness of the strategies relating to these proceedings (see Note 33).

Distinction between Investment Property and Owner-Occupied Property

The Company determines whether a property qualifies as investment property. In making its judgment, the Company considers whether the property is not occupied substantially for use by, or in operations of the Company, not for sale in the ordinary course of business, but is held primarily to earn rental income or capital appreciation. Owner-occupied properties generate cash flows that are attributable not only to the property but also to the other assets used in the production or supply of goods and services.

Assessing Recoverability of Deferred Mine Exploration Costs

The Company reviews the recoverability of deferred mine exploration costs when events or changes in circumstances indicate that the carrying amount of deferred mine exploration costs may exceed its estimated recoverable amount.

The Company considers the following factors, among others, in its assessment:

- Status of each mine exploration project and plans on exploration and evaluation activities
- Validity of the licenses, permits and correspondences related to each mine exploration project
- Plans to abandon existing mine areas and plans to discontinue exploration activities
- Availability of information suggesting that the recovery of expenditure is unlikely

The Company's ability to realize its deferred exploration costs depends on the success of exploration and development work in proving the viability of its mining properties to produce minerals in commercial quantities, and the success of converting the Company's exploration permits to new mineral agreements, which cannot be determined at this time. The parent company financial statements do not include any adjustment that might result from these uncertainties.

As at December 31, 2024 and 2023, deferred mine exploration costs amounted to P475.60 million and P449.04 million, respectively (see Note 11).

Estimates and Assumptions

The key assumptions concerning the future and other key sources of estimation uncertainty at the end of the reporting date, that have a significant risk of causing a material adjustment to the carrying amounts of assets within the next financial year, are discussed below. The Company based its assumptions and estimates on parameters available when the parent company financial statements were prepared. Existing circumstances and assumptions about future developments, however, may change due to market changes or circumstances arising that are beyond the control of the Company. Such changes are reflected in the assumptions when these occur.

Provision for ECL on Trade and Other Receivables, Amounts owed by related parties, and Refundable Deposits under "Other Noncurrent Assets"

The Company uses the simplified approach in the assessment of the ECL of its trade receivables and general approach for its other receivables, amounts owed by related parties, and refundable deposits under "other noncurrent assets". An assessment of the ECL relating to these financial assets is undertaken upon initial recognition and each financial year and involves exercise of significant judgment. Key areas of judgment include defining default, determining assumptions to be used such as timing and amounts of expected net recoveries from defaulted accounts, determining debtor's capacity to pay, and incorporating forward looking information.

The carrying amount of trade and other receivables, amounts owed by related parties, and refundable deposits under "Other Noncurrent assets" amounted to P678.91 million and P669.61 million, net of allowance for ECL of P175.83 million and P175.68 million, as at December 31, 2024 and 2023, respectively (see Notes 5, 12, and 24).

Assessing Impairment of Input VAT under Other Current Assets and Advances to Suppliers and Contractors under Other Noncurrent Assets

The Company provides allowance for impairment losses on input VAT under other current assets and advances to suppliers and contractors under "Other noncurrent assets" when these can no longer be realized. The amounts and timing of recorded expenses for any period would differ if the Company made different judgments or utilized different estimates. An increase in allowance for probable loss would increase recorded expenses and decrease other current and noncurrent assets.

No provision for impairment losses was recognized in 2024 and 2023.

The total carrying value of input VAT under other current assets and advances to suppliers and contractors under noncurrent assets amounted to P353.86 million and P309.50 million as at December 31, 2024 and 2023, respectively (see Notes 8 and 12).

- 23 -

Estimating Ore Reserves

Ore reserves estimates are, to a large extent, based on the interpretation of geological data obtained from drill holes and other sampling techniques and feasibility studies. The Company estimates its ore reserves based on information compiled by appropriately qualified persons relating to the geological data on the size, depth and shape of the ore body, and requires complex geological judgments to interpret the data. The Company also makes estimates and assumptions regarding a number of economic and technical factors affecting ore reserves estimates, such as production rates, grades, foreign exchange rates, production and transport costs, and commodity prices.

These geological, economic and technical estimates and assumptions may change in the future in ways, which can affect the quality and quantity of the ore reserves. The Company reviews and updates estimates as required, but at least annually, to reflect actual production, new exploration data or developments and changes in other assumptions or parameters. These estimates will change from time to time to reflect mining activities, analyses of new engineering and geological data, changes in ore reserve and mineral resource holdings, modifications of mining plans or methods, changes gold prices or production costs, and other factors.

Changes in the ore reserves estimates may impact the carrying values of property, plant and equipment, provision for mine rehabilitation and decommissioning, recognition of deferred tax assets and depreciation and depletion charges.

As at December 31, 2024 and 2023, carrying values of mine and mining properties amounted to P408.66 million and P414.15 million, respectively (see Note 10). Depletion charges recognized amounted to P10.23 million and P11.20 million in 2024 and 2023, respectively (see Note 10).

As at December 31, 2024 and 2023, liability for mine rehabilitation amounted to ₱29.84 million and ₱39.07 million, respectively (see Note 16).

Estimating Recoverability of Property, Plant and Equipment

The Company assesses impairment on property, plant and equipment whenever events or changes in circumstances indicate that the carrying amount of the property, plant and equipment may not be recoverable. The factors that the Company considers important which could trigger an impairment review include the following:

- Significant underperformance relative to expected historical or projected future operating results
- Significant changes in the manner of use of the acquired assets or the strategy for overall business, and
- Significant negative industry or economic trends

In determining the present value of estimated future cash flows expected to be generated from the continued use of the property, plant and equipment, the Company is required to make estimates and assumptions such as commodity prices (considering current and historical prices, price trends and related factors), discount rates and foreign currency exchange rates, operating costs, future production levels and costs. These estimates and assumptions are subject to risk and uncertainty. Therefore, there is a possibility that changes in circumstances will impact these projections, which may impact the recoverable amount of assets. In such circumstances, some or all of the carrying amount of the assets may be further impaired or the impairment charge reduced with the impact recognized in the parent company statement of income.

The Company did not recognize any impairment loss in 2024 and 2023 on property, plant and equipment.

As at December 31, 2024 and 2023, property, plant and equipment at cost amounted to P428.94 million and P444.38 million, respectively (see Note 10).

Revaluation of Property, Plant and Equipment and Investment Properties

The Company carries its investment properties at fair value, with changes in fair value being recognized in the parent company statements of income. In addition, it measures its land under property, plant and equipment at revalued amounts, with changes in fair value being recognized in OCI. The land and investment properties were valued using the sales comparison approach. The determination of the fair values of these properties involves significant management judgment and estimations. The valuation also requires the assistance of external appraisers whose calculations also depend on certain assumptions, such as sales and listing of comparable properties registered within the vicinity and adjustments to sales price based on internal and external factors.

As at December 31, 2024 and 2023, the total fair value of the Company's land under property, plant and equipment, and investment properties amounted to P4,524.75 million and P4,128.18 million, respectively (see Notes 10 and 32).

Estimating Allowance for Inventory Obsolescence

The Company maintains an allowance for inventory losses at a level considered adequate to reflect the excess of cost of inventories over their NRV. NRV of inventories are assessed regularly based on prevailing estimated selling prices of inventories and the corresponding cost of disposal. Decrease in the NRV of inventories resulting in an amount lower than the original acquisition cost is accounted for as an impairment loss that is recognized in profit or loss.

As at December 31, 2024 and 2023, the carrying value of inventories amounted to P40.58 million and P52.17 million, respectively (see Note 6).

Unit-of-production (UOP) depreciation

Estimated economically recoverable reserves are used in determining the depreciation and/or amortization of mine-specific assets. This results in a depreciation/amortization charge proportional to the depletion of the anticipated remaining life-of-mine production. The life of each item, which is assessed at least annually, has regard to both its physical life limitations and present assessments of economically recoverable reserves of the mine property at which the asset is located. These calculations require the use of estimates and assumptions, including the amount of recoverable reserves and estimates of future capital expenditure. The calculation of the UOP rate of depreciation/amortization could be impacted to the extent that actual production in the future is different from current forecast production based on economically recoverable reserves, or if future capital expenditure estimates change. Changes to economically recoverable reserves could arise due to changes in the factors or assumptions used in estimating reserves, including:

- The effect on economically recoverable reserves of differences between actual commodity prices and commodity price assumptions
- Unforeseen operational issues

Changes in estimates are accounted for prospectively.

As at December 31, 2024 and 2023, the carrying amount of mine and mining properties amounted to \$371.90 million and \$379.55 million, respectively. Carrying amount of mine rehabilitation asset amounted to \$36.76 million and \$34.60 million as of December 31, 2024 and 2023, respectively. The carrying amount of mine development cost amounted to nil million as of December 31, 2024 and 2023 (see Note 10).

Estimating Liability for Mine Rehabilitation

The Company estimates the costs of mine rehabilitation based on previous experience in rehabilitating fully mined areas in sections of the mine site. These costs are adjusted for inflation factor based on the average annual inflation rate as of adoption date or re-evaluation of the asset dismantlement, removal or restoration costs. Such adjusted costs are then measured at present value using the market interest rate for a comparable instrument adjusted for the Company's credit standing. While management believes that its assumptions are reasonable and appropriate, significant differences in actual experience or significant changes in the assumptions may materially affect the Company's liability for mine rehabilitation.

Liability for mine rehabilitation amounted to P29.84 million and P39.07 million as at December 31, 2024 and 2023, respectively (see Note 16).

Estimating Pension Benefits

The cost of defined benefit pension plans as well as the present value of the pension obligation are determined using actuarial valuations. An actuarial valuation involves making various assumptions that may differ from actual developments in the future. These include the determination of the discount rates, future salary increases, mortality rates and future pension increases. Due to the complexity of the valuation, the underlying assumptions and its long-term nature, defined benefit obligations are highly sensitive to changes in these assumptions. All assumptions are reviewed at each reporting date.

In determining the appropriate discount rate, management considers the interest rates of government bonds that are denominated in the currency in which the benefits will be paid, with extrapolated maturities corresponding to the expected duration of the defined benefit obligation.

The mortality rate is based on publicly available mortality tables for the specific country and is modified accordingly with estimates of mortality improvements. Future salary increases and pension increases are based on expected future inflation rates for the specific country.

Further details about the assumptions used are provided in Note 26.

Net pension liability amounted to ₱34.42 million and ₱54.56 million as at December 31, 2024 and 2023, respectively (see Note 26).

Assessing Realizability of Deferred Tax Assets

The Company reviews the carrying amounts of the deferred tax assets at each end of the reporting date and reduces deferred tax assets to the extent that it is probable that sufficient future taxable profits will be available against which these can be utilized. Management believes that there is no assurance that the Company will generate sufficient taxable profit to allow all or part of its deferred tax assets to be utilized.

The Company recognized deferred tax assets amounting to P77.05 million and P83.27 million as at December 31, 2024 and 2023, respectively (see Note 27).

The Company did not recognize deferred tax assets on deductible temporary differences amounting to ₱326.88 million as at December 31, 2024 and 2023 (see Note 27).

4. Cash and Cash Equivalents

	2024	2023
Cash on hand	₽469	₽470
Cash in banks	414,746	141,698
Cash equivalents	38,443	84,929
	₽453,658	₽227,097

Cash in banks earn interest at the prevailing bank deposit rates. Cash equivalents are made for varying periods of up to three (3) months depending on the immediate cash requirements of the Company and earn interest at the respective short-term deposit rates.

Interest income pertaining to cash in banks and cash equivalents totaled to $\neq 3.08$ million and $\neq 1.73$ million in 2024 and 2023, respectively (see Note 23).

5. Trade and Other Receivables

	2024	2023
Trade receivables		
External	₽30,400	₽29,979
Related parties (Note 24)	24,943	33,491
Nontrade	239,656	219,784
Advances to officers and employees	30,196	108,189
Employee stock ownership incentive plan		
(ESOIP) (Note 25)	58,416	58,416
Receivables from lessees of bunkhouses	9,972	9,648
Others	600	280
	394,183	459,787
Less allowance for ECLs	64,688	64,535
	₽329,495	₽395,252

Trade and nontrade receivables, and receivables from lessees of bunkhouses are noninterest-bearing and are generally collectible within a period of one year. Advances to officers and employees pertain to cash advances used in the operations which are generally subject to liquidation.

Other receivables comprise mainly of receivables that are considered to be individually insignificant.

Movements of allowance for ECLs on trade and other receivables are as follows:

	2024			
	Receivables			
	Trade	from lessees of		
	receivables	bunkhouses	ESOIP	Total
Balances at beginning of year	₽2,264	₽3,855	₽58,416	₽64,535
Provision (Note 21)	-	153	_	153
Balances at end of the year	₽2,264	₽4,008	₽58,416	₽64,688

	2023			
		Receivables		
	Trade	from lessees of		
	receivables	bunkhouses	ESOIP	Total
Balances at beginning of year	₽2,448	₽3,855	₽58,416	₽64,719
Reversal (Note 21)	(184)	_	_	(184)
Balances at end of the year	₽2,264	₽3,855	₽58,416	₽64,535

Except for those impaired accounts, the Company assessed trade and other receivables as collectible and in good standing.

6. Inventories

	2024	2023
At cost:		
Quicklime and slaked lime	₽6,902	₽8,850
At NRV:		
Materials and supplies	190,422	199,930
Less allowance for impairment losses on		
materials and supplies	(156,740)	(156,612)
	33,682	43,318
	₽40,584	₽52,168

The gold buttons produced by the Company in 2024 and 2023 have also been sold during those years.

Movements of allowance for impairment losses on inventories are as follows:

	2024	2023
Balance at beginning of the year	₽156,612	₽156,612
Provision (Note 21)	128	_
Balance at end of the year	₽156,740	₽156,612

Materials and supplies charged to current operations amounted to ₱120.36 million and ₱149.51 million and in 2024 and 2023, respectively (see Notes 20 and 21).

The Company has no inventories pledged as security for liabilities nor any purchase commitments related to inventories as at December 31, 2024 and 2023.

7. Financial Assets at FVPL

The Company's financial assets at FVPL are investments in unit investment trust funds (UITF), which are carried at fair value based on published net asset value per unit or the price per unit of the UITF.

Movements in financial assets at FVPL in 2024 and 2023 are as follows:

	2024	2023
Beginning balance	₽21,441	₽798
Disposals	(21,441)	_
Additions	_	20,005
Changes in fair value	_	638
Ending balance	₽-	₽21,441

Movements in cumulative gains from change in fair value are as follows:

	2024	2023
Beginning balance	₽638	₽-
Disposals	(638)	_
Changes in fair value	—	638
Ending balance	₽-	₽638

8. Other Current Assets

	2024	2023
CWTs	₽35,605	₽65,515
Input VAT – net	29,870	52,585
Short-term investments	10,000	24,280
Prepaid expenses	818	580
Others	6,477	3,933
	₽82,770	₽146,893

Movements in short-term investments in 2024 and 2023 are as follows:

	2024	2023
Beginning balance	₽24,280	₽-
Additions	10,000	23,000
Interest	_	1,280
Disposals	(24,280)	_
Ending balance	₽10,000	₽24,280

The short-term investments has a 92-days having 5% gross rate in 2024 and 91-days term having 4.8% and 5.5% gross rate in 2023. Interest income on these short-term investments totaled to $\mathbb{P}0.13$ million in 2024 and $\mathbb{P}2.06$ million, which consists of $\mathbb{P}1.28$ million interest received upon maturity in 2023 (see Note 23).

9. Investments in Subsidiaries

The Company holds investments in subsidiaries that are all incorporated in the Philippines and are engaged in the business related to exploration and development, management services, health services and real estate holding.

			Effective
		Country of	percentage of
	Nature of business	incorporation	ownership
BRMC	Mining operations	Philippines	100.00
BMC	Foundry	Philippines	100.00
Agua de Oro Ventures Corporation (ADOVC)	Selling of treated and	Philippines	
	untreated water		100.00
BC Property Management Inc. (BCPMI)	Management services	Philippines	100.00
Benguetcorp International Limited (BIL)	Holding company	Hong Kong	100.00
Benguetcorp Laboratories, Inc. (BLI)	Health services	Philippines	100.00
Berec Land Resources Inc. (BLRI)	Exploration and development	Philippines	100.00
Benguetcorp Construction and Development	Real estate holding	Philippines	100.00
Corporation (BCDC))			
SARC	Exploration and development	Philippines	100.00
Ifaratoc Mineral Resources Corporation (IMRC)	Logistics	Philippines	100.00
Keystone Port Logistics and Management	Exploration and development	Philippines	
Services Corporation (KPLSMC)			100.00
Acupan Gold Mines Inc. (AGMI)	Professional services	Philippines	100.00
Pillars of Exemplary Consultants, Inc. (PECI)	Professional services	Philippines	100.00
Samar Agricultural Farm Corporation (SAFC)	Agricultural	Philippines	100.00
Aglao Development Corporation (ADC)	Land use development	Philippines	100.00

The following are the subsidiaries of the Company as at December 31, 2024 and 2023:

The details of investments in subsidiaries as at December 31, 2024 and 2023 are as follows:

	2024	2023
Acquisition cost of investments:		
BRMC	₽1,250,000	₽1,250,000
BMC	600,000	600,000
ADOVC	262,996	262,996
BCPMI	143,071	143,071
BIL	115,565	115,565
BLI	56,889	56,889
BLRI	39,463	39,463
BCDC	14,375	14,375
SARC	7,046	7,046
IMRC	2,500	2,500
KPLMSC	2,500	2,500
AGMI	2,500	2,500
SAFC	2,500	_
PECI	1,130	1,130
ADC	225	225
	2,500,760	2,498,260
Less allowance for impairment losses	3,630	3,630
	₽2,497,130	₽2,494,630

BMC was organized primarily to invest in projects and enterprises that diversify, stabilize and strengthen the investment portfolio of the Benguet Group. As at December 31, 2024 and 2023, BIL, BCDC, AGMI, which were established to operate mining prospects, are still pre-operating.

Movement of investment in subsidiaries are as follows:

	2024	2023
Beginning balance	₽2,498,260	₽2,080,093
Additions	2,500	418,167
Ending balance	2,500,760	2,498,260
Less allowance for impairment losses	3,630	3,630
	₽2,497,130	₽2,494,630

In 2024 and 2023, the Company had additional investments in SAFC amounting to P2.50 million and BCDC amounting to P11.88 million, respectively, in exchange of cash.

In 2023, the Company had additional investments in ADOVC and BCPMI amounting to ₱263.0 million and ₱143.07 million, respectively, in exchange for land (see Note 32).

On March 29, 2022, BRMC declared cash dividends amounting to P500.0 million. These cash dividends were paid on eight (8) equal installments amounting to P62.50 million starting May 2022 to December 2022.

On March 28, 2023, BRMC declared cash dividends amounting to P500.0 million. These cash dividends were paid in eight (8) equal installments amounting to P62.50 million starting May 2023 to December 2023.

On March 29, 2023, KPLMSC declared cash dividends amounting to P18.33 million. These cash dividends were paid in two (2) equal installments amounting to P9.17 million in May 2023 and June 2023.

There was no movement in allowance for impairment losses on investments in subsidiaries in 2024 and 2023.

10. Property, Plant and Equipment

a. Land - at revalued amount

Revalued amount of land as at December 31, 2024 and 2023 amounted to ₱1,687.39 million and ₱1,574.56 million, respectively.

The revaluation increment, recognized as a separate component of equity, amounted to P1,435.70 million and P1,351.07 million as at December 31, 2024 and 2023, and is not available for distribution to stockholders until the related assets are sold.

On February 7, 2025 and February 22, 2024, the Company engaged Cuervo Appraisers Inc., an independent firm of appraisers, to determine the fair value of the land as at December 31, 2024 and 2023, respectively. The fair value was estimated using the sales comparison approach, which considers the sales of similar or substitute properties and the related market values and establishes value estimates by processes involving comparisons (level 3). In general, a property being valued is compared with sales of similar properties that have been transacted in the open market. Listings and offerings may also be considered. The Company recognized unrealized valuation gain in OCI amounting to $\mathbb{P}112.84$ million and $\mathbb{P}60.23$ million in 2024 and 2023, respectively.

Movements in the revaluation increment on land shown as part of other components of equity follow:

Balance before the quasi-reorganization	₽1,561,048
Effect of the quasi-reorganization in 2011 (Note 1)	(1,010,848)
Balance after the quasi-reorganization	550,200
Revaluation increment in:	
2011	148,638
2013	85,900
2018	75,716
2019	251,499
2021	174,215
2022	19,727
2023	45,174
2024	84,627
Balance as at December 31, 2024	₽1,435,696

b. Property, Plant and Equipment – at cost

			2024	l i		
	Land improvements	Buildings	Machinery, tools and equipment	Mine and mining Properties	Right-of-use assets	Total
Cost:						
Beginning balances	₽78,441	₽279,542	₽752,951	₽1,182,905	₽7,409	₽2,301,248
Additions	_	499	929	1,131	_	2,559
Reclassification	_	(449)	449	_	_	_
Change in estimate of liability for				2 (02		2 (02
mine rehabilitation (Note 16)	70 441	270 502		3,603	7 400	3,603
Ending balances	78,441	279,592	754,329	1,187,639	7,409	2,307,410
Accumulated depreciation and depletion:						
Beginning balances	75,751	276,273	733,361	768,754	2,733	1,856,872
Depreciation and depletion						
(Notes 20 and 21)	588	1,769	8,107	10,228	911	21,603
Ending balances	76,339	278,042	741,468	778,982	3,644	1,878,475
Net book values	₽2,102	₽1,550	₽12,861	₽408,657	₽3,765	₽428,935

			2023			
	Land improvements	Buildings	Machinery, tools and equipment	Mine and mining Properties	Right-of-use assets	Total
Cost:						
Beginning balances	₽78,441	₽279,040	₽747,839	₽1,151,755	₽8,946	₽2,266,021
Additions	_	502	6,157	36,352	2,052	45,063
Disposal and derecognition	_	_	(1,045)	_	(3,589)	(4,634)
Change in estimate of liability for						
mine rehabilitation (Note 16)	_	_	_	(5,202)	_	(5,202)
Ending balances	78,441	279,542	752,951	1,182,905	7,409	2,301,248
Accumulated depreciation and depletion:						
Beginning balances	75,164	274,828	729,260	757,551	4,924	1,841,727
Depreciation and depletion						
(Notes 20 and 21)	587	1,445	5,146	11,203	1,398	19,779
Disposal	_	_	(1,045)	_	(3,589)	(4,634)
Ending balances	75,751	276,273	733,361	768,754	2,733	1,856,872
Net book values	₽2,690	₽3,269	₽19,590	₽414,151	₽4,676	₽444,376

The Company's CIP pertains to the development of a continuous mill production line in Balatoc, Benguet to increase the milling capacity of its gold operations.

The cost of fully depreciated property and equipment still being used in the Company's operations amounted to ₱362.91 million and ₱355.39 million as at December 31, 2024 and 2023, respectively.

Components of mine and mining properties are as follows:

	2024		
	Mine and mining properties	Mine rehabilitation asset	Total
Cost:			
Beginning balances	₽1,110,311	₽72,594	₽1,182,905
Additions	1,131	_	1,131
Change in estimate (Note 16)	_	3,603	3,603
Ending balances	1,111,442	76,197	1,187,639
Accumulated depletion:			
Beginning balances	730,761	37,993	768,754
Depletion (Note 20)	8,779	1,449	10,228
Ending balances	739,540	39,442	778,982
Net book values	₽371,902	₽36,755	₽ 408,657

	2023			
-	Mine and mining	Mine development	Mine rehabilitation	
	properties	cost	asset	Total
Cost:				
Beginning balances	₽1,050,030	₽23,929	₽77,796	₽1,151,755
Additions	36,352	_	_	36,352
Reclassification	23,929	(23,929)	_	_
Change in estimate (Note 16)	_	_	(5,202)	(5,202)
Ending balances	1,110,311	_	72,594	1,182,905
Accumulated depletion:				
Beginning balances	720,812	_	36,739	757,551
Depletion (Note 20)	9,949	_	1,254	11,203
Ending balances	730,761	_	37,993	768,754
Net book values	₽379,550	₽	₽34,601	₽414,151

Components of right-of-use-assets are as follows:

		2024	
	Machinery, tools and equipment	Land	Total
Cost:			
Beginning and ending balances	₽2,052	₽ 5,357	₽7,409
Accumulated depreciation:			
Beginning balances	238	2,495	2,733
Depreciation (Note 31)	171	740	911
Ending balances	409	3,235	3,644
Net book values	₽1,643	₽2,122	₽3,765

	2023			
		Machinery, tools and		
	Office Space	equipment	Land	Total
Cost:				
Beginning balances	₽3,589	₽	₽5,357	₽8,946
Additions	_	2,052	_	2,052
Derecognition	(3,589)	_	_	(3,589)
Ending balances	_	2,052	5,357	7,409
Accumulated depreciation:				
Beginning balances	2,792	_	2,132	4,924
Depreciation (Note 31)	797	238	363	1,398
Derecognition	(3,589)	_	_	(3,589)
Ending balances	_	238	2,495	2,733
Net book values	₽_	₽1,814	₩2,862	₽4,676

Depreciation and depletion charges were distributed as follows:

	2024	2023
Cost of mine products sold (Note 20)	₽16,895	₽13,944
Selling, general and administrative expenses		
(Note 21)	4,708	5,835
	₽21,603	₽19,779

11. Deferred Mine Exploration Costs

Movements in deferred mine exploration costs are as follows:

	2024	2023
Balances at beginning of year	₽616,021	₽588,776
Additions	26,560	27,245
Balances at end of year	642,581	616,021
Less allowance for impairment losses	166,984	166,984
Net book value	₽475,597	₽449,037

Additions pertain to drilling, hauling, and other ongoing exploration and evaluation activities of the Company.

There was no movement in allowance for impairment losses on deferred mine exploration costs in 2024 and 2023.

12. Other Noncurrent Assets

	2024	2023
Advances to contractors and suppliers	₽455,887	₽408,811
Mine rehabilitation funds (MRF)	54,149	46,370
CWTs	29,097	_
Input VAT	19,996	_
Refundable deposits	9,229	9,229
Financial assets at FVOCI	566	563
	568,924	464,973
Less allowance for impairment losses	151,892	151,892
	₽ 417,032	₽313,081

The Company made advance payments to a supplier of aircraft amounting nil and $\mathbb{P}4.05$ million in 2024 and 2023, respectively, bringing the total balance to $\mathbb{P}250.0$ million as at December 31, 2024 and 2023, respectively. Meanwhile, the rest of the advances to contractors and supplier are for exploration and other related activities and projects.

MRFs pertain to accounts opened with a local bank in compliance with the requirements of DAO No. 2010-21, otherwise known as 'The Revised Implementing Rules and Regulations of the Philippine Mining Act of 1995'. The MRFs shall be used for physical and social rehabilitation of areas and communities affected by the mine operations, and for research in the social, technical and preventive aspects of the mine's rehabilitation. Interest income pertaining to MRF amounted to nil and ₱0.66 million in 2024 and 2023, respectively (see Note 23).

Refundable deposits pertain to amounts deposited with the Company's power providers and are refundable upon termination of the related service agreements.

There was no movement in allowance for impairment losses on other noncurrent assets in 2024 and 2023.

Financial assets at FVOCI pertain to investments in non-listed and listed shares of stock in the Philippine Stock Exchange, which are carried at fair value based on bid market prices.

Movements in financial assets at FVOCI are as follows:

	2024	2023
Balance at beginning of year	₽563	₽521
Unrealized valuation gain	3	42
Balance at end of year	₽566	₽563

Movements in the unrealized loss on financial assets at FVOCI are as follows:

	2024	2023
Balance at beginning of year	(₽180)	(₽222)
Unrealized valuation gain	3	42
Balance at end of year	(₽ 177)	(₽180)

13. Trade and Other Payables

	2024	2023
Trade payables		
External	₽60,689	₽29,863
Related parties (Note 24)	2,299	2,147
Nontrade	54,611	53,993
Dividends payable (Note 17)	35,490	_
Accrued expenses	27,517	53,586
Payables to officers and employees	2,470	95
Others	4,892	6,465
	₽187,968	₽146,149

Trade payables, accrued expenses, and other payables pertain to operating expenses payable to various suppliers and contractors, accrual of professional fees, amounts and other expenses of the Company which are noninterest-bearing and are normally settled in 60 to 90 days terms.

Payables to officers and employees include unclaimed wages, accrued vacation and sick leave credits and accrued payroll, which are payable within 30 days.

Non-trade payables include withholding taxes and other government payables which are normally settled in 30 to 90 days.

14. Loans Payable

	2024	2023
Secured loan	₽-	₽48,368
Unsecured loan	_	36,695
Accrued interest and penalties	_	242,236
	₽-	₽327,299

Secured loan

The Company has a secured loan being renegotiated and is undergoing restructuring. Nominal interest rates vary from floating rate of 91-day Philippine PhP T-bill rate for peso loans and 3-month Sterling Overnight Indexed Average (SONIA) for foreign loans, plus margin of 2.5%.

In 2024 and 2023, the loan was secured by investment properties with carrying value of $P_{2,837.36}$ million and $P_{2,553.62}$ million, respectively (See Note 32).

Unsecured loan

The Company has an unsecured loan from a third party with interest rate of 3% per annum, which is due and demandable.

Interest expense from the unsecured loan amounted to P6.52 million and P2.20 million in 2024 and 2023, respectively.

In October 2024, the Company settled all its secured and unsecured loans for a consideration of P600.0 million and P43.21 million, respectively. The carrying amount of secured and unsecured loans paid off amounted to P290.60 million and P43.21 million, respectively. This resulted to loss on debt settlement for secured and unsecured loans amounting to P309.40 million and nil, respectively.

The settlement of secured loans resulted in the release of mortgage over certain investment properties as at December 31, 2024.

15. Other Noncurrent Liability

16. Liability for Mine Rehabilitation

Other noncurrent liability pertains to the Company's outstanding liability to CMI, gross of advances, for which discussions are still on-going. The said liability amounted to ₱49.14 million as at December 31, 2024 and 2023 (see Note 1).

	2024	2023
Balances at beginning of year	₽39,073	₽37,712
Actual rehabilitation costs	(14,115)	(6,990)
Effect of change in estimate:		
Recognized as adjustment to the mine		
rehabilitation asset (Note 10)	3,603	(5,202)
Recognized in profit or loss (Note 23)	203	12,826
Accretion (Note 23)	1,077	727
Balances at end of year	29,841	39,073
Less noncurrent portion	24,972	21,290
Current portion	₽4,869	₽17,783

This provision is based on the Company's internal estimates. Assumptions, based on the current economic environment, have been made which management believes are a reasonable basis upon which to estimate the future liability.

In 2022, the revised Antamok Final Mine Rehabilitation and Decommissioning Plan (FMRDP) was endorsed by the MGB-CAR to the Contingent Liability and Rehabilitation Fund Steering Committee (CLRFSC) for approval based on new development, particularly on the actual rehabilitation needs considering the current physical status and condition of the area. The total cost to be incurred over a 4-year period of rehabilitation was reduced from P43.0 million to P30.0 million. The aim of the FMRDP is principally to mitigate environmental risks and provide a sustainable final land use over the area. It includes long-term programs including Minahang Bayan. The Company implemented various activities such as continuous propagation of various seedlings in nurseries and maintenance of its established reforestation areas. During 2024, the Company's additional activities included progressive rehabilitation of waste dumps and other areas of the mine.

The final rehabilitation costs are uncertain, and cost estimates can vary in response to many factors, including estimates of the extent and costs of rehabilitation activities, technological changes, regulatory changes, changes in inflation rates (3.01% in 2024 and 3.03% in 2023) and changes in discount rates (5.95% in 2024 and 5.43% in 2023).

These uncertainties may result in future actual expenditure differing from the amounts currently provided. Therefore, significant estimates and assumptions are made in determining the provision for mine rehabilitation. As a result, there could be significant adjustments to the provision established that could affect future financial results.

The provision at the end of each reporting period represents management best estimate of the present value of the future rehabilitation cost required. This estimate is reviewed regularly to take into account any material changes in the assumptions. However, actual rehabilitation costs will ultimately depend upon future market prices for the necessary decommissioning works required, which will reflect market conditions at the relevant time. The timing of rehabilitation is likely to depend on when the mine ceases to produce at economically viable rates. This, in turn, will depend upon future gold and nickel prices, which are inherently uncertain.

17. Equity

	2024		2023	
	No. of shares	Amount	No. of shares	Amount
Authorized				
Convertible Preferred				
Class A – ₱3.43 par value	19,652,912	₽67,500	19,652,912	₽67,500
Common Class A – ₱1 par value	430,380,000	430,380	430,380,000	430,380
Common Class B – $\mathbb{P}1$ par value	286,920,000	286,920	286,920,000	286,920
	736,952,912	₽784,800	736,952,912	₽784,800
Issued				
Convertible Preferred Class "A"	217,061	₽745	217,061	₽745
Common Class "A"	428,430,802	428,431	375,430,802	375,431
Common Class "B"	285,101,396	285,101	248,101,396	248,101
Total shares issued and subscribed	713,749,259	₽714,277	623,749,259	₽624,277
Treasury Shares				
Common Class "A"	310,794	₽7,158	310,794	₽7,158
Common Class "B"	37,275	858	37,275	858
Total treasury shares	348,069	₽8,016	348,069	₽8,016
Outstanding				
Convertible Preferred Class "A"	217,061	₽745	217,061	₽745
Common Class "A"	428,120,008	421,273	375,120,008	368,273
Common Class "B"	285,064,121	284,243	248,064,121	247,243
Total outstanding shares	713,401,190	₽706,261	623,401,190	₽616,261

Capital stock as at December 31, 2024 and 2023 follows:

The amount of unrestricted retained earnings equivalent to the cost of the treasury shares being held shall be restricted from being declared and issued as dividends.

There was no movement in the Company's authorized and treasury shares in 2024 and 2023. The movement in the Company's issued shares in 2024 and 2023 are as follows:

	2024 Issuance of shares Balance at through Balance at end of beginning of year subscription year		
Convertible Preferred Class "A"	217,061	-	217,061
Common Class "A"	375,430,802	53,000,000	428,430,802
Common Class "B"	248,101,396	37,000,000	285,101,396
	623,749,259	90,000,000	713,749,259

	2023			
		Issuance of shares		
	Balance at for stock options Balance			
	beginning of year	exercised (Note 17)	year	
Convertible Preferred Class "A"	217,061	_	217,061	
Common Class "A"	375,307,052	123,750	375,430,802	
Common Class "B"	247,963,396	138,000	248,101,396	
	623,487,509	261,750	623,749,259	

The two classes of common shares of the Company are identical in all respects, except that ownership of Common Class A shares is restricted to Philippine nationals.

The convertible preferred shares are limited to Philippine nationals and convertible into Common Class A shares at a conversion premium of P12.83 per share. Each preferred share is convertible into 9.4875 Common Class A shares. A convertible preferred share is also entitled to have one vote for each full share of Common Class A stock into which such convertible preferred share is, at any stockholders' meeting, then convertible. It does not enjoy the same dividend right as the two classes of common stock but is entitled to a fixed cumulative dividend of 8% a year, if there is surplus profit and when declared by the BOD.

On March 21, 2018, the BOD approved the increase in the Company's authorized capital stock from P717.30 million (consisting of 430,380,000 Common Class A shares and 286,920,000 Common Class B shares, both having a par value of P1.00 each) to P762.30 million (consisting of 475,380,000 Common Class A shares and 286,920,000 Common Class B shares, both having a par value of P1.00 each). The application for the increase was approved by the stockholders during the annual meeting held last November 8, 2018.

On August 29, 2024, the BOD approved the increase in the Company's authorized capital stock of P2,400.0 million, which is inclusive of P45.0 million capital increase previously approved by the BOD on March 21, 2018, or 2,400,000,000 shares (consisting of 1,440,000,000 Common Class A shares and 960,000,000 Common Class B shares, both having a par value of P1.00 each). The application for the increase was approved by the stockholders during the annual meeting held last December 20, 2024.

After the amendment, the total authorized capital stock of the Company will increase from ₱784.80 million to ₱3,184.8 million.

As at March 26, 2025, the Company has not yet filed its application for the increase in authorized capital stock with the Philippine SEC.

In 2021, the Company issued 4,086,798 Common Class A shares and 2,713,199 Common Class B shares as a result of employees' exercise of stock options at a total consideration of ₱9.81 million shares, ₱1.37 million of which were from 431,198 Common Class A shares and 334,176 Common Class B shares at an average selling price of ₱1.80 per share and 8.45 million from 3,655,600 Common Class A shares and 2,379,023 Common Class B shares at an average exercise price of ₱1.41 per share. In 2021, the total shares issued and outstanding for Common Class A and Common Class B shares are 374,996,258 and 247,926,121 shares, respectively.

In 2023, the Company issued 123,750 Common Class A shares and 138,000 Common Class B shares as a result of employees' exercise of stock options at a total consideration of P0.27 million, net of lodging fee of P0.10 million, P0.17 million of which was from 123,750 Common Class A shares at an

average selling price of ₱1.38 per share and ₱0.20 million from 138,000 Common Class B at an average selling price of ₱1.43 per share.

On October 29, 2024, in its special Board meeting, the Company's BOD approved the declaration of cash dividend amounting to $\mathbb{P}143.56$ million or equivalent to $\mathbb{P}0.28$ per share of the Company's Convertible Preferred Class A shares and $\mathbb{P}0.20$ per share of outstanding Common Class A and B shares to stockholders of record as of November 14, 2024 with the payment set date on December 10, 2024. Total amount of dividend paid and still outstanding as at December 31, 2024 amounted to $\mathbb{P}108.07$ million and $\mathbb{P}35.49$ million, respectively.

On November 5, 2024, Red Earth Mineral Resources Corporation (Red Earth) subscribed to 53,000,000 Common Class A unissued shares and 37,000,000 Common Class B unissued shares of the Company at a subscription price of $\mathbb{P}4.00$ per share. The total consideration for this subscription amounted to $\mathbb{P}360.0$ million.

In 2024, Red Earth made additional subscription to the proposed increase in capital stock of 20,000,000 shares (consisting of 13,000,000 Common Class A shares and 7,000,000 Common Class B shares, both having a par value of $\mathbb{P}1.00$ each) at subscription price of $\mathbb{P}4.00$ per shares. The Company received cash amounting to $\mathbb{P}20.0$ million as deposit for future subscription. The balance of deposit for future subscription as at December 31, 2024 and 2023 amounted to $\mathbb{P}20.0$ million and nil, respectively.

As at December 31, 2024, total shares issued and outstanding for Common Class A and B shares are 428,120,008 and 285,064,121 respectively.

Date of Registration		Number of	Par value	Total amount
(SEC Approval)	Description	shares	per share	(in 000's)
June 18, 1956	Capital upon registration:			
	Common shares	18,000,000	₽1.00	₽18,000
November 25, 1960	Increase in number and par value of			
	common shares:			
	Common shares	20,000,000	2.00	40,000
November 9, 1964	Increase in par value of common shares:			
	Common shares	20,000,000	3.00	60,000
October 22, 1968	Increase in number of common shares and			
	introduction of preferred shares:			
	Common shares	50,000,000	3.00	150,000
	Preferred shares	6,000,000	5.00	30,000
March 12, 1974	Split of common share into two classes			
	and change in number and par value and			
	addition of conversion feature to the			
	preferred shares:			
	Common class A	30,000,000	3.00	90,000
	Common class B	20,000,000	3.00	60,000
	Convertible preferred shares	19,652,912	3.43	67,500
July 27, 1989	Increase in number of common shares			
	Common class A	120,000,000	3.00	360,000
	Common class B	80,000,000	3.00	240,000
	Convertible preferred shares	19,652,912	3.43	67,500
September 28, 2015	Increase in number of common shares			
	Common class A	143,460,000	3.00	430,380
	Common class B	95,640,000	3.00	286,920
	Convertible preferred shares	19,652,912	3.43	67,500
July 29, 2016	Increase in number of common shares and			
	reduction in par value			
	Common class A	430,380,000	1.00	430,380
	Common class B	286,920,000	1.00	286,920
	Convertible preferred shares	19,652,912	3.43	67,500

Below is the Company's track record of registration of securities under the Philippine SEC:

Date of Registration (SEC Approval)	Description	Number of shares	Par value per share	Total amount (in 000's)
As at December 31, 2024 and 2023	Common class A Common class B	430,380,000 286,920,000	₽1.00 1.00	₽430,380 286,920
and 2025	Convertible preferred shares	19,652,912	3.43	67,500

As at December 31, 2024 and 2023, the Company has 16,857 and 16,870 stockholders, respectively. As at December 31, 2024 and 2023, the Company has 348,069 shares held in treasury amounting to $\mathbb{P}8.02$ million at $\mathbb{P}23$ per share.

18. Stock Option Plan

Under the 1975 Nonqualified Stock Option Plan (Plan), as amended, 9.9 million shares of the unissued common shares of the Company have been reserved for stock options to selected managers, directors and consultants of the Company. The option price is payable on the exercise date and should not be less than the fair market value of the shares quoted on the date of the grant. The Plan, valid up to May 31, 1998, allows a maximum of 632,500 shares to be available to any one optionee. On May 26, 1998, the BOD and the stockholders approved the extension of the Plan until May 31, 2003, which was extended further on December 18, 2002 with the BOD and the stockholders approved a further extension of the Plan until May 31, 2013.

On March 23, 2012, the BOD and the stockholders approved the proposed amendments to the existing Amended Stock Option Plan and to extend the termination date of the existing Plan for five years or until May 31, 2018. The amendments include an increase in the maximum award per employee from 200,000 shares over the life of the plan to 500,000 shares per grant and an increase in the shares reserved for issuance under the Plan from the total of 9,906,661 to 22,000,000 shares.

Options granted to Filipino optionees are exercisable in the form of 60% Common Class A and 40% Common Class B shares. Options for Common Class B shares may be exercised only if Common Class A shares had been previously or simultaneously exercised to maintain a minimum 60:40 ratio of Common Class A to Common Class B shares.

The options under the Plan are non-transferable and are exercisable to the extent of 30% after one year from the date of the grant, 60% after two years from the date of the grant, and 100% after three years from the date of grant. The options authorized under this plan is exercisable for a period of 10 years from the date of grant.

On November 8, 2018, the BOD and the stockholders approved the proposed amendment to the existing Amended Stock Option Plan to extend the termination date of the existing Plan for five years or until May 31, 2023.

On August 24, 2022, the BOD approved the proposed amendment to the existing Amended Stock Option Plan to extend the termination date of the existing Plan for eight (8) years or until May 31, 2031, which the stockholders ratified on November 9, 2022.

On March 17, 2017, upon endorsement of the Stock Option Committee, the BOD approved a new stock option grant to the Company's qualified directors, officer, employees and consultant, provided they have rendered at least two years of service as of March 11, 2017. Total number of common shares available for distribution under the plan is 8,414,375 shares at an exercise price of P1.38 and P1.43 for Class "A" and Class "B" shares, respectively.

On March 18, 2021, upon endorsement of the Stock Option Committee, the BOD approved a new stock option grant to the Company's officer, employees and consultant and to all members of the BOD, provided they have rendered at least two years of service as of March 15, 2021. Total number of common shares granted for distribution under the plan is 3,003,612 shares at an exercise price of ₱2.19 and ₱2.05 for Class "A" and Class "B" shares, respectively.

Exercisable shares per grant are as follows:

		Exercisable share options as at January 1, 2024	Additions	Cancelled/ Expired in 2024	Exercisable share options as at December 31, 2024
Class A	- May 2014 Grant	648,000	-	(648,000)	-
	- March 2017 Grant	352,475	-	-	352,475
	- March 2021 Grant	1,081,308	720,871	-	1,802,179
Class B	- May 2014 Grant	432,000	-	(432,000)	-
	- March 2017 Grant	237,527	-	-	237,527
	- March 2021 Grant	720,860	480,573	-	1,201,433
Total		3,472,170	1,201,444	(1,080,000)	3,593,614
		Exercisable share options as at January 1, 2023	Additions	Exercised in 2023	Exercisable share options as at December 31, 2023
Class A	- May 2014 Grant	648,000	_	_	648,000
	- March 2017 Grant	476,225	_	(123,750)	352,475
	- March 2021 Grant	540,654	540,654	-	1,081,308
Class B	- May 2014 Grant	432,000	-	_	432,000
	- March 2017 Grant	375,527	_	(138,000)	237,527
	- March 2021 Grant	360,430	360,430	_	720,860
Total		2,832,836	901,084	(261,750)	3,472,170

On August 31, 2016, the Company's BOD approved the following amendments to the Plan due to the effect of the share split on July 29, 2016:

- change in the exercise price of outstanding options
- change in the maximum number of shares per grant from 500,000 to 1,500,000
- repricing of the unexercised share options brought about by the low turn-out in the availment of the grant due to high exercise price compared to market price. The repricing was based on the closing price on August 18, 2016 of Class A and Class B common shares amounting to ₱2.25 and ₱2.55, respectively, less 25% discount pursuant to the provisions of the amended stock option plan of the Company.
- change in the shares reserved issuance under the Plan from 22,000,000 shares to 66,000,000 shares.

The exercise prices of outstanding options are as follows:

		After effect of stock		
		At grant date	split	As modified
Class A - Sep	tember 2012 Grant	₽17.96	₽5.99	₽1.69
- May	/ 2014 Grant	7.13	2.38	1.69
- Mai	ch 2017 Grant	1.38	n/a	n/a
- Mai	ch 2021 Grant	2.19	n/a	n/a
Class B - Sep	tember 2012 Grant	17.63	5.88	1.91
- May	/ 2014 Grant	7.13	2.38	1.91
- Mai	ch 2017 Grant	1.43	n/a	n/a
- Mai	rch 2021 Grant	2.05	n/a	n/a

Average exercise price per share in 2024 and 2023 amounted to P1.92 and P1.90, respectively. Total number of shares available for future option grants is 41,069,864 and 39,989,864 shares as at December 31, 2024 and 2023.

Stock option expense relating to the Plan recognized amounted to P3.01 million and P2.26 million in 2024 and 2023 (see Note 22).

A summary of the number of shares under the Plan is shown below:

	2024	2023
Outstanding at beginning of year	4,673,614	4,935,364
Expiration	(1,080,000)	_
Exercised during the year	_	(261,750)
Outstanding at end of year	3,593,614	4,673,614
Exercisable at end of year	3,593,614	3,472,170

The Company used the binomial options pricing model to determine the fair value of the stock options at grant date.

The following assumptions were used to determine the fair value of the stock options at grant date:

		Share	Exercise	Expected	Option	Expected	Risk-free
		Price	price	volatility	life	Dividends	Interest rate
Sam 0. 2012 Cramt	А	23.95	17.96	57.35%	10 years	0.00%	4.80%
Sep 9, 2012 Grant	В	23.50	17.63	65.53%	10 years	0.00%	4.80%
Mars 26, 2014 Carant	А	9.50	7.13	77.28%	10 years	0.00%	3.90%
May 26, 2014 Grant	В	9.50	7.13	84.29%	10 years	0.00%	3.90%
Max 17 2017 Crant	А	1.83	1.38	95.46%	10 years	0.00%	5.09%
May 17, 2017 Grant	В	1.90	1.43	101.96%	10 years	0.00%	5.09%
Mars 18, 2021 Carant	А	2.92	2.19	(106.57%)	10 years	0.00%	4.44%
May 18, 2021 Grant	В	2.93	2.05	92.75%	10 years	0.00%	4.44%

The expected volatility measured at the standard deviation of expected share price returns was based on the analysis of share prices for the past 365 days. The cost of share-based payment amounted to P9.35 million and P8.10 million as at December 31, 2024 and 2023, respectively (see Note 17).

19. Revenue

Revenue of the Company pertains to sale of gold to the Bangko Sentral ng Pilipinas (BSP), which is subject to 4% excise tax based on gross revenues, and sale of silver and lime to outside customers.

	2024	2023
Revenue from contracts with customers		
Sale of gold	₽790,474	₽623,399
Sale of lime	96,765	96,516
Sale of silver	1,272	4,067
Total revenue from contracts with customers	₽888,5 11	₽723,982

Set out below is the disaggregation of the Company's revenue from contracts with customers in 2024 and 2023:

	2024	2023
Type of customer:		
Government	₽790,474	₽623,399
Private corporations	98,037	100,583
Total revenue from contracts with customers	₽888,511	₽723,982

In 2024 and 2023, the Company recognized excise taxes on sale of mine products amounting to P31.64 million and P25.46 million, respectively.

20. Cost of Mine Products Sold

	2024	2023
Outside services	₽328,233	₽229,616
Materials and supplies (Note 6)	112,151	140,826
Personnel expenses (Note 22)	59,910	77,494
Power and utilities	55,810	58,104
Depreciation and depletion (Notes 6 and 10)	16,895	13,944
Repairs and maintenance	12,603	19,007
Smelting, refining and marketing	7,958	4,858
Freight and handling	162	143
Taxes, fees and licenses	4	12
Others	56	2,099
	₽593,782	₽546,103

Outside services pertain to amounts paid to contractors and consultants involved in the mining operations of the Company.

Other expenses include postage, insurance and maintenance expenses, which are individually insignificant.

21. Selling, General and Administrative Expenses

	2024	2023
Personnel expenses (Note 22)	₽125,740	₽125,052
Outside services	45,821	29,342
Taxes, fees and licenses	22,425	6,902
Security expenses	12,225	11,065
Environmental protection and enhancement		
program expense	12,175	13,497
Materials and supplies (Note 6)	8,207	8,685
Social development and management program	5,617	6,768
Power consumption	5,602	5,753
Travel and transportation	5,148	5,612
Depreciation and depletion (Note 10)	4,708	5,835
Rent and utilities	3,591	3,230

(Forward)

	2024	2023
Subscription and membership	₽2,498	₽3,228
Repairs and maintenance	2,824	2,738
Legal and audit expense	2,175	491
Insurance expense	1,457	2,973
Provision (reversal) of allowance for ECL on trade		
and other receivables (Note 5)	153	(184)
Provision for impairment losses on inventories		
(Note 6)	128	_
Freight and handling	10	11
Others	2,998	6,096
	₽263,502	₽237,094

In 2024 and 2023, rent and utilities include expenses relating to short-term leases amounting to P2.13 million and P1.03 million, respectively (see Note 31).

Others consist of mainly of costs incurred for entertainment amusement and representation and other various incidental expenses which are individually insignificant.

22. Personnel Expenses

	2024	2023
Salaries and wages	₽139,498	₽153,422
Benefits and allowances	43,023	35,968
Net pension expense (Note 26)	1,928	10,896
Stock option expense (Note 18)	1,201	2,260
	₽185,650	₽202,546

The above amounts were distributed as follows:

	2024	2023
Selling, general and administrative expenses		
(Note 21)	₽125,740	₽125,052
Cost of mine products sold (Note 20)	59,910	77,494
	₽185,650	₽202,546

23. Other Income (Charges) – net

	2024	2023
Loss on debt settlement	(₽309,396)	₽_
Revaluation gain (loss) on investment properties		
(Note 32)	283,735	(20, 140)
Marketing fee (Note 24)	139,763	141,205
Interest income (Notes 4, 8 and 12)	3,208	4,450
Accretion expense (Note 16)	(1,077)	(727)
Change in estimate of liability for mine		
rehabilitation (Note 16)	(203)	(12,826)

⁽Forward)

	2024	2023
Foreign currency exchange gain - net	₽3	₽82
Unrealized gain on financial assets at FVPL		
(Note 7)	_	638
Dividend income (Note 9)	_	518,333
Others – net	(6,854)	(5,748)
	₽109,179	₽625,267

Others include contractor identification processing, permits for peddlers, various miscellaneous income and incidental expenses that are individually insignificant.

24. Related Party Disclosures

Enterprises and individuals that directly, or indirectly through one or more intermediaries, control or are controlled by, or are under common control with the Company, including holding companies, subsidiaries and fellow subsidiaries, are related parties of the Company. Associates and individuals owning, directly or indirectly, an interest in the voting power of the Company that gives them significant influence over the enterprise, key management personnel, including directors and officers of the Company and close members of the family of these individuals, and companies associated with these individuals also constitute related parties. In considering each possible related entity relationship, attention is directed to the substance of the relationship and not merely the legal form.

The Company's related party transactions which are, individually or in aggregate over a 12-month period, 10% and above of the latest audited total assets are reviewed and evaluated by the Related Party Transaction Committee and Management Committee. Afterwards, these are approved by at least two-thirds (2/3) vote of the BOD, with at least a majority of the independent directors voting to approve the material related party transaction. In case that a majority of the independent directors' vote is not secured, the material related party transaction may be ratified by the majority vote of the shareholders, or two-thirds (2/3) of the outstanding capital stock.

In the normal course of business, the Company has dealings with its related parties as follows:

- a. In 2021, the Company entered into a marketing agreement with BRMC for five (5) years commencing January 1, 2021 and may be extended upon mutual agreement of the parties.
- b. On January 1, 2021, the Company entered into a contract agreement with BMC Forestry Corporation, for the management of the former's property (i.e., Irisan Lime Kilns) for its Lime operations in Itogon, Benguet. Said contract shall continue to exist for a period of 5 years. BMC Forestry Corporation is compensated with a management fee equal to 10% of the managed properties' 'net profit before tax and before management fee'. The Company incurred management fee expense amounting to ₱2.81 million and ₱3.28 million in 2024 and 2023, respectively.
- c. In 2011, Arrow Freight and Construction Corporation (AFCC), a wholly owned subsidiary of BMC, started providing trucking services to the Company for the delivery of equipment to various sites.
- d. The Company provides and receives unsecured noninterest bearing cash advances to and from its subsidiaries for working capital requirements, which are settled in cash.

Category	Year	Income (Note 23)	Outstanding balance	Terms	Conditions
<i>Trade receivables to related parties</i> (Note 5)					
BRMC	2024	₽139,763	₽24,943	Payable on demand;	Unsecured;
	2023	₽141,205	₽33,491	noninterest-bearing	no guarantees, Not impaired
			Outstanding		
Category	Year	Expense	balance	Terms	Conditions
Trade payables to related parties (Note 13)					
AFCC	2024	₽890	₽2,276	Payable on demand;	Unsecured;
	2023	₽1,379	₽2,147	noninterest-bearing	no guarantees
IMRC	2024	129	23	Payable on demand;	Unsecured;
	2023	_	_	noninterest-bearing	no guarantees
Total	2024	₽1,019	₽2,299		
	2023	₽1,379	₽2,147		

Outstanding payables from these transactions in the normal course of business are as follows:

The parent company statements of financial position include the following amounts resulting from advances to and from related parties:

Category	Year	Amount/ Volume	Outstanding balance	Terms	Conditions
Amounts owed by related parties BMC	2024 2023	₽215 ₽99	₽100,631 ₽100,416	Payable on demand; noninterest-bearing	Unsecured no guarantees; impaired
Media Management Corporation (MMC)	2024 2023	2	100,185 100,183	Payable on demand; noninterest-bearing	Unsecured no guarantees; impaired
BGRC	2024 2023	1 61	78,627 78,626	Payable on demand; noninterest-bearing	Unsecured no guarantees; impaired
BLI	2024 2023	2,696	43,766 48,547	Payable on demand; noninterest-bearing	Unsecured no guarantees; impaired
IMRC	2024 2023	3 70	36,199 36,196	Payable on demand; noninterest-bearing	Unsecured no guarantees; not impaired
BCPMI	2024 2023	63 41	30,647 30,584	Payable on demand; noninterest-bearing	Unsecured no guarantees; not impaired
BPGC	2024 2023	113 52	29,859 29,746	Payable on demand; noninterest-bearing	Unsecured no guarantees; impaired
KPLMSC	2024 2023	_ 11	18,790 18,818	Payable on demand; noninterest-bearing	Unsecured no guarantees; not impaired
BTI	2024 2023	-	15,359 15,560	Payable on demand; noninterest-bearing	Unsecured no guarantees; impaired
ADOVC	2024 2023	5 274	12,976 12,971	Payable on demand; noninterest-bearing	Unsecured no guarantees; not impaired

(Forward)

Category	Year	Amount/ Volume	Outstanding balance	Terms	Conditions
Amounts owed by related parties					
BIL	2024 2023	₽778 ₽811	₽9,431 ₽8,653	Payable on demand; noninterest-bearing	Unsecured no guarantees; impaired
BCDC	2024 2023	2	3,218 3,216	Payable on demand; noninterest-bearing	Unsecured no guarantees; not impaired
PECI	2024 2023	47 51	912 865	Payable on demand; noninterest-bearing	Unsecured no guarantees; not impaired
SAFC	2024 2023	802 _	802 _	Payable on demand; noninterest-bearing	Unsecured no guarantees; not impaired
AGMI	2024 2023	40 81	121 81	Payable on demand; noninterest-bearing	Unsecured no guarantees; not impaired
	2024	2,071	481,523		<u> </u>
	2023	4,247	484,462		
Less allowance for ECLs	2024		111,146		
	2023		111,146		
Total	2024 2023	₽2,071 ₽4,247	₽370,377 ₽373,316		

As at December 31, 2024 and 2023, the Company has allowance for ECL amounting to P111.15 million, covering amounts which management believes may no longer be recovered.

Category	Year	Amount/ Volume	Outstanding balance	Terms	Conditions
Amounts owed to related parties BRMC	2024 2023	₽453,096 ₽-	₽454,566 ₽1,470	Payable on demand; noninterest-bearing	Unsecured no guarantees; no impairment
SARC	2024 2023	9 3,020	100,899 100,890	Payable on demand; noninterest-bearing	Unsecured no guarantees; no impairment
BLRI	2024 2023		33,025 35,147	Payable on demand; noninterest-bearing	Unsecured no guarantees; no impairment
BMC Forestry Corporation (BFC)	2024 2023		19,515 23,275	Payable on demand; noninterest-bearing	Unsecured no guarantees; no impairment
AFCC	2024 2023	_ 600	3,227 3,246	Payable on demand; noninterest-bearing	Unsecured no guarantees; no impairment
Total	2024 2023	₽453,105 ₽3,620	₽611,232 ₽164,028		

In 2024, the Company made a contribution to defined benefit obligation of BCLI and BRMC amounting to P10.05 million while in 2023, the Company transferred out a portion of defined benefit obligation to BCLI and BRMC employees amounting to P8.54 million as this amount pertains to the employees of these related parties.

Compensation of Key Management Personnel

The Company considered all senior officers as key management personnel. Below are the details of the compensation of the Company's key management personnel.

2024	2023
₽40,133	₽39,869
14,445	12,297
₽ 54,578	₽52,166
	₽40,133 14,445

25. ESOIP

The ESOIP, as approved by the stockholders in 1986, allows employees of the Company to buy up to 6,000,000 shares of the Common Class A shares of the Company at either of two prices. If the shares are acquired by the Company from a seller or are treasury shares, these can be bought at acquisition cost. If the shares are sourced from the authorized but unissued shares of the Company, these can be bought at the average closing price quoted in the PSE on the last day that such shares were traded prior to the start of the purchase period. Payment for the shares purchased shall be advanced by the Company on behalf of the employees and repaid through salary deduction without interest. The shares acquired by employees under the ESOIP may be subjected to a holding period from the date of purchase.

In January 1990, the BOD approved the Employees Stock Purchase Plan, which allows the employees of the Company (but excluding directors of the Company) to buy, basically under similar terms and conditions as that of the ESOIP, 2,000,000 shares of the Common Class A shares of the Company.

The balance of the employees' stock ownership pursuant to the said plans shown as part of the trade and other receivables in the parent company statements of financial position amounted to P58.42 million as at December 31, 2024 and 2023 and was provided an allowance for the same amount (see Note 5).

26. Pension Benefits Plan

The Company maintains a qualified, noncontributory pension plan covering substantially all of its regular employees.

The following tables summarize the components of net pension expense in the parent company statements of income and fund status, and the amounts recognized in the parent company statements of financial position.

Net pension expense (see Note 22):

	2024	2023
Current service cost	₽8,846	₽7,747
Past service cost	(10,217)	_
Net interest cost	3,299	3,149
Net pension expense	₽1,928	₽10,896

- 51 -

Pension liability as at December 31, 2024 and 2023

	2024	2023
Present value of obligation	₽97,283	₽101,011
Fair value of plan assets	(62,864)	(46,456)
Pension liability	₽34,419	₽54,555

Reconciliation of other comprehensive income

	2024	2023
Balances at beginning of year	₽15,031	₽17,055
Gain (loss) on remeasurement	4,174	(2,699)
Tax effect	(1,043)	675
Remeasurement gain (loss) – net of tax	3,131	(2,024)
Balances at end of year	₽18,162	₽15,031

Changes in the present value of defined benefit obligation

	2024	2023
Balances at beginning of year	₽101,011	₽99,011
Transferred obligation (Note 24)	_	(8,544)
Current service cost	8,846	7,747
Past service cost	(10,217)	_
Interest cost	6,111	6,405
Remeasurement gains	(5,630)	(91)
Benefits paid	(2,838)	(3,517)
Balances at end of year	₽97,283	₽101,011

Breakdown of remeasurement loss (gain) on defined benefit obligation

	2024	2023
Change in financial assumptions	(₽308)	₽4,839
Experience adjustments	(5,322)	(4,930)
Remeasurement gains	(₽5,630)	(₱91)

Changes in the fair value of plan assets

	2024	2023
Balances at beginning of year	₽46,456	₽45,990
Asset return in net interest cost	2,812	3,256
Contribution	15,052	_
Remeasurement loss	(1,456)	(2,790)
Balances at end of year	₽62,864	₽46,456

The Company's plan assets are being managed by a trustee bank. The retirement fund includes cash in bank only as at December 31, 2024 and 2023. The Company has no transactions with its retirement fund. The retirement fund has no investments in shares of stocks of the Company.

In 2024 and 2023, the Company directly paid P2.84 million and P3.52 million, respectively, to the beneficiaries of the pension benefits plan.

The Company is expected to contribute ₱15.60 million to the defined benefits retirement plan in 2025.

Shown below is the maturity analysis of the undiscounted benefit payments as at December 31, 2024 and 2023:

Plan year	2024	2023
Less than 1 year	₽73,969	₽71,484
More than 1 year to 5 years	5,997	13,934
More than 5 years to 10 years	15,303	18,326
More than 10 years to 15 years	38,195	37,032
More than 15 years to 20 years	91,514	104,791
More than 20 years	383,067	545,773

The principal assumptions used in determining the pension benefits obligation of the Company's plan is shown below.

	2024	2023
Discount rate	6.12%	6.05%
Salary increase rate	5.00%	5.00%

The sensitivity analysis below has been determined based on reasonably possible changes of each significant assumption on the pension liability as at the end of the reporting period, assuming if all other assumptions were held constant:

		December 31, 2024
	Increase (decrease)	Present value of the defined benefit obligation
Discount rates	7.05% (+1.00%)	₽93,258
	6.05% actual	97,283
	5.05% (-1.00%)	102,071
Salary increase rate	6.00% (+1.00%)	₽102,170
-	5.00% actual	97,283
	4.00% (-1.00%)	93,061
		December 31, 2023
		December 31, 2023 Present value of the defined
	Increase (decrease)	
Discount rates	Increase (decrease) 7.05% (+1.00%)	Present value of the defined
Discount rates		Present value of the defined benefit obligation
Discount rates	7.05% (+1.00%)	Present value of the defined benefit obligation ₱96,300
Discount rates Salary increase rate	7.05% (+1.00%) 6.05% actual	Present value of the defined benefit obligation ₱96,300 101,011
	7.05% (+1.00%) 6.05% actual 5.05% (-1.00%)	Present value of the defined benefit obligation ₱96,300 101,011 106,671

The average duration of the defined benefit obligation is 18 years and 19 years as at December 31, 2024 and 2023, respectively.

27. Income Taxes

The provision for current and deferred tax in 2024 and 2023 follows:

	2024	2023
Provision for current taxes		
Regular corporate income tax	₽12,775	₽13,353
Provision for deferred taxes	5,332	(3,283)
	₽18,107	₽10,070

The Company did not recognize deferred tax assets relating to the following temporary differences because management believes that it is more likely than not that the carry-forward benefits will not be realized in the near future:

	2024	2023
Allowance for impairment losses on:		
Deferred mine exploration costs	₽166,984	₽166,984
Other noncurrent assets	151,892	151,892
Accrued expenses	8,002	8,002
	₽326,878	₽326,878

	2024	2023
Deferred tax liabilities:		
Revaluation increment on land in OCI	₽815,514	₽787,305
Mine rehabilitation asset	9,189	8,650
Right-of-use assets	941	1,169
Unrealized foreign exchange gain	_	21
Unrealized gain on change in fair value of		
financial assets at FVPL	_	128
	₽825,644	₽797,273
Deferred tax assets:		
Allowance for impairment losses on:		
Inventories	₽39,185	₽39,153
Trade and other receivables	16,172	16,134
Pension liability	8,605	13,639
Liability for mine rehabilitation	7,460	9,768
Amortization of past service cost	2,471	1,229
Shared-based payment	2,056	2,026
Lease liabilities	1,105	1,318
	77,054	83,267
Deferred tax liabilities – net	₽748,590	₽714,006

The components of the Company's net deferred tax liabilities are as follows:

The reconciliation of income tax computed at the statutory tax rates to provision for income tax as shown in the parent company statements of income is summarized as follows:

	2024	2023
Tax at statutory rate	₽25,368	₽134,517
Add (deduct) tax effects of:		
Nontaxable income	(70,934)	(129,583)
Nondeductible expenses	64,444	5,581
Interest income subject to final tax	(802)	(1,113)
Unrealized gain in investment in financial asset		
at FVPL	159	_
Unrealized gain in investment in financial asset		
at FVPL	(128)	128
Changes in unrecognized deferred tax assets	_	(1,569)
Others	_	2,109
Provision for income tax	₽18,107	₽10,070

28. Financial Risk Management Objectives and Policies

The Company has various financial instruments such as cash and cash equivalents, trade and other receivables (excluding advances to officers and employees), amounts owed by/to related parties, trade and other payables (excluding payables to government agencies), loans payable, lease liabilities, and other noncurrent liability which arise directly from its operations. Other financial assets include financial assets at FVPL and FVOCI.

The risks arising from the Company's financial instruments are liquidity risk, credit risk, foreign currency risk, interest rate risk and equity price risk. The BOD reviews and agrees policies for managing each of these risks and these are summarized below.

Liquidity Risk

Liquidity risk arises from the possibility that the Company may encounter difficulties in meeting the obligations associated with its financial liabilities that are settled by delivering cash or another financial asset. The Company's objective is to maintain a balance between continuity of funding and flexibility through the use of bank loans and availment of suppliers' credit. The long-term relationship of the Company to its suppliers gives it the advantage to negotiate the payment terms.

As part of its liquidity risk management, the Company has access to sufficient external funding and loans payable maturing within 12 months can be rolled over with existing lenders. It also continuously assesses conditions in the financial markets for opportunities to avail bank loans and capital market issues. Accordingly, its loan maturity profile is regularly reviewed to ensure availability of funding through an adequate amount of credit facilities with financial institutions. As at December 31, 2024 and 2023, cash in bank and cash equivalents may be withdrawn anytime while investments in financial assets at FVPL and FVOCI may be converted to cash by selling them during the normal trading hours in any business day.

The tables below summarize the maturity profile of the Company's financial liabilities as of December 31, 2024 and 2023 based on contractual undiscounted cash flows. The table also analyses the maturity profile of the Company's financial assets in order to provide a complete view of the Company's contractual commitments. The analysis into relevant maturity groupings is based on the remaining period at the end of the reporting period to the contractual maturity dates.

	2024			
		Within	Over	
	On demand	90 days	90 days	Total
Financial assets				
Cash and cash equivalents	₽415,215	₽38,443	₽-	₽453,658
Trade and other receivables*	215,940	24,943	58,416	299,299
Short-term investments	_	_	10,000	10,000
Amounts owed by related parties	370,377	_	_	370,377
FVOCI	566	_	_	566
Refundable deposits	-	-	9,229	9,229
	1,002,098	63,386	77,645	1,143,129
Financial liabilities				
Trade and other payables**	70,350	27,517	_	97,867
Amounts owed to related parties	611,232	_	_	611,232
Lease liability	_	1,239	3,916	5,155
Other noncurrent liability	_	_	49,136	49,136
	681,582	28,756	53,052	763,390
Net financial assets (liabilities)	₽320,516	₽34,630	₽24,593	₽379,739

*excluding advances to officers and employees

**excluding nontrade payables

	2023				
	On demand	Within 90 days	Over 90 days	Total	
Financial assets	Oli demand	90 days	90 days	Total	
Cash and cash equivalents	₽142,168	₽	₽84,929	₽227,097	
Trade and other receivables*	195,156	33,491	58,416	287,063	
Short-term investments	195,150	55,491	24,280	24,280	
Amounts owed by related parties	373,315	—	24,280	373,315	
FVPL	· · · · · · · · · · · · · · · · · · ·	-	_	,	
	21,441	_	-	21,441	
FVOCI	563	_	0.000	563	
Refundable deposits	_	-	9,229	9,229	
	732,643	33,491	176,854	942,988	
Financial liabilities					
Loans payable	327,299	_	_	327,299	
Trade and other payables**	38,570	53,586	_	92,156	
Amounts owed to related parties	164,028	-	_	164,028	
Lease liability	· _	2,097	5,155	7,252	
Other noncurrent liability	_	_	49,136	49,136	
	529,897	55,683	54,291	639,871	
Net financial assets (liabilities)	₽202,746	(₽22,192)	₽122,563	₽303,117	

*excluding advances to officers and employees

**excluding nontrade payables

Credit Risk

Credit risk refers to the potential loss arising from any failure by counterparties to fulfill their obligations, as and when these falls due. It is inherent to the business as potential losses may arise due to the failure of its customers and counterparties to fulfill their obligations on maturity dates or due to adverse market conditions.

The Company trades only with recognized, creditworthy third parties. It is the Company's policy that all customers who wish to trade on credit terms are subject to credit verification procedures. With respect to credit risk arising from financial assets of the Company, the Company's exposure to credit

risk arises from default of the counterparty, with a maximum exposure equal to the carrying amount of these instruments.

Since the Company trades only with recognized third parties, there is no requirement for collateral.

The table below shows the maximum exposure to credit risk of the components of the parent company statements of financial position. The maximum exposure is shown at each instrument's carrying amount, before the effect of mitigation through the use of master netting and collateral agreements.

	2024	2023
Cash in banks and cash equivalents	₽453,189	₽226,627
Trade and other receivables	299,299	287,063
Short-term investments	10,000	24,280
Amounts owed by related parties	370,377	373,315
FVPL	_	21,441
FVOCI	566	563
Refundable deposits	9,229	9,229
	₽1,142,660	₽942,518

*excluding advances to officers and employees

Impairment of financial assets

The Company has financial assets consisting of cash and cash equivalents, short-term investments amount owed by related parties, trade and other receivables and refundable deposits that are subjected to ECL model.

General Approach

Cash and cash equivalents and Short-term investments

The ECL relating to the cash of the Company is minimal as these are deposited in reputable banks which have good credit rating and are considered to have lower credit risk.

Amounts owed by related parties, Other receivables and Refundable deposits

The Company provided an allowance for ECLs for these financial assets amounting to P173.57 million and P173.42 million in 2024 and 2023, respectively.

Simplified Approach

Trade receivables

An impairment analysis is performed at each reporting date using a provision matrix to measure expected credit losses. The provision rates are based on days past due of trade and other receivables. The calculation reflects the probability-weighted outcome, the time value of money and reasonable and supportable information that is available at the reporting date about past events, current conditions and forecasts of future economic conditions.

The Company establishes credit limits at the level of the individual borrower, corporate relationship and industry sector. It also provides for credit terms with the consideration for possible application of intercompany accounts between affiliated companies. Also, the Company transacts only with related parties and recognized third parties, hence, there is no requirement for collateral.

Below is the information about the credit risk exposure on the Company's trade receivables using a provision matrix:

As at December 31, 2024

	_	Past due		Specific		
	Current	30 days	60 days	>90 days	Identification	Total
Expected credit loss rate	0%	0%	0%	2%	100%	
Estimated total gross carrying						
amount at default	₽9,433	₽12,498	₽6,171	₽25,426	₽1,815	₽55,343
	Ð	Ð	Ð	₽440	₽1 815	₽2 264

As at December 31, 2023

		Past due			Specific	
	Current	30 days	60 days	>90 days	Identification	Total
Expected credit loss rate	0%	0%	0%	1%	100%	
Estimated total gross carrying						
amount at default	₽28,164	₽_	₽-	₽33,491	₽1,815	₽63,470
	₽_	₽-	₽-	₽449	₽1,815	₽2,264

Trade receivables are written off when there is no reasonable expectation of recovery. Indicators that there is no reasonable expectation of recovery is that the debtors or a group of debtors is experiencing financial difficulty, default or delinquency in interest or principal payments.

Impairment losses on trade receivables are presented as impairment losses within operating profit. Subsequent recoveries of amounts previously written off are credited against the same line item.

Market Risks

Interest Rate Risk

Interest rate risk is the risk that the fair value or future cash flows of a financial instrument will fluctuate because of changes in market interest rates. The Company's exposure to interest rate risk relates primarily to the Company's long-term debt obligations with floating interest rates.

As at December 31, 2024 and 2023, the Company's exposure to the risk for changes in market interest rate relates primarily to its secured bank loans with floating interest rates. The Company regularly monitors its interest due to exposure from interest rates movements.

The Company's secured bank loans are payable on demand. Nominal interest rates vary from floating rate of 91-day Philippine Treasury Bill (PhP T-bill) rate for peso loans and 3-month LIBOR foreign loans, plus a margin of 3.5%. The Company has no material exposure to interest rate risk as at December 31, 2024 and 2023.

There is no other impact on the Company's equity other than those already affecting the profit or loss. Based on the historical movement of the interest rates, management believes that the reasonably possible change for the next quarter would result in an increase (decrease) of 100 basis points for USD LIBOR and 100 basis points for PhP T-bill.

Foreign Currency Risk

Foreign currency risk is the risk to earnings or capital arising from changes in foreign exchange rates. The Company takes on exposure to effects of fluctuations in the prevailing foreign currency exchange rates on its financial performance and cash flows. The Company has transactional currency exposures. Such exposure arises from the sale of gold. All sales of gold are denominated in US\$. Dollar conversion of metal sales to Philippine peso is based on the prevailing exchange rate at the time of sale.

The Company's policy is to maintain foreign currency exposure within acceptable limits. The Company believes that its profile of foreign currency exposure on its assets and liabilities is within conservative limits for an institution engaged in the type of business in which the Company is involved.

The Company did not seek to hedge the exposure on the change in foreign exchange rates between the US\$ and the Philippine peso. The Company does not generally believe that active currency hedging would provide long-term benefits to stockholders.

The Company's foreign-currency-denominated monetary assets is cash in banks with US\$45,643 equivalent to P2.60 million and US\$7 equivalent to P388 as at December 31, 2024 and 2023, respectively.

As at December 31, 2024 and 2023, the exchange rates of the Philippine peso to the US\$ based on Philippine Dealing System exchange rates at closing date are ₱57.85 and ₱55.37, respectively.

The amount of foreign-currency-denominated monetary assets subject to foreign currency risk is immaterial relative to the Company financial statements taken as a whole, management opted not to disclose foreign currency risk sensitivity analysis for 2024 and 2023.

Equity Price Risk

Equity price risk is the risk that the fair values of equities decrease as a result of changes in the levels of equity indices and the value of the listed shares. The non-trading equity price risk exposure arises from the Company's quoted equity investments at FVOCI.

The Company's policy is to maintain the risk to an acceptable level. Movement of share price is monitored regularly to determine impact on the parent company statement of financial position.

Since the amount of financial assets subject to equity price risk is immaterial relative to the parent company financial statements taken as a whole, management opted not to disclose equity price risk sensitivity analysis for 2024 and 2023.

29. Capital Management

The Company maintains a capital base to cover risks inherent in the business. The primary objective of the Company's capital management is to ensure that the Company has available funds in order to continuously operate and support its exploration activities. The Company manages its capital structure and makes adjustments, in light of changes in economic conditions. To maintain or adjust the capital structure, the Company may obtain additional advances from stockholders or issue new shares. No changes were made in the objectives, policies or processes in 2024 and 2023.

The following table summarizes the total capital considered by the Company:

	2024	2023
Capital stock	₽714,277	₽624,277
Capital surplus	686,627	415,547
Cost of share-based payment	8,225	8,104
Other components of equity	2,453,681	2,365,920
Retained earnings	4,079,926	4,140,120
Treasury shares	(8,016)	(8,016)
	₽7,934,720	₽7,545,952

Further, the Company monitors capital using debt to equity ratio, which is the total liabilities divided by total equity. Debt to equity ratio of the Company as at December 31, 2024 and 2023 follows:

	2024	2023
Total liabilities (a)	₽1,685,607	₽1,499,517
Total equity (b)	7,934,720	7,545,952
Debt-to-equity ratio (a/b)	0.21:1	0.20:1

30. Fair Value Measurement

Fair value is defined as the price that would be received to sell an asset or paid to transfer a liability in an orderly transaction between market participants at the measurement date. Fair values are obtained from quoted market prices, discounted cash flow models and option pricing models, as appropriate.

Set out below is a comparison by category and class of carrying amounts and estimated fair values of the Company's significant financial assets and liabilities as at December 31, 2023 and 2024:

	Carrying An	Carrying Amount		ues
	2024	2023	2024	2023
Financial assets				
FVOCI	₽ 566	₽563	₽566	₽563
FVPL	_	21,441	_	21,441

The following methods and assumptions were used to estimate the fair value of each class of financial instruments for which it is practicable to estimate such value:

Cash and cash equivalents, Trade and other receivables, Short-term investments, and Amounts owed by related parties

The fair values of these instruments approximate their carrying amounts as of the reporting date due to their short-term nature.

Financial assets at FVOCI

The fair value of investments that are actively traded in organized markets is determined by reference to quoted market bid prices at the close of business on reporting date.

Financial assets at FVPL

The carrying values of financial assets at FVPL are measured at fair value and is computed based on certain valuation techniques.

Land at revalued amount and investment property

The fair value of land at revalued amounts and investment property is calculated using the sales comparative approach, which results in measurements being classified as level 3 in the fair value hierarchy.

Loans payable

Where the repricing of the variable-rate interest-bearing loan is frequent (i.e., three-month repricing), the carrying value approximates the fair value. Otherwise, the fair value is determined by discounting the principal plus the known interest payment using current market rates.

Fair Value Hierarchy

Set out below is the fair value hierarchy of the Company's assets measured at fair value.

		2024		
	Fair valu	Fair value measurement using		
	Quoted prices in active market (Level 1)	Significant observable inputs (Level 2)	Significant unobservable inputs (Level 3)	
Land at revalued amounts	P -	₽-	₽1,687,394	
Investment properties	_	_	2,837,355	
Financial assets at FVOCI	566	_	-	
	₽566	P –	₽4,524,749	

		2023		
	Fair valu	Fair value measurement using		
		Significant	Significant	
	Quoted prices in	observable	unobservable	
	active market	inputs	inputs	
	(Level 1)	(Level 2)	(Level 3)	
Land at revalued amounts	₽_	₽_	₽1,574,558	
Investment properties	_	_	2,553,620	
Financial assets at FVOCI	563	_	_	
Financial assets at FVPL	21,441	_	-	
	₽22,004	₽-	₽4,128,178	


Sensitivity of the fair value measurements that are categorized within Level 3 A 5% increase (decrease) in internal factors used in determining the price per square meter such as use, size and location would decrease (increase) the fair value of land by ₱226.12 million (₱228.47 million) and ₱205.84 million (₱217.20 million) as at December 31, 2024 and 2023, respectively.

As at December 31, 2024 and 2023, the fair value of land at revalued amounts, and investment property are calculated using the sales comparative approach, which resulted in measurement being classified as Level 3 in the fair value hierarchy.

Significant unobservable inputs used include value adjustments due to location, size, neighborhood data, and bargaining allowance. Each of these factors includes an adjustment ranging from 10% to 20% of the asking prices per square meter of comparable lots used which range from P1,000 to P2,000 per square meter. Significant increases (decreases) in each estimated value adjustment would result in a significantly higher (lower) fair value on a linear basis.

As at December 31, 2024 and 2023, the Company's financial assets at FVOCI is classified under Level 1 of the fair value hierarchy since these are based on quoted market prices or binding dealer price quotations.

There are no other assets and liabilities measured at fair value using any of the valuation techniques as at December 31, 2024 and 2023. There were no transfers between levels in 2024 and 2023.

31. Lease Commitments

Company as a lessee

The Company has lease contracts for various office spaces, machinery, tools and equipment, and land, which generally have lease terms, as follows:

Lease	Lease terms
Land	15 to 25 years
Office spaces	3-8 years
Machinery, tools and equipment	2 years

The Company also has certain leases of land and machinery, tools and equipment with lease terms of 12 months or less. The Company applies the 'short-term lease' recognition exemption for these leases. The Company's obligations under its leases are secured by the lessor's title to the leased assets.

In 2021, the Company signed a lease agreement with Perea Realty and Development Corporation for the rental of its office space at Universal Re Building for three (3) years starting July 1, 2020 and expiring on June 30, 2023. On March 18, 2024, the lease agreement was subsequently renewed for a period of one (1) year commencing July 1, 2023 and expiring on June 30, 2024. It was further renewed for another year starting July 1, 2024 and expiring on June 30, 2025. The monthly rental for the leased office space is $\neq 0.18$ million excluding VAT and association dues. The Company has a security deposit amounting to $\neq 0.24$ million which is set to be refunded at the end of the lease term, net of any unpaid charges.

The following are the amounts recognized in the parent company statements of income:

	2024	2023
Depreciation expense of right-of-use assets included		
in property and equipment (Note 10)	₽ 911	₽1,398
Interest expense on lease liabilities	368	318
Expenses relating to short-term leases included in		
selling, general and administrative costs	2,132	1,025
Total amount recognized in company statements of		
income	₽3,411	₽2,741

The carrying amount of PFRS 16 lease liabilities as at December 31, 2024 and 2023 are as follows:

	2024	2023
Beginning balances	₽5,271	₽4,714
Additions	-	2,052
Interest	368	318
Payments of:		
Interest portion	(368)	(318)
Principal portion	(850)	(1,495)
Ending balances	4,421	5,271
Less current portion	942	2,695
Lease liabilities - net of current portion	₽3,479	₽2,576

The lease liabilities were measured at the present value of the remaining lease payments discounted at the Company's incremental borrowing rates as at January 1, 2021. The weighted average incremental borrowing rates applied to the lease liabilities on January 1, 2021 was 9.39%.

Shown below is the maturity analysis of lease liabilities pertaining to contractual undiscounted cash flows:

	2024	2023
1 year	₽1,239	₽2,097
more than 1 years to 2 years	1,259	1,239
more than 2 years to 3 years	1,281	1,259
more than 3 years to 4 years	1,028	1,281
more than 5 years	348	1,376

32. Investment Properties

On February 22, 2024 and January, 16, 2023, the Company engaged an independent appraiser to assess the fair market value of land under investment properties as at December 31, 2024 and 2023, respectively. The appraisal was performed by Cuervo Appraisers, Inc. The fair value of the investment properties was estimated using the sales comparative approach, which considers the sales of similar or substitute properties and related market values and establishes value estimates by processes involving comparisons (Level 3).

The Company recognized revaluation gain amounting to P283.74 million in 2024 and revaluation loss amounting to P20.14 million in 2023 (see Note 23). As at December 31, 2024 and 2023, the Company's retained earnings shall be restricted for dividend declaration to the extent of the accumulated revaluation gains amounting to P1,262.69 million and P978.96 million, respectively.

Direct operating expenses from these investment properties is nil in 2024 and 2023.

Movements of investment properties are as follows:

	2024	2023
Balances at beginning of year	₽2,553,620	₽2,979,827
Transfer to related parties (Note 9)	_	(406,067)
Revaluation (Note 23)	283,735	(20,140)
Balances at end of year	₽2,837,355	₽2,553,620

In 2023, the Company entered into an agreement to assign to ADOVC a 360,000 sq. m. land located in Itogon, Benguet with a fair market value of P263.0 million in exchange for 248,780 common shares in ADOVC. In the same year, the Company entered into an agreement to transfer to BCPMI a 180,000 sq. m. land located in Itogon, Benguet with a fair market value of P143.07 million in exchange for 1,075,100 common shares in BCPMI.

Movements in accumulated revaluation gains on investment properties are as follows:

	2024	2023
Balances at beginning of year	₽978,956	₽1,405,163
Realized gain	_	(406,067)
Revaluation gain (loss) (Note 23)	283,735	(20,140)
Balances at end of year	₽1,262,691	₽978,956

33. Agreements and Contingencies

- a. The Company is contingently liable on lawsuits or claims filed by third parties, which are either pending decision by the courts or are subject to settlement agreements. The outcome of these lawsuits or claims cannot be presently determined. In the opinion of management and its legal counsel, the eventual liability from these lawsuits or claims, if any, will not have a material effect on the parent company financial statements.
- b. In 2011, the Company signed a 20-year power supply agreement with Therma Luzon, Inc. (TLI), a wholly owned subsidiary of Aboitiz Power Corporation, to supply reliable power to its current and future mining operations in Itogon, Benguet. The contract provides for a payment discount of 0.5% on its monthly billing if the Company pays TLI on or before the 15th of the payment month. Electrical charges in 2024 and 2023 amounted to ₱7.70 million and ₱9.12 million, respectively.

34. Changes in Liabilities Arising from Financing Activities

Movements on the reconciliation of liabilities arising from financing activities are as follows:

	2024			
	January 1	Cash flows	Others	December 31
Loans payable	₽327,299	(₽643,211)	₽315,912	₽-
Amounts owed to				
related parties	164,028	447,204	_	611,232
Lease liabilities - current	2,695	(850)	(903)	942
Lease liabilities – net of	,			
current portion	2,576	_	903	3,479
Deposit for future stock	,			,
subscription	_	20,000	_	20,000
Dividend payables	_	(108,068)	143,557	35,489
	₽ 496,598	(₽284,925)	₽459,469	₽671,142
_		2023		
	January 1	Cash flows	Others	December 31
Loans payable	₽325,096	₽_	₽2,203	₽327,299
Amounts owed to	,		,	,
related parties	445,297	(289,812)	8,543	164,028
Lease liabilities - current	1,288	(1,495)	2,902	2,695
Lease liabilities – net of	,))
current portion	3,426	_	(850)	2,576
·	₽775,107	(₽291,307)	₽12,798	₽496,598

Others pertain to the interest expense related to the loans payable and lease liabilities, additions to lease liabilities, transfer of pension liability to related parties and accretion expense related to the liability for mine rehabilitation which are recognized in the parent company statements of income.

35. Operating Segments

Operating segments are components of an enterprise for which separate financial information is available that is evaluated regularly reviewed by the chief operating decision-maker, who is the President of the Company.

The Company identified its operating segments based on the products it offers. The following are the operating segments as at December 31, 2024 and 2023:

			2024		
	Mine operations	Quicklime operations	Total	Eliminations	Consolidated
Revenue	₽791,746	₽100,023	₽891,769	(₽3,258)	₽888,511
Cost and Expenses	654,415	80,154	734,569	154,357	888,926
Net income (loss)	122,159	14,969	137,128	(53,765)	83,363
Operating assets	1,375,275	362,032	1,737,307	7,883,020	9,620,327
Operating liabilities	119,098	45,701	164,799	1,520,808	1,685,607
			2023		
	Mine	Quicklime			
	operations	operations	Total	Eliminations	Consolidated
Revenue	₽627,466	₽96,516	₽723,982	₽-	₽723,982
Cost and Expenses	617,745	72,044	689,789	118,872	808,661
Net income (loss)	(14,457)	26,147	11,690	516,307	527,997
Operating assets	1,215,818	355,600	1,571,418	7,474,051	9,045,469
Operating liabilities	103,622	50,221	153,843	1,345,674	1,499,517

